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Abstract
Collaborative Filtering (CF)-based recommendation methods suffer from (i) sparsity (have low user–item interactions) and 
(ii) cold start (an item cannot be recommended if no ratings exist). Systems using clustering and pattern mining (frequent 
and sequential) with similarity measures between clicks and purchases for next-item recommendation cannot perform well 
when the matrix is sparse, due to rapid increase in number of items. Additionally, they suffer from: (i) lack of personaliza-
tion: patterns are not targeted for a specific customer and (ii) lack of semantics among recommended items: they can only 
recommend items that exist as a result of a matching rule generated from frequent sequential purchase pattern(s).
To better understand users’ preferences and to infer the inherent meaning of items, this paper proposes a method to explore 
semantic associations between items obtained by utilizing item (products’) metadata such as title, description and brand 
based on their semantic context (co-purchased and co-reviewed products). The semantics of these interactions will be 
obtained through distributional hypothesis, which learns an item’s representation by analyzing the context (neighborhood) 
in which it is used. The idea is that items co-occurring in a context are likely to be semantically similar to each other (e.g., 
items in a user purchase sequence). The semantics are then integrated into different phases of recommendation process such 
as (i) preprocessing, to learn associations between items, (ii) candidate generation, while mining sequential patterns and in 
collaborative filtering to select top-N neighbors and (iii) output (recommendation). Experiments performed on publically 
available E-commerce data set show that the proposed model performed well and reflected user preferences by recommend-
ing semantically similar and sequential products.

Keywords Recommendation systems · Sequential pattern mining · Semantics · Sequential model · Clickstream data · 
Historical purchases · Collaborative filtering · TF-IDF · Vector space model · Cold start · Sparsity · E-commerce

1 Introduction

In this section, we will discuss about some preliminaries 
such as mining sequential patterns for recommendation 
(Sect. 1.1.1) and use of semantics in recommendations sys-
tems (Sect. 1.1.2) to lay the foundation of our work.

1.1  Background

Recommendation systems (RSs) facilitate customers’ pur-
chase decision by recommending products or services of 
interest (Aggarwal 2016; Bobadilla et al. 2013; Jannach et al. 
2010). Designing a recommender system targeted towards an 
individual customer’s need is crucial for retailers to increase 
revenue and retain customers’ loyalty. Collaborative filtering 
(CF), a common recommendation technique, takes user–item 
interaction matrix as input, which represents interactions 
either explicitly (users’ ratings) or implicitly (users’ brows-
ing or buying behavior), and outputs top-item recommenda-
tions for each target user, by finding similarities among users 
or items (Ekstrand et al. 2011; Ricci et al. 2011; Schafer 
et al. 2001, 2007; Su and Khoshgoftaar 2009). The input 
matrix suffers from (i) sparsity (has low user–item interac-
tions) and (ii) cold start (an item cannot be recommended if 
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no ratings exist). Content-based method, on the other hand, 
generates recommendations based on the content (features) 
of the item and suffers from content overspecialization (lack 
of diversity in recommended products) due to the use of spe-
cific features only (Adomavicius and Tuzhilin 2011).

Items with which a user interacts (e.g., clicked, rated or 
purchased) can provide a strong indication of her interests 
and facilitate in learning a good user profile leading to rec-
ommendations that match her interests (Bhatta et al. 2019). 
However, users’ interests and preferences change with time. 
The timestamp of a user interaction (click or purchase event) 
is an important attribute, and learning the sequential pat-
terns of user interactions based on the timestamps is useful 
to: (i) understand the long- and short-term preferences of 
user and (ii) predict the next items for purchase by users 
as the time interval between any such interactions provides 
useful insights about users’ behavior. Sequential pattern 
mining mines frequent or high-utility sequential patterns 
from a sequential database comprising of historical pur-
chase or click sequences. Systems (ChoiRec12, SuChen15, 
SainiRec17, HPCRec18, HSPRec19) using clustering and 
pattern mining (frequent and sequential) with similarity 
measures between clicks and purchases for next-item recom-
mendation cannot perform well when the matrix is sparse, 
due to rapid increase in number of items. Additionally, mod-
els utilizing sequential pattern mining suffer from: (i) lack 
of personalization: patterns are not targeted for a specific 
customer, as they infer decisions based on a global view 
of sequences and (ii) lack of contextual similarities among 
recommended items: They can only recommend items that 
exist as a result of a matching rule generated from frequent 
sequential purchase pattern(s) based on a minimum support 
threshold.

1.1.1  Mining sequential patterns in recommendation 
systems

Sequential pattern mining (Agrawal and Srikant 1995; 
Ayres et al. 2002; Bhatta et al. 2019; Mabroukeh and Ezeife 
2010) mines frequent or high-utility sequential patterns 
from a sequential database such as historical purchase or 
click sequence database of customers to learn associations 
between itemset sequences. The problem of sequential pat-
tern mining can be stated as:

Given (i) a set of sequential records (called sequences) 
representing a sequential database SDB = {s1,  s2,  s3, …,  sn} 
with sequence identifiers 1,2,3,….n, where each sequence 
can be a set of items, (ii) a minimum support threshold 
called min sup ξ and (iii) a set of k unique items or events 
I = {i1,  i2,...,  ik}, the goal of sequential pattern mining algo-
rithm such as PrefixSpan (Pei et al. 2004) is to mine all 
frequent itemsets (frequent sequential patterns) from a 
sequence database having the support count greater than or 
equal to the user-defined threshold of minimum support. A 
sequence s is said to be a frequent sequence or a sequential 
pattern if and only if sup(s) >  = minsup (minimum support). 
Table 1 shows an example of daily purchase sequential data-
base. Each sequence in the database (Table 1) represents a 
tuple with format < SID, sequence > where SID represents 
the unique sequence identifier and sequence contains list of 
item sets with each item set consisting of one or more items. 
For example, SID 4 shows the customer first purchased item 
‘21377’ in a single purchase, then item ‘22198’ was pur-
chased followed by a collective purchase of items (21239, 
22246) and then items 21242, 20655 and 21242 were bought 
in separate purchases.

With purchase sequential database (Table  1) and 
a minimum support (min_sup = 1), some of the fre-
quent sequential patterns generated using PrefixSpan 
(Jian Pei et  al. 2004) are: < 21239, 21242 >, < 21242, 
22246 >, < 20655, 21242 >, < (21366, 22246) >, < 21242, 
20655, 21242 >, < (21239, 29655, 21242) >.

So, in this paper, we exploit the effectiveness of sequen-
tial associations between users’ various interactions by 
extracting complex sequential patterns of customer pur-
chases and then integrating those learned patterns into the 
collaborative filtering’s user–item rating matrix to address 
its limitations such as: (i) cold start—when no ratings are 
available for a user–item and (ii) sparsity—when there is 
less user-interaction data. The frequent sequential purchase 
patterns derived from customers’ historical data can lead 
to better next-item recommendations for the target user by 
capturing users’ short- and long-term preferences and can 
improve the accuracy and diversity of recommendations by 
finding the sequential relationship between frequently pur-
chased items. Furthermore, we aim to enrich the process of 
generating frequent sequential patterns by incorporating the 
semantic knowledge of products extracted from products’ 
metadata.

Table 1  Purchase sequence 
database

SID Purchase sequences

1  < 21239, (21239, 20655, 21242), (21239, 21242), 21366, (21242, 22246) > 
2  < (21239, 21366), 21242, (20655, 21242), (21239, 21377) > 
3  < (21377, 22246), (21239, 20655), (21366, 22246), (21242, 20655) > 
4  < 21377, 22198, (21239, 22246), 21242, 20655, 21242 > 
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1.1.2  Using semantics in sequential recommendation

Semantics (meanings) are required to have a deep compre-
hension of the information conveyed by the textual content 
and to achieve the goal of improving the quality of user pro-
files and the effectiveness of intelligent information access 
platforms. According to de Gemmis et al. 2015, techniques 
in semantic recommenders can be categorized as: (i) top 
down and (ii) bottom up. To capture the semantics of target 
user’s information needs, top-down approaches utilize exter-
nal knowledge sources, through the use of concepts extracted 
from taxonomies (IS-A hierarchy), dictionaries or ontolo-
gies (formal representations of categories, properties and 
relations between concepts, data and entities) for creating 
user profiles and interpreting the meaning of items. Top-
down approaches aim to facilitate recommender systems 
in interpreting documents written in natural language and 
provide meaningful reasoning by providing knowledge such 
as linguistic, common sense and cultural backgrounds. They 
introduce semantics by: (i) mapping the features describing 
the item with semantic concepts, such as word-sense disam-
biguation (Semeraro et al. 2007) and entity linking, or (ii) 
linking the item to a knowledge graph such as ontological 
knowledge (Middleton et al. 2004), structured or unstruc-
tured encyclopedic knowledge, like Wikipedia (Gabrilovich 
and Markovitch 2009; Semeraro et al. 2009).

Bottom-up approaches (distributional models), on the 
other hand, interpret the semantics by exploring the syn-
tagmatic and paradigmatic relations between words in 
high-dimensional vector spaces. Syntagmatic relation is a 
type of semantic relation between words that co‐occur in 
the same sentence or text (Asher, 1994). For example, “the 
lion chased the deer,” representing syntagmatic relation-
ship between lion and chase or “I liked my new iphone” 
representing relationship between “iphone” and “liked.” 
Paradigmatic relation is a different type of semantic relation 
between words that can be substituted with another word in 
the same categories (Hjørland (2015)), for example, substi-
tuting ‘cat’ with ‘dog’ or ‘coca-cola’ with ‘coca-cola cherry’. 
These methods work on the principle of vector space model 
(Turney and Pantel 2010) in which each term is represented. 
A term-context matrix is created to learn the vector-space 
representation of each term by encoding the context (for 
example, a situation) in which the term is used. A context 
can be set according to the granularity required by the rep-
resentation of term. The granularity can be coarse-grained 
(a whole document) or fine-grained (a paragraph, sentence, 
a window of words). An example of coarse-grained context 
could be, a document of customers’ review about the qual-
ity of beverages and the cutlery served at the restaurant they 
dined at. A fine-grained context can be the description of 
items purchased by a customers’ over the weekend.

A vector-space representation (called WordSpace) is 
learnt according to terms’ usage in contexts. Specifically, 
terms sharing a similar usage are very close in the word 
space. Given a WordSpace, a vector-space representation of 
documents (called DocSpace) is typically built as the cen-
troid vector of word representations, that is, a document vec-
tor will be represented as the average vector of the words in 
the document. Once we obtain the vector representations, it 
is possible to perform similarity calculations between items 
according to their semantic representation. A common simi-
larity measure is cosine similarity.

Content is required to extend and improve user modeling 
(preferences) and more importantly to address the limita-
tions of collaborative filtering systems such as: (i) sparsity—
when there is less user-interaction data, (ii) cold start—when 
no ratings are available for a user–item. Furthermore, while 
generating candidate item(s) by mining the frequent sequen-
tial patterns for next-item recommendation, sequential pat-
tern mining techniques suffer from some drawbacks that 
include: (i) absence of contextual similarities among rec-
ommended products, that is, they recommend items based on 
a match with the sequential rules generated from sequential 
patterns and do not consider relationships between items 
according to their context. For example, if there are two 
sequential rules for chocolate purchase such as:

a) Ferrero Rocher, Ferrero Rondnoir Rafeallo and
b) Kinder Chocolate Bar, Kinder Surprise Kinder Beuno,

where rule (a) (indicating that a purchase of Ferrero 
Rocher, Ferrero Rondnoir will most likely lead to the pur-
chase of Rafeallo), so for a new purchase sequence where 
a customer bought Nutella and Rafeallo, he can be recom-
mended to purchase “Ferrero Collection” as they all belong 
to same brand and have “similar” characteristics such as 
their ingredients; however, if there is no rule for the product 
“Nutella,” the customer will not be recommended with a 
product. Conventional sequential rules fail to capture such 
semantic relationships between products and will only rec-
ommend product that exist as a result of a matching rule with 
products “Nutella and Rafeallo.” Therefore, it cannot recom-
mend products that are similar in semantics as they are based 
only on the frequent sequential occurrence. i.e., frequency 
count based on a minimum support threshold. Additionally, 
they (ii) lack of personalization.

