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Abstract
This paper studies the evolution of polarized beliefs governed by the intertwined dynamics of viral diffusion and media influ-
ence in influence networks. It addresses the question of how different forms of influence interact with each other. First, we 
propose a Markov chain to model the dynamics of individuals as they transition between three belief states (neutral, positive 
and negative) based on the states of their neighbors. This stochastic system assumes that individuals are influenced via the 
links of the network or through the global effect of mass media. For exponential and scale-free networks, we approximate 
this stochastic system by deterministic differential equations and define the homogeneous mean-field system and heteroge-
neous mean-field system, respectively. Studying stability conditions for these deterministic dynamical systems, we analyze 
the fraction of neutral, positive and negative individuals in the population. Also, we determine the conditions under which 
desired dynamical transitions happen for the targeted population. These conditions allow us to predict macroscopic measures 
of dynamics of adoption in influence networks. Finally, the derived analytical results are validated using simulations of four 
synthetic networks: Watts–Strogatz, random regular, Barabasi–Albert and small-world forest-fire, as well as five real-world 
networks: ego-Facebook, Deezer, Livemocha, a Facebook interaction network and Douban. Also, we demonstrate how the 
proposed model can be leveraged by marketing campaigns for optimal resource allocations between viral marketing and 
media marketing to minimize the number of final negative individuals in different network settings.

Keywords Polarized belief · Diffusion dynamics · Influence networks · Viral marketing · Media marketing

1 Introduction

To design effective marketing strategies that promote brand 
awareness, the adoption of innovations or the popularity of 
new products, it is crucial to take into account the influence 
networks of targeted populations. In influence networks, 
nodes represent individuals and links describe influence 
relationships between them. The topology of an influence 
network specifies the underlying structure of influence rela-
tionships between individuals. Marketing strategies can be 
divided into the two broad categories: viral and media mar-
keting. Viral marketing exploits the structures of influence 
networks to activate existing influence to target potential 
adopters, and form global cascades of adopters in influence 

networks. In particular, it is designed based on word-of-
mouth and encourages individuals to share product informa-
tion with their social contacts. Therefore, the medium for 
viral marketing is the links of social networks. On the other 
hand, media marketing treats all individuals as atomized 
objects of global media influence without taking into account 
their social networks. Media marketing is a broadcast mecha-
nism that acts externally on influence networks because all 
the individuals receive the media influence directly from the 
same source. TV and newspaper ads are examples of media 
marketing, while personalized referrals and recommenda-
tions are examples of viral marketing. Studying the dynamics 
of viral diffusion and media influence in networks helps firms 
to design their marketing campaigns according to the char-
acteristics of diffusion dynamics in the targeted populations.

1.1  Related work

Studying the diffusion of new ideas, beliefs and technolo-
gies, collectively called innovation, started about 120 years 
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ago (Dearing 2008). Marketing campaigns can be seen as 
external change agents that interact with the dynamics of 
innovation in influence networks to maximize their primary 
output measures. The goal of marketing campaigns is to 
effect maximal change with minimal cost (Dearing 2008). 
Diffusion of innovations, viral marketing, has been studied 
extensively (Watts and Dodds 2007; Bakshy et al. 2011; 
Kempe et al. 2003; Leskovec et al. 2007; Kwak et al. 2010; 
Cha et al. 2010; Watts and Peretti 2007; Aral and Walker 
2012; Cheng et al. 2014; Leskovec et al. 2006; Gomez Rod-
riguez et al. 2010; Sun et al. 2009; Margaris et al. 2016; 
Ribeiro 2014; De Bruyn and Lilien 2008; Saxena and Kumar 
2019; Gomez Rodriguez and Schölkopf 2012; Du et al. 
2013; Aral and Dhillon 2018; Vosoughi et al. 2018; Aral 
and Eckles 2019; Althoff et al. 2017; Cheng et al. 2018; 
Lazer et al. 2018; Kizilcec et al. 2018; Fink et al. 2016; 
Sarkar et al. 2017). Aral and Walker (2011) studied effects 
of viral product design strategies on creating word-of-mouth 
dynamics. In particular, they designed and conducted a ran-
domized field experiment testing the effectiveness of active-
personalized referrals and passive-broadcast notifications. 
They found that passive-broadcast viral messaging capabili-
ties induce a higher increase in social contagion compared to 
active-personalized messaging. Sarkar et al. (2017) analyzed 
the occurrence of the following two lifecycle events of cas-
cades: (1) the maximum growth period and (2) the period 
where declining in adoption starts. They studied the impact 
of network topology on the characteristics of these two peri-
ods based on the causality analysis of temporal adoption 
events (Sanatkar 2016).

Leskovec et al. (2007) studied dynamics of viral market-
ing in a recommendation network with 4 million people. 
They found that most recommendation chains do not turn 
into large cascades, and viral marketing is more effective 
for expensive products recommended to small and well-con-
nected communities. Also, they explained the propagation 
of recommendations and cascade sizes in this network by 
a stochastic model. Cheng et al. (2018) studied the impact 
of diffusion protocols on cascade growth in online social 
networks. Analyzing the recurring classes of diffusion pro-
tocols, they found two key factors in the construction of such 
protocols are: (1) how much effort is required to participate 
in the cascade, where greater needed effort slows down the 
growth of the cascade, and (2) the social cost of not partici-
pating in the cascade, where higher social cost results in an 
increase in the cascade’s adoption likelihood.

In the diffusion of innovation research community, one 
approach to diffusion maximization is to focus first on deter-
mining influential individuals (or influentials). Influentials 
are opinion leaders who have the credibility to influence 
a disproportionately large number of individuals. Aral and 
Walker (2012) showed that in a representative sample of 
1.3 million Facebook users, influential individuals are less 

susceptible to influence compared to non-influential indi-
viduals. Also, they observed that influentials cluster in the 
network, whereas non-influential individuals do not. Watts 
and Dodds (2007) studied the role of influentials in market-
ing and the formation of public opinion using a series of 
computer simulations of interpersonal influence processes. 
In particular, they studied the conditions under which local 
cascades can turn into global cascades and showed that 
under most conditions, the global cascades are driven by 
the critical mass of individuals who are easily influenced 
and not by influentials. More and Lingam (2019) took into 
account the rate of influence spread in addition to influence 
maximization in order to select subset of the network nodes 
as the influentials. Specifically, they proposed an algorithm 
based on gradient to achieve a balance between influence 
maximization and the influence spread rate.

Aral and Dhillon (2018) developed a class of empirically 
motivated influence models based on the network assortativ-
ity and the joint distribution of influence and susceptibility 
to identify more realistic sets of key influentials in order to 
efficiently disseminate information in social networks. Bak-
shy et al. (2011) investigated the word-of-mouth dynamics 
among Twitter users using the Twitter follower graph. They 
found that users with a large number of followers and users 
who have been influential in the past are the ones that gener-
ate the largest cascades. Also, they concluded that marketers 
can reliably benefit from word-of-mouth diffusion if large 
numbers of potential influencers are targeted. The diffu-
sion process is also studied extensively in the context of 
epidemiology (Sanatkar et al. 2015a, b; Sahneh et al. 2013; 
Boguá et al. 2003; Pastor-Satorras and Vespignani 2001; 
Van Mieghem et al. 2009). They analyzed propagation of 
diseases over networks based on the stages of diseases in 
hosts where the transitions between these stages are modeled 
by several dynamics.

A myriad of studies show that the decision process of 
individuals is affected by mixtures of interpersonal and 
media influence (Watts and Dodds 2007). Analyzing empiri-
cal diffusion patterns over seven different online domains, 
Goel et al. (2012) concluded that these diffusion patterns 
motivate models that explicitly take into account media mar-
keting in addition to viral marketing. While most studies 
of the diffusion process assume person-to-person networks 
as the only medium for diffusion of innovations, a number 
of recent studies consider both global influence by external 
sources and interpersonal networks as mechanisms of diffu-
sion (Myers et al. 2012; Farajtabar et al. 2014; Kleineberg 
and Boguñá 2014; Goel et al. 2012). Goel et al. (2012) 
showed that popular events regularly grow via combination 
of media marketing and viral diffusion. Myers et al. (2012) 
presented a model of information emergence in networks 
in which information can reach an individual through his 
neighbors or via the influence of an external source. They 
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fitted the parameters of their model to a complete one-month 
trace of the emergence of URL mentions in the Twitter net-
work. They found that only about 71% of the tweets with 
URL mentions can be explained by viral propagation in the 
network of Twitter’s followers, and the remaining 21% are 
due to external sources.

Also, Farajtabar et  al. (2014) modeled intensities of 
endogenous and exogenous events in networks of individu-
als by multivariate Hawkes processes. They derived a time-
dependent linear relationship that describes the relationship 
between the overall network activity and the intensity of 
exogenous events. Also, they computed the required level 
of external influence applied to the network to attain a 
desired activity level using a convex optimization frame-
work. Kleineberg and Boguñá (2014) presented a two-layer 
model for the evolution of online social networks under viral 
spreading mechanisms and mass media influence. Based on 
the empirical validation of their model, they found that viral 
influence is 4–5 times stronger than mass media influence 
for the studied online social network.

1.2  Our proposed model

In this paper, we propose a stochastic system to model adop-
tion process of polarized beliefs governed by viral diffu-
sion and media influence at the individual level. The pri-
mary difference between our model and other recent studies 
(Goel et al. 2012; Myers et al. 2012; Farajtabar et al. 2014; 
Kleineberg and Boguñá 2014) that model both interpersonal 
and media influence is the following: We consider a third 
state, the so-called negative state, to represent those indi-
viduals who hold positions against the innovation in addition 
to two existing states [neutral (susceptible) and positive 
(adoption)] in Goel et al. (2012), Myers et al. (2012), Fara-
jtabar et al. (2014) and Kleineberg and Boguñá (2014). To 
the best of our knowledge, our proposed stochastic system is 
the first model that takes into account both interpersonal and 
media influence for polarized beliefs in influence networks. 
In many real-world scenarios such as political debates, 
same-sex marriage, abortion and gun control, in additions 
to pro and neutral individuals, there exists a third group of 
individuals that are neither positive, adopter, nor neutral, 
susceptible, but against the innovation (Guerra et al. 2013; 
Yardi and Boyd 2010).

