
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2021) 11:7 
https://doi.org/10.1007/s13278-020-00711-1

ORIGINAL ARTICLE

A Regularized Convex Nonnegative Matrix Factorization Model 
for signed network analysis

Jia Wang1  · Rongjian Mu2

Received: 2 January 2020 / Revised: 23 November 2020 / Accepted: 28 November 2020 / Published online: 2 January 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021

Abstract
Community detection and link prediction are two basic tasks of complex network system analysis, which are widely used in 
the detection of telecom fraud organizations and recommendation systems in the real world. In ordinary unsigned networks, 
these two analyses have been developed for a long time. However, due to the existence of negative edges, the study of com-
munity detection and link prediction in signed networks is still limited now. Most existing methods have high computational 
complexity and ignore the generation of the networks based on heuristics. In this paper, we propose a regularized convex 
nonnegative matrix factorization model (RC-NMF) from the perspective of the generative model to detection communities 
in the signed network. This algorithm introduces graph regularization to constrain nodes with negative edges into different 
communities and nodes with positive edges into the same communities as much as possible. Experiments on synthetic signed 
networks and several real-world signed networks validate the effectiveness and accuracy of the proposed approach both in 
community detection and link prediction.

Keywords Signed network · Community detection · Link prediction · Nonnegative matrix factorization (NMF)

1 Introduction

Social networks in the real world can be modeled through 
a complex network (Ghoshal et al. 2014; Rossi and Ahmed 
2019; Vasudevan and Deo 2012). In ordinary complex net-
works, the links between nodes represent a certain connec-
tion between individuals in social networks. Then, in the 
signed network, the links between nodes imply the positive 
and negative attribute relations among individuals in the 
social network. If there is a positive connection between 
nodes, it is shown as positive links, and vice versa. And in 
the signed network, there is a certain community structure; 
that is, the nodes within the community are mostly with pos-
itive links, and the nodes among different communities are 
mostly with negative links (Davis 1967). The above theory 
shows that in social network, individuals with a certain coop-
erative relationship are in the same cluster, and individuals 

in different clusters have a certain competitive relationship. 
Moreover, if the nodes in the signed network are positively 
or negatively connected with the other two nodes, then the 
two nodes are more inclined to produce positive links. Gen-
erally, in a signed network constructed by an online social 
network, positive links indicate “support”, “like” or “coop-
eration”, while negative links indicate “opposing”, “dislike” 
or “competition”. For example, users on the Slashdot web-
site (Leskovec et al. 2010) can mark other users as friends or 
enemies based on other users’ comments, and in consumer 
review site Epinions.com (Leskovec et al. 2010) which is a 
who-trusted-whom online social network, members of the 
site can decide whether to “trust” each other. Compared with 
the common complex network, the signed network with pos-
itive and negative attributes can contain more information 
when it represents the social network, so the analysis of the 
signed network has attracted more and more attention in the 
field of social network analysis.

Community detection and link prediction are two basic 
issues in signed network analysis. In a signed network, 
community detection is to find community structures that 
are represented as dense positive links in the same com-
munity and intensive negative links in different communi-
ties (Yang et al. 2007), and link prediction is to predict the 
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states of unknown links like positive or negative (Li et al. 
2018a). Community detection can detect the community 
structure in social networks, which is helpful to analyze 
the grouping of individuals in social networks. Link pre-
diction can predict the connection status of individuals 
in the social network in the next stage and can be used in 
the recommendation system. Therefore, the community 
detection algorithm and link prediction algorithm of the 
signed network are very helpful for the analysis of the 
social network.

Although some algorithms for community detection and 
link prediction in signed networks have been proposed in 
recent years, their development is still immature and not 
proven or still being developed. For example, some algo-
rithms (Li et al. 2014; Anchuri and Magdon-Ismail 2012) 
based on optimization objective functions and heuristic-
based algorithms (Yang et al. 2017; Zhao et al. 2017) have 
high computational complexity. Some model-based algo-
rithms (Yang et al. 2007; Jiang 2015) have low accuracy 
in performance or need probabilistic statistical inference 
methods to select models, such as EM algorithm, result-
ing in a large computational burden. Some algorithms are 
based on deep learning (Wang et al. 2017, 2018) with high 
computational performance but poor interpretability. And 
most of the above algorithms can only be used for com-
munity detection or link prediction. Faced with these chal-
lenges, we propose a new RC-NMF model for community 
detection and link prediction.