Therefore, semantics (meanings) are required to have a 
deep comprehension of the information conveyed by the tex-
tual content and to achieve the goal of improving the qual-
ity of user profiles. More specifically, semantics are needed 
to (i) better understand the associations between items and 
therefore recommend diverse items and (ii) model user pref-
erences in an effective way.
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To better reflect users’ preferences and to interpret the 
meaning of the items, in this paper, we explored the effec-
tiveness of utilizing semantic knowledge (meaningful rela-
tionships between items) learnt through the use of models 
based on distributional hypothesis (context in which the 
items are used such as their co-occurrence in the purchase 
sequences) such as Prod2vec (Grbovic et al. 2015), Glove 
(Pennington et al. 2014), Doc2vec (Le and Mikolov, n.d.) 
and TF-IDF (Salton 1988) methods to learn the semantic 
relationships between products. This semantic knowledge 
can then be integrated into different phases of recommen-
dation process such as (i) pre-processing, to learn associa-
tions between items, (ii) candidate generation, while mining 
sequential patterns and in collaborative filtering to select 
top-N candidates that show semantic and sequential associa-
tion between items, and (iii) output (recommendation). Thus, 
the inclusion of semantic knowledge into all phases of rec-
ommendation process can address the issues of sparsity and 
cold start and provide recommendations which are diverse, 
are similar in context (usage) and better reflect user’s long- 
and short-term interests.

1.2  Contributions

The contributions of this study are to improve the perfor-
mance of recommendation system in the context of sparse 
user–item interactions and are divided into feature and pro-
cedural contributions:

1.2.1  Feature contribution

The main features proposed in this study are to: (i) extract 
semantic knowledge of items from items’ metadata (title, 
description and brand) and customers’ purchase histories 
(co-purchased and co-reviewed products), to compute 
semantic similarities between items, (ii) enrich the process 
of mining frequent sequential patterns by mining semantic-
rich frequent sequential patterns from purchase sequences 
of customers with semantically similar buying behaviors 
and incorporating items’ semantic knowledge (semantic 
similarity), (iii) integrating items’ semantic and sequential 
information to enhance the item–item matrix in CF with-
out utilizing item ratings, thereby providing personalized 
recommendations.

1.2.2  Procedural contribution

To address the above limitations and achieve the research 
goals, the procedural contributions according to the feature 
contributions are:

 (i) Propose a model which first learns products’ semantic 
representations in the form of multidimensional vec-

tors (embeddings) through various distribution mod-
els such as Prod2Vec (Grbovic et al. 2015), Glove 
(Pennington et al. 2014), Doc2vec (Le and Mikolov 
2014), TF-IDF (Salton 1988) and their hybrids by 
using product ID’s and product metadata (title, 
description and brand) as explained in Sect. 3.2. 
Next, cosine similarity between the obtained prod-
uct vectors through these models is used to compute 
semantic similarity between products as products 
with similar vectors will be similar in semantics and 
mapped closely in the vector space (Sect. 3.3.1). This 
semantic similarity is used to create item–item simi-
larity matrix for CF.

 (ii) Next, for each target customer, top-N customers are 
determined based on semantic similarities between 
products in their purchase sequences, where each pur-
chase sequence will be represented as an aggregate 
vector of all products in the sequence (Sect. 3.3.2). 
This is analogous to representing a sentence as col-
lection of words. In the next phase, a database of 
these semantically similar purchase sequences is cre-
ated and frequent sequential patterns using PrefixS-
pan (Pei et al. 2004) are extracted. During the min-
ing process, we integrate the semantic information 
of products from the item similarity matrix (obtained 
in step (i)) along with their support count to prune 
patterns of products that are below our specified 
similarity threshold and minimum support threshold 
(Sect. 3.3.3). This provides us the items that are simi-
lar in semantics and purchased in sequential order.

 (iii) Then, the item–item matrix is enriched with the 
semantic and sequential information by the pro-
posed computing score between a pair of items 
before applying collaborative filtering for recom-
mending top-K personalized products as explained 
in Sect. 3.4.

Our approach provides a unified structure for generat-
ing product recommendations which are semantically rich, 
sequential and personalized without requiring the use of 
user–item ratings.

In summary, the main contributions of our work as an 
extension to the earlier proposed model SEMSRec (Nasir 
and Ezeife 2020) are:

1. We propose a comprehensive model to learn item 
(product) semantics by utilizing more product features 
(metadata) such as product title, description and brands 
in addition to product id’s and then incorporating those 
obtained semantics during mining frequent sequential 
purchase patterns and to enrich the item-to-item similar-
ity matrix in collaborative filtering for top-K semantic 
and sequential recommendation.
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2. Extend the process for learning products’ semantics 
by training various distributional models and obtained 
products’ representations by:

a) Individually training Prod2vec (Grbovic et al. 2015) 
and Glove (Pennington et al. 2014) models using 
product IDs from customers’ purchase sequences 
sorted according to the time stamp.

b) Utilizing embeddings obtained from Prod2vec 
(Grbovic et al. 2015) and Glove (Pennington et al. 
2014) to create hybrid embeddings for product rep-
resentation.

c) Individually training TF-IDF and Doc2vec (Le and 
Mikolov 2014) models using more product features 
such as title, description and brand from customers 
purchase sequences and products’ metadata, where a 
document represents the collection of products’ title, 
description and brand purchased by the customer 
sorted according to the time stamp.

d) Utilizing embeddings obtained from TF-IDF and 
Doc2vec (Le and Mikolov 2014) to create hybrid 
embeddings for product representation.

Incorporating the obtained semantics (from step 2) in 
the process of sequential recommendation (while mining 
frequent sequential patterns) and to enrich item-to-item 
similarity matrix of collaborative filtering.
Proposing a score measure based on semantic similarity, 
confidence and lift measures to determine the relationship 
between products.
Extensive and more detailed experiments by including 
more E-commerce datasets such as Online Retail and 
Amazon data set under various categories (electronics, 
beauty, books and movies).

1.3  Problem description

This paper emphasis on generating top-K recommendations. 
Formally stating, given a set of users U = {u1, u2, u3,… ., un} 
and a set of items I =

{

i1, i2, i3,… ., in
}

 . Each user u has 
a purchase sequence PSu representing the association of 
the user with sequence of some items from I  such that 
PSu =

(

PS1,PS2,PS3,… .,PSn
)

 . For purchase sequences PSu 
of all such users, the task of the system is to generate a list of 
top-K semantically similar and sequential products for each 
user from the candidate set obtained through finding seman-
tic similarities and sequential relationships between products 
by: (i) extracting semantic knowledge of items from items’ 
metadata (title, description and brand) and (ii) customers’ 
purchase histories (co-purchased and co-reviewed products).

The rest of this paper is organized as follows: Section 2 
summarizes related work about recommendation sys-
tems in particular about sequential recommendation and 

semantic-based recommendation. Section 3 introduces the 
proposed model in detail along with the architecture. Sec-
tions 4 and 5 present the experiments and results along with 
analysis of the model. Finally, Sect. 6 presents the conclu-
sion and future work.

2  Related work

Recommendation systems have been widely studied in the 
literature. We have explored related work in three main cat-
egories. The first category includes general recommenda-
tion methods, which are based on user feedback without any 
sequential order of user actions. The second group includes 
sequential recommendation methods based on: (i) sequential 
pattern mining and first-order Markov chains, which con-
sider the last visited item and (ii) sequential recommender 
systems based on deep learning, which include various or 
all previously visited items. The third group involves recom-
mendations by learning semantics (meaningful relationship 
between items) by using distributional models. In this sec-
tion, we will discuss them, respectively.

2.1  General recommendation

Traditional recommendation methods include collabora-
tive filtering (Aggarwal 2016), matrix factorization (Rendle 
et al. 2010) and rule-based approaches (Agrawal and Sri-
kant 1994; Xiao and Ezeife 2018). Recommendations are 
generated based on using either explicit feedback (ratings, 
reviews) or implicit feedback (clicks, purchases). Bayesian-
personalized ranking (BPR) (Rendle et al. 2010) works on 
implicit feedback and optimizes the latent factor model by 
utilizing a pairwise ranking loss in a Bayesian framework. 
HPCRec18 system (Xiao and Ezeife 2018) enriched the 
quantity (finding the value for unknown ratings) and quality 
(finding precise value for already rated items) of user–item 
rating matrix. To improve the quality of ratings, they used 
normalized purchased frequency matrix and to predict the 
ratings for next possible purchase; consequential bond 
between clicks and purchases in each session was mined. 
The main limitation was that customers’ historical sequential 
behavior patterns were not integrated into the item-rating 
matrix and during the mining process of consequential bond. 
Hence, methods under this category are unable to capture 
sequential patterns of customers’ behavior as they do not 
take into account the order of actions.

2.2  Sequential recommendation

Given past item interactions (e.g., clicks, views, purchases) 
of a user, sequential recommendation predicts the future 
item(s) that are of interest to the user. Some previous works 
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on sequential recommendation using sequential pattern 
mining (Choi et al. 2012) and explicit sequential associa-
tion rules based on statistical co-occurrences (Bhatta et al. 
2019) have limitations of a huge search space and suffer 
from suitable threshold settings, which may lead to large 
number of rules most of which are redundant. The use of 
sequential pattern mining to explore the sequential relation-
ship between purchase sequences for items recommendation 
is discussed by Choi et al. (2012). These models are hybrid 
as they combine collaborative filtering with sequential pat-
tern mining for providing recommendations. According to 
authors, finding neighbor users not just on the basis of rat-
ings on similar items but also considering the sequential 
relationship between purchase sequences can lead toward 
more accurate recommendation.

Some of the recent works by Bhatta et al. (2019); Choi 
et al. (2012); Saini et al. (2017); Salehi and Nakhai Kama-
labadi (2013); Yap et al. (2012) have utilized sequential 
pattern mining techniques in E-commerce recommenda-
tion systems for mining customers’ purchase patterns and 
recommending next items for purchase. The authors (Choi 
et al. 2012) proposed a hybrid online product recommenda-
tion system (HOPE), which integrates collaborative filter-
ing (CF)-based recommendations using implicit rating and 
sequential pattern mining-based recommendations. The sys-
tems use implicit rating information instead of explicit rating 
information by computing implicit rating information from 
the transaction dataset. They propose to obtain better rec-
ommendation quality by integrating collaborative filtering 
and sequential pattern analysis of customer purchases each 
of which considers the rating information of users on items 
and the associations among items. Yap et al. 2012 state that 
most of the existing sequential pattern mining methods are 
not user-specific and propose a novel competence score to 
overcome such disadvantages. They proposed to assign more 
weight to sequences that have similar items as the target user 
(e.g., user's purchasing or viewing the same books as the tar-
get user). Saini et al. (2017) proposed a framework to mine 
sequences in the purchase patterns of customer transactions. 
Also, they intend to find the time gap between products pur-
chased to help improve the recommendation of next products 
in sequence. The authors used SPADE algorithm to mine 
sequence of all products, which are (i) bought regularly, e.g., 
every month, and (ii) bought one after another in a sequence, 
e.g., most users find mobile phones and mobile covers as 
common purchase sequence.