Our proposed model aims at describing such polarized 
belief dynamics over influence networks. Polarization on dif-
ferent issues becomes more and more widespread in Amer-
ica. In particular, regarding the recent political elections, 
ordinary people increasingly distrust those from the other 
political party. Democrats and Republicans consider the 
other party’s members selfish and closed-minded (Iyengar 
et al. 2019). Strong political perspectives results in conflict 
and unwillingness to listen to the people from the opposite 

political party (Shi et al. 2017). In particular, homogeneous 
social networks strengthen polarization of partisan prefer-
ences, which results in a decrease in tolerance for alternative 
views in addition to reduction in opportunities for crosscut-
ting political interactions (Lazer et al. 2018). A non-political 
example of polarization is related to the recent emergence of 
smart watches. People have had polarized ideas toward smart 
watches. While many people support using them because 
of the convenience that comes with receiving notifications 
on their wrists, many people think that we are already very 
preoccupied with our smartphones in our daily lives, and we 
do not need another device. Moreover, Amato et al. (2017) 
explain the widespread presence of polarization in social 
issues via modeling the coupling interactions between social 
influence and decisions of individuals as different layers of 
a multiplex network.

First, we propose a stochastic system to model the dynam-
ics of polarized beliefs at the individual level. This stochastic 
system is a Markov chain and is called the individual-based 
stochastic (IN-STOCH) system. This system is described 
by a set of individual-based transition events that govern 
dynamics of polarized belief propagation in influence net-
works. Then, using a mean-field analysis, we approximate 
the IN-STOCH system in the large population limit by deter-
ministic differential equations so-called the homogeneous 
mean-field (HOM-MEAN) and the heterogeneous mean-
field (HET-MEAN) systems for exponential and scale-free 
networks, respectively. The HOM-MEAN system is based 
on homogeneity and randomness assumptions of influ-
ence networks. However, the HET-MEAN system does not 
assume homogeneity for influence networks and instead 
assumes that the nodes with different degrees can poten-
tially demonstrate different dynamics. In other words, the 
HET-MEAN system keeps tracks of the fractions of neutral, 
negative and positive separately for the nodes with differ-
ent degrees. The HET-MEAN system has higher complexity 
than HOM-MEAN system which is a requirement for scale-
free networks.

We show that the HOM-MEAN system has at most three 
equilibrium points and one of these is always unstable. Then, 
we prove that the stability of the other two depends on the 
parameters of the model and the average node degrees in 
the influence network. In particular, one of the two stable 
equilibria has a zero fraction of negative individuals, the so-
called negative-free equilibrium points. We are interested 
in negative-free equilibrium points based on the chosen 
measure for the success of marketing campaigns, which is 
minimizing the number of individuals with negative state. 
In practice, it is extremely optimistic to assume that a mar-
keting campaign can reduce the number of individuals with 
negative state all the way to zero. However, the conditions 
derived for the stability of the negative-free equilibrium 
points will ensure that the marketing strategies chosen by 
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marketing campaigns are in the direction of reducing the 
number of negative individuals, while the actual conver-
gence to negative-free equilibrium points that guarantees 
no negative individuals at all is asymptotic and might not 
happen during the finite time-spans of activities of market-
ing campaigns. Based on the stability of the negative-free 
equilibrium point, we derive conditions for local and global 
convergence of the fraction of negative individuals to zero. 
Critical values of model parameters corresponding to these 
conditions characterize different phase transitions of polar-
ized dynamics.

Then, we derive the dynamical system describing the 
HET-MEAN system that distinguishes between nodes with 
different degrees. The derived HET-MEAN dynamical sys-
tem depends on the node degree distribution of the influ-
ence networks. We show that this dynamical system has two 
equilibria. Next, we state that the necessary and sufficient 
conditions of local exponential stability for the negative-
free equilibrium point can be investigated by computing the 
eigenvalues of the Jacobian matrix at the equilibrium point. 
Also, we derive a sufficient condition for the global stability 
of the negative-free equilibrium point if it is already locally 
stable. However, since the HET-MEAN system equations 
depend on the node degree distributions of the influence 
networks, the local stability condition of the negative-free 
equilibrium point cannot be derived in a closed form without 
fixing the node degree distribution. As an example, we derive 
the local exponential stability of the equilibrium point of the 
HET-MEAN system by fixing the node degree distribution of 
the influence network to the node degree distribution of the 
Barabasi–Albert (BA) networks (Barabasi and Albert 1999). 
In order to compute the stability condition for the BA net-
works, first, we compute an approximation for the probability 
of an edge to be connected to a neutral node at the equi-
librium point using the node degree distribution of the BA 
networks. Then, we use this approximation to approximate 
the final fraction of neutral nodes at the equilibrium point. 
Finally, we compute an approximation for the probability of 
an edge to be connected to negative nodes. We employ this 
probability approximation to derive the local stability condi-
tion for the equilibrium point of the BA networks.

Finally, we validate the predictions of final fractions of 
neutral, positive and negative individuals by the HOM-
MEAN and HET-MEAN systems via simulating the IN-
STOCH system over the following synthetic networks: ran-
dom regular, Watts–Strogatz, Barabasi–Albert networks and 
the small-world forest-fire networks (Drossel and Schwabl 
1992) as well as five real-world networks: ego-Facebook 
(Leskovec and Mcauley 2012), Deezer (Rozemberczki et al. 
2019), Livemocha (Zafarani and Liu 2009), a Facebook inter-
action network (Viswanath et al. 2009) and Douban (Zafarani 
and Liu 2009). Also, we show that how the HOM-MEAN 
and HET-MEAN systems can be leveraged by marketing 

campaigns to divide resources in an optimal way between 
viral marketing and media marketing according to charac-
teristics of influence networks and targeted populations. The 
HET-MEAN system can be used for similar use cases by 
marketing campaign for scale-free influence networks.

The rest of this paper is organized as follows. In Sect. 2, 
we propose the IN-STOCH system to model the individual-
based dynamics of polarized beliefs. Section 3 contains the 
HOM-MEAN system to approximate the IN-STOCH sys-
tem for exponential networks at population level. In Sect. 4, 
we derive the HET-MEAN system to approximate the IN-
STOCH system for scale-free networks. Finally, in Sect. 5, 
we use simulation results to validate our theoretical analysis.

2  Individual‑based stochastic system

In this section, we propose a stochastic model, called the 
individual-based stochastic (IN-STOCH) system, of the 
adoption process of polarized dynamics at the individual 
level. This stochastic system assumes that individuals are 
influenced via the links of influence networks or through 
the global mass media. In social networks such as Face-
book where individuals are either associated (e.g., friends) 
or unassociated, the influence network is assumed to be an 
undirected graph. In social networks such as Twitter where 
individuals follow one another, the influence network 
is assumed to be a directed graph. In this work, we con-
sider only undirected influence networks. The extension to 
directed influence networks is straightforward.

In this model, at any given time, each node is in one of 
the three states: neutral (N), positive (P) and negative (U). 
Each state represents a different mindset of individuals in the 
adoption process. An individual in the neutral state does 
not have a strong opinion toward the innovation, or has not 
received any information about the innovation. On the other 
hand, positive individuals are the ones who have adopted 
the innovation. For example, they already bought the product 
and are satisfied with it, or are willing to buy it. The nega-
tive state represents those individuals with negative opinions 
toward the innovation or product. For instance, they are who 
already bought the product but are not happy with it, or have 
been convinced by some of their friends not to buy it.

Polarized beliefs propagate among individuals based on the 
following mechanisms (as shown in Fig. 1). A neutral indi-
vidual may become positive due to viral adoption or media 
influence. Viral (or word-of-mouth) adoption is modeled by a 
stochastic reaction process. A neutral node may virally adopt 
the innovation with a probability � per each of its positive 
neighbors. On the other hand, media influence is modeled by 
a stochastic diffusion process. Under this process, a neutral 
individual will become positive with probability � because of 
media influence. It is noted that the media influence probability 
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� is identical for all individuals and independent of the states 
of their neighbors.

A neutral individual may become negative under a word-
of-mouth process with a probability � per each of its negative 
neighbors. A negative individual may become neutral with 
a probability � . One cause for this transition can be a series of 
compensating actions taken by marketing campaigns to make 
negative individuals neutral. Here, we assume that mass 
media for a negative user is not as effective as mass media 
for a neutral user. A negative user may become positive with 
a probability �� under media influence, where � ∈ [0, 1] . A 
positive individual may become neutral with a probability � . 
One example for this stochastic process can be transitions of 
those individuals who have bought the product, but, after using 
if for a while, are not satisfied with it.

In fact, the IN-STOCH system is a Markov chain that gov-
erns the state transitions of individuals with respect to the 
states of their neighbors. For any given node i, let Ri denote 
the set of its neighbors. Also, Pi,n(t) , Pi,p(t) and Pi,u(t) denote 
the probability of node i being at state neutral, positive and 
negative, respectively, at time step t. The state of node j at 
time step t is denoted by xj(t) . Let Ri,p(t) ∶=

∑
j∈Ri

�(xj(t) = P) 
and Ri,u(t) ∶=

∑
j∈Ri

�(xj(t) = U) , where � denotes the indica-
tor function. Therefore, the IN-STOCH system is equivalent 
to the following Markov chain:

(1)

Pi,n(t + 1) = �Pi,p(t) + �Pi,u(t)

+
(
1 − � − �Ri,p(t) − �Ri,u(t)

)
Pi,n(t),

Pi,p(t + 1) = (� + �Ri,p(t))Pi,n(t) + ��Pi,u(t)

+ (1 − �)Pi,p(t),

Pi,u(t + 1) = �Ri,u(t)Pi,n(t) + (1 − � − ��)Pi,u(t).

This model considers three belief states and a specific sub-
set of possible transitions. We choose this specific subset 
based on two criteria: (1) The resultant mean-field model 
is tractable and the closed-form analytical stability analysis 
of the mean-field model is feasible and (2) the selected set 
of transitions allows each individual to transient from any 
state to another state in at most two time steps. For exam-
ple, even though based on the chosen transitions, there is no 
direct transition from positive state to negative state, an 
individual might perform such a transition via first transition 
to neutral state from positive state and then to negative 
state from the neutral state. However, we note that these 
transitions do not cover all possible adoption scenarios 
and were chosen based on the adoption scenarios we envi-
sion. For example, for the transition from the neutral state 
to the negative state, we only consider viral adoption and 
not media influence. It is because our focus is those mar-
keting campaigns that are designed to promote a product 
and therefore only contribute to media influence transition 
from the neutral state to the positive state. That being 
said, there could exist scenarios in which two rival market-
ing campaigns work against each other where one of them 
aims at promoting the product and the other one’s goal is 
to degrade the image of the product in public. Here, the 
proposed model only considers the scenarios where there 
exists a single marketing campaigns promoting the product. 
Developing a model that allows the simultaneous existence 
of two viral marketing campaigns could be a potential next 
step in this line of research.