In this paper, we introduce a graph regularization based 
on the convex nonnegative matrix factorization (Convex-
NMF) algorithm. Convex-NMF is an improvement of the 
semi-NMF algorithm, which constrains the base matrix 
in the semi-NMF by adding a weight matrix. The intro-
duced graph regularization can simultaneously constrain 
the nodes with positive links to enter the same commu-
nity and the nodes with negative links to enter different 
communities. In addition to being used for community 
detection, our proposed RC-NMF can also be used for link 
prediction. We have compared experiments with other cur-
rent advanced algorithms on artificially generated signed 
network datasets and real large-scale signed networks and 
proved the validity and accuracy of our proposed RC-NMF 
algorithms.

The structure of the paper is as follows: In Sect. 2, we 
introduce the related work on signed network community 
detection and link prediction algorithms in recent years. In 
Sect. 3, we introduce the RC-NMF algorithm we proposed 
in detail. Section 4 shows the comparison of other state-of-
the-art algorithms on artificial signed network datasets and 
large-scale real-signed network datasets, which verifies the 
validity and accuracy of our proposed algorithm. Section 5 
summarizes our contributions.

2  Related work

In recent years, a large number of algorithms have emerged 
for signed network community detection and link predic-
tion. These algorithms can be broadly divided into the 
following categories: modularity optimization-based, bal-
ance theory-based, model-based and deep learning-based.

Modularity optimization-based methods The stand-
ard modularity is developed for unsigned networks, and 
it measures how far the real positive connections devi-
ate from the expected random connections. And standard 
modularity optimization is essentially a discrete combi-
nation problem (Newman 2016). The communities in the 
network can be detected by optimizing the modularity 
objective function (Newman 2016). But this standard mod-
ularity optimization method was initially only applicable 
to unsigned networks. Li et al. (2014) defined signed mod-
ularity by improving standard modularity in the unsigned 
network and made it capable of handling negative links. 
Signed modularity balances the trend of users with posi-
tive links to forming community and the trend of users 
with negative links to destroying community by adding 
weights on positive and negative components in signed 
networks. Based on the above, some heuristics algorithms 
based on signed modularity optimization have been pro-
posed. For example, Anchuri and Magdon-Ismail (2012) 
generalized spectral partitioning (SpePart) approach with 
iterative optimization to explore the community in the 
signed network, which is an extension about standard 
modularity optimization in the unsigned network.

Balance theory-based methods In the 1940s, Heider 
(1946) introduced the balance theory that the two posi-
tively related individuals had the same attitude toward 
the third person by studying perceptions and attitudes of 
individuals, which generally implies that “the friend of 
my friend is my friend” and “the enemy of my enemy is 
my friend.” In the 1950s, Cartwright and Harary (1956) 
further developed the theory in the graph theoretical at 
the group level and validated the Harary and Frank (1953) 
that a signed graph is balanced if and only if nodes can 
be divided into two mutually exclusive clusters such that 
intra-links are positive and inter-links are negative. There-
fore, the theory was developed in more than two clusters 
(Kulakowski et al. 2019), which introduced that a weakly 
balanced graph exists a partition of the nodes into k clus-
ters just as nodes with positive links are in the same clus-
ter and nodes with negative links are between different 
clusters. Based on this theory, we can find the community 
structure of the signed social network by cutting off all 
negative links. However, the signed social networks in 
the real world have been normally unbalanced since the 
existence of frustration that presents itself as the positive 
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inter-links and the negative intra-links. To address this 
challenge, many algorithms for signed network analy-
sis based on structural balance theory are proposed. For 
example, Chiang et al. (2014) extended the applicability 
of the balance theory from the local features to the global 
features in the signed network. Amelio and Pizzuti (2016) 
developed a correlation clustering method (CC) that maxi-
mizes positive links in a community and negative links 
between communities or minimizes frustration to detect 
community in signed networks. Li et al. (2018a) presented 
a novel framework including two implicit features and two 
latent features for predicting link, one of which is obtained 
by balance theory. Derr et al. (2020) used the theory of 
structural balance among individuals to predict link and 
interaction polarity in signed networks.