HSPRec19 by Bhatta et al. (2019) mined frequent sequen-
tial purchase patterns and augment the item-rating matrix 
with sequential purchase patterns of customers for next-item 
recommendation. It mined frequent sequential click and 
purchase behavior patterns using the consequential bond 
between click and purchase sequences and then used this 
quantitatively and qualitatively rich matrix for collaborative 

filtering to provide better recommendations. The results by 
Bhatta et al. (2019) have showed significant improvement 
over the systems without using sequential pattern mining 
methods such as Kim et al. (2005); Kim and Yum (2011); Su 
and Chen (2015); Xiao and Ezeife (2018). Therefore, mining 
sequential patterns from customers’ historical transactions 
can be very beneficial for retailers and can increase revenue 
and customer satisfaction by recommending tailored prod-
ucts to customers.

Other line of work in sequential recommendation inte-
grated matrix factorization and Markov chains, for next 
basket recommendation, and proposed factorized person-
alized Markov chains (FPMC) (Rendle et al. 2010; Bern-
hard et al., 2016; Brafman et al., 2003; Shani et al. 2005). 
Recently, great progress has been shown by deep learning, 
and many new techniques such as recurrent neural networks 
(RNNs) (Hidasi et al. 2016) and convolutional neural net-
works (CNNs) (Tang and Wang 2018) have been adapted 
to sequential recommendation. RNN-based methods embed 
users’ historical interactions into a latent vector to repre-
sent their preferences. To improve sequential recommenda-
tion by using memory networks, RUM (Chen et al. 2018) is 
proposed, which explicitly captures sequential patterns at 
item and feature level. Convolutional sequence embeddings 
(Caser) (Tang and Wang 2018), a CNN-based method, uses 
embedding matrix of the L most recent items and applies 
convolutional operations to capture high-order Markov 
chains. An approach using attention mechanism is proposed 
in a self-attention-based sequential model (SASRec) (Kang 
and McAuley 2018) to capture long-term preferences of 
users.

2.3  Semantic‑based recommendation

Research works have introduced to learn item associations 
for recommendation by learning their semantics (meanings). 
According to de Gemmis et al. 2015, techniques in seman-
tic recommenders can be categorized as (i) top down and 
(ii) bottom up. Top-down semantic approaches (exogenous 
techniques) use external knowledge sources to incorporate 
semantics. Word-sense disambiguation algorithms process 
the textual description and replace keywords with semantic 
concepts (as synsets from WordNet (Miller 1995)), whereas 
entity linking algorithms focus on the identification of the 
entities from the text and then linking those entities to other 
encyclopedic sources such as Wikipedia to create enriched 
item profiles (Gabrilovich and Markovitch 2009; Middleton 
et al. 2004; Semeraro et al. 2007). Bottom-up approaches 
(distributional models), on the other hand, interpret the 
semantics by exploring the syntagmatic and paradigmatic 
relations between words in high-dimensional vector spaces. 
In summary, we can utilize the (big) corpora of data to 
directly learn a semantic vector-space representation of 
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the terms of a language. It facilitates to infer lightweight 
semantics, which are not formally defined such as those in 
Wikipedia. Furthermore, they are flexible as items, concepts, 
entities are represented as vector and similarities can eas-
ily be computed between terms or terms and documents. 
Researchers have introduced various distributional models 
(Word2Vec) (Mikolov et al. 2013), Prod2Vec (Grbovic et al. 
2015), Glove (Pennington et al. 2014), Doc2vec (Le and 
Mikolov 2014) and count-based model such as TF-IDF.

One of the earliest methods Word2vec (Mikolov et al. 
2013) creates word embeddings (dense numeric representa-
tions of words which store the contextual (semantic) infor-
mation in a low-dimensional vector) by using a two-layer 
neural-network-based distributional model for learning 
semantic representation of words. By using word embed-
dings, words that are close in context (meaning) are grouped 
near to one another in the vector space. The input to Word-
2vec is a text corpus, and its output is a set of vectors known 
as feature vectors that represent words in that corpus. How-
ever, these features representing those words are not explic-
itly defined. Each word is represented by a vector of real 
numbers of dimension d. The context of a word w within 
a sentence is the set of x surrounding words. For example, 
for the sentence “My new iphone fell out of my pocket and 
broke its screen” we have the target word “iphone.” With a 
sliding window of size = 1, moving along a sentence, the 
skipgram model of Word2vec (Mikolov et al. 2013) predicts 
the probabilities of a word being a context word given a 
target word “iphone,” where context words are those on the 
left and right of the target word within the sliding window. 
In this case, with a context, x = 2, for the word “iphone” 
the context words are {“My”, “new”, “fell”, “out”} that is, 
two words each toward the left and right of the target word 
“iphone.”

A context–target pair is considered as a new observation 
(training sample) in the data. For example, the target word 
“iphone” in the above case produces four training samples as 
(my, iphone), (new, iphone), (fell, iphone) and (out, iphone). 
This process is iterated for each word in the sentence. Word-
2Vec (Mikolov et al. 2013) is a distributional model since 
it learns a representation such that couples (context, word) 
appearing together have similar vectors. The algorithm is 
fed with a corpus, and training examples are created through 
skip-gram. During the training phase, the model learns the 
weights (feature vectors) of words. The model aims at maxi-
mizing the probability of predicting a context C given a word 
w.

Recently, Neural Language models (NL) such as Word-
2vec (Mikolov et al. 2013) have been extended to recom-
mender systems. Prod2vec (Grbovic et al. 2015) uses the 
terminology from Word2vec (Mikolov et  al. 2013) and 
learns vector representations of products to find similarities 
between products by considering a purchase sequence as a 

sentence and the products in the sequence as words. In prin-
ciple, the products occurring in the same context (neighbor-
hood) are similar in semantics (meaning). The model aims 
to maximize the objective function over the entire set S of 
purchase sequences, where products from the same purchase 
sequence are in random order. Prod2vec models the context 
of purchase sequences, where products with similar contexts, 
that is with similar neighboring purchases, will have similar 
vector representations and are closer to each other. Accord-
ing to the analogy of Word2vec (Mikolov et al. 2013), each 
purchase sequence is a sentence and product id’s are words, 
that will be fed to the model for training.

GloVe (Pennington et al. 2014) is an unsupervised learn-
ing algorithm for obtaining vector representations for words 
from their co-occurrence information, i.e., how frequently 
they appear together in a large text corpora. The idea is that 
a certain word generally co-occurs more often with one word 
than another. For example, the word “butter” is more likely 
to occur with shared subset of words (context) such as “mar-
garine.” Given some word  wi occurring in the document 
and considering the context window surrounding  wi, if the 
window size is n, then these are the subsequent words in that 
document, i.e., words  wi+1…wi+n. The model builds a co-
occurrence matrix X, which is a symmetric word-by-word 
matrix in which  Xij is the number of times word  wj appears 
inside  wi's window among all documents, and then, from 
that matrix, the model learns the vector representations of 
words. The main intuition behind the model is that ratios of 
word–word co-occurrence probabilities encode some form 
of meaning. For example, consider the co-occurrence prob-
abilities for target words butter and honey with various probe 
words from the vocabulary. The training objective of GloVe 
(Pennington et al. 2014) is to learn word vectors such that 
their dot product equals the logarithm of the words' prob-
ability of co-occurrence.

TF-IDF approach uses keyword matching or vector space 
model (VSM) for representing items (documents, products, 
videos, music). More specifically, each item (for example, a 
document) is represented as an n-dimensional vector of term 
weights, where each weight shows an association between 
the document and the term. If d = {d1,  d2, …….,  dN} denote 
a set of documents and T = {t1,  t2,……,  tN} be the vocabu-
lary, that is the set of words in the documents where T is 
obtained by applying some standard natural language pro-
cessing operations such as tokenization, stop words removal 
and stemming, then each document  dj is represented as a 
vector in a n-dimensional vector space, such that  dj =  <  w1j, 
 w2j,….,wnj > where  wkj is the weight for term  tk in document 
 dj. The next task is then to represent each item (document 
in this case) in the VSM by weighting the terms and then 
measuring the similarities between feature vectors of items 
in order to find items similar to the target. TF-IDF weight-
ing (term frequency-inverse document frequency) is a term 
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weighting scheme (Salton 1988) which computes weight of 
a term as product of TF weight and IDF weight.

SEMSRec (Nasir and Ezeife 2020) was proposed to inte-
grate e-commerce products’ semantic and sequential rela-
tionships extracted from customers’ purchase histories into 
CF’s item similarity matrix to provide semantically similar 
and sequential recommendations. However, the limitation 
is that they did not include any item metadata for learning 
semantics of products.

3  Architecture of the proposed model 
based on semantic context and sequential 
historical purchases (SSHRec)

We propose a component-based architecture for our pro-
posed system. Figure 1 presents the diagram depicting the 
architecture of the system. The system consists of four main 
phases.

3.1  Data pre‑processing

This module is responsible to pre-process the users’ (cus-
tomers’) historical purchase data and products’ metadata 
(title, description and brands) for input to the system. The 
customers’ historical data depend on the purchases made 
by the customers’ over a period of time. The historical 
data need to be cleaned and transformed to obtain it in the 
correct form. The transformations involve filling missing 
values, removing duplicate records, sorting and grouping 
customers’ purchase sequences according to the timestamp. 
Other preprocessing tasks for the product metadata involve 
natural language processing operations such as: a) tokeniza-
tion (the process of segmenting text into words, clauses or 
sentences such as separating words and removing punctua-
tions), b) stop words’ removal (removal of commonly used 
words unlikely to be useful for learning such as a, the, of) 
and c) stemming which involves reducing related words to a 
common stem such as reducing the words loved, loving and 

Fig. 1  Architecture of the proposed model (SSHRec)
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lovely to the word love obtained from customer’s review 
about a product expressing her likeliness towards the prod-
uct. These pre-processing operations need to be performed 
before the data can be input to the models for learning prod-
ucts semantic representations. This is where the feature 
extraction, construction and selection take place too to get 
the data model.

3.2  Embedding vector (semantic representation 
phase)

This phase involves learning the product representations, 
which are then used in the later phases for computing prod-
uct similarities, semantically similar purchase sequences, 
extracting semantically frequent sequential patterns and then 
incorporating this semantic and sequential information into 
the item–item similarity matrix in collaborative filtering for 
generating Top-K recommendations.

The semantics are learned based on:

(a)  Product IDs

In this setting, the corpus consists of product ids from cus-
tomers’ purchase sequences sorted according to the time 
stamp and is used to individually train the Prod2vec (Grbo-
vic et al. 2015) and GloVe (Pennington et al. 2014) mod-
els to obtain products’ vector representations. Here, for the 
model training, a corpus of sentences in case of Prod2Vec 
(where a sentence represents sequence of products purchased 
by customers sorted according to the time stamp) and docu-
ments in case of GloVe (where a document represents col-
lection of sequences representing products purchased by the 
customer) are used.

In a different setting, vectors obtained after training both 
models are combined (averaged) to obtain a unified feature 
vector representation of each product in the corpus.

(b)  Product’s metadata

To explore the impact of obtaining product semantics from 
other product features (textual data), a corpus of documents 
and tokens in case of TF-IDF (where a document represents 
collection of products’ title, description, brand and tokens 
comprise of unique words present in the textual data) and 
documents for Doc2vec (Le and Mikolov 2014) are used 
(where a document represents collection of product descrip-
tions, title and brand in a list of list format and each list 
element represents description, title and brand of a product 
purchased, and a document ID for each document).

In a different setting, vectors obtained after training both 
models are combined (averaged) to obtain a unified feature 
vector representation of each product in the corpus.