The goal of intervening agencies and marketing cam-
paigns is to steer a targeted population to a targeted state. 
These agencies intervene to alter the dynamics of influence 
networks and maximize their primary output measures. 
Many different output measures can be chosen by interven-
ing agencies based on the characteristics of targeted popu-
lations and innovations. Some examples of these output 
measures are driving the overall percentage of adoption 
to a certain level or making the adoption level homoge-
neous across users belonging to different communities. 
In this paper, the asymptotic fraction of individuals with 
negative state is chosen as the primary output measure. 
In other words, we design the intervention process realized 
by a combination of viral diffusion and media influence 
to minimize (e.g., set to zero) the asymptotic fraction of 
negative individuals. Our main reason for choosing this 
specific output measure is that the lack of negative indi-
viduals prevents the viral dynamics from drifting toward 
the negative state.

Fig. 1  Flowchart of the individual-based stochastic system. A neu-
tral node may become positive with a probability � per its positive 
neighbors and because of media influence with a probability � . A 
positive node may return to the neutral state with a probability � . 
A neutral node may become negative with a probability � per its 
negative neighbors. A negative node may return to the neutral state 
with a probability � and to the positive state with a probability ��
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3  Exponential networks

In this section, we use a mean-field approach to derive a set 
of deterministic differential equations so-called the homo-
geneous mean-field (HOM-MEAN) system to approximate 
the IN-STOCH system at population level for exponential 
networks. Networks with exponential degree distributions 
are called exponential networks. An exponential degree dis-
tribution peaks at the average node degree ⟨k⟩ and decays 
exponentially fast for node degrees k when k ≫ ⟨k⟩ or 
k ≪ ⟨k⟩ . The aim is to predict macroscopic measures of the 
IN-STOCH system. Then, we study asymptotic behaviors of 
targeted populations by examining the stability of the equi-
librium points of the HOM-MEAN system. We show that 
this dynamical system has at most three equilibrium points. 
Based on our chosen output measure for marketing cam-
paigns, the desirable equilibrium is the one whose fraction 
of negative individuals is zero. We derive critical values 
for dynamical phase transitions of populations by studying 
local and global stability of this equilibrium point. In par-
ticular, two sets of conditions are derived that guarantee the 
local and global convergence of the fraction of negative 
individuals to zero.

Let n(t), p(t) and u(t) be the fraction of neutral, posi-
tive and negative individuals, respectively, at time t so that 
n(t) + p(t) + u(t) = 1 . For a variable that depends on time, 
such as n(t), we use n to denote n(t) and ṅ to denote the time 
derivative n�(t) . Thus, the HOM-MEAN dynamical system is 
described with the following coupled differential equations 
in continuous time:

The HOM-MEAN system is derived assuming the independ-
ence between states of individuals. Also, it assumes that 
the fluctuations in exponential degree distributions around 
average node degrees can be neglected. This assumption 
is consistent with the empirical literature on influentials 
(Brock and Durlauf 2001). That is, node degree distribu-
tions of influence networks display a relatively little vari-
ation around their averages. For influence networks with 
non-local connectivity, we expect that the derived analytical 
results at population level based on the HOM-MEAN system 
will approximate the behavior of targeted population (Pastor-
Satorras and Vespignani 2001). Using n + p + u = 1 reduces 
(2) to the two-dimensional system:

(2)

ṅ = −k𝛽pn − 𝛼n + 𝛾p − k𝜇nu + 𝜃u,

ṗ = k𝛽pn + 𝛼n − 𝛾p + 𝛿𝛼u,

u̇ = k𝜇nu − 𝜃u − 𝛿𝛼u.

(3)
ṅ = k𝛽n2 − (k𝛽 + 𝛼 + 𝛾)n + (k𝛽 − k𝜇)nu

+ (𝜃 − 𝛾)u + 𝛾 ,

u̇ = k𝜇nu − (𝜃 + 𝛿𝛼)u.

3.1  Equilibrium points

To study the steady-state behavior of the HOM-MEAN sys-
tem, we start by finding its equilibrium points. We want to 
choose a set of values for parameters that ensure the stabil-
ity of the equilibrium points with no negative individuals. 
The equilibrium points of the dynamical system are found 
by imposing the stationary conditions. That is, ṅ = 0 and 
u̇ = 0 . Let (n̄, ū) be an equilibrium point of this dynamical 
system. From

we see that either ū = 0 or n̄ = (𝜃 + 𝛿𝛼)∕(k𝜇).
Replacing ū = 0 in

we have

Lemma 1 The dynamical system in Eq. (3) has at least one 
equilibrium point with no negative individuals if and only if

Proof The candidates for the equilibrium points with no 
negative individuals are the solutions of (6). Equation (6) 
has a real solution if and only if (k� + � + �)2 − 4k�� ≥ 0 . 
Let Δ ∶= (k� + � + �)2 − 4k�� . Now, we show that Δ is 
always nonnegative. We have

By expanding and rearranging, we can show that

Therefore, (6) has at least one real solution and at maximum 
two solutions that can be written as

Both n̄1 and n̄2 are always nonnegative because √
Δ ≤ k� + � + � . (n̄1, 0) and (n̄2, 0) are equilibrium points 

if n̄1 and n̄2 , respectively, are less than or equal to one. It 
is because the state space of the HOM-MEAN system is 
[0, 1] × [0, 1] . Now, we show that if (7) is satisfied, n̄2 will 
be less than or equal to 1. Because n̄2 ≤ n̄1 , if n̄2 ≤ 1 , then 

(4)u̇ = k𝜇n̄ū − (𝜃 + 𝛿𝛼)ū = 0,

(5)
ṅ = k𝛽n̄2 − (k𝛽 + 𝛼 + 𝛾)n̄

+ (k𝛽 − k𝜇)n̄ū + (𝜃 − 𝛾)ū + 𝛾 = 0,

(6)k𝛽n̄2 − (k𝛽 + 𝛼 + 𝛾)�̄� + 𝛾 = 0.

(7)� + � ≤ k� +
√
(k� + � + �)2 − 4k�� .

(8)(k� − �)2 + �2 + �2 + 2k�� + 2�� ≥ 0.

(9)Δ = k2�2 + �2 + �2 − 2k�� + 2k�� + 2�� .

(10)
n̄1 =

k𝛽 + 𝛼 + 𝛾 +
√
Δ

2k𝛽
,

n̄2 =
k𝛽 + 𝛼 + 𝛾 −

√
Δ

2k𝛽
.
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the HOM-MEAN system has at least one equilibrium point 
with no negative individuals. n̄2 ≤ 1 if and only if

  ◻

The HOM-MEAN system may have another equilibrium 
point with nonzero fraction of negative individuals. Replacing 
n̄ = (𝜃 + 𝛿𝛼)∕(k𝜇) in

we have

3.2  Stability of equilibrium points

In this section, we study the stability of the equilibrium points 
of the HOM-MEAN system. In particular, we show that, of the 
two possible equilibrium points whose fraction of negative 
individuals is zero, only (n̄2, 0) can be locally stable, and (n̄1, 0) 
is always unstable. Also, conditions for global asymptotic sta-
bility of (n̄2, 0) are derived.

An equilibrium point of a dynamical system is locally expo-
nentially stable if and only if the real parts of all eigenvalues 
of its Jacobian matrix, computed at the equilibrium point, are 
negative, and it is unstable if at least one of the eigenvalue of 
the Jacobian matrix, computed at the equilibrium point, has a 
positive real part (Khalil 2000). Let A(n∗, u∗) be the Jacobian 
matrix of the HOM-MEAN system in (3) at point (n∗, u∗) , 
where  A11(n

∗, u∗) =
�n.

�n
|(n∗,u∗) ,  A12(n

∗, u∗) =
�n.

�u
|(n∗,u∗) , 

A21(n
∗, u∗) =

�u.

�n
|(n∗,u∗) and A22(n

∗, u∗) =
�u.

�u
|(n∗,u∗) . Hence, 

we have

Computing the matrix A at (n̄1, 0) , we have

(11)� + � ≤ k� +
√
Δ.

(12)
ṅ = k𝛽n̄2 − (k𝛽 + 𝛼 + 𝛾)n̄

+ (k𝛽 − k𝜇)n̄ū + (𝜃 − 𝛾)ū + 𝛾 = 0,

(13)ū =
−k𝜇𝛾 + (𝛿𝛼 + 𝜃)(k𝛽 + 𝛼 + 𝛾) −

𝛽

𝜇
(𝜃 + 𝛿𝛼)2

k𝛽(𝜃 + 𝛿𝛼) − k𝜇(𝛾 + 𝛿𝛼)
.

(14)

A11(n
∗, u∗) = 2k�n∗ + (k� − k�)u∗ − (k� + � + �),

A12(n
∗, u∗) = (k� − k�)n∗ + � − � ,

A21(n
∗, u∗) = k�u∗,

A22(n
∗, u∗) = k�n∗ − � − ��.

(15)

A11 =
√
Δ,

A12 =
� − �

2�

�
k� + � + � +

√
Δ
�
+ � − � ,

A21 = 0,

A22 =
�

2�

�
k� + � + � +

√
Δ
�
− � − ��.

The Jacobian matrix computed at (n̄1, 0) is an upper trian-
gular matrix. Also, it is a real matrix because Δ ≥ 0 as we 
show in Lemma 1. Therefore, its two eigenvalues are real 
and equal to A11 and A22 . We can conclude that (n̄1, 0) is 
always unstable because A11 is always positive. The Jacobian 
matrix at (n̄2, 0) can be computed as:

The two eigenvalues of the Jacobian matrix are real and 
equal to A11 and A22 because the Jacobian matrix is upper 
triangular and Δ is always nonnegative. The local stability of 
(n̄2, 0) is only determined by A22 because A11 is always nega-
tive. In the following theorem, we derive conditions under 
which (n̄2, 0) is locally exponentially stable.

Theorem 1 If (7) in Lemma 1 is satisfied, then (n̄2, 0) is 
locally exponentially stable if and only if

Proof If (7) in Lemma 1 is satisfied, then (n̄2, 0) is locally 
exponentially stable if and only if A22 is negative. That is,

The inequality in (18) holds if and only if

If the RHS of (19) is positive, the inequality in (19) holds 
because its LHS is always negative. The RHS of (19) is 
positive if and only if

which yields constraint (a). However, if the RHS of (19) is 
negative, then the inequality in (19) is satisfied if and only if

(16)

A11 = −
√
Δ,

A12 =
� − �

2�

�
k� + � + � −

√
Δ
�
+ � − � ,

A21 = 0,

A22 =
�

2�

�
k� + � + � −

√
Δ
�
− � − ��.

(17)

(a) 𝜇 <
2𝛽(𝜃 + 𝛿𝛼)

k𝛽 + 𝛼 + 𝛾
, or

(b) 𝜇 >
2𝛽(𝜃 + 𝛿𝛼)

k𝛽 + 𝛼 + 𝛾
and

𝛾 <
1

𝜇 −
1

k
(𝛿𝛼 + 𝜃)

(
(𝛿𝛼 + 𝜃)(𝛽 +

1

k
𝛼) −

𝛽

k𝜇
(𝜃 + 𝛿𝛼)2

)
.