Model-based methods This type of methods focuses on 
modeling the generated mechanism which tends to apply to 
the network. For example, Yang et al. (2007) proposed an 
agent-based random walk model framework (FEC), which 
is the two-stage approach. First, FC (finding community) is 
conducted on the positive component of network based on a 
random walk model, and then, EC ( extracting community 
) is conducted by minimizing predefined signed cut criteria 
according to the links of nodes obtained in the first stage 
(Yang et al. 2007). The algorithm is capable of giving nearly 
optimal solutions in linear time concerning the size of a 
network, but its performance is poor. Chen et al. (2014) pro-
posed a novel approach named signed probabilistic mixture 
(SPM) model for overlapping community detection. Some 
of the above methods are based on optimization objectives 
or heuristic to detect a community structure in the signed 
network and do not care about the generation of the network. 
Jiang (2015) proposed a generalized stochastic block model 
that is the signed stochastic block model (SSBM) to explore 
the mesoscopic structures in signed networks from a node 
perspective where each node is assigned to a block or com-
munity and links are independently generated for pairs of 
nodes. Yang et al. (2017) adopted the variational Bayes EM 
algorithm to estimate the parameters and select model by 
approximate Bayesian model evidence based on the signed 
stochastic blockmodel (SSBM) that was proposed to charac-
terize and generate the block structures of signed networks 
by explicitly formulating the link density and sign based on 
a stochastic perspective. Zhao et al. (2017) presented a sta-
tistical inference method in signed networks (SISN) for com-
munity detection, in which a probabilistic model is presented 
to model signed networks and an expectation–maximization 
(EM)-based parameter estimation method is deduced to find 
communities in signed networks. Li et al. (2018b) proposed 
a regularized semi-nonnegative matrix tri-factorization 
(Res-NMTF), which splits the matrix in the traditional semi-
nonnegative matrix factorization into three terms and adds 
regularization on this basis to constrain nodes with negative 

links into different communities. However, this algorithm 
does not consider the nodes with positive links, so the accu-
racy is relatively low.

Deep learning-based methods With the rise of deep 
learning, some algorithms based on machine learning to 
discover community structure and link prediction emerged. 
Wang et  al. (2017) proposed a novel framework SNEA 
(social network embedding with attributes), which exploits 
the network structure and user attributes simultaneously 
for network representation learning. Although the perfor-
mance of deep learning is better than some traditional algo-
rithms, the interpretation of these models is weak. Wang 
et al. (2018) proposed a novel and flexible end-to-end signed 
heterogeneous information network embedding (SHINE) 
framework to predict the sign of unobserved links. The 
SHINE framework gets the implicit low-dimensional vec-
tors of nodes in the network through deep autoencoders and 
then does the similarity analysis of the nodes on this basis.

3  Our work

3.1  Convex Nonnegative Matrix Factorization (NMF)

Convex nonnegative matrix factorization (Convex-NMF) 
(Jordan 2009) is the improvement of semi-nonnegative 
matrix factorization (semi-NMF). Semi-NMF is one of the 
most popular methods for community detection in signed 
network, formulated as the following model:

where A is the adjacency matrix of the signed network G 
with N nodes, F is the basis matrix, H is the community 
indicators matrix where element hjc is the propensity of node 
j in community c, and C is the community amount.

Convex nonnegative matrix factorization (Convex-NMF) 
constrains the basis matrix F in semi-NMF based on the 
definition that F lies within the column space of adjacency 
matrix A, formulated as the following model:

where W is the weight matrix.