Prod2vec (Grbovic et al. 2015) is based on Word2vec, 
which is a highly scalable predictive model for learning 
word embeddings from text. It is based on the distribu-
tional hypothesis, which states that words that appear in 
the same contexts are close to each other in meanings. A 
similar hypothesis can be applied in larger contexts such as 
online shopping where we can treat products as word tokens 
and use user sequences (analogical to sentences) to learn 
product embeddings. Word2Vec encodes semantics of the 
words, which is exactly what we need for similar products; 
therefore, Prod2vec (Grbovic et al. 2015) is used to gener-
ate product embeddings. However, the product embeddings 
generated by Prod2vec (Grbovic et al. 2015) only take into 
account the information of the user purchase sequence, that 
is, only the local co-occurrence information. Glove model 
(Pennington et al. 2014) on the other hand is a word vector 
representation method where training is performed on aggre-
gated global word–word co-occurrence statistics from the 
corpus (set of all purchase sequences). Therefore to capture 
information from the purchase sequences at the local and the 
global level, product embeddings were obtained by training 
both models (Prod2vec and Glove) individually and then 
unifying the learnt embeddings for better representation of 
product vectors. Experiments showed that unified embed-
dings gave better results in terms of finding similar products.

We further enhanced the products’ representations by 
including other types of item information, which is the items’ 
metadata (e.g., product titles, descriptions and brand), and 
used Doc2vec (Le and Mikolov 2014) and TF-IDF because 
Prod2vec (Grbovic et al. 2015) and (Pennington et al. 2014) 
do not take into account these types of information such as 
the items’ metadata. In Doc2vec model (Le and Mikolov 
2014), the words (products) and the paragraph (products' 
metadata in a purchase sequence) are trained jointly to learn 
product vector representations (embeddings).

The rationale to obtain product embeddings through 
aggregating two models (e.g., Prod2vec and Glove) on prod-
uct sequences was to capture information about the products 
(embeddings) from the purchase sequences at the local and 
the global level.

Next, we present the details of obtaining product rep-
resentations based on product Ids and the metadata using 
the Prod2vec (Grbovic et  al. 2015), Glove (Pennington 
et al. 2014), Doc2vec (Le and Mikolov, n.d.) and TF-IDF 
(Salton 1988) methods. To explain the input format and 
the working of the models Prod2Vec (Grbovic et al. 2015), 
Glove (Pennington et al. 2014),TF-IDF(Salton, 1988) and 
Doc2vec (Le and Mikolov 2014), we will use data from 
Table 2 and Table 3 representing sample historical product 
purchase records of customers and products’ metadata. For 
each of these models, we will obtain a semantic representa-
tion of items across d = 100 dimensions, where an item can 
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represent documents comprising of products, articles, books, 
customer reviews or product descriptions. 

Example 3.1. Product's Semantic Representation Using 
Prod2Vec.

Step 1: Creating purchase sequences
From Table 2, we create purchase sequences (Table 4) for 

each customer sorted according to the timestamp. Table 5 
then represents the sequences in the form of lists for learning 
products’ vector representations using Prod2Vec. 

Table 2  Sample historical product purchase records

Invoice no. Stock code Invoice date Customer ID

536365 20674 12/1/10 8:26 17850.0
536365 21242 12/1/10 8:26 17850.0
536365 20675 12/1/10 8:26 17850.0
536365 21245 12/1/10 8:28 17850.0
536365 20677 12/1/10 8:28 17850.0
536365 20655 12/1/10 8:30 17850.0
536365 20677 12/1/10 8:30 17850.0

Table 3  Sample of product metadata

Stock code Title Description Brand

20674 Green polka Dot bowl Earthenware, largest measures 5.5 inch h × 12 inch l × 11.25 inch hand wash Tag limited
21242 Red retrospot Plate These beautiful plates are composed of high-rated heavyweight plastic materi-

als rendering the plates leak-free, soak resistant, cut proof and unbreakable
Silver Spoons

20675 Blue Polka Dot bowl This polka dot bowl is fun and festive and perfect for that bowl of cereal in the 
morning or bowl of ice cream in the evening. It is finished in a blue celadon 
glaze with a sprinkling of matte black polkadots. Dish washer safe

Creative innovations

21245 Green polka Dot plate Add a splash of color with this bright party detail! Green and White Dots Des-
sert Plates (8), 7"

Party2u

20677 Pink polka Dot bowl Earthenware,largest measures 5.5 inch h × 12 inch l × 11.25 inch. Hand wash Tag limited
20655 Queen of skies Luggage Tag Suitcase tag made PU material, in front with a protective film. waterproof. 

Fully Bendable / Flexible Material to Prevent Breaking or Losing Your 
leather luggage tags

PAGSRAH

Table 4  A purchase sequence 
database (purchase sequences)

SID Purchase sequences

1  < 21239, (21239, 20655, 21242), (21239, 21242), (21366), (21242, 22246) > 
2  < (21239, 21366), 21242, (20655, 21242), (21239, 21377) > 
3  < (21377, 22246), (21239, 20655), (21366, 22246), (21242, 20655) > 
4  < 21377, 22198, (21239, 22246), 21242, 20655, 21242 > 
5  < (20674), (20674, 21245, 21239), 21242 > 
6  < 21238, 21239, 21245 > 
7  < (20655, 20674, 20675, 20675), (21242, 21245) > 
8  < 20675, 21238, 21245 > 
9  < 21366, 21239, 21242, 21245 > 

Table 5  Lists of purchase 
sequences

SID Sequence(s) as lists

S1 [21239, 21239, 20655, 21242, 21239, 21242, 21366, 21242, 22246]
S2 [21239, 21366, 21242, 20655, 21242, 21239, 21377]
S3 [21377, 22246, 21239, 20655, 21366, 22246, 21242, 20655]
S4 [21377, 22198, 21239, 22246, 21242, 20655, 21242]
S5 [20674, 20674, 21245, 21239, 21242]
S6 [21238, 21239, 21245]
S7 [20655, 20674, 20675, 20675, 21242, 21245]
S8 [20675, 21238, 21245]
S9 [21366, 21239, 21242, 21245]
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Problem 1: Given the input purchase sequence [‘20674’, 
‘21242’, ‘20675’, ‘21245’, ‘20677’, ‘20655’] represented as 
a sentence with words (products) as p1 = 20674, p2 = 21242, 
p3 = 20675, p4 = 21245, p5 = 20677, p6 = 20655. Consider 
the product ‘20675’ as center product (word), the goal is to 
train the model to predict the neighboring (context) prod-
ucts which are [‘20674’, ‘21242’, ‘21245’, ‘20677’, ‘20655’] 
by learning vector representations. The model works as 
explained below.

Input: Sentences (purchase sequences), input layer size–
[1x V], input hidden weight matrix X–[V x N], dimension of 
embedding vector (hidden layer)–N, hidden-output weight 
matrix Y–[N x V], output layer size–C [1 x V].

Output: Vector representation of all products in V 
across N dimensions. The created sentences (purchased 
sequences) will be fed to the model for learning product 
vector representations.

Prod2Vec Algorithm Summary: Prod2Vec accepts prod-
uct purchase sequences (e.g., as shown in Table 5) with 
some other input data listed above. It creates a product 
(word) vocabulary in the format of {index: unique product 
id}. Then, each product is represented in a one-hot vector 
format with dimension V where V is the vocabulary size and 
the position of the product is represented by a '1' in the vec-
tor. Next, a product of one-hot vector is taken with the input 
weight matrix X to get an embedded vector for the product, 
which is then multiplied with the output weight matrix Y 
to get embedded vectors for the context products (e.g., as 
shown in Fig. 2). For more step-by-step details on obtaining 
product vectors using Prod2Vec, the reader is encouraged to 
read conference version of paper (Nasir, M. & Ezeife, C. I., 
2020). As a result, we obtain the product vector (PV) matrix 
where each product is represented across d = 100 dimen-
sions (features). Figure 2 shows matrix PV for some sample 
products using Prod2Vec.

Example 3.2. Learning Product Vector Representations 
Using Global Vectors (GloVe).

To use Glove model for our task, we represent a collec-
tion of purchase sequences consisting of product IDs sorted 
according to timestamp as documents and each product ID 
in the document representing a word. Glove will model the 
context of purchase sequences, where products with similar 
contexts that is with similar neighboring purchases will have 
similar vector representations and are closer to each other.

The steps to learn product vector representations (seman-
tics) by creating a co-occurrence matrix and then the vector 
representations using Glove are explained below:

Problem 2: Given an input of purchase sequences (docu-
ment) in a list of list format as [[‘20674’, ‘21242’, ‘20675’,  
‘21245’, ‘20677’, ‘20655’], [‘20675’, ‘21245’, ‘20655’], 
[‘21245’, ‘20674’, ‘20675’]] where a document consists of 
a collection of customers’ purchase sequences sorted accord-
ing to the timestamp, each sequence consists of one or more 
products (words) and a window size of n, and the goal is to 
train the model to obtain the product co-occurrence matrix 
and then learn products’ vector representations (semantics). 
Here in our example, we have three purchase sequences 
where each purchase sequence has a number of products 
represented by product ID’s. The model works as explained 
below.

Input: Corpus of documents (purchase sequences in list 
of list format), window size—c.

Intermediates: Co-occurrence matrix M of size (n x n) 
where n is the number of unique products in the sequences

Output: Vector representation of all unique products in 
the vocabulary V across N dimensions. The created docu-
ment (purchased sequences) will be fed to the model for 
creating co-occurrence matrix and then learning product 
vector representations.

Glove Algorithm Summary: Glove accepts product pur-
chase sequences (e.g., shown in Table 5) with some other 
input data listed above. It creates a product (word) vocabu-
lary in the format of {index: unique product id}. Then, it 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

… … …
20674 0.66072 0.176294 .577179 ⋮ ⋮ ⋮ 0.985326 .113320 0.120507
21242 0.135658 0.208497 .108157 ⋮ ⋮ ⋮ 0.728440 0.023664 0.430904
20675 0.344165 .012509 .293663 ⋮ ⋮ ⋮ 0.786582 0.182488 0.388695
21245 0.016946 .051390 .172432 ⋮ ⋮ ⋮ 0.728440 0.023664 0.430904
20677 0.363226 0.076637 .299294 ⋮ ⋮ ⋮ 0.908400 0.081133 0.245601
20655 .110575 0.226335 .199941 ⋮ ⋮ ⋮ 0.183031 .334734 0.558633⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 2  Product vectors by Prod2Vec model



 Social Network Analysis and Mining (2021) 11:82

1 3

82 Page 12 of 25

collects word (product) co-occurrence statistics to get a co-
occurrence matrix (Fig. 3) so that it can compute the product 
co-occurrence score for each pair of products.

Steps

1) Create a vocabulary of size (V) in the format {index: 
product id} consisting of all unique products. For exam-
ple, V = {1: 20674; 2: 21242; 3: 20675; 4: 21245; 5: 
20677; 6: 20655}

2) Collect word (product) co-occurrence statistics in a form 
of word (product) co-occurrence matrix X. Each ele-
ment  Xij of such matrix represents how often product 
i appears in the context of product j. This is done by 
scanning the corpus as: for each product, look for con-
text products within the defined window_size -c (here 
c = 1) after the term. Less weight is given for context 
products which are more distant from the target product, 
by using Eq. 1:

 

 

For example, in the above co-occurrence matrix, we 
can see that product “20674” (target) has co-occurred 
with product “21242” (context) as 1.0 times. This is 
computed by scanning the corpus and finding the posi-
tions where both these products occur together. Here, 
according to the corpus, they both occur together only 
in sequence 1 and the product “21242” is in the context 
window size (offset) of 1, so its co-occurrence score as 
per Eq. 4. is = 1/1/ = 1.0. In the same way, the co-occur-
rence between products “20674” and “20677” (context) 
is computed. As product “20677” co-occurs with product 
“20674” in only one sequence (first sequence) and at an 
offset 4, so its co-occurrence score will be = ¼ = 0.25. The 
co-occurrence score between other products is computed 
in the same way.

(1)decay =
1

offset

Produce vector values in continuous space for each word 
in the corpus, which represents how every pair of words 
i and j co-occur. This is done by using a soft constraint 
for each word pair of word i and word j, which states that 
word vectors are learnt such that their dot product (inner 
product) equals the logarithm of the words' probability of 
co-occurrence as shown in Eq. 2.

