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Abstract
People interact with other people in their daily life, either for work or for personal reasons. These interactions are often 
complex. Thus, interactions that an individual has with other individuals, to some extent, influence the decisions they make. 
There have been many efforts to uncover, explore, and measure the concept of social influence. Thus, modeling influence 
is an open and challenging problem where most evaluation models focus on online social networks. However, they fail to 
characterize some properties of social influence. To address the limitations of the previous approaches, we propose a novel 
Probabilistic Reasoning system for social INfluence analysis (PRIN) to examine the social influence process and elucidate 
the factors that affect it in an attempt to explain this phenomenon. In this paper, we present a model that quantitatively meas-
ures social influence in online social networks. Experiments on a real social network such as Twitter demonstrate that the 
proposed model significantly outperforms traditional feature engineering-based approaches. This suggests the effectiveness 
of this novel model when modeling and predicting social influence.

Keywords Social influence analysis · Social networks · Bayesian network

1 Introduction

Social influence (SI) is a common feature of everyday life: 
we either try to influence others or are influenced by them 
many times each day. For example, colleagues have a strong 
influence on one’s work, while friends have a strong influ-
ence on one’s daily life. This influence can be somewhat 
banal such as what type of shoes to buy—or more signifi-
cant—such as whether to vote for one candidate versus oth-
ers. Rashotte (2007) defined SI as a change in an individual’s 
thoughts, feelings, attitudes, and behaviors that results from 
interaction with another individual or a group. Influence is 
an invisible, complex, and subtle phenomenon that governs 

social dynamics and user behaviors. Besides, SI takes many 
different forms and can be seen in processes of conformity, 
socialization, peer pressure, obedience, leadership, persua-
sion, minority influence, among others (Han and Li 2018).

A social network (SN) is a social structure made up of 
individuals or organizations, which are connected by one 
or more specific types of interdependency, such as friend-
ship, kinship, common interest, likes/dislikes, or relation-
ships of beliefs, knowledge or prestige (Travers and Mil-
gram 1967). As the Internet evolved, online social networks 
(OSNs) emerged such as Twitter, LinkedIn, and Facebook. 
They have attracted a lot of attention since they allow users 
to share ideas, activities, events, and interests within their 
networks. In contrast to traditional (offline) social networks, 
OSNs store a register of the interaction between users based 
on their content shared between them, and how this content 
is propagated on the Internet, which is a result of SI.

Many researchers have tried to test or examine whether 
there is an influence, and how people influence each other 
in SN. Understanding how users influence each other and 
quantifying it can benefit various applications. In the field 
of data mining, some recognized applications include viral 
marketing (or targeted advertising in general) (Freeman 
1978; Brown and Reingen 1987), recommender systems 
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(Pálovics et al. 2014), analysis of information diffusion in 
social media like Twitter and Facebook (Tang et al. 2009), 
events detection (Weng et al. 2010), experts finding (Franks 
et al. 2013), link prediction (Qiu et al. 2018), and ranking 
of feeds.

Other disciplines outside social psychology, such as com-
putation, politics, marketing recognize that social influence 
is key to their concerns. However, they are building models 
of influence largely without recognizing the extensive con-
ceptual and empirical work done by social psychologists. 
Typical models in SIA such (Albert and Barabási 2002; 
Faloutsos et al. 1999; Newman 2003; Strogatz 2001; Tang 
et al. 2009; Hu et al. 2013, 2015; Cai et al. 2017; Qiu et al. 
2018) focus on macro-level models such as degree distribu-
tions, diameter, clustering coefficient, and communities or 
fail to capture the complexity in the SI process. However, in 
online real situations, the spread of influence occurs through 
populations over a span of time with each individual serving 
as both a source and a target showing special properties.