3.2  Regularized Convex‑NMF model(RC‑NMF)

Because of the influence of negative links in signed networks, 
we introduce graph regularization (Zheng and Skillicorn 2015) 
to minimize the positive ratio cut and negative ratio association 

(1)
L =

‖‖‖A
± − F±HT‖‖‖
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±
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+
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simultaneously. The regularization that constrains the nodes 
connected with negative links to be distributed into different 
communities and the nodes connected with positive links 
which are in the same communities simultaneously is defined 
as follows:

where A is the adjacency matrix of the signed network, Dp 
is a diagonal matrix with Dp

ii
=
∑

i A
p

ij
 , and hj is jth vector of 

the community indicator matrix H.
I n  a d d i t i o n ,  w e  c a n  o b s e r v e  t h a t 

tr(H⊤(Dp − A)H) =
∑k

j=1

h⊤
j
(Dp−A)hj

h⊤
j
hj

 , and then, the regulariza-

tion term optimization problem can be obtained by addressing 
the following optimization problem:

Furthermore, to make the node try its best to belong to only 
one community, we use ‖H‖2

1
 to control the sparsity of the 

node probability matrix.
Combining the regularization term into Convex-NMF, the 

final RC-NMF model objective function is:

3.3  Update rules for RC‑NMF model

We design multiplicative update rules to solve (5). The object 
function can be written as:

where N is a matrix of size k × k whose elements are 1. In 
the face of constrained optimization problems, we construct 
Lagrange functions of W and H,
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where � is Lagrange multiplier for W ≥ 0 and H ≥ 0 . First, 
update W(fixing H), take the derivative of W’s Lagrange 
function J(W) and set it at zero, and we get the following:

because of W ≥ 0 and using the KKT conditions �W = 0 , 
we can get the following:

where ATA = (ATA)+ − (ATA)− , and we can get the 
following:

Similarly, we update H(fixing W), take the derivative of H’s 
Lagrange function J(H) and set it at zero, and we get the 
following:

because of H ≥ 0 and using the KKT conditions �H = 0 , we 
can get the following:
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Finally, we can get the updating rules of W and H as follows 
by formula (14) and formula (20):

where �1 =
(
ATA

)+
W , �2 =

(
ATA

)−
W and �3 = (Dp − A) . 

And the iterative update strategy for the model is shown in 
Algorithm 1.

3.4  Computational complexity

The computational complexity of updating W of the pro-
posed RC-NMF algorithm is O(niter(N2K + NK2)) , and 
that of updating H is O(niter(N2K + NK2)) , where niter is 
the number of iterations and K is the number of commu-
nity. It is worth noting that in the real world, the signed 
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network is sparse, so N2 can be represented as the number 
of links M in the network. Moreover, the number of com-
munity K is far less than the number of nodes N, so K2 can 
be ignored. Therefore, the computer complexity of the opti-
mization algorithm for the proposed RC-NMF can degrade 
to O(niter(M + N)).

4  Experiments

In this section, we designed a series of experiments in 
synthetic data and real-world signed networks to validate 
our model including the convergence of our algorithm. In 
order to ensure that our RC-NMF algorithm yields the best 
results, we made relevant parameter sensitivity experiments 
in Sect. 4.4 and determined the optimal parameter as: � = 3 
and � = 7.

4.1  Experiments on synthetic signed networks

In this section, we design a series of control experiments of 
our RC-NMF model with other algorithms on the artificial 
signed network dataset and the real large-scale signed net-
work dataset to verify the performance of our model in com-
munity detection and link prediction. Finally, we analyze the 
convergence of our RC-NMF algorithm.

4.1.1  Validation of community detection

Synthetic signed networks SG benchmark network (Yang 
et al. 2017): The SG benchmark network (Yang et al. 2017) 
is evolved from the GN benchmark network (Yang et al. 
2007). The GN benchmark network includes four param-
eters c, n, k and pin , which can only generate ordinary com-
plex networks. Where c is the community number, n is the 
number of nodes in each community, k is the average degree 
in the network, and pin denotes the probability of internal 
links. On this basis, the SG benchmark network can generate 
signed network, which adds two noise-level parameters p+ 
and p− that represent the prior probability of positive inter-
links and negative intra-links, respectively. As pin decrease 
or noise level increases, the community structures will 
become less clear and more difficult to be detected, we set 
the parameters as follows: c = 4 ; n = 32 ; k = 16 and gener-
ate two kinds of SG networks:

Type I Weakly balanced signed network(SG-BN)
There is no noise in SG-BN, i.e., p+ = 0 and p− = 0 . The 

parameter pin is from 0.1 to 0.9. The larger the pin value is, 
the clearer the community structure of the signed network 
tends to be.