Here  wi represents vector for the target product,  wj is vec-
tor for the context product,  bi,  bj are scalar biases for the 
target and the context products. This is achieved by minimiz-
ing an objective function J, which evaluates the sum of all 
squared errors based on the above equation, weighted with 
a function f as given in Eq.3.

where V is the size of the vocabulary. Here f is a weight-
ing function, which helps to prevent learning only from 
extremely common word pairs (product pairs). The fol-
lowing function (Eq. 4) is used in Glove (Pennington et al. 
2014):

By using the above formulas and the co-occurrence 
matrix obtained in step 3, we learn the feature vector repre-
sentations of products as shown in Fig. 4.

Where each row represents feature vector representation 
of a product across d dimensions. Here, the feature vectors 
(dimensions) have a size of 100, as given in Fig. 4. This is 
a model parameter and can be set as required. For example, 
vector representation of product with id “20674” is the first 
row in the matrix and represented as [  − 0.077740 -0.075161 
0.075892 ……  − 0.020273 0.133662 0.034656]. 

Example 3.3 Learning Product Vector Representations 
Using TF-IDF.

Problem 3: Given a collection of documents d (e.g., 
books, articles, product descriptions, user reviews) and a 
set of features (terms) t, learn the document representation 
(semantics) by finding the association (weight) between the 
document and the features.

For our task, the problem is reformulated as: Given a 
collection of documents (where a document represents col-
lection of product descriptions in a list format as ['medium 
ceramic top storage jar', 'black candelabra t-light holder', 
'woodland charlotte bag', 'airline bag vintage jet set brown'] 
where each element represents description of a product 

(2)wT
i
wj + bi + bj = log(Xij)

(3)J =

V
∑

i=1

V
∑

j=1

f
(

Xij

)(

wT
i
wj + bi + bj − logXij

)

2

(4)f
(

Xij

)

=

{ (

Xij

xmax

)

𝛼, ifXij < XMAX

1, otherwise

⎣
⎢
⎢
⎢
⎢
⎢
⎡

20674 21242 20675 21245 20677 20655
20674 0.0 1.0 1.5 1.33 0.25 0.20
21242 0.0 0.0 1.0 0.5 0.33 0.25
20675 0.0 0.0 0.0 2.5 0.50 0.83
21245 0.0 0.0 0.0 0.0 1.0 1.50
20677 0.0 0.0 0.0 0.0 0.0 1.0
20655 0.0 0.0 0.0 0.0 0.0 0.0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 3  Glove co-occurrence product matrix
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purchased and a set of features (where a feature will consist 
of unique tokens extracted from the product descriptions), 
find the association (weight) between the products and the 
features.

Input: d = {d1,  d2, …….,  dN}.
d= ['medium ceramic top storage jar', 'black candelabra 

t-light holder', 'woodland charlotte bag', 'airline bag vintage 
jet set brown']

t = {t1,  t2,……,  tN}.
t= ['blue', 'bowl', 'dot', 'green', 'luggage', 'pink', 'plate', 

'polka', 'queen', 'red', 'retrospot', 'skies', 'tag']
Output:  dj =  <  w1j,  w2j,….,wnj > 

TF-IDF Summary: TF-IDF aims to learn the product 
feature vectors by first creating set of all unique tokens 
(words) in product descriptions and then computing the 

term frequency count from the given product descriptions 
(Table 6 and Table 7). It then computes inverse document 
frequencies (as shown in Table 8), and finally, the product of 
term frequency (TF) and inverse document frequency (IDF) 
is computed to obtain a term-weighted vector representation, 
i.e., representing each product as an n-dimensional feature 
vector (Fig. 5, Table 9).   

The steps to learn the product feature vectors using TF-
IDF are given below:

Table 6 shows frequency count of thirteen terms occur-
ring in the product descriptions. For example, the term 
“bowl” appears three times among the product descriptions 
(as indicated by a 1 in each corresponding row where the 
term appears in a product).

Step 1: Term Frequency Computation (TF)

⎣
⎢
⎢
⎢
⎢
⎢
⎡

… … …
20674 ⋮ ⋮ ⋮
21242 .114833 0.061225 0.109533 ⋮ ⋮ ⋮ 0.065046
20675 0.120447 ⋮ ⋮ ⋮ 0.054446
21245 .065362 0.047590 0.059333 ⋮ ⋮ ⋮ 0.041389
20677 .102480 0.087887 0.101183 ⋮ ⋮ ⋮ .019029 0.167862 0.033685
20655 .000398 .002544 0.003422 ⋮ ⋮ ⋮ .001759 0.001247 0.003912⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 4  Product vectors by glove model

⎣
⎢
⎢
⎢
⎢
⎢
⎡

… … …
20674 0.075502 .026424 .091291 ⋮ ⋮ ⋮ 0.000088 .073289 .055986
21242 0.202582 .226119 .354920 ⋮ ⋮ ⋮ 0.019935 .028236 0.037867
20675 0.080445 .041201 .134280 ⋮ ⋮ ⋮ 0.014696 .030099 .067652
21245 0.074386 .036098 .061312 ⋮ ⋮ ⋮ 0.002169 .076671 0.041561
20677 0.114951 .034461 .145326 ⋮ ⋮ ⋮ .010915 .047242 .070353
20655 0.000589 .001437 .001532 ⋮ ⋮ ⋮ .002298 0.004696 0.003122 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 5  Product vectors obtained from TF-IDF model

Table 6  Frequency count of unique tokens occurring in the product descriptions

Prod Id Products Tokens

blue bowl dot green luggage pink plate polka queen red retrospot skies tag

20674 Green polka dot bowl 0 1 1 1 0 0 0 1 0 0 0 0 0
21242 Red retrospot plate 0 0 0 0 0 0 1 0 0 1 1 0 0
20675 Blue polka dot bowl 1 1 1 0 0 0 0 1 0 0 0 0 0
21245 Green polka dot plate 0 0 1 1 0 0 1 1 0 0 0 0 0
20677 Pink polka dot bowl 0 1 1 0 0 1 0 1 0 0 0 0 0
20655 Queen of skies luggage tag 0 0 0 0 1 0 0 0 1 0 0 1 1
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Term frequency (TF) will be computed by using Eq. 9. 
For example, term frequency for “blue” in product 
description “green polka dot bowl” is computed as: TF 
(blue, green polka dot bowl) = 0/3 = 0.
Similarly, the term frequencies of all tokens are computed 
and shown in Table 7:
Step 2: Inverse document frequency computation (IDF)
IDF for all the terms is computed using the formula (log 
N/nk) where N is the total number of product descriptions 
and  nk represents the number of product descriptions in 
which the term appears at least once. Table 8 shows the 
IDF of all terms.
Step 3: TF-IDF computation
The TF-IDF is computed using Eq. 8, that is, taking the 
product of term frequency of each token in the product 
description with inverse document frequency of the token 
in that product description. For example, the TF-IDF of 
the term blue will be:

TF-IDF (blue, green polka dot bowl) = TF (blue) * IDF 
(blue, green polka dot bowl) = 0. * 0.78 = 0.
TF-IDF (bowl, green polka dot bowl) = TF (bowl) * 
IDF (bowl, green polka dot bowl) = 0.25 * 0.30 = 0.08.

After the computation of TF-IDF, we can represent each 
product as an n-dimensional feature vector, where each 
dimension represents a feature (token). For our example, we 
have thirteen features (tokens) and the product “green polka 
dot bowl” can be represented as term-weighted vector as:

Green polka dot bowl = 

[0.00 0.08 0.04 0.12 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00]

After training the model on all products in the purchase 
sequence, we reduce the dimension of the features by using 
singular value decomposition (SVD) and obtain final prod-
uct vector matrix as shown in Fig. 5.

Example 3.4 Learning product vector representations Using 
Doc2vec (Le & Mikolov, 2014)

Problem 4: Given a collection of documents d, learn the 
document vector representation.

For our task, the problem is reformulated as: Given a 
collection of documents (where a document represents col-
lection of product descriptions, product title and product 
brand in a list of list format as where each element represents 
description, title and brand of a product purchased, and a 

Table 7  Term frequencies (TF-computation)

Product Id Products Tokens

blue bowl dot green luggage pink plate polka queen red retrospot skies tag

20674 Green polka dot bowl 0.00 0.25 0.25 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00
21242 Red retrospot plate 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.33 0.33 0.00 0.00
20675 Blue polka dot bowl 0.25 0.25 0.25 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00
21245 Green polka dot plate 0.00 0.00 0.25 0.25 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.00
20677 Pink polka dot bowl 0.00 0.25 0.25 0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00
20655 Queen of skies luggage tag 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.25 0.25

Table 8  IDF computation Terms blue bowl dot green luggage pink plate polka Queen red retrospot skies Tag

IDF 0.78 0.30 0.18 0.48 0.78 0.78 0.48 0.18 0.78 0.78 0.78 0.78 0.78

Table 9  TF-IDF of tokens in product descriptions (product vectors using TF-IDF)

Product Id Products Tokens

blue bowl dot green luggage pink plate queen red retrospot skies tag

20674 Green polka dot bowl 0.00 0.08 0.04 0.12 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
21242 Red retrospot plate 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.26 0.26 0.00
20675 Blue polka dot bowl 0.19 0.08 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00
21245 Green polka dot plate 0.00 0.00 0.04 0.12 0.00 0.00 0.12 0.04 0.00 0.00 0.00 0.00
20677 Pink polka dot bowl 0.00 0.08 0.04 0.00 0.00 0.19 0.00 0.04 0.00 0.00 0.00 0.00
20655 Queen of skies luggage tag 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.19 0.00 0.00 0.19
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document ID for each document, learn document representa-
tion (product representation).

Input: A collection of documents in a list of list format 
[[green polka dot bowl earthenware largest measures hand 
wash tag limited], [red retrospot plate beautiful plates com-
posed high rated heavy weight plastic material render plate 
leak free soak resistant cut proof unbreakable, silver spoon], 
[ green polka dot plate add a splash of color bright party 
detail green white dots dessert plates party2u]

Intermediates: word vectors and document Id vectors. 
The dimensions of the word vector are 1xV (on-hot vec-
tor) and 1xC where C represents the total number of docu-
ments. Weight matrix W of hidden layer has a dimension of 
VxN, whereas the weight matrix D of the hidden layer has 
a dimension of CxN.

Output: Vector representation of each document across 
N dimensions.

Doc2vec summary and steps:  The method for learning 
document representation is similar to that of Word2vec with 
the difference that along with the generation of word vec-
tor W for each word, a document vector D is also generated 
for each document during the training phase. For example, 
TaggedDocument (words = [‘green’, ‘polka’, ‘dot’, ‘bowl’, 
‘earthenware’, ‘largest’, ‘measures’, ‘hand’, ‘wash’, ‘tag’, 
‘limited’] tags = ['0']) and in the end of training, a numeric 
representation of the document (products) is represented as 
shown in Fig. 6.