Therefore, novel methods are required to characterize 
and quantify the process of the SI that can be extended to 
OSNs, which incorporate social theories to create a model 
that portrays this phenomenon as close to reality. Thus, the 
general objective of this research is to design and implement 
a novel model that characterizes the social influence process 
based on sociological theories and probabilistic reasoning 
theory for quantifying each user over the other users inside 
an online social network. The following specific objec-
tives are defined for this work: First, to analyze the social 
influence process from the social science point of view in 
online social networks for selecting a set of involved fac-
tors; Second, to formalize the concept of social influence and 
sociological theories about social influence, such as user’s 
behavior, user’s profile, user’s temporal variation interest, 
and temporal evolution of relationships; Third, to design a 
mathematical model that integrates the formalized factors to 
represent the social influence process; Finally, to generate a 
probabilistic reasoning system with the designed model and 
an existing inference algorithm to ask queries to the model.

In the purse of these objectives, we present a novel 
algorithm called PRIN, a generative model describing 
the dynamic of the social influence process. Thus, PRIN 
allows measuring topical user-level social influence strength 
through the modeling of the previous objectives. Our final 
aim is to bring together large volumes of unstructured data 
such as content shared, and heterogeneous information such 
as structural link and diffusion links in this model. Addi-
tionally, research was performed in social sciences such as 
physiology, sociology, and anthropology. Therefore, PRIN 
reflects a broader and deeper knowledge about human behav-
ior in its mathematical inception. We conducted an extensive 
set of experiments to evaluate the effectiveness of our model 
to discover user influence. The final results suggest that our 

model can improve the prediction performance, thus allow-
ing to mine additional information inside social networks.

The rest of this paper is organized as follows: Sect. 2 sum-
marizes related work about social influence analysis. Sec-
tion 3 formulates social influence problem. Section 4 intro-
duces the proposed model in detail. Section 5 presents the 
proposed social influence analysis architecture. Sections 6 
and  7 present the experimental results and discussion of the 
validation of the model. Finally, Sect. 8 presents the conclu-
sion and future work of this work.

2  Related work

Social influence analysis has been widely studied in the lit-
erature. We have explored related work in two main dimen-
sions (March 1955). The first dimension is the explanatory 
models, and the second is predictive models for social influ-
ence in online social networks. We briefly discuss them, 
respectively, in this section.

2.1  Explanatory models

The explanatory models aim to examine the social influ-
ence process and elucidate the factors that affect it in an 
attempt to explain this phenomenon. Yang and Leskovec 
(2010) addressed influence as a form of information dif-
fusion with temporal dynamics. Wen and Lin (2010) show 
that combining different social media improves the social 
influence measure. Crandall et al. (2008) studied the correla-
tion between social similarity and influence. However, they 
focus on qualitative identification of influence existence, and 
they do not provide a quantitative measure of the influential 
strength. Xiang et al. (2010) and Goyal et al. (2010) further 
investigate how to learn the influence probabilities from the 
history of user actions. However, these methods either do 
not consider the influence at the topic-level or ignore the 
influence propagation. Kempe et al. (2003) focused on how 
influence propagated across a network, assuming an influ-
ential user is one whose initial adoption would eventually 
result in the most number of total adoptions by all users. 
However, they did not consider the topic-level influence. 
Hu et al. (2015) modeled topics and communities in a uni-
fied latent framework and extract inter-community influence 
dynamics. Cai et al. (2017) formalized the concepts of com-
munity profiling by its internal content profile and external 
diffusion profile. Besides the global effect of influence, many 
efforts have been made to estimate the concrete influence 
strength between individual nodes. Bi et al. (2014) integrate 
both content topic discovery and social influence analysis 
based on structural links in the same generative process at 
the user level.
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2.2  Predictive models

The predictive models are used to predict the future social 
influence process in social networks based on certain fac-
tors. Researchers have addressed the problem of measur-
ing social influence by predicting a user’s ability to dis-
seminate information, such as retweet behavior on Twitter. 
Yang et al. (2010) analyzed the effects of different fac-
tors on retweeting behavior. Based on their observations, 
they proposed a semisupervised framework on a factor 
graph model to predict users’ retweet behaviors. Pezzoni 
et al. (2013) discussed how structural factors and retweet 
behavior affect information diffusion. Considering the 
retweeting behavior as atomic behavior, they proposed an 
agent-based information propagation model to generate 
a cascade. Fei et al. (2011) were the first to adopt micro-
economics methods for social media behavior prediction. 
Saito et al. (2008) focused on the user-level mechanism 
in social influence where its near neighbors only influ-
ence each user. Tang et al. (2009) proposed a topic-specific 
influence measure. However, this article assumes topic 
distribution.