(18)
𝜇

2𝛽

�
k𝛽 + 𝛼 + 𝛾 −

√
Δ
�
− 𝜃 − 𝛿𝛼 < 0.

(19)−
√
Δ <

2𝛽

𝜇
(𝜃 + 𝛿𝛼) − (k𝛽 + 𝛼 + 𝛾).

(20)𝜇 <
2𝛽(𝜃 + 𝛿𝛼)

k𝛽 + 𝛼 + 𝛾
,

(21)Δ >

(
2𝛽

𝜇
(𝜃 + 𝛿𝛼) − (k𝛽 + 𝛼 + 𝛾)

)2

.
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The inequality in (21) is equivalent to

which yields constraint (b).   ◻

The constraints in Theorem 1 show two different regimes 
that both guarantee convergence of the fraction of negative 
individuals to zero. In constraint (a), the condition for this con-
vergence is characterized by � . We call the regime correspond-
ing to this constraint, regime 1. On the other hand, in constraint 
(b), � characterizes the convergence to zero for the fraction of 
negative individuals. The regime corresponding to this con-
straint is called regime 2. We define negative-free thresholds 
with respect to the conditions in Theorem 1 to represent the 
desired phase transitions that guarantee the convergence to 
zero for the fraction of negative individuals. Let �1 ∶=

2�(�+��)

k�+�+�
 

denote the negative-free threshold for regime 1. Also, let 
�2 ∶=

1

�−
1

k
(��+�)

(
(�� + �)(� +

1

k
�) −

�

k�
(� + ��)2

)
 denote the 

negative-free threshold for regime 2. In regime 1, (n̄2, 0) is 
exponentially stable if and only if 𝜇 < 𝜂1 . In regime 2, (n̄2, 0) 
is exponentially stable if and only if 𝜇 > 𝜂1 and 𝛾 < 𝜂2.

HOM-MEAN systems with larger negative-free thresh-
olds are more resistant to processes that push individuals 
toward the negative state. Therefore, intervening agencies 
should design their intervention process to make negative-
free thresholds as large as possible. In regime 1, increasing 
the average node degree decreases the negative-free thresh-
old, �1 , so that decreasing the chance of stability of (n̄2, 0) . 
In other words, increasing the average node degree helps the 
word-of-mouth process that causes individuals become neg-
ative. In regime 2, condition (b) in Theorem 1 reduces to

as k → ∞ . Equation (23) shows the significance of both viral 
diffusion and media influence for highly connected influence 
networks. As k → ∞,

Theorem 1 provides us with the necessary and sufficient 
conditions of the local stability of (n̄2, 0) , but not its global 
stability. In the following theorem, we derive the conditions 
that ensure the equilibrium point with a nonzero fraction of 
negative individuals,

(22)k𝜇𝛾 < 𝛿𝛼(k𝛽 + 𝛼 + 𝛾) + 𝜃(k𝛽 + 𝛼 + 𝛾) −
𝛽

𝜇
(𝜃 + 𝛿𝛼)2,

(23)𝛾 <
𝛽

𝜇
(𝛿𝛼 + 𝜃),

(24)�2 →
�

�
(�� + �).

(25)

n̄ = (𝜃 + 𝛿𝛼)∕(k𝜇)

ū =
−k𝜇𝛾 + (𝛿𝛼 + 𝜃)(k𝛽 + 𝛼 + 𝛾) −

𝛽

𝜇
(𝜃 + 𝛿𝛼)2

k𝛽(𝜃 + 𝛿𝛼) − k𝜇(𝛾 + 𝛿𝛼)
,

does not lie in the state space of the HOM-MEAN system.

Theorem 2 If one of the conditions in Theorem 1 is satis-
fied, then the (n̄2, 0) point is the only stable equilibrium point 
of the HOM-MEAN system if one of the following conditions 
is satisfied:

where �0 = �(� + ��)∕(� + ��) and �
0
=

(
(�� + �)(� +

1

k
�)

−
�

k�
(� + ��)2

)
∕(� −

1

k
(�� + �)).

Proof Given (n̄1, 0) is always an unstable equilibrium point, 
we derive the conditions that guarantee the equilibrium point 
with a nonzero fraction of negative individuals in (25) does 
not lie in the state space, [0, 1] × [0, 1] . If (𝜃 + 𝛿𝛼)∕(k𝜇) > 1 , 
then this equilibrium does not lie in the state space. Condi-
tion (a) is equivalent to (𝜃 + 𝛿𝛼)∕(k𝜇) > 1 . Conditions (b) 
and (c) ensure that ū in (25) is negative. Let N and D denote 
the numerator and denominator of ū in (25), respectively. ū 
in (25) is negative if and only if either N > 0 and D < 0 , or 
N < 0 and D > 0 . The inequalities N < 0 and D > 0 yield 
condition (b), and N > 0 and D < 0 lead to condition (c). If 
ū in (25) is positive, N > 0 and D > 0 , or N < 0 and D < 0 , 
ū being greater than one ensures that this equilibrium point 
does not lie in the state space. The inequalities N > 0 and 
D > 0 , and ū being greater than 1 yield condition (d), and if 
N < 0 and D < 0 , they yield condition (e).   ◻

If (n̄2, 0) is locally stable but not globally stable, then its 
region of attraction quantifies how robust this equilibrium 
point is with respect different initial states. The region of 
attraction for (n̄2, 0) is the subset of the state space which tra-
jectories initiating from, asymptotically converge to (n̄2, 0) . 
Determining the region of attraction is important since tells 
us how far the initial state can be from (n̄2, 0) and still con-
verge to (n̄2, 0) . In the following theorem, we estimate the 
region of attraction for (n̄2, 0).

Theorem 3 If (n̄2, 0) is locally exponentially stable, trajec-
tories converge to this equilibrium point if their initial states 
lie in the set RD defined as follows:

(26)

(a) 𝜇 <
1

k
(𝜃 + 𝛿𝛼),

(b)𝜇 < 𝜇0 and𝛾 > 𝛾0,

(c) 𝜇 > 𝜇0 and𝛾 < 𝛾0,

(d)𝜇 < 𝜇0, 𝛾 < 𝛾0 and

(𝛿𝛼 + 𝜃)(𝛼 + 𝛾) + k𝜇𝛿𝛼 >
𝛽

𝜇
(𝜃 + 𝛿𝛼)2,

(e) 𝜇 > 𝜇0, 𝛾 > 𝛾0 and

(𝛿𝛼 + 𝜃)(𝛼 + 𝛾) + k𝜇𝛿𝛼 <
𝛽

𝜇
(𝜃 + 𝛿𝛼)2,
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where

where

A11 , A12 , and A22 are derived in (16). Also, � is a positive 
number less than �min(P)r2 where r = 1∕(f +

1

2

√
g2 + h2) 

and P =

[
p1 p2
p2 p4

]
 . And, f = 2p1k� , g = 2(p

1
(k� − k�)+

p
2
(k� + k�)) , h = 2(p2(k� − k�) + p4k�).

Proof See “Appendix A.”   ◻

4  Scale‑free networks

In this section, we use a mean-field approach to approxi-
mate the IN-STOCH system for scale-free networks by a 
dynamical system called the heterogeneous mean-field 
(HET-MEAN) system that is represented by a set of deter-
ministic differential equations. Unlike exponential networks, 
the degree distributions of scale-free networks have strong 
fluctuations around their average node degrees. This char-
acteristic of scale-free networks motivates a different mean-
field analysis from the one for exponential networks, that 
distinguishes between the dynamics of the nodes with dif-
ferent node degrees. In particular, the HET-MEAN system 
separately keeps tracks of the fraction of neutral, positive 
and negative nodes with different degrees k.

Because of the dependency of the HET-MEAN system 
equations on the node degree distributions of influence net-
works, it is not possible to derive closed-form formulas to 
predict the final fraction of neutral, positive and negative 
individuals without fixing the node degree distribution. In 
other words, stability analysis of equilibrium points of the 
HET-MEAN system and derivation of closed-form predic-
tion formulas cannot be done without choosing a specific 
node degree distribution. To demonstrate such a use case, 
in this section, after developing results for a general form 
scale-free network, we focus on the BA networks which are 
special type of scale-free networks. Fixing the node degree 
distribution to be the node degree distribution of the BA 
networks, we derive closed-form approximation for its 

(27)RD = [0, 1]2 ∩ R̂D,

(28)R̂D =
{
(n, u)|p1(n − n̄2)

2 + 2p2(n − n̄2)u + p4u
2 < 𝜂

}
,

(29)

p1 = −
1

2A11

,

xp2 =
A12

2A11(A11 + A22)
, and

p4 =
−A2

12

2A11A22(A11 + A22)
.

corresponding negative-free equilibrium point and nega-
tive-free conditions.

Let nk(t) , pk(t) and uk(t) be the fraction of neutral, posi-
tive and negative individuals with node degree k at time t. 
Therefore, nk(t) + pk(t) + uk(t) = 1 . The HET-MEAN system 
assumes the independence between states of individuals and 
is described with the following coupled differential equa-
tions in continuous time:

where k spans over all the distinct node degrees in the given 
influence network; Φ(p) and Φ(u) denote the probabilities 
that any given edge is connected to a positive and a nega-
tive node, respectively. Therefore, Φ(p) + Φ(u) + Φ(n) = 1 , 
where Φ(n) is the probability that any given edge is con-
nected to a neutral node. Let P(k) denote the node degree 
distribution of the influence network. Therefore, using P(k), 
one can compute Φ(p) , Φ(u) and Φ(n) given pk , uk and nk are 
known, as follows:

where x can be either p, n or u and ⟨k⟩ denotes the average 
node degree computed. Using nk + pk + uk = 1 , we reduce 
(30) to the following system:

The variables of the reduced mean-field dynamical system 
in (32) are {nk} and {uk} . The dimension of this dynamical 
system state space is 2K, where K is the number of distinct 
node degrees.

4.1  Equilibrium points

In this section, first, we show that the HET-MEAN sys-
tem has only one negative-free equilibrium point candi-
date. Then, we prove that this negative-free equilibrium 
point candidate is always a valid equilibrium point for the 
HET-MEAN system. In the following lemma, using the 
stationary equation of the HET-MEAN system, we show 
that there exists only one negative-free equilibrium point 
candidate for this dynamical system.