We then created two hybrid matrices of product vector 
representations as (i) hybrid of PVp2vecandPVglove ) (Fig. 7) 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

… … …
20674 .729392 .694623 0.360440 ⋮ ⋮ ⋮ .059213 0.784198 .709698
21242 0.478108 0.810839 .67386 ⋮ ⋮ ⋮ 0.876485 0.128663 .818151
20675 1.560531 0.965368 .731812 ⋮ ⋮ ⋮ 0.182436 .794381 .585287
21245 .309573 0.418730 0.247207 ⋮ ⋮ ⋮ .468052 0.743325 0.427864
20677 .100401 1.024751 0.034455 ⋮ ⋮ ⋮ 0.346302 .044198 0.284042
20655 0.685829 0.646765 .305982 ⋮ ⋮ ⋮ 0.438488 1.036193 1.161657 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 6  Product vectors by Doc2vec model

⎣
⎢
⎢
⎢
⎢
⎢
⎡

… … …
20674 ⋮ ⋮ ⋮ 0.482526 0.010171 0.077582
21242 0.010412 0.134861 0.000688 ⋮ ⋮ ⋮ 0.351238 0.098413 0.247975
20675 ⋮ ⋮ ⋮ 0.382098 0.185960 0.221571
21245 ⋮ ⋮ ⋮ 0.483533   0.153193 0.265428
20677 ⋮ ⋮ ⋮ 0.444685 0.124498 0.139643
20655 .098260 ⋮ ⋮ ⋮ 0.090636 .166744 0.281272 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 7  Hybrid product vectors by Prod2vec and Glove models

⎣
⎢
⎢
⎢
⎢
⎢
⎡

… … …
20674 .088612 ⋮ ⋮ ⋮ .024504 .121241 0.018026
21242 0.042981 .004462 .270291 ⋮ ⋮ ⋮ .024960 .061913 0.104531
20675 .109378 ⋮ ⋮ ⋮ 0.004292 .068960 .068960
21245 .021472 0.072360 .129097 ⋮ ⋮ ⋮ .064445 .128279 0.069797
20677 .007805 0.065704 .117965 ⋮ ⋮ ⋮
20655 .038842 0.030226 .069437 ⋮ ⋮ ⋮ 0.097315 0.031924 0.204722 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Fig. 8  Hybrid product vectors by Doc2vec and TF-IDF models
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and (ii) hybrid of PVtfidf andPVdoc2vec ) (Fig. 8) to better learn 
product semantics. This is achieved by averaging the embed-
dings of each product in the respective matrices.

3.3  Candidate Generation Phase

This phase involves generating potential candidates for 
recommendation and comprises of three steps which are 
(i) computing products’ semantic similarity, (ii) extract-
ing top-N semantically similar neighbors and (iii) mining 
semantic embedded sequential patterns and rules. Next, we 
will discuss each of these steps in detail.

3.3.1  Computing Products’ Semantic Similarity

 Next step is to create the item-to-item semantic similar-
ity matrix (M) to compute products’ semantic similarity by 
applying cosine similarity using Eq.5 on product vectors in 
the joint PV matrix.

where  xi and  yi represent components of vectors for products 
x and y, respectively. For example, to compute the similarity 
of product “20674” (Green Polka Dot Bowl) with product 
“21239” (Pink Polka Dot Cup) and product “20675” (Blue 
Polka Dot Bowl), we will take their corresponding product 
vectors (column) from the hybrid PV matrix and 21239, 
20675 compute cosine similarity between them. So, Cosine 
similarity (20674, 21239) is 0.81 and cosine similarity 
(20674, 20675) is 0.98, which shows that product 20674 is 
more close to product 20675 in the vector space than product 
21239. Similarity between other products is computed in the 

(5)Cosine Similarity(x, y) =

∑n

i=1
xiyi

�

∑n

i=1
x2
i

�

∑n

i=1
y2
i

same way. Next, populate the item–item similarity matrix 
M using Eq. 6. Each entry  Rx,y in the matrix M represents 
semantic similarity between products x and y in the vector 
space. Figure 9 shows a sample of matrix M.

 

3.3.2  Extracting Top‑N Semantically Similar Neighbors

This step involves computing vector representation 
(semantic information) of purchase sequences by aggre-
gating vectors of each product in the purchase sequence. 
This is obtained by computing mean of vectors (across N 
dimensions) of all products in the purchase sequence by 
utilizing the hybrid matrices created in Sect. 3.1.2. For 
example, to compute cosine similarity between the target 
customers’ purchase sequence in the test data and other 
purchase sequences in the train data, consider a sample 
purchase sequence in test data as [‘23077’, ‘23078’, ‘2307
6’, ‘22437’] with vector representation ������⃗PSut = [− 0.044143 
0.044143 0.001968 …. − 0.001035 0.018966 0.02645] 
and a purchase sequence in training data [21238, 21239, 
21245] with vector representation as �����⃗PSu  = [0.032593 
0.066846 − 0.172250..…. … − 0.025199 − 0.043636 
0.08122], so the cosine similarity between vectors of these 
two purchase sequences using Eq. 5 is 0.81.

Similarly, cosine similarity between this purchase 
sequence vector ������⃗PSut in test data is computed with other 
purchase sequence vectors �����⃗PSu in the training data. The 
results of cosine similarity are then sorted in decreasing 
order to select top-N (where N = 5, 10, or 15) customers 
with similar purchase behaviors, i.e., having products that 

(6)Mx,y =

{

1, ifx = y

Cosine Similarity(x, y), otherwise

M=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

20674 21242 21238 21245 21239 20655 20675 21366 22246 21377 22198
20674 1.00 0.84 0.88 0.80 0.81 0.93 0.98 0.86 0.97 0.87 0.33
21242 0.84 1.00 0.91 0.86 0.78 0.02 0.87 0.21 0.21 0.11 0.12
21238 0.88 0.91 1.00 0.96 0.98 0.95 0.94 0.94 0.90 0.94 0.98
21245 0.80 0.86 0.96 1.00 0.78 0.35 0.86 0.21 0.18 0.21 0.34
21239 0.81 0.78 0.98 0.77 1.00 0.10 0.89 0.23 0.11 0.18 0.37
20655 0.93 0.02 0.95 0.35 0.10 1.00 0.45 0.15 0.43 0.23 0.23
20675 0.98 0.87 0.94 0.86 0.89 0.45 1.00 0.47 0.16 0.31 0.44
21366 0.86 0.21 0.94 0.21 0.23 0.15 0.47 1.00 0.16 0.23 0.42
22246 0.97 0.21 0.90 0.18 0.11 0.43 0.16 0.16 1.00 0.23 0.32
21377 0.87 0.11 0.94 0.21 0.18 0.23 0.31 0.23 0.23 1.00 0.28
22198 0.33 0.12 0.98 0.34 0.37 0.23 0.44 0.42 0.32 0.28 1.00 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Fig. 9  Item-to-item semantic similarity matrix



Social Network Analysis and Mining (2021) 11:82 

1 3

Page 17 of 25 82

are semantically similar to products in the target sequence. 
This process is repeated for all the purchase sequences in the 
test data (i.e., for each target user).

So, here we obtain semantically similar purchase 
sequences by computing similarities between the test and 
the train purchase sequences using the hybrid similarity 
matrices ( PVp2vec&glove and PVdoc2vec&tfidf ).

3.3.3  Mining Semantic Embedded Sequential Patterns 
and Rules

Purchase sequences of top-N semantically similar customers 
were extracted and database of those purchase sequences 
was created as shown in Table 7. Using Sequential Histori-
cal Database (SHOD) (Bhatta, Ezeife and Butt, 2019) for-
mat, these semantically similar purchase sequences were 
formatted to extract frequent semantic sequential patterns. 
For example, using SHOD format, a sequence will be repre-
sented as < 21239 21366–1 21242–1 20655 21242–1 21239 
21377–2 > where a  −1 indicates the end of item and −2 
indicates the end of sequence. For example, in our running 
example, Table 10 shows purchase sequences with products 
that are semantically similar to our target purchase sequence 
[‘23077’, ‘23078’, ‘23076’, ‘22437’].

Next, frequent semantic sequential purchase pat-
terns from these semantically similar purchase sequences 
(Table 10) are extracted using Prefix Span (Pei et al. 2004). 
As these frequent sequences were generated from purchase 
sequences with products, which are semantically similar, so 
the sequences obtained represents products that are similar 
in semantics and frequently purchased in sequential order. 
A detailed step-by-step example of extracting sequential 
patterns using PrefixSpan (Pei et al. 2004) is explained in 
Sect. 1.1.1. At this step, we enrich the process of mining 
sequential patterns by integrating semantic information of 
products from matrix M. The goal is to generate seman-
tic-rich frequent sequential patterns by pruning product 
sequences that have a semantic similarity score less than 
the specified similarity threshold in addition to the tradi-
tional method of removing sequences based on the support 

count. A similarity threshold of 0.5 was used. This gives us 
frequent sequential purchase patterns of products which are 
similar in semantics.

For example, first, some of the frequent sequen-
tial length-2  (L2) itemsets with their support count are: 
 L2 = {(21239, 20655):4, (21239, 21242):5, (21239, 
22246):3, (20655, 21242):5, (21242, 20655):3, (21366, 
21242):4}. We will then check the semantic similarity 
between these products to reduce the search space and fur-
ther prune the itemsets that are not semantically similar by 
looking at item-to-item semantic similarity matrix (Fig. 9). 
In this case, the patterns (21239, 20655):4 and (21239, 
22246):3 will be pruned out as semantic similarity between 
(21239, 20655) is 0.10 and between (21239, 22246) is 0.11, 
which are less than our specified threshold of 0.5. So, final 
semantic sequential purchase patterns are:

L = {21239, 20655, 21242, 21366, 22246, 21377, 21245, 
(21239, 21242), (21239, 21245), (21242, 21239), (21242, 
21245), (21239, 21242, 21239), (21239, 21242, 21245), 
(21242, 21239, 21242), (21242, 21239, 21245)}.

From these semantic sequential purchase patterns, one of 
the semantic sequential rule can be:

21239, 2124 → 221245
Pink Polka Dot Cup, Red Retrospot Plate 
Green → Polka Dot Plate

Here we can see that the recommended product 21245 
(Green Polka Dot Plate) is similar in semantics to the prod-
ucts 21239 (Pink Polka Dot Cup) and 21242 (Red Retrospot 
Plate) which the user has already liked or purchased and is 
more close to the interest of user.

3.4  Sequential recommendation phase

This last phase involves incorporating the semantic and 
sequential associations between products into the item–item 
similarity matrix in order to enrich the collaborative filtering 
item–item matrix for recommending products to customers, 
which are similar in semantics and are purchased in sequen-
tial order as well. The steps involved in this phase are: (i) 

Table 10  Purchase sequence 
database of top-N customers

SID Sequence

1  < 21239, (21239, 20655, 21242), (21239, 21242), (21366), (21242, 22246) > 
2  < (21239, 21366), 21242, (20655, 21242), (21239, 21377) > 
3  < (21377, 22246), (21239, 20655), (21366, 22246), (21242, 20655) > 
4  < 21377, 22198, (21239, 22246), 21242, 20655, 21242 > 
5  < (20674), (20674, 21245, 21239), 21242 > 
6  < 21238, 21239, 21245 > 
7  < (20655, 20674, 20675, 20675), (21242, 21245) > 
8  < 20675, 21238, 21245 > 
9  < 21366, 21239, 21242, 21245 > 
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score computation for products, (ii) semantic and sequen-
tially rich item-to-item similarity matrix and (iii) semanti-
cally rich and sequential Top-K recommendation.

3.4.1  Score computation for products

After extracting semantically rich frequent sequential pur-
chase patterns, this sequential information about products is 
populated into the semantically rich item-to-item similarity 
matrix M. For each entry  Rx,y in the matrix M, we update the 
matrix entries by computing a score using Eq. 7,

where CosineSimilarity(x, y) is already computed using 
Eq.5 and Confidence (x,y) and lift(x,y) are computed using 
Eq. 8 and Eq. 9 as:

 where support(x,y) measures how frequently products x and 
y occur sequentially in all available sequences.

and Confidence(x,y) determines the sequential co-occur-
rence of products x and y given all sequences in which x 
occurs. The lift score lift (x,y) indicates whether there is a 
relationship between items x and y, or whether the two items 
are occuring together in the same order simply by chance 
(i.e., at random). Unlike the confidence metric whose value 
may vary depending on direction (e.g., confidence{x → y} 
may be different from confidence{y → x}), lift has no direc-
tion. This means that the lift(x,y) is always equal to the lift 
(y,x).