Although previous researches have applied many models 
to analyze social influence, our work is very different. The 
main contributions are summarized as follows: (1) another 
approach and formalization of the social influence in online 
social networks; (2) a novel probabilistic graphical model 
that characterizes the social influence process applies to 
online social networks based on sociological theories and 
previous attend for modeling this phenomenon; (3) a proba-
bilistic reasoning system for quantifying social influence in 
probabilistic term; (4) a new architecture for social influence 
analysis focus on diffusion prediction between users inside 
social networks.

3  Problem formulation

The problem of social influence modeling has been open for 
a long time since it was proposed. It is because social influ-
ence is a relatively subjective concept, and it lacks a univer-
sally acknowledged definition. People are frequently con-
fused by the concepts and the measuring methods of social 
influence. For different social networks, social influence 
is modeled quite differently. For example, in an electronic 
commerce network, the most influential users are the ones 
who can recommend most customers to purchase-specific 
products successfully (Li et al. 2017). After analyzing the 
characteristic of social influence and the typical character-
istics of OSNs, we introduce a series of formal definitions 
about the concept of social influence. Then, we formulate 
the problem of topical mining influence in OSNs.

3.1  Concept definitions

The notation used in this paper is listed in Table 1.

Definition 1 Social network. A social network is 3-tuple 
G = (U,M, E) , where u ∈ U  is an user and m ∈ M is a 
user published message, and e ∈ E is a link. The link set 
E denotes interaction between users, and it can be derived 
from different types of user interactions, which are applica-
tion dependent.

Definition 2 Topic. A topic k ∈ K is a |W|-dimensional 
multinomial distribution �k over a vocabulary, where each 
component �k,w is the probability of a word w ∈ W  belong-
ing to k.

Definition 3 Message. A message m ∈ Mu contains a set 
of words w from a given vocabulary, along with a time stamp 
tu,i , meaning that mu,i is the ith message of the user u.

A link is a directed connection eu,v ∈ E , representing 
a communication from user u to v. We define two types 
of links in E : structural links between users and diffusion 
links between users’ messages.

Definition 4 Structural link. Let su,v ∈ S be a structural link 
from user u to user v defined by a directed edge in a social 
graph. For each possible edge su,v ∈ S , if there exists an edge 
between u and v, su,v = 1 ; otherwise su,v = 0 . Every user has 
a unique preference to generate structural links with other 
users based on the interest that a user u has in the published 
content or non-content of user v. As a result, each su,v is 
associated with:

• a Bernoulli distribution �u,v , which characterizes the 
user u preference for following v based on the v shared 
content or non-content.

• a binary variable yu,s . When yu,s = 1 indicates that the 
link creation is based on the user u content, whereas 
yu,s = 0 means that content has nothing to do with the 
link.

Definition 5 Diffusion link. Let dmu,i,mv,j
∈ D be a diffusion 

link, where message i of user u is a broadcast of message j 
of user v. Each d is associated with a Bernoulli distribution 
�m,k,t(u, v) characterizing diffusion probability of message 
mv,∗ about topic k at time t from user u. This link represents 
a change in the state of u due to the influenced exerted by v.

Definition 6 Profiling vector. The profiling vector �
�
 of 

user u ∈ U is defined as an augmenting vector, where each 
dimension represents some encoded feature associated with 
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a user, such as a gender, location, topic interest, among 
others.

Definition 7 Users similarity. Let u and v be two users with 
its associated profiling vectors �

�
 and �

�
 . The user similar-

ity of u and v is defined as the cosine similarity of theirs 
profiling vectors:

Due to homophily, users tend to form communities 
(Rashotte 2007). Community is a collection of users with 
similar behaviors and more intense interactions among 
its members than the rest of the global network (Bi et al. 
2014). It can be characterized not only by interaction 
link structures but also by the content generated by its 
members.