Type II Unbalanced signed network(SG-UN)
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Noise is added with different levels, i.e., p+ from 0 to 
0.5 in 0.05 steps and p− from 0 to 0.5 in 0.05 steps, the 
parameter pin is set to 0.8. We set the threshold of noise 
level to 0.5 because if the noise is too large, the generated 
network model does not satisfy the characteristics of the 
signed network that the links in the same community are 
mostly positive and the links in different communities are 
mostly negative.

SLFR benchmark network (Yang et  al. 2017): The 
signed Lancichinetti–Fortunato–Radicchi (SLFR) bench-
mark network (Yang et al. 2017) is derived from Lan-
cichinetti–Fortunato–Radicchi (LFR) (Lancichinetti et al. 
2008). Compared with GN benchmark network above, LFR 
benchmark network considers the non-uniform distribu-
tion of node degree and community number and has eight 
parameters: n, kavg , kmax , �1 , �2 , cmin , cmax and � , where n 
is number of nodes, kavg and kmax represent average degree 
and maximum degree, respectively, �1 and �2 mean minus 
exponent for the degree sequence and the community size 
distribution, respectively, cmin and cmax mean the minimum 
and maximum of community number, respectively, and � 
is the mixing parameter that indicates the fraction of edges 
connecting the neighbors in other communities. On this 
basis, the SLFR benchmark network can generate signed 
network, which adds two noise-level parameters p+ and 
p− that represent the fraction of positive external links 
and negative internal links, respectively. As pin decrease 
or noise level increases, the community structures will 
become less clear and more difficult to be detected. In this 
paper, we set the parameters as follows: n = 128 , kavg = 16 , 
kmax = 20 , �1 = 2 , �2 = 1 , cmin = 20 , cmax = 40 , and gener-
ate two kinds of SLFR networks::

Type I Weakly balanced signed network(SLFR-BN)
There is no noise in SLFR-BN, i.e., p+ = 0 and p− = 0 . 

The parameter � is from 0.1 to 0.9. The � value represents 
the degree of confusion of the community in the signed 
network. The larger the � value is, the more likely the 
signed network tends to be in a state of no community 
structure.

Type II Unbalanced signed network(SLFR-UN)

Noise is added with different levels, i.e., the parameter � 
is set to 0.2, and p+ ∈ [0, 0.5] in 0.05 steps and p− ∈ [0, 0.5] 
in 0.05 steps.

Validation metrics As for the accuracy measure-
ment of community detection, we use normalized mutual 
information(NMI) (Jiao et al. 2018), which is widely used 
to measure the degree of similarity between predicted com-
munity structure and real community structure. The larger 
the NMI value is, the higher the accuracy of the community 
division gets. The NMI can be expressed as follows:

where C and C′ denote ground truth and detected community 
partition by algorithm, respectively, k is the number of the 
communities, n is the number of nodes, nij denotes the num-
ber of nodes in ground community i that are assigned in 
community j in detected community partition, n(1)

i
 is the 

number of nodes in true community i, and n(2)
j

 is the number 
of nodes in detected community j.

Comparison methods The RC-NMF performance was 
first tested with respect to the community detection with 
signed networks. Comparisons were made using three state-
of-the-art methods: FEC (Yang et al. 2007), SISN (Zhao 
et al. 2017) and Res-NMTF (Li et al. 2018b).