For example, consider the products “21242” and “21245,” 
their cosine similarity with product “21239” is 0.58 and 
0.88, respectively. Confidence(x,y) and lift (x,y) based on 
their frequent sequential support count can be calculated as:

(7)Score(x, y) = α(CosineSimilarity(x, y)) + β(Confidence(x, y)) + γ(lift(x, y))

(8)Confidence(x, y) =
Support(x, y)

Support(x)

(9)lift(x, y) =
Support(x, y)

Support(x)*Support(y)

Confidence(21239, 21242) =
Support(21239, 21242)

Support(21239)
=

6∕9

7∕9
= 0.85

lift(21239, 21242) =
Support(21239, 21242)

Support(21239) ∗ Support(21242)

=
6∕9

7∕9 ∗ 7∕9
= 1.10

Confidence(21239, 21245) =
Support(21239, 21245)

Support(21239)
=

2∕9

7∕9
= 0.28

A lift score of 1  implies that there is  no  relation-
ship between x and y and they occur together by chance). 
A lift score of greater than 1 shows a positive relationship, 
indicating that x and y occur together more often, whereas 
a lift score of less than 1 shows that both x and y occur 
together less often than random. Based on the above com-

puted values, the Score(x,y) between products using Eq. 7 
can be computed as:

Score(21239, 21245) = �(Cosine Similarity(x, y)) + �

(Confidence(x, y)) + �(lift(x, y) = 0.5 *0.58 + 0.3*0.85 + 0.2
*1.10 = 0.76.

Similarly,
Score(21239, 21242) = 0.5 *0.88 + 0.3*0.28 + 0.2*0.51 = 

0.62.where � + � + � = 1 . Similarly, score for other products 
is computed.

3.4.2  Semantic and sequentially rich item‑to‑item 
similarity matrix

The entries in the matrix M are updated with this score value 
showing the semantic and sequential relationship between 
products. Figure 10 shows semantic and sequentially rich 
updated item-to-item matrix M1 populated using Eq. 10 
after score calculations for sample products. Matrix M1 can 
now be used by CF to recommend Top-K personalized items 
to users.

3.4.3  Semantically rich and sequential top‑k 
recommendation

Finally, next item(s) for a user is predicted by taking the 
purchase sequence of each user in train data (user profile) 
and then generating recommendations for every item in the 
user profile by looking at its score with other available prod-
ucts from the matrix M1. Items having the highest score 
are retrieved and sorted in decreasing order. This process is 
repeated for all items in the user profile, and then, lists of 

lift(21239, 21245) =
Support(21239, 21245)

Support(21239) ∗ Support(21245)

=
2∕9

7∕9 ∗ 5∕9
= 0.51

(10)M1x,y =

{

1, if x = y

Score(x, y), otherwise
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top K items are generated which are semantically similar and 
purchased in sequential order.

In our running example, for the sequence where the user 
purchased products as < 21242, 20655, 20675 > , the recom-
mended products will be as shown in Table 11.

Eliminating the common products and those already pur-
chased by the user, the final set of recommended items for 
the user will be {21245, 20674, 21238, 21239}.

4  Experimental evaluation

In this section, we present our experimental setup and then 
results and analysis.

4.1  Datasets and implementation details

• Online Retail1: This dataset contains purchases made 
during an eight-month period between 01/12/2010 and 
09/12/2011 for a UK-based retail company that sells 
unique all-occasion gifts.

• Amazon2: This dataset includes reviews (ratings, text, 
helpfulness votes), product metadata (descriptions, cat-
egory information, price, brand, and image features), 
and links (also viewed/also bought graphs). To test our 
model, we selected the review-K core (which is a subset 
of the data set where all items have at least K reviews, 
where K = 5) and product metadata for categories includ-

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

20674 21242 21238 21245 21239 20655 20675 21366 22246 21377 22198
20674 1.00 0.16 0.39 0.40 0.24 0.17 0.47 0.24 0.97 0.05 0.57
21242 0.55 1.00 0.87 0.98 0.71 0.25 0.35 0.21 0.39 0.31 0.12
21238 0.56 0.87 1.00 0.01 0.59 0.35 0.61 0.91 0.76 0.39 0.98
21245 0.40 0.02 0.01 1.00 0.17 0.38 0.65 0.02 0.34 0.58 0.34
21239 0.24 0.62 0.59 0.76 1.00 0.13 0.57 0.42 0.41 0.15 0.37
20655 0.17 0.21 0.35 0.38 0.13 1.00 0.07 0.69 0.59 0.61 0.23
20675 0.98 0.87 0.94 0.65 0.86 0.07 1.00 0.42 0.13 0.28 0.44
21366 0.86 0.21 0.94 0.02 0.67 0.62 0.42 1.00 0.47 0.59 0.42
22246 0.97 0.21 0.90 0.34 0.41 0.04 0.90 0.47 1.00 0.15 0.32
21377 0.87 0.11 0.94 0.58 0.15 0.96 0.28 0.59 0.15 1.00 0.28
22198 0.33 0.12 0.98 0.39 0.67 0.57 0.76 0.90 0.73 0.66 1.00 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

Fig. 10  Semantic and sequentially rich updated item-to-item matrix M1

Table 11  Product recommendation by our proposed method

User’s purchase 
products

Top-3 products (semantically similar and 
sequential)

21242 21245 21238 21239
20655 21242 20655 20675
20675 20674 21239 21238

Table 12  Data set statistics (product reviews and metadata)

Reviews (Amazon) and Purchases (Online Retail) Data Metadata

Data set /Statistics Total no. of 
transactions

No. of 
unique users

No. of 
unique items

Average no. 
of reviews/
purchases 
per item

Max. 
sequence 
length

Average 
sequence 
length

Minimum 
Sequence 
Length

No. of unique 
items

Amazon Fashion 883,636 743,216 186,054 4.66 40 1.17 1 186,637
Movies and 

TV
8,290,109 3,755,907 181,996 45.55 4036 2.21 1 203,970

Beauty 353,956 317,982 32,586 10.86 23 1.11 1 32,992
Online Retail 240,007 2974 3282 58.10 294 16.64 1 4497

1 https:// archi ve. ics. uci. edu/ ml/ datas ets/ online+ retail.
2 http:// jmcau ley. ucsd. edu/ data/ amazon/.

https://archive.ics.uci.edu/ml/datasets/online+retail
http://jmcauley.ucsd.edu/data/amazon/
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ing fashion, beauty, movies and TV. Details of data set 
statistics are provided in Table 12.

We implemented the proposed model using Python. For 
mining sequential patterns using PrefixSpan (Jian Pei et al., 
2004), we used open-source data mining library SPMF.3 To 
compare our proposed model with the baselines, we used the 
code provided from their authors and the github repository.4

4.2  Preprocessing and Hyper‑parameter Tuning

For data set partitioning, we adopted commonly used strate-
gies of: (i) leave one out (the most recent, i.e., last sequence 
of each user is used for testing and all remaining sequences 
for training) and (ii) temporal user splitting (where a per-
centage of the last interactions of each user is reserved 
for testing rather than just one). Availability of a rating or 
review (Amazon) and purchase (Online Retail) is considered 
as user–item interaction, and we used timestamps to deter-
mine the sequential order of actions. Purchases made by 
each customer were grouped into sequences according to the 
timestamp. Data were preprocessed to create train and test 
data. For leave one out, the training data were created from 
those purchase sequences and the last purchase sequence of 
each customer was used to create the test set for evaluating 
model’s performance. In the temporal user splitting, we used 
train and test splits of (a)70%, 30% and (b) 80%, 20%. Users 
with at least five purchasing records are selected.

All the models have some parameters to tune. We 
follow the reported optimal parameter settings for 
the baseline methods. For our model, the embedding 
dimension d is determined by grid search in the range 
{10,20,30,40,50,100}, number of top users with similar 
behavior N as {5,10,15}, number of top recommendation 
items K in {1,5,10,20,50,100}, minimum support s (%) for 
mining sequential patterns as {1,2,3}and semantic similar-
ity m_sem = 0.5. The values of coefficients (alpha, beta 
and gamma) while computing score measure for products 
were explored through grid search, and the best results were 
with � = 0.5, � = 0.3 and � = 0.2. For other parameters, 
optimal performance was with d = 100, N = 15 and s = 1, 
m_sem = 0.5.

4.3  Evaluation metrics

The model was evaluated on many metrics including 
Precision@K, Recall@K, Mean Reciprocal Rank (MRR), 

Hitrate@K and NDCG@K. The different evaluation metrics 
are defined as:

• Precision@K: It is defined as the proportion of recom-
mended items in the top-K set that are relevant.

• Recall@K: Recall is defined as the proportion of rel-
evant items found in the top-K recommendations.

• Mean Reciprocal Rank (MRR): The reciprocal rank of 
items recommended is the multiplicative inverse of the 
rank of the first correct recommended item among the 
top-K recommendations. The mean reciprocal rank is the 
average of the reciprocal ranks of results for a sample of 
ground truths R, where ranki refers to the rank position 
of the first relevant item for the i-th ground truth.

• Hit rate@K: Percentage of users that can receive at least 
one correct recommendation.

• Normalized Discounted Cumulative Gain 
(NDCG@K): Evaluates ranking performance by taking 
the positions of correct items into consideration.

For each user in a test sequence, we predict lists of top-K 
personalized items where K is in {1,5,10,20,50,100}.We first 
compute the per-user score for each K and then report the 
global average score for all users for each K .

4.4  Complexity analysis

The dominant term in the computational complexity of our 
proposed model is O(n2) mainly due to computing similar-
ity at item level and sequence level. Next, we discuss the 
complexity according to the models, data processing and 
mining of sequential patters.

4.4.1  Complexity of models

Prod2vec: The complexity is proportional to the vocabu-
lary size (unique products), which is computationally 
expensive in practical tasks as it can easily reach millions 
of products. As an alternative, negative sampling is used 
which significantly reduces the computational complex-
ity. Depending on the size of the corpus, the complexity 
grows linearly with the size of the corpus. Therefore, if 
N represents the size of the corpus and V represents the 
unique products in the vocabulary, the complexity will 
be O(N*log(V)).
Glove: The computational complexity of the model 
depends on the number of nonzero elements in the co-
occurrence matrix X. As this number is always less than 
the total number of entries of the matrix, the model scales 
no worse than O(|V2 |) where V represents the size of the 
vocabulary.
(c)Doc2vec: The runtime of the model is linear in the 
number of input documents, i.e., purchase sequences 

3 https:// www. phili ppe- fourn ier- viger. com/ spmf/ index. php.
4 https:// github. com/ mquad/ sars tutorial.

https://www.philippe-fournier-viger.com/spmf/index.php
https://github.com/mquad/sars
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with products and metadata. Keeping all other param-
eters equal, increasing the number of input documents, 
the runtime will be increased
(d) TF-IDF: If N represents the number of documents 
and TN represents the total number of terms, then the 
worst-case time complexity of this will be O(TN * N). In 
practice, the number of documents in which a particular 
term appears is very less, and hence, the time taken will 
be much lower than that.

4.4.2  Complexity of dataset pre‑processing

The various Natural Language Processing (NLP opera-
tions were performed using the Natural Language ToolKit 
(NLTK) library from python consists of a set of text process-
ing libraries for faster data preprocessing.

4.4.3  Complexity of mining the sequential patterns

As we used Prefix Span (Pei et al. 2004), in which no can-
didate sequence needs to be generated so major complexity 
is involved in constructing projected databases with respect 
to the sequential pattern(s). However, as the projected data-
bases keep shrinking so it also lowers the computation pro-
cess. The reasons are because in a sequence database, the 
number of sequential patterns that grow quite long is usually 
small, and therefore, in a projected database, when prefix 
grows, the number of sequences reduces substantially. In 
the worst case, in PrefixSpan, a projected database is con-
structed for every sequential pattern. If there are N sequen-
tial patterns, then the complexity for constructing projected 
databases will be O(N). The cost is non-trivial, if a good 
number of sequential patterns exists.