Definition 8 Community. A community c ∈ C is associate 
with:

• a |K|-dimensional multinomial distribution �c over 
topics, where each component �c,k represents the prob-

(1)�(u, v) =
�
�
⋅ �

�

‖�
�
‖‖�

�
‖
.

ability of c discussing topic k. This topic distribution 
represents the community different topical interest.

• a |C|-dimensional multinomial distribution �k,c over time 
specific to topic k and community c (Hu et al. 2015).

In social networks, users have multiple roles and are influ-
enced by different community contexts (Xie et al. 2013). 
Therefore, we employ the mixed-membership approach for 
a user definition.

Definition 9 User. A user u ∈ U is associated with:

• A set of messages Mu = {mu,1,… ,mu,∣Mu∣
} generated by 

user u.
• A set of structural links Su = {su,v ∣ v ∈ U} . Each link 

su,v ∈ Su represents a social relationship between user u 
and user v.

• A set of diffusion links Du = {dmu,i,mv,j
∣ tu,i > tv,j , where 

v ∈ U . Each link dmu,i,mv,j
∈ Du represents the diffusion of 

v’s message by u.
• A user similarity distribution function �(u, v) over user 

v ∈ U , which is defined by the user similarity between u 
and other users.

Table 1  Notation used in the 
model

Symbol Description

U,M, T, C,K Set of users, messages, links, time slices, communities, and topics
E,S,D Set of links, structural links, and diffusion links
Mu The set of messages published by user u
mu,i The ith message published by user u
tu,i The timestamp of message mu,i

wu,i,j The jth word in message mu,i

zu,i The topic associated with message mu,i

cu,i The community associated with the message mu,i

su,v A structural link from user u to user v
yu,v Binary indicator over the reasons of the structural link su,v content

or non-content related
dmu,i ,mv,j

A diffusion link from message mv,j to message mu,i

�k Multinomial distribution over a vocabulary specific to topic k
�u Bernoulli distribution over Su specific to user u
�i Multinomial distribution over all the users in the social network
�u , �u,k Multinomial distribution over topics specific to user u,

represents the interest of u in topic k
�u , �u,c Multinomial distribution over communities specific to user u, 

membership probability of u in community c
�c Multinomial distribution over topics specific to community c
�k,c Multinomial distribution over time specific to

topic k and community c
�, �, � , �, � Parameters of the Dirichlet (Beta) priors on

Multinomial (Bernoulli) distributions
�k,t(u, v) Influence probability (diffusion probability)

from user u to user v on topic k at time t
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• A ∣ C ∣-dimensional multinomial distribution �u over com-
munities, where each component �u,c represents the prob-
ability of u belonging to community c.

• A ∣ U ∣-dimensional multinomial distribution over users 
�u , represents the probability of the user u to be consid-
ered as important by the other users.

Furthermore, we define user–user influence based on the 
dynamic process of user behaviors. For example, after user 
v posts a tweet, one of his followers u reads the tweet and 
chooses to retweet it. In this case, we assume that user u is 
influenced by user v, which is reflected as the retweet action 
performed by u. We model influence in terms of a diffusion 
probability when a user changes his actual state to another 
for diffusing specific messages at a particular time.

Definition 10 User–user topical influence strength. For a 
message m about topic k, at time t the user–user topical influ-
ence strength is represented as the diffusion probabilities 
between any two users from u to v, denoted as �k,t(u, v).

Please note that the influence is asymmetric, i.e., 
�(u, v) ≠ �(v, u) . Further, we can define the concepts of user 
influence based on the influence between any pair of nodes.

Definition 11 User influence. Let u be a user in a social 
network; we denote �t(u) as the user influence, which repre-
sents the user global influential strength of user u in time t 
in the social network.