Analysis of experimental results In order to more accu-
rately measure the performance of community detection, the 
comparison experiments were designed in the four different 
types of signed networks as above 4.1.1. In the two noise-
free signed network datasets, SG-BN and SLFR-BN, the 
x-axis represents the internal connection ratio of the signed 
network and the confusion of the community structure. In 
the two unbalanced signed network datasets SG-UN and 
SLFR-UN, the x- and y-axes represent the internal nega-
tive links and external positive links of the signed network, 
respectively, which are also represented as noise in the 
signed network.
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Fig. 1  NMI of community detection in SG-BN and SLFR-BN
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The community detection comparison results obtained 
in the two noise-free signed network datasets of SG-BN 
and SLFR-BN are shown in Fig. 1. We can observe that in 
SG-BN 1(a), as the pin increases, the community structure 
of the signed network tends to be clearer, and the NMI value 
also increases. The RC-NMF algorithm we proposed is rep-
resented in red. When pin > 0.1 , the NMI value is always 1, 
which means that the community divided by the algorithm 
is the same as the real community. The performance of the 
other three algorithms is inferior to the RC-NMF algorithm. 
The SISN algorithm in blue indicates that when pin > 0.2 , 
the NMI value is always 1, and the Res-NMTF algorithm 
is represented in cyan, when pin = 0.4 and pin = 0.5 , the 
NMI value decreases, indicating that the performance of 
the algorithm is poor when the number of links in the com-
munity and between the communities tends to be equal. 
The FEC algorithm is represented by green. Although the 
NMI value shows an upward trend as the pin increases, the 
overall NMI has always been at a low value, and its algo-
rithm performance is poor. In SLFR-BN 1(b), as the � value 
increases, the community structure of the signed network 
tends to be blurred, and the NMI value also decreases. 
Before � = 0.9, the NMI value obtained by our RC-NMF 
algorithm is always 1 showing the best accuracy. The other 
three algorithms show a downward trend in the process of 
increasing � , but the accuracy is lower than our algorithm. 
And the community detection comparison results obtained 
on the unbalanced signed network dataset of SG-UN are 
shown in Fig. 2. We can observe that with the increase 
in external positive link p+ and internal negative link p− , 
which represents the increase in noise level in the signed 

network, the performance in community detection of RC-
NMF algorithm and Res-NMTF algorithm has decreased 
to some extent. The accuracy of the RC-NMF algorithm we 
proposed decreased significantly when the internal nega-
tive link p− was increased, and the external positive link p+ 
had no significant impact on the performance of the algo-
rithm. Moreover, when the internal negative link p− was less 
than 0.25, our algorithm result obtained that the NMI was 
always 1, and its community detection performance was bet-
ter than other algorithms. Moreover, in the real-world social 
network, there are fewer negative relationships among indi-
viduals in the same cluster, which, as shown in the signed 
network, there are fewer internal negative edges, and our 
algorithm has better performance in this case, so it can be 
well applied to social network analysis. However, in the case 
of high noise, the performance of our RC-NMF algorithm 
is worse than that of FEC and SISN, which reflects the poor 
robustness of our algorithm. Finally, the community detec-
tion comparison results obtained on the unbalanced signed 
network dataset of SLFR-UN are shown in Fig. 3. We can 
observe that with the increase in external positive link p+ 
and internal negative link p− , which represents the increase 
in noise level in signed network, the increase in the detection 
performance of all algorithms has been reduced to varying 
degrees. The accuracy of our RC-NMF algorithm is greatly 
affected by the internal negative links p− , when the internal 
negative link p− < 0.2 , the NMI value is 1, and the perfor-
mance of the algorithm is better than all other algorithms. 
With internal negative link p− > 0.2 , the accuracy of the 
algorithm decreases, which is inferior to the accuracy of the 
FEC algorithm and the SISN algorithm. And the accuracy 

Fig. 2  NMI of community detection in SG-UN
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of the Res-NMTF algorithm decreased significantly with the 
increase in internal negative link p−.

4.1.2  Validation of link prediction

Validation metrics To measure the performance of algo-
rithms about link prediction in signed network, we use 
GAUC (generalized AUC over +1, 0 and − 1) (Song and 
Meyer 2015), which is an extension of AUC measurement 
index and can be used to measure the accuracy of the three 
states of positive links, negative links and un-links. It is very 
suitable for measuring the accuracy of signed network link 
prediction, formulated as:

where |P|, |N| and |U| represent the number of positive links, 
negative links and un-links in signed networks, respectively. 
L(⋅ ) is the link score function, and I(⋅ ) is the 0/1 indicator 
function that if the condition in ( ⋅ ) comes true, we get 0 
loss, otherwise 1 loss. The larger the GAUC, the higher the 
accuracy of the link prediction algorithm.