Lemma 2 The only negative-free equilibrium point candi-
date of the HET-MEAN system is the following:

(30)

ṅk = −k𝛽Φ(p)nk − 𝛼nk + 𝛾pk − k𝜇Φ(u)nk + 𝜃uk,

ṗk = k𝛽Φ(p)nk + 𝛼nk − 𝛾pk + 𝛿𝛼uk,

u̇k = k𝜇Φ(u)nk − 𝜃uk − 𝛿𝛼uk,

(31)Φ(x) =
1

⟨k⟩
�

kP(k)xk,

(32)

ṅk = k(𝛽 − 𝜇)Φ(u)nk + k𝛽Φ(n)nk − (k𝛽 + 𝛼 + 𝛾)nk

+ (𝜃 − 𝛾)uk + 𝛾 ,

u̇k = k𝜇Φ(u)nk − (𝜃 + 𝛿𝛼)uk.
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Proof The stationary conditions for the HET-MEAN dynam-
ical system are ṅk = 0 and u̇k = 0 . Imposing these station-
ary conditions, we find the equilibrium points of the HET-
MEAN system. Let {(ūk, n̄k)} be an equilibrium point of this 
dynamical system. From u̇k = 0 , we see that either ūk = 0 or

where Φ̄(u) and Φ̄(n) denote the values of Φ(u) and Φ(n) that 
satisfy stationary conditions, respectively. Here, we focus on 
the equilibrium point that satisfies ūk = 0 for every k. It is 
clear that this equilibrium point candidate is negative-free 
since for every k, the fraction of negative nodes is equal to 
0. This equilibrium point being negative-free, for its cor-
responding Φ̄(u) , we can write

Next, to fully characterize this negative-free equilibrium 
point candidate, we compute its n̄k components. Replacing 
uk = 0 in n.

k
= 0 , we have

Therefore, the negative-free equilibrium point candidate 
can be written as follows:

  ◻

In the following Lemma, we show that the negative-
free equilibrium point candidate computed in Lemma 2 is 
always an equilibrium point for the HET-MEAN system. 
This result is significant since it shows that there is always 
a possibility for marketing campaigns to design their mar-
keting strategies for scale-free influence networks to drive 
the dynamics of networks to converge to a negative-free 
state.

Lemma 3 The negative-free equilibrium point candidate 
for the HET-MEAN system computed in Lemma 2 is always 
an equilibrium point for the HET-MEAN system.

Proof The negative-free equilibrium point candidate (37) 
will be an equilibrium point if and only if it lies in the state 
space of the dynamical system. That is ∀k,

(33)
{(

ūk = 0, n̄k =
𝛾

k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾

)}
.

(34)n̄k =
𝜃 + 𝛿𝛼

k𝜇Φ̄(u)
ūk,

(35)Φ̄(u) = 0.

(36)n̄k =
𝛾

k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾
.

(37)
{
ūk = 0, n̄k =

𝛾

k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾

}
.

(38)0 ≤ n̄k ≤ 1.

Equation (38) is equivalent to 0 ≤ Φ̄(n) ≤ 1 . Now, we show 
that 0 ≤ Φ̄(n) ≤ 1 always holds. We have

L e t  g(Φ̄(n)) ∶=
∑

𝛾kP(k)∕(k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾)∕⟨k⟩  . 
Therefore, 0 ≤ Φ̄(n) ≤ 1 if and only if the equation 
Φ̄(n) = g(Φ̄(n)) has a solution for Φ̄(n) in [0, 1]. We have

We have 0 ≤ g(0) ≤ 1 and 0 ≤ g(1) ≤ 1 . Therefore, 
Φ̄(n) = g(Φ̄(n)) has a solution in [0, 1].   ◻

4.2  Stability of negative‑free equilibrium point

We examine the stability of the negative-free equilibrium 
point (37) by first computing the partial derivatives of the 
HET-MEAN system (32) at this equilibrium point. Then, we 
use these partial derivatives to form the 2K × 2K Jacobian 
matrix. Finally, we study the eigenvalues of this matrix to ana-
lyze the stability of the negative-free equilibrium point. In the 
following, we compute the partial derivatives of the HET-
MEAN system at the negative-free equilibrium point. The 
partial derivatives 𝜕ṅk

𝜕nk
 can be written as follows:

For 𝜕ṅk
𝜕nj

 , ∀j ≠ k , we can write

Computing 𝜕ṅk
𝜕uk

 , we have

𝜕ṅk

𝜕uj
 , ∀j ≠ k , can be derived as follows:

We have �u
.
k

�nj
= 0 , ∀j . Computing 𝜕u̇k

𝜕uk
 , we can write

(39)
Φ̄(n) =

1

⟨k⟩
�

kn̄kP(k)

=
1

⟨k⟩
� 𝛾kP(k)

k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾
.

(40)
g(0) =

1

⟨k⟩
� kP(k)

1 +
1

c
(k� + �)

,

g(1) =
�

� + �
.

(41)
𝜕ṅk

𝜕nk
= k𝛽Φ̄(n) +

k2

⟨k⟩𝛽n̄kP(k) − (k𝛽 + 𝛼 + 𝛾).

(42)
𝜕ṅk

𝜕nj
=

kj

⟨k⟩𝛽n̄kP(j).

(43)
𝜕ṅk

𝜕uk
=

k2

⟨k⟩ (𝛽 − 𝜇)n̄kP(k) + 𝜃 − 𝛾 .

(44)
𝜕ṅk

𝜕uj
=

kj

⟨k⟩ (𝛽 − 𝜇)n̄kP(j).

(45)
𝜕u̇k

𝜕uk
=

k2

⟨k⟩𝜇n̄kP(k) − (𝜃 + 𝛿𝛼).
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Finally, computing 𝜕u̇k
𝜕uj

 , ∀j ≠ k , we have

Using the above-derived partial derivatives, we can form 
the Jacobian matrix at the negative-free equilibrium point. 
We form the two following submatrices of the Jacobian 
matrix to simplify the stability analysis of the equilibrium 
point. Let Jn̄ denote the K × K submatrix formed by 𝜕ṅk∕𝜕nk 
and 𝜕ṅk∕𝜕nj and Jū denote the K × K submatrix formed by 
𝜕u̇k∕𝜕uk and 𝜕u̇k∕𝜕uj . In the following theorem, we rely on 
these two K × K matrices to derive necessary and sufficient 
conditions for locally exponentially stability of the nega-
tive-free equilibrium point.

Theorem 4 The negative-free equilibrium point (37) is 
locally exponentially stable if and only if the real parts of 
all eigenvalues of Jn̄ and Jū are negative.

Proof The equilibrium point is locally exponentially stable 
if and only if the real parts of all eigenvalues of the Jacobian 
matrix, computed at this equilibrium point, are negative. 
Because 𝜕u̇k∕𝜕nj = 0 at the equilibrium point in (37), the 
eigenvalues of the Jacobian matrix are equal to the union 
of the eigenvalues of Jn̄ and Jū . Therefore, this equilibrium 
point is locally exponentially stable if and only if the real 
parts of all eigenvalues of Jū and Jn̄ are negative.   ◻

In the following theorem, we provide a sufficient condi-
tion for the global stability of the negative-free equilibrium 
point of the HET-MEAN system.

Theorem 5 The negative-free equilibrium point (37) is 
globally exponentially stable if the condition of Theorem 4 
is satisfied and 𝜇 <

1

k
(𝜃 + 𝛿𝛼).

Proof If the condition of Theorem 4 is satisfied, then the 
negative-free equilibrium point is locally exponentially 
stable, and in order to prove it is globally exponentially 
stable, One approach is to ensure that the HET-MEAN 
system does not have any other equilibrium point. The 
HET-MEAN system, in addition to the negative-free 
equilibrium point, has only one more equilibrium point 
candidate. This equilibrium point candidate has nonzero 
final fraction of negative individuals. In order to compute 
this equilibrium point, imposing the stationary condition 
u̇k = 0 , we have n̄k = ūk(𝜃 + 𝛿𝛼)∕(k𝜇Φ̄(u)) . Replacing n̄k by 
ūk(𝜃 + 𝛿𝛼)∕(k𝜇Φ̄(u)) in n. = 0 , we have

(46)
𝜕u̇k

𝜕uj
=

kj

⟨k⟩𝜇n̄kP(j).

(47)ūk =
𝛾k𝜇Φ̄(u)

I + (𝛾 − 𝜃)k𝜇Φ̄(u)
,

where I = (𝜃 + 𝛿𝛼)
(
k(𝜇 − 𝛽)Φ̄(u) + k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾

)
 . 

Based on n̄k = ūk(𝜃 + 𝛿𝛼)∕(k𝜇Φ̄(u)) , n̄k has a linear rela-
tionship with ūk with the coefficient C = (𝜃 + 𝛿𝛼)∕(k𝜇Φ̄(u)) . 
Using (31), it can be shown that Φ̄(n) = CΦ̄(u) . Therefore, 
we have

We use the above closed-form formula derived for Φ̄(n) to 
force this equilibrium candidate to be outside of the state 
space of the HET-MEAN system. This idea is realized 
by forcing Φ̄(n) > 1 which translates into the following 
condition:

  ◻

4.3  Brabasi–Albert networks

In this section, we apply our theoretical results for the HET-
MEAN system to Barabasi–Albert (BA) networks, which 
are examples of scale-free networks (Barabasi and Albert 
1999). The underlying idea behind the BA networks is that 
individuals tend to make connections with individuals who 
are more well-known and who have a larger number of exist-
ing connections. This is an intuitive phenomenon that is 
observed on social networks. To construct a BA network, we 
start from a small number m0 of disconnected nodes; every 
new node forms m edges to existing nodes such that the 
probability of a new edge to be connected to an old node is 
proportional to the degree of old node (Barabasi and Albert 
1999). The constructed network has the following degree 
distribution

with average node degree ⟨k⟩ = 2m (Barabasi and Albert 
1999).

For the equilibrium point with no negative individu-
als in (37), we have n̄k = 𝛾∕(k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾)) . In 
order to compute the steady-state fraction of neutral nodes 
n̄ =

∑
P(k)n̄k , first, we need to compute Φ̄(n) . We can cal-

culate Φ̄(n) using a self-consistency equation that is derived 
from the fact that n̄k is also a function of Φ̄(n) . We approxi-
mate the sum in (51) by an integral in order to derive the 
self-consistency equation. Therefore, we have

(48)Φ̄(n) =
𝜃 + 𝛿𝛼

k𝜇Φ(u)
Φ̄(u) =

𝜃 + 𝛿𝛼

k𝜇
.

(49)𝜇 <
1

k
(𝜃 + 𝛿𝛼).