3.2  Problem definition

We have as input a social network, with its observed and 
latent behavior. As observed variables, there is a set of users 
U , per user publishes messages M , per user profiling vector 
� , per user’s structural links S , and per user’s diffusion links 
D . As a latent behavior, we have factors that according to 
sociology theories (Rashotte 2007; Granovetter 1977; Liu 

et al. 2012) constitute the reasons why users are influenced: 
The per-message topics assignment z, per message com-
munity assignment c, per communities’ interest � , per user 
community membership � , per user preference for building 
a structural link � , per user importance in the network � . 
These latent factors must be integrated to characterize the 
social influence process to reason about the social influence 
process and calculate �k,t(u, v) at the end of our observation 
window.

4  Probabilistic reasoning system for social 
influence analysis (PRIN)

4.1  Overview of PRIN

Figure 1 shows an overview of the social influence prob-
lem. Our goal is to infer topical social influence strength 
between users. In Fig. 1, we show the input for PRIN: a set 
of users, each of whom publishes messages; users are con-
nected by structural links and interact with each other by 
diffusion links, e.g., on Twitter, each user posts tweets, users 
are connected by followership links, and they retweet each 
other to diffuse information. Then, for each user, we out-
put a user influence profile as the model’s parameters (e.g., 
user’s community membership, user’s interest, user’s topical 
influence), and we enable inference about the diffusion prob-
ability between users. Finally, we allow applications such as 
diffusion prediction.

4.2  Probabilistic model design

To model the social influence dynamic, we decided to 
use a probabilistic Bayesian approach. Bayesian networks 
are graphical models capable of displaying relationships 
clearly and intuitively. Further, they handle uncertainty 
through the established theory of probability. Additionally, 
they are directional, thus being capable of representing 

Fig. 1  Overview of our probabilistic reasoning system for social influence analysis
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cause-effect relationships. Not only that, they can encode 
all variables making it possible to handle missing data 
entries successfully, and they facilitate the use of prior 
knowledge that we already have about the phenomenon. 
Besides, the use of Bayesian networks allows us to think 
of the model in terms of a “generative story” that tells how 
social influence is created.

Although recent successful attempts inspire some of its 
building blocks in modeling the dynamics of social net-
works, including FLDA (Bi et al. 2014), COLD (Hu et al. 
2015), and CPD (Cai et al. 2017), PRIN significantly goes 
beyond those on more comprehensive input features and 
powerful modeling ability. The social influence process 
has three main components.

• User component Users in a social network usually have 
multiple community memberships. We associate each 
user u with a community membership vector �u . We 
consider a user u to publish a message mu,i of topic 
z, due to her community assignment cu,i and the com-
munity content profile �cui . We assign each post to one 
community cu,i denoting the community membership of 
user i when he writes a message.

• Content component Each message mu,i shared by a 
user u contains a bag of words wu,i,1,… ,wu,i,l , where 
l =∣ mu,i ∣ denotes the length of the message. In tradi-
tional topic models such as Latent Dirichlet Allocation 
(LDA) (Nallapati et al. 2008), a document is associated 
with a mixture of topics, and each word has a topic 
label. This is reasonable for long documents such as 
academic paper. However, on social media like micro-
blog, a message is usually short and thus is most likely 

to be about a single topic (Diao et al. 2012). We there-
fore associate each mu,i to a single latent topic variable 
zu,i drawn from �cu,i to indicate its topic. The words are 
then generated from the corresponding word distribu-
tion �zu,i

.
• Network component Every user has a unique preference 

to form a structural link with others based on content 
or non-content reason (Bi et al. 2014). For example, A 
follows B because they are similar, and they both tweet 
about related topics (content reason), and sometimes 
A follows C because C is a very famous person (non-
content reason). The Bernoulli distribution �u charac-
terizes this per user preference. As a result, for the su,v , 
we first consult �u to decide on the value of the binary 
variable yu,v

• yu,v = 1 indicates that the link creation is based on 
the user’s content. In this case, we consider that 
a user u form a structural link with user v, due to 
their similarity �u,v.

• yu,v = 0 