4.5  Baseline methods for comparison

To show the effectiveness of our model, we considered rec-
ommendation baselines under three groups.

The first group includes general recommendation meth-
ods based on user feedback without any sequential order of 
user actions.

1. Popularity-Based (POP). All items are ranked by their 
popularity in all users’ sequences, where popularity is 
determined by the number of interactions.

2. Bayesian-Personalized Ranking (BPR) (Rendle et al. 
2010). A state-of-the-art method for non-sequential item 
recommendation on implicit feedback, utilizing matrix 
factorization model.

The second group includes sequential recommendation 
methods based on sequential pattern mining and first-order 
Markov chains, which consider the last visited item.

3. Historical Purchase Click (HPCRec) (Xiao and Ezeife 
2018) and Historical Sequential Purchase (HSPRec) 
(Bhatta et al. 2019). It mines frequent sequential click 
and purchase behavior patterns using the consequential 
bond between click and purchase sequences and then 
using this quantitatively and qualitatively rich matrix 
for collaborative filtering to provide better recommenda-
tions.

4. Factorized Personalized Markov Chain (FPMC) 
(Rendle et al. 2010). A hybrid approach that combines 
matrix factorization (MF), which factorizes the matrix 
on user–item preferences for learning users’ general 
taste and Markov chains (MCs) that model sequential 
behavior through a transition graph built over items 
which predict users’ next action based on the recent 
actions.

The third group includes sequential recommender  systems 
based on deep learning, which include various or all 
 previously visited items.

5. GRU4Rec (Hidasi et al. 2016).To model sequential 
dependencies and making predictions in session-based 
recommendation systems, we proposed this method 
based on recurrent neural networks (RNNs).

6. Convolutional Sequence Embeddings Caser (Tang and 
Wang 2018). A convolutional neural network (CNN)-
based method, which takes the embedding matrix of the 
L most recent items and applies convolution operations 
on it to achieve sequential recommendation.

7. Self-Attentive Sequential (SASRec) (Kang and McAu-
ley 2018). It captures long-term user preferences by 
using attention mechanism and makes its predictions 
based on relatively few actions.

5  Results and analysis

Our proposed model SSHRec gave improved performance 
after incorporating products’ metadata to learn product 
semantics and using semantic similarity, confidence and lift 
measures to compute relationship between products in com-
parison with the SEMSRec model and other baselines on all 
K tested. High precision and recall measures of sequential 
recommenders such as SASRec (Kang and McAuley 2018), 
Caser (Tang and Wang 2018)), HSPRec19 (Bhatta et al. 
2019) and RNN (Hidasi et al. 2016) indicate that learning 
sequential information about customers’ behavior is impor-
tant to capture user’s long- and short-term preferences and to 
improve quality of recommendations. Factorized personal-
ized Markov chain (FPMC) (Rendle et al. 2010) model, on 
the other hand, showed least performance with the lowest 
precision and recall score, indicating that it could not learn 
the semantics of items and sequential purchase patterns of 
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customers effectively. SEMSRec (Nasir and Ezeife 2020), on 
the other hand, gave slightly high performance as compared 
to other sequential recommender baselines, indicating that 
integrating items’ semantic information to compute item 
similarities can improve the quality of recommendations. 
However, the proposed extension SSHRec has outperformed 
SEMSRec significantly showing the importance of using 
metadata for learning product semantics and using semantic 
similarity, confidence and lift measures to compute relation-
ship between products. Figure 11 shows the performance 
of SSHRec in comparison with other systems on various 
evaluation metrics.

Furthermore, the results of the proposed model (SSHRec) 
on different datasets including Online Retail and various 
categories in Amazon data (Fashion, Beauty, Movies) are 
presented in Table 13. Here, we report results on all evalu-
ation metrics at a cutoff of K = 10. We notice that SSHRec 
performed considerably well Amazon’s beauty dataset with 
a hitrate of 67% and 45%, respectively.

Next, we will discuss the impact of the parameters, mini-
mum support, s and number of customers with similar pur-
chase behavior (N) one at a time by holding the remaining 
parameters at their optimal settings.

5.1  Influence of Top‑N customers (N)

We vary the number of customers (N) with similar pur-
chase behaviors generated after finding semantic similarity 

between training sequences and the target sequence, to 
explore how it effects the quality of overall recommenda-
tions. We used different values of N as 5, 10 and 15, respec-
tively. By increasing the value of N, gradual decrease in 
model performance was noticed in terms of Top-K recom-
mendations. This is because when the number of custom-
ers is increased, number of similar purchase sequences also 
increases, so we do get more similar products to recommend 
from, however, those similar products are not necessarily 
purchased in sequence (which is important to capture users’ 
long- and short-term behaviors), which lowers the recom-
mender’s performance. Optimal performance was when 
N = 5. Furthermore, choosing N less than five yielded pur-
chase sequences, which were very short in length and did not 
contribute much in yielding useful semantic sequential pur-
chase patterns and rules; therefore, we did not consider that.

5.2  Influence of embedding size

We vary the size of embeddings d and trained multiple mod-
els based on embedding size {10,20,30,50,100} and found 
that d = 100 gave optimal results. The detailed results are 
shown in Table 14.

5.3  Influence of train and test split

For data set partitioning, we adopted the strategies of (i) 
leave one out (the most recent, i.e., last sequence of each 

Fig. 11  Performance comparison of proposed SSHRec with other models

Table 13  Results of proposed 
system (SSHRec) on different 
datasets with K = 10

Evaluation metrics/data set Amazon Online Retail

Fashion Movies and TV Beauty

Precision@K 0.0075 0.0165 0.0909 0.1006
Recall@K 0.0194 0.0360 0.4856 0.1145
MRR 0.0126 0.0276 0.1705 0.1509
Hitrate@K 0.0559 0.1326 0.6705 0.4544
Mean Average Precision 0.0075 0.0154 0.0855 0.0887
NDCG@K 0.0166 0.0319 0.3696 0.1450
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Table 14  Prediction performance of SSHRec with different embedding dimension d

Evaluation 
Metrics

K Embedding size

10 20 30 40 50 100

Precision@K 1
5
10
20
50
100

0.1298
0.0427
0.0307
0.0236
0.0185
0.0160

0.1725
0.0740
0.0538
0.0411
0.0301
0.0242

0.2392
0.1080
0.0764
0.0560
0.0388
0.0294

0.2918
0.1328
0.0922
0.0660
0.0442
0.0336

0.3009
0.1395
0.0977
0.0701
0.0468
0.0349

0.3284
0.1528
0.1065
0.0768
0.0510
0.0374

Recall@K 1
5
10
20
50
100

0.0968
0.1107
0.1224
0.1395
0.1845
0.2348

0.1094
0.1504
0.1728
0.2037
0.2584
0.3173

0.1255
0.1834
0.2091
0.2410
0.3002
0.3609

0.1364
0.2034
0.2302
0.2637
0.3246
0.3922

0.1387
0.2064
0.2338
0.2698
0.3332
0.3990

0.1431
0.2167
0.2452
0.2830
0.3500
0.4181

MRR 0.1298 0.1725 0.2392 0.2918 0.3009 0.3284
Hitrate@K 1

5
10
20
50
100

0.1298
0.2006
0.2752
0.3894
0.6130
0.7923

0.1725
0.3189
0.4338
0.5825
0.8068
0.9143

0.2392
0.4256
0.5486
0.6896
0.8695
0.9356

0.2918
0.4907
0.6045
0.7442
0.8966
0.9482

0.3009
0.5090
0.6249
0.7628
0.9048
0.9482

0.3284
0.5347
0.6510
0.7899
0.9173
0.9512

NDCG@K 1
5
10
20
50
100

0.1337
0.1353
0.1398
0.1468
0.1650
0.1850

0.1777
0.1836
0.1931
0.2072
0.2324
0.2580

0.2464
0.2377
0.2461
0.2607
0.2892
0.3165

0.3005
0.2752
0.2808
0.2951
0.3245
0.3554

0.3099
0.2829
0.2891
0.3047
0.3357
0.3660

0.3382
0.3030
0.3081 
0.3243
0.3570
0.3886

Table 15  Prediction performance of SSHRec with different train and test split strategies

                                     Train test split

Evaluation metric K Train = 80% test = 20% Train = 70% test = 30% Leave one out

Precision@K 1
5
10
20
50
100

0.4846     
0.2279
0.1450
0.0932
0.0524
0.0347

0.3805
0.1906
0.1290
0.0868
0.0537
0.0375

0.3284
0.1528
0.1065
0.0768
0.0510
0.0374

Recall@K 1
5
10
20
50
100

0.1967     
0.3484
0.3918
0.4425
0.5175
0.5847

0.1323
0.2466
0.2911
0.3386
0.4176
0.4892

0.1431
0.2167
0.2452
0.2830
0.3500
0.4181

MRR 0.4846 0.3805 0.3284
Hitrate@K 1

5
10
20
50
100

0.4846  
0.6835
0.7780
0.8611
0.9400
0.9607

0.3805
0.6100
0.7099
0.8163
0.9275
0.9648

0.3284
0.5347
0.6510
0.7899
0.9173
0.9512

NDCG@K 1
5
10
20
50
100

0.4993
0.4512
0.4667
0.4908
0.5243
0.5515

0.3897
0.3444
0.3601
0.3820
0.4189
0.4498

0.3382
0.3030
0.3081
0.3243
0.3570
0.3886
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user is used for testing and all remaining sequences for train-
ing) and (ii) temporal user splitting (where a percentage of 
the last interactions of each user is reserved for testing rather 
than just one). Availability of a rating (Amazon) and pur-
chase (Online Retail) is considered as user–item interaction, 
and we used timestamps to determine the sequential order 
of actions. Data were preprocessed to create train and test 
data. Purchases made by each customer were grouped into 
sequences according to the timestamp. For leave one out, the 
training data were created from those purchase sequences 
and the last purchase sequence of each customer was used 
to create the test set for evaluating model’s performance. 
In the temporal user splitting, we used train and test splits 
of (a) 70%, 30% and (b) 80%, 20%. Users with at least 5 
purchasing records are selected. The experiments showed 
that the proposed model SSHRec performed well when the 
data set was split using temporal user setting with training 
as 80% and test as 20%, which indicates that including more 
historical user interactions better captures users’ interest and 
provides relevant recommendations. Results of the model 
while using different train and test split strategies are shown 
in Table 15.

6  Conclusion and future work

We propose a model to improve e-commerce product recom-
mendation using semantic context and sequential histori-
cal purchases (SSHRec) by exploring the effectiveness of 
semantic associations between items obtained from item 
(products’) metadata such as title, description and brand 
based on their semantic context (co-purchased and co-
reviewed products). The semantics of these interactions 
were obtained through distributional hypothesis and then 
integrated into different phases of recommendation process 
such as (i) pre-processing, to learn associations between 
items, (ii) candidate generation, while mining sequential 
patterns and in collaborative filtering to select top-N and 
(iii) output (recommendation). Experiments performed on 
publically available e-commerce data sets (Online Retail and 
Amazon (Fashion, Beauty, movies and TV) showed that the 
proposed model performed well in terms of recommending 
products that are semantically similar to user preferences and 
are sequential to better reflect user’s long- and short-term 
preferences. For future work, we intend to enhance the item 
matrix by extracting semantic and sequential information 
from other data sources such as customer’s wish list and 
their social networks. We also aim to explore the effect of 
incorporating users’ side information such as their demo-
graphics (age, gender, location) in addition to the items’ 
metadata to capture user’s interests.

Funding This research was supported by the Natural Science and 
Engineering Research Council (NSERC) of Canada under an operat-
ing grant (OGP-0194134) and a University of Windsor grant.
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