(50)P(k) =

{
2m2k−3, if k ≥ m

0, otherwise
,
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Computing the integral in (51), we derive the following self-
consistency equation for Φ̄(n):

where Φ̄(n) can be found numerically. Also, using the inte-
gral approximation, we have

For the other equilibrium point corresponding to 
n̄k = ūk(𝜃 + 𝛿𝛼)∕(k𝜇Φ̄(u)) , first we calculate Φ̄(u) through a 
self-consistency equation using the fact that ūk is a function 
of Φ̄(u) . Employing the integral approximation, we can write

w h e r e  s = ��2∕f  ;  f = �((� − �)(� + ��) + (� − �))  ; 
g = (� + ��)(�(�� − �) + �(� + �)) ; h = ��(� + ��) . Using 
the self-consistency equation in (54), we can derive explic-
itly Φ̄(u) as follows:

Finally, using the integral approximation, we can derive the 
fraction of negative individuals as

where ūk is derived in (47). Computing the integral in (56), 
we have

(51)
Φ̄(n) =

1

⟨k⟩

∞�

k=m

kP(k)n̄k

≈
1

2m ∫
∞

m

2m2k−2𝛾

k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾
dk.

(52)
ln

(
1 +

𝛼 + 𝛾

m𝛽(1 − Φ̄(n))

)

=
𝛼 + 𝛾

m𝛽𝛾

(
𝛾 − 𝛼

Φ̄(n)

1 − Φ̄(n)

)
,

(53)

n̄ =

∞∑

k=m

P(k)n̄k ≈ ∫
∞

m

2m2k−3
𝛾

k𝛽(1 − Φ̄(n)) + 𝛼 + 𝛾
dk

=
2m2𝛾𝛽2(1 − Φ̄(n))2

(𝛼 + 𝛾)3
ln

(
1 +

𝛼 + 𝛾

m𝛽(1 − Φ̄(n))

)

+ 2m2𝛾

(
𝛽(1 − Φ̄(n))

(𝛼 + 𝛾)2m
−

1

2(𝛼 + 𝛾)m2

)
.

(54)

Φ̄(u) =
1

⟨k⟩

∞�

k=m

kP(k)ūk

≈
1

2m ∫
∞

m

2m2k−2ūkdk

= Φ̄(u)
msf

g
ln

�
1 +

g

m(f Φ̄(u) + h)

�
,

(55)Φ̄(u) =
g

mf

(
e

g

m𝛾𝜇2 − 1

)−1

−
h

f
.

(56)ū =

∞∑

k=m

P(k)ūk ≈ ∫
∞

m

2m2k−3ūk,

where H = 2msf Φ̄(u)∕g.
However, Theorem 4 can be used to determine the stabil-

ity of the equilibrium point with no negative individuals in 
(37) for the BA networks; here, we derive alternative criteria 
to examine the stability of this equilibrium point. Given Φ̄(u) 
is the probability that any given edge is connected to a nega-
tive individual, having no negative node in steady state is 
equivalent to Φ̄(u) ≤ 0.

Lemma 4 For the BA networks, asymptotic fraction of 
negative individuals will be 0 if

Proof The inequality in (58) is equivalent to Φ̄(u) ≤ 0 .  
 ◻

The main advantage of Lemma 4 over Theorem 4 to 
check whether the fraction of negative individuals is equal 
0 for the BA networks, is its lower computational cost. It is 
because for Theorem 4, we need to compute the eigenvalues 
of two K × K matrices.

5  Simulation results

In this section, we compare the analytical approximations by 
the HOM-MEAN and HET-MEAN systems with the simu-
lation results of the IN-STOCH system on the following 
synthetic networks: random regular, Watts–Strogatz (WS), 
BA networks the small-world forest-fire networks (Drossel 
and Schwabl 1992) as well as five real-world networks: ego-
Facebook (Leskovec and Mcauley 2012), Deezer (Rozem-
berczki et al. 2019), Livemocha (Zafarani and Liu (2009), a 
Facebook interaction network (Viswanath et al. 2009) and 
Douban (Zafarani and Liu 2009). In particular, we compare 
the analytical approximations for the steady-state fraction 
of negative individuals with the results of simulating the 
IN-STOCH system over the influence networks. Also, using 
an example of exponential networks and a case study over 
the Deezer network, we demonstrate how potentially the 
proposed model can be leveraged by marketing campaigns 
to design their resource allocations between viral marketing 
and media marketing to minimize the number of final nega-
tive individuals in different network settings.

For all the simulation results of the IN-STOCH system in 
this section, initial fractions of neutral, positive and nega-
tive nodes are randomly drawn from the probability simplex 
for each network realization. Because of the lack of access 

(57)ū = H

(
1 −

m

g
(f Φ̄(u) + h) ln

(
1 +

g

(f Φ̄(u) + h)m

))
,

(58)e
g

mc�2 − 1 ≥ 1

m

(
1

�
(�� − �) +

1

�
(� + c)

)
.
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to real-world polarities, we rely on the following method to 
make the initial states of the individuals realistic by choos-
ing their initial polarities based on their neighbors. For each 
positive and negative state, we randomly choose 100 nodes 
as the root nodes for the positive and negative clusters. 
Based on simulation results, we found that the number of 
root nodes does not impact the final steady state across dif-
ferent networks. Then, we propagate positive and nega-
tive states in these clusters using the Breadth First Search 
algorithm till the number of positive and negative nodes 
reaches the drawn initial fractions of positive and negative 
from the probability simplex.

5.1  Exponential networks

In this section, we focus on WS and random regular net-
works that lie in the category of exponential networks. For 
these networks, the analytical approximations are based on 
the results of Theorems 1 and 2 in combination with the 
derived equilibrium point with a nonzero fraction of nega-
tive individuals in (25). If either Theorem 1 or Theorem 2 is 
satisfied, then the analytical approximation for steady-state 
fraction of negative individuals is equal to 0; otherwise, 
it is equal to (25). In the first experiment, simulations are 
performed using randomly generated WS networks with 
N = 10000 nodes. WS networks are used as reference point 
for homogeneous networks that model small-world net-
works. WS networks are shown to be good candidates to 
model real-world networks in the context of social networks 
(Watts and Strogatz 1998). Small-world networks are net-
works with short average path lengths and high clustering. 
To construct a WS network, we start from a ring of N nodes. 
Choosing an even number k, each node is connected with 
its k/2 nearest clockwise neighbors and k/2 nearest counter 
clockwise neighbors. Then, with probability p, every link 
connected to a clockwise neighbor is rewired to a randomly 
chosen node. As a result of this process, a WS network with 
the average node degree k is created. One of the important 
characteristics of these network is their small fluctuations in 
connectivity due to their exponential degree distributions.

We iterate the rules of the IN-STOCH system for 2000 
steps. Three different ensembles of WS networks are stud-
ied with average node degrees of k = 12 , 16 and 20 and 
with probability of rewiring p = 0.2 . In Fig. 2, both ana-
lytical and simulation results of final fraction of negative 
individuals as a function of �∕� in the WS networks are 
presented. The final faction of negative individuals in the 
steady state is averaged over ten different realizations of WS 
networks for each case. The analytical approximations of 
Theorems 1 and 2, based on the HOM-MEAN system, are 
in total agreement with the simulation results of the IN-
STOCH system; they correctly predict when final fractions 
of negative individuals are 0. When neither Theorem 1 

nor Theorem 2 holds, the analytical approximation for the 
steady-state fraction of negative individuals by (25) is in 
good agreement with the simulation results with the average 
absolute difference of 0.033, 0.021 and 0.015, respectively, 
for the average node degree of 12, 16 and 20. This agreement 
becomes stronger by increasing the average node degree. 
Also, Theorem 1 predicts that regime 1 is active for all the 
three cases, which is confirmed by simulation results. The 
negative-free threshold decreases by increasing the average 
node degree. It shows that for the given scenario, increasing 
the average node degree helps the word-of-mouth process by 
negative individuals more than the word-of-mouth process 
by positive individuals.

In the second experiment, simulations are performed 
in random regular networks with N = 10000 nodes. Ran-
dom regular networks are similar to regular networks in the 
sense that all nodes have identical node degrees. However, 
neighbors of each node are chosen randomly. Iterating the 
rules of the IN-STOCH system is done over three ensembles 
of random regular networks with node degrees of k = 12 , 
16 and 20 for 2000 steps. In Fig. 3, we plot the analytical 
approximations and the simulation results of final fractions 
of negative individuals versus �∕� . The plotted simulation 
results for each node degree are resultant of averaging the 
simulation results of ten different realizations of random 
regular networks. Similar to WS networks, the simulation 
results are in total agreement with the analytical approxi-
mations of Theorems 1 and 2. And, when neither of these 
two theorems hold, the steady-state fractions of negative 
individuals predicted by (25) are in good agreement with 
the simulation results with the average absolute difference 
of 0.020, 0.013 and 0.007, respectively, for node degrees 12, 
16 and 20. Following the same trend as WS networks, this 

Fig. 2  Final fraction of negative individuals for WS networks as 
a function of �∕� . Solid lines are theoretical predictions. Dashed 
lines are simulation results. Parameter values: � = 0.01 , � = 0.001 , 
� = 0.01 , � = 0.4 and � = 0.01
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agreement becomes stronger by increasing the node degree. 
However, for all three values of node degrees, (25) predicts 
more accurately the steady-state fraction of negative indi-
viduals for the random regular networks compared to the WS 
networks. This is because the HOM-MEAN system assumes 
that all nodes have identical node degrees, which is true for 
random regular networks, but not for WS networks. Similar 
to WS networks, the negative-free threshold decreases by 
increasing the average node degree.

5.2  Scale‑free networks

In this section, we validate the analytical results for the 
scale-free networks based on the HET-MEAN system using 
simulation of the proposed stochastic adoption model over 
a number of synthetic and real-world networks that dem-
onstrate the characteristics of scale-free networks. We start 
with BA networks. The accuracy of predictions of the HET-
MEAN system is studied based on simulations of the IN-
STOCH system over the BA networks with N = 1000 nodes. 
Three different ensembles of BA networks with the param-
eters of m = 8 , 12 and 16 are randomly generated. For the 
all generated BA networks, m0 is equal to m. For all cases, 
the simulation total time steps are equal to 5000. Figure 4 
plots the approximations of steady-state fractions of nega-
tive individuals by the HET-MEAN system and the simula-
tion results versus �∕� . The analytical approximations are 
computed as follows: If condition (58) in Lemma 4 is satis-
fied, then the final fraction of negative individuals is equal 
to 0; otherwise, (57) is used to compute the final fraction of 
negative individuals. The plotted simulation results for each 
value of m are resultant of averaging the simulation results 
of ten different realizations of the BA networks. We observe 

the analytical approximations in a good agreement with the 
simulation results with the average absolute difference of 
0.006, 0.011 and 0.0132, respectively, for m parameter of 
8, 12 and 16.