Comparison methods Because the above-mentioned 
algorithm can only be used to detect the community 
and cannot perform link prediction experiments, we 
have selected several node similarity indicators and the 

(24)
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Res-NMTF algorithm as the comparison algorithm of our 
RC-NMF algorithm about measuring the performance of 
link prediction. Several indicators include: CN, Jaccard 
and Salton.

Analysis of experimental results In order to make the 
experimental results more accurate and comprehensive, 
we used the standard fivefold cross-validation for training 
and testing. Figure 4 shows the performance of our RC-
NMF algorithm with the Res-NMTF algorithm and several 
indicators on the four network models, respectively. In the 
SG-BN signed network dataset shown in Fig. 4a, the x-axis 
represents the proportional of the internal links pin . In the 
SLFR-BN dataset shown in Fig. 4c, the x-axis represents 
the degree of confusion of the community structure. In 
the SG-UN data set and the SLFR-UN data set shown in 
Fig. 4b, d, respectively, the x-axis represents the ratio of 
the internal negative links and the external positive link, 
which denote the noise level of the signed network. It 
can be observed that in SG-BN, as the internal links pin 
increase, the community structure tends to be obvious, 
and the performance of the link prediction algorithms is 
improved. In SLFR-BN, as the degree of confusion in the 
community structure � increases, the performance of the 
link prediction algorithm decreases to varying degrees. In 
SG-UN and SLFR-UN, the performance of the link predic-
tion algorithm decreases with the increase in noise. The 
accuracy of our RC-NMF algorithm is always the second 
best or the best among the comparison results of various 
algorithms, which indicates that our algorithm is superior 
in link prediction.

Fig. 3  NMI of community detection in SLFR-BN
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4.2  Experiments on real‑world signed networks

In this section, we compared RC-NMF with the other above-
approaches in real-world signed networks to validate the 
accuracy and effectiveness of our proposed algorithm in 
community detection and link prediction.

4.2.1  Validation of community detection

Slovene parliamentary party network The network is about 
the relations among the ten parties in Slovene parliament, 
1994, which has two communities (Ferligoj and Kramberger 

1996). In the community detection, we only retain the sign 
of link in the network and ignore the weight of links. Fig-
ure 5a shows the connection state between nodes in the Slo-
vene parliamentary party network, the solid edges represent 
the positive relationship, and the dash-dot edges represent 
the negative relationship. Figure 5b shows the community 
partition made by our RC-NMF algorithm, and the result is 
the same as the real situation, which is divided into two com-
munities: (SKD, ZDSS, ZS, SLS, SPS) and (ZLSD, LDS, 
ZW-ESS, DS, SNS).

Gahuku-Gama subtribes network The network is about 
the culture of New Guinea Highland (Read 1954). There are 
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Fig. 4  GAUC of link prediction in different synthetic datasets

(a) The connection state between nodes in
Slovene parliamentary party network.

(b) The community partition made by our
RC-NMF algorithm.

Fig. 5  Slovene parliamentary party network
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16 subtribes in this network falling into three communities. 
Figure 6a shows the connection state between nodes in the 
Gahuku-Gama subtribes network, where solid edges repre-
sent the political alliance relationship and dash-dot edges 
represent the enmities relationship, respectively. Figure 6b 
shows the community partition made by our RC-NMF algo-
rithm, and the result is the same as the real situation, which 
is divided into three communities: (UKUNZ, GEHAM, 
MASIL, OVE, ASARO, ALIKA), (SEUVE, UHETO, 
NAGAM, NOTOH, KOHIK) and (KOTUN, GAMA, 
NAGAM, GAVEV).

4.2.2  Validation of link prediction

In order to detect the accuracy of link prediction in real-
world signed network, we used four large-scale real network 
datasets in experiments of link prediction, i.e., Slashdot 

(Leskovec et al. 2010), Wiki (Maniu et al. 2011), Epinions 
(Leskovec et al. 2010) and Bitcoinotc (Kumar et al. 2018). 
And in the real world, a person has an average of 40 friends 
offline and 338 friends online. Therefore, it is more realistic 
to check users with a high degree (Li et al. 2018a). In the 
contrast experiment of link prediction in the large-scale real-
signed network, we select nodes that the degree threshold is 
set at 50, and the network statistics after setting are shown 
in Table 1 where we used ‘name@degree’ to represent a 
specific dataset, e.g., Epinions@50 is the dataset about Epin-
ions with d ≥ 50 . Table 2 shows the comparison results of 
our algorithm with other methods. Each number represents 
the GAUC value obtained by the link prediction experiment 
of the corresponding algorithm on the corresponding large-
scale signed network dataset, where the experimental result 
value of our algorithm is shown in bold. We can observe that 
compared to other algorithms, our algorithm performs better 
than other methods in real-scale large-scale signed networks. 