In order to predict the final fraction of negative indi-
viduals for real-world networks, one of the following three 
approaches can be taken. (1) Approximation of their empiri-
cal degree distributions with one of the discussed degree 
distributions in this paper and directly employ their mean-
field predictions. For example, if the empirical node degree 
distribution of a real-world network is concentrated around 
its average node degree, then the analytical results of the 
HOM-MEAN system can be used directly. (2) If the empiri-
cal node degree distribution is not concentrated around the 
average node degree, one can approximate the empirical 
node degree distribution with a closed-form mathematical 
formula using a curve fitting method and plug the curve fit-
ted distribution into the framework developed for scale-free 
networks in this paper and follow the same steps as we did 
for the BA networks to derive analytical closed-form predic-
tion results. (3) Another possible approach when the empiri-
cal node degree distribution is not concentrated around its 
average node degree is to use the computed empirical node 
degree distribution to numerically solve the HET-MEAN 
system equations (32) in order to predict the final fraction 
of negative, positive and neutral nodes. The main gain 
of numerically solving the HET-MEAN system compared 
to the directly simulation of networks’ dynamics using the 
stochastic IN-STOCH system is the significance reduction 
in the computational cost. It is because the dimension of 
the stochastic IN-STOCH system is equal to the number 
of the nodes in the network, whereas the dimension of the 
HET-MEAN system is equal to the number of distinct node 

Fig. 3  Final fraction of negative individuals for random regular net-
works as a function of �∕� . Solid lines are theoretical predictions. 
Dashed lines are simulation results. Parameter values: � = 0.01 , 
� = 0.001 , � = 0.01 , � = 0.4 and � = 0.01

Fig. 4  Final fraction of negative individuals for BA networks as 
a function of �∕� . Solid lines are theoretical predictions. Dashed 
lines are simulation results. Parameter values: � = 0.01 , � = 0.001 , 
� = 0.01 , � = 0.4 and � = 0.01
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degrees in the network. To illustrate this point, we consider 
ego-Facebook network.

Ego-Facebook network (Leskovec and Mcauley 2012) is 
an undirected network consisting of 4039 nodes and 88234 
edges with average node degree 43.7 and standard deviation 
52.4; it was generated by using a Facebook app based on 
friends lists. Figure 5 shows the node degree histogram of 
this network. While the number of nodes is 4039, the domi-
nant values of the histogram is limited to only about 200 
node degrees. This shows the computational gain that can 
be accomplished with using the HET-MEAN system instead 
of the IN-STOCH system. In general, it is expected that this 
computational gain becomes more significant as networks 
become larger since the gap between the number of nodes 
and the dominant values of the node degree histograms 
increases. In order to numerically solve the HET-MEAN 
system (32) for ego-facebook network, first, we compute its 
empirical degree distribution. Then, we simulate the dynam-
ical system in (32) till its state evolution reaches the steady 
state. Finally, we report the fraction of negative individuals 
at the steady state. Also, we simulate the IN-STOCH system 
over this network for 10000 steps by iterating the rules of the 
IN-STOCH system. Figure 6 depicts the results of numerical 
solving of the HET-MEAN system and the simulation of the 
IN-STOCH system for the ego-Facebook network with ten 
different random initializations. It shows a good agreement 
between the predictions of these two systems for the final 
fraction of negative individuals with the average absolute 
difference of 0.028.

Then, we compare the predictions by the HET-MEAN 
(32) with the simulation result of the IN-STOCH system for 
the Deezer network (Rozemberczki et al. 2019). This data-
set represents friendship relationships among users of the 
music streaming service Deezer during November 2019. In 
particular, we use the part of this dataset with the individuals 

from Hungary. The network represented by this part of data-
set consists of 54573 nodes and 498202 edges. We numeri-
cally solve Equation (32) using the computed node degree 
histogram of the Deezer network till the convergence of the 
HET-MEAN dynamical system. Also, the IN-STOCH sys-
tem is simulated over this network for 2000 steps and ten 
different random initializations. Figure 7 shows the simula-
tion results of the final fraction of negative individuals for 
IN-STOCH system as well as the numerical solutions of 
the HET-MEAN system for the Deezer network. A good 
agreement between analytical and simulation results with the 
average absolute difference of 0.0195 is observed.

Fig. 5  Histogram of node degrees of the ego-Facebook network

Fig. 6  Final fraction of negative individuals in the ego-Facebook 
network as a function of �∕� . The solid line is the theoretical pre-
dictions. The dashed line is the simulation results. Parameter values: 
� = 0.01 , � = 0.001 , � = 0.01 , � = 0.4 and � = 0.01

Fig. 7  Final fraction of negative individuals in the Deezer network 
as a function of �∕� . The solid line is the theoretical predictions. 
The dashed line is the simulation results. Parameter values: � = 0.01 , 
� = 0.001 , � = 0.01 , � = 0.4 and � = 0.01
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Next, we examine the predictions of the HET-MEAN sys-
tem for a real-world network called Livemocha (Zafarani and 
Liu 2009). This network represents friendship relationships 
among users of the online language learning community 
Livemocha and is formed by 104103 nodes and 2193083 
undirected edges. Figure 8 compares the numerical solution 
of the HET-MEAN system and the simulation results of the 
IN-STOCH system after 5000 steps averaged over ten dif-
ferent random initializations for the final fraction of nega-
tive individuals. There exists a good agreement between the 
predictions of the HET-MEAN system and the results of the 
IN-STOCH system with the average absolute difference of 
0.008.

Furthermore, the prediction of the HET-MEAN system is 
compared with the simulation result of the IN-STOCH sys-
tem over a Facebook interaction network (Viswanath et al. 
2009). This network represents 817035 logged activities 
among 63731 users of New Orleans regional Facebook net-
work over a period of two years, where the activities among 
users are denoted by undirected edges. Figure 9 compares 
the numerical solution of the HET-MEAN system and the 
simulation results of the IN-STOCH system after 5000 
steps averaged over ten different random initializations for 
the final fraction of negative individuals. There exists a 
good agreement between the predictions of the HET-MEAN 
system and the results of the IN-STOCH system with the 
average absolute difference of 0.023.

The last real-world network that we use to study the accu-
racy of the predictions of the HET-MEAN system is the 
Douban network (Zafarani and Liu 2009). This undirected 
network consists of 154,908 nodes and 327,162 edges and 
represents the friendship network of the Chinese recom-
mendation Web site Douban for books, movies and music. 

Figure 10 shows the comparison of the HET-MEAN system 
predicted final fraction of negative individuals with their 
counterparts obtained via the simulation of the IN-STOCH 
system for 5000 steps averaged over ten different random 
initializations. The average absolute difference between the 
predictions of the HET-MEAN system and the results of the 
IN-STOCH system is equal to 0.005, which demonstrates a 
good agreement between them.

Next, we examine the proposed IN-STOCH system and 
the mean-field system equations (32) on the small-world 
forest-fire networks (Drossel and Schwabl 1992). The small-
world forest-fire networks are constructed over two-dimen-
sional lattice graphs. At each given time, each vertex of such 

Fig. 8  Final fraction of negative individuals in the Livemocha net-
work as a function of �∕� . The solid line is the theoretical predic-
tions. The dashed line is the simulation results. Parameter values: 
� = 0.01 , � = 0.001 , � = 0.01 , � = 0.4 and � = 0.01

Fig. 9  Final fraction of negative individuals in a Facebook interac-
tion network as a function of �∕� . The solid line is the theoretical 
predictions. The dashed line is the simulation results. Parameter val-
ues: � = 0.01 , � = 0.001 , � = 0.01 , � = 0.4 and � = 0.01

Fig. 10  Final fraction of negative individuals in the Douban network 
as a function of �∕� . The solid line is the theoretical predictions. 
The dashed line is the simulation results. Parameter values: � = 0.01 , 
� = 0.001 , � = 0.01 , � = 0.4 and � = 0.01
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lattice graphs is occupied by either a tree or a burning tree 
or it is empty. The following dynamical system modeling 
fires in forests governs the final patterns of trees: (1) Tree 
grows with the probability p at an empty vertex. (2) A vertex 
with burning tree becomes an empty vertex and all of its 
neighboring vertices’ trees switch to burning trees. (3) A 
tree becomes a burning tree with the lightning probability 
of f. Following (Drossel and Schwabl 1992), each vertex 
has at most one long-range connection (shortcut) with the 
probability q to a randomly chosen vertex.

Here, we realize a small-world forest-fire network 
over 100 × 100 two-dimensional lattice with p = 0.05 , 
f = 0.000001 and q = 0.5 . For initialization of the lattice, we 
randomly choose 0.55 fraction of vertices to be occupied by 
trees and the rest to be empty. We iterate over the forest-fire 
dynamical model for 100 steps assuming the local neighbor-
hood of each node consists of its 8 nearest neighbors. Then, 
the IN-STOCH system is simulated over this network by 
iterating of the update rules of the IN-STOCH system, for 
ten different random initializations of the IN-STOCH sys-
tem. Figure 11 shows the average final fraction of negative 
individuals versus values of �∕� for these ten simulations of 
the IN-STOCH system as well as the analytical predictions 
computed by numerically solving the HET-MEAN system in 
(32). Similar to the case studies of the real-world networks, 
we rely on numerically solving the HET-MEAN system in 
(32) instead of using closed-form analytical predictions of 
the final fraction of negative individuals to demonstrate that 
numerically solving the HET-MEAN system can be applied 
to synthetic networks as well. Figure 11 illustrates a rela-
tively good agreement between the simulation results and 
analytical predictions with the average absolute difference 
of 0.032.

5.3  Viral marketing versus media marketing

In this section, the HOM-MEAN and HET-MEAN sys-
tems are used to compare the impact of viral diffusion with 
media influence for exponential influence and scale-free 
networks, respectively. In our framework, a marketing sce-
nario is fully characterized by the values of � , � , � , � and 
the topology of influence network. The fraction �∕� repre-
sents the relative ratio investment of marketing campaigns 
in viral marketing compared to media marketing. The set 
{(�, �) ∈ [0, 1] × [0, 1]} spans the space of all different inter-
vening strategies which are formed by simultaneous viral 
and media marketing. Moreover, Ω denotes the set of those 
intervening strategies that result in final zero negative indi-
viduals, and Ψ denotes the set of those intervening strategies 
that result in final nonzero negative individuals. Therefore, 
the sets Ω and Ψ form a partition for the mentioned set of all 
intervening strategies.

Figure 12 depicts Ω and Ψ corresponding to two different 
scenarios for the HOM-MEAN system where the x-axis is � 
and the y-axis is � . These two scenarios have identical transi-
tion probabilities and only differ in the average node degrees. 
Blue circles represent intervening strategies in Ω , and inter-
vening strategies in Ψ are represented by red circles. For 
scenario A, the average node degree is 40, and the average 
node degree for scenario B is 4. The significant observation 
is that in scenario B with the average node degree 4, non-
strong viral marketing ( 𝛽 < 0.2 ) could be compensated by 
strong media marketing ( 𝛼 > 0.4 ) such that the final fraction 
of negative individuals becomes zero. However, in scenario 
A with the average node degree 40, no matter how strong is 
media marketing, when viral marketing is weak ( 𝛽 < 0.2 ), 
the final fraction of negative individuals becomes nonzero. 
Therefore, we conclude that for scenario A, the focus of the 
marketing campaigns must be viral marketing. On the other 
hand, we observe that for scenario B, if media marketing 
is strong enough ( 𝛼 > 0.4 ), then no matter how strong the 
viral marketing is, the final fraction of negative individuals 
becomes zero. Therefore, the focus of marketing campaigns 
for scenario B should be media marketing.

Figure 13 shows Ω and Ψ computed by numerically 
solving the HET-MEAN system (32) corresponding to the 
Deezer network for two different marketing scenarios. The 
x-axes denote � which is representative of strength of viral 
marketing and the y-axes denote � which is representative 
of strength of media marketing. The two marketing sce-
narios only differ in the value of � which impacts the effec-
tiveness of media marketing. In particular, greater � results 
in higher likelihood of transition of individuals from neg-
ative state to positive state because of media marketing. 
For scenario A with � value of 0.1, we observe that viral 
marketing dominates media marketing. It is because no 
matter how strong is media marketing, whether the final 

Fig. 11  Final fraction of negative individuals in a forest-fire network 
as a function of �∕� . The solid line is the theoretical predictions. 
The dashed line is the simulation results. Parameter values: � = 0.01 , 
� = 0.001 , � = 0.01 , � = 0.4 and � = 0.01
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fraction of negative individuals becomes zero or not, only 
depends on the strength of viral marketing. In particular, 
strong enough viral marketing ( 𝛽 > 0.6 ) guarantees final 
zero fraction of negative individuals. Therefore, for this 
marketing scenario, the focus of marketing campaign must 
be viral marketing and not media marketing. On the other 
hand, for scenario B with � value of 0.5, the role of media 
marketing becomes more significant. In particular, weak 
viral marketing ( 𝛽 < 0.6 ) can be compensated with strong 
media marketing ( 𝛼 > 0.48 ) while such a strategy was not 
achievable for scenario A.

6  Conclusion

In this paper, we propose the IN-STOCH system to model 
the adoption of polarized beliefs in influence networks, 
governed by both viral diffusion and media influence. We 
study the intertwined dynamics of these two different forms 
of influence and how they interact over influence networks. 
Using a mean-field approach, we derive the HOM-MEAN 
system to approximate the IN-STOCH system for exponen-
tial networks. Based one the stability of the equilibrium 
points of the HOM-MEAN system, we derive the conditions 
to guarantee the convergence of the fraction of negative 
individuals to 0. Also, we derive the HET-MEAN system to 
approximate the IN-STOCH system for scale-free networks 
and show that the HET-MEAN system always has exactly 

Fig. 12  Comparison between viral diffusion and media influence over 
the WS network. Blue circles represent intervening strategies in Ω 
(zero negative individuals), and intervening strategies in Ψ (nonzero 
negative individuals) are represented by red circles. x-axis is viral 
marketing � and y-axis is media marketing � . Parameter values: 
� = 0.5 , � = 0.0001 , � = 0.05 and � = 0.008 . top a k = 40 bottom B 
k = 4

Fig. 13  Comparison between viral diffusion and media influence 
over the Deezer network. Blue circles represent intervening strate-
gies in Ω (zero negative individuals), and intervening strategies in Ψ 
(nonzero negative individuals) are represented by red circles. x-axis 
is viral marketing � and y-axis is media marketing � . Parameter val-
ues: � = 0.001 , � = 0.5 and � = 0.001 . top a � = 0.1 bottom b � = 0.5
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one equilibrium point with no negative individuals. In par-
ticular, we apply our results for the HET-MEAN system to 
the BA networks and compute a simplified condition for the 
stability of the equilibrium point with no negative individu-
als for the BA networks. Finally, we validate our theoreti-
cal approximations by simulation of the IN-STOCH system 
over the following synthetic networks: WS, random regular, 
BA and a forest-fire network, as well as the following five 
real-world networks: ego-Facebook, Deezer, Livemocha, a 
Facebook interaction network and Douban.

Simulation results show that the HOM-MEAN system 
can accurately predict the convergence to zero for the frac-
tion of negative individuals for WS and random regular 
networks. For cases where the final fractions of negative 
individuals are not 0, the analytical approximation given by 
the HOM-MEAN system is in good agreement with simu-
lation results for WS and random regular networks. This 
agreement also improves when the average node degrees 
increase. In general, the analytical approximations show 
a higher accuracy for random regular networks compared 
to WS networks since random regular networks satisfy the 
underlying assumption of the HOM-MEAN system, all 
nodes have the same number of neighbors. Relying on our 
closed-form analytical formulas for the HOM-MEAN sys-
tem, one can predict the final fraction of negative individu-
als with no computational cost for exponential networks no 
matter how large they are.

We approximate the dynamics of the IN-STOCH system 
for scale-free networks using the HET-MEAN system based 
on a mean-field approach. It is shown that the HET-MEAN 
system has always a single negative-free equilibrium point. 
Then, we state necessary and sufficient conditions for local 
stability of this equilibrium point as well as a sufficient con-
dition for its global stability. Next, for Barabasi–Albert (BA) 
networks, we derive a sufficient condition to guarantee that 
the final fraction of negative individuals converges to 0.

The analytical approximations for scale-free networks by 
the HET-MEAN system are validated by simulations of the 
IN-STOCH system over different synthetic and real-world 
networks that demonstrate the characteristics of scale-free 
networks. In particular, we analyzed our analytical results 
over five real-world networks: ego-Facebook, Deezer, 
Livemocha, a Facebook interaction network and Douban 
as well as two synthetic networks: Barabasi–Albert (BA) 
and forest-fire. For BA network, it is shown that the ana-
lytical results obtained by studying the equilibrium point 
of the HET-MEAN system are in a good agreement with 
the simulation results. In particular, the HET-MEAN sys-
tem can accurately predict the cases where the steady-state 
fractions of negative individuals are equal to 0. For the 
real-world networks and the forest-fire network, we show 
that numerically solving the HET-MEAN system using 
their node degree histograms can accurately predict the final 

fraction of negative individuals with significant reduction 
in computational cost compared to directly simulation of the 
IN-STOCH system over these networks.

Finally, we rely on our analytical results for the HOM-
MEAN and HET-MEAN systems to demonstrate how mar-
keting campaigns can leverage the proposed framework to 
design their marketing strategies. In particular, using the 
HOM-MEAN system, we show that for two exponential 
networks with different degrees of connectivity, marketing 
campaigns need to shift their resources between viral mar-
keting and media marketing to minimize the final number of 
individuals with negative state. Also, the HET-MEAN sys-
tem is used to compare the effectiveness of viral marketing 
and media marketing for the Deezer network corresponding 
to two different marketing scenarios. We show that for the 
marketing scenario with smaller � , the focus of marketing 
campaigns must be viral marketing and for the marketing 
scenario with greater value of � , media marketing can be 
used to compensate for weak viral marketing.

Acknowledgements The contents of this paper were partially presented 
in Sanatkar (2016) with the following differences. This paper includes 
a new theorem that provides a sufficient condition for the global stabil-
ity of the negative-free equilibrium point of the HET-MEAN system. 
Also, regarding the simulation results, different from Sanatkar (2016), 
initial fractions of neutral, positive and negative nodes are randomly 
drawn from the probability simplex for each network realization, and in 
order to make the initial states of the individuals realistic, their initial 
polarities are designed to depend on their neighbors using the Breadth 
First Search algorithm. Simulation results are extended for five new 
networks: the Deezer network, Livemocha network, a Facebook inter-
action network, the Douban network and the small-world forest-fire 
network. Moreover, for the study of the optimal resource allocation 
between viral marketing and media marketing, we present new results 
for the Deezer network.

Appendix

Proof of Theorem 3 If (n̄2, 0) is locally exponentially stable, 
the Jacobian matrix A in (16), computed at (n̄2, 0) , is nega-
tive definite. We define n̂ and û as follows:

Replacing n and u with n̂ and û in (3), we can write

The origin of the transformed dynamical system in (60) is 
corresponding to (n̄2, 0) for the HOM-MEAN system in (3). 
We use Lyapunov functions to estimate the region of attrac-
tion for the origin of the transformed dynamical system. A 

(59)
n̂ = n − n̄2,

û = u.

(60)
n̂. = k𝛽n̂2 + (2k𝛽n∗ − (k𝛽 + 𝛼 + 𝛾))n̂ + (k𝛽 − k𝜇)n̂û

+ ((k𝛽 − k𝜇)n∗ + 𝜃 − 𝛾)n̂,

û. = k𝜇n̂û + (k𝜇n∗ − 𝜃 − 𝛿𝛼)û.
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Lyapunov function can be found by solving the Lyapunov 
equation

where Q is a positive definite matrix. Taking Q = I , the 
unique solution is the positive definite matrix

where

The quadratic function V(n̂, û) = p1n̂
2 + 2p2n̂û + p4û

2 is a 
Lyapunov function for the transformed dynamical system in 
a certain neighborhood of the origin (Khalil 2000). To find 
the region of attraction of the origin, we need to determine a 
domain D around the origin where V is positive definite and 
V . is negative definite. Since P is positive definite, D can be 
determined by studying negative definiteness of V . around 
the origin. We can write

where f = 2p1k� , g = 2(p1(k� − k�) + p2(k� + k�)) and 
h = 2(p2(k� − k�) + p4k�) . Let X ∶= [ n̂ û ]T  . Hence, it 
can be written

Therefore, V . is negative if ��X�� < 1∕(f +
1

2

√
g2 + h2) . Let 

r ∶= 1∕(f +
1

2

√
g2 + h2) . And, we have

Therefore, we can write

where

(61)PA + ATP = −Q,

(62)P =

[
p1 p2
p2 p4

]
,

(63)

p1 = −
1

2A11

,

p2 =
A12

2A11(A11 + A22)
,

p4 =
−A2

12

2A11A22(A11 + A22)
.

(64)

V .(n̂, û) = −n̂2 + (2p4û + 2p2n̂)k𝜇n̂û

− û2 + (2p1n̂ + 2p2û)(k𝛽n̂
2 + (k𝛽 − k𝜇)n̂û)

= −n̂2 − û2 + f n̂3 + gn̂2û + hn̂û2,

(65)

V . = −��X��2 + f n̂3 + n̂û(gn̂ + hû)

= −��X��2 + f n̂3 + n̂û[ g h ]X

≤ −��X��2 + f ��X��3 + 1

2
��X��2

√
g2 + h2��X��

≤ −��X��2 + (f +
1

2

√
g2 + h2)��X��3.

(66)𝜂 < min
||x||=r

xTPx = 𝜆min(P)r
2

(67)RD = [0, 1]2 ∩ R̂D,

  ◻
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