(a) The connection state between nodes in
Gahuku-Gama subtribes network.

(b) The community partition made by our
RC-NMF algorithm.

Fig. 6  Gahuku-Gama subtribes network

Table 1  Large-scale signed network dataset statistics

Datasets Nodes Pos-links Neg-links Un-links

Epinions@50 6109 379,830 42,494 3.69 × 10
7

Slashdot@50 4303 130,680 40,539 1.83 × 10
7

Wiki@50 11,047 573,423 69,012 1.21 × 10
8

Bitcoinotc@50 263 6476 454 6339

Table 2  Comparison experiment results of four algorithms in link 
prediction

CN Jaccard Salton Res-NMTF RC-NMF

Epinions@50 0.8166 0.4328 0.7654 0.7954 0.8837
Slashdot@50 0.6671 0.3563 0.5888 0.7704 0.7973
Wiki@50 0.6832 0.4648 0.6369 0.745 0.7219
Bitcoins@50 0.6743 0.4176 0.6565 0.7397 0.7143
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Fig. 7  Convergence of our gradient descent update rules
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4.3  Algorithm convergence

To test the convergence of the algorithm, we perform experi-
ments on four kinds of synthetic datasets and deriving net-
works from each kind of network model. As shown in Fig. 7, 
when the number of iterations is greater than 50, the value of 
our objective function tends to be stable and will not change, 
which indicates that the proposed algorithm satisfies the 
convergence condition.

4.4  Parameter sensitivity

In this section, we study the parameter sensitivity in our 
proposed algorithm. We selected one of the SLFR-UN data-
sets, in which p+ = 0.25 and p− = 0.25 represent the signed 
network with certain noise but not the maximum, which is 
similar to the signed network in the real world. The experi-
mental results of parameter sensitivity are shown in Fig. 8. 
The parameters have some influence on the accuracy of the 
algorithm, but not very much. When parameter � is greater 
than 5, the blue color increases, and the accuracy of the algo-
rithm decreases to a certain extent. Moreover, parameter � 
has little influence on the accuracy of the algorithm, and the 
better results are concentrated between 4 and 9. Therefore, 
we select parameter values: � = 3 and � = 7.

5  Conclusion and future work

Community detection and link prediction are the basic tasks 
of signed network analysis. Many of the previous algorithms 
rely on pre-defined optimization objective functions or heu-
ristic algorithms with high computational complexity, and 
most of the algorithms cannot simultaneously perform com-
munity detection and link prediction. In response to these 
challenges, we propose the RC-NMF method that converges 
in a reasonable number of times and can be used to complete 
community detection and link prediction at the same time. 
In this paper, in order to constrain the influence of negative 

links, we introduce a method of graph regularization to con-
strain nodes with positive links being assigned to the same 
community and nodes with negative links being assigned 
to different communities. Then, in order to constrain the 
situation of overlapping communities, we added sparse con-
straints to our model. After that, we conducted a series of 
the experiments for community detection and link prediction 
in synthetic data and real-world signed network to validate 
the effectiveness and accuracy of our RC-NMF algorithm.

In the future, we will work on using our proposed algo-
rithm in real social network analysis, using crawler tech-
nology to crawl the text data of comments between users 
on social media such as Facebook or Weibo. Then, we use 
some emotion analysis methods to analyze the emotional 
tendency in the text, such as friendliness or hostility, and 
build a signed network based on this. Furthermore, we use 
the algorithm we proposed to find some community struc-
tures and special societies in the social network such as fraud 
groups. Finally, we use it to predict the emotional tendency 
of users, such as positive or negative signed network, which 
can serve as a foundation for the friend recommendation 
system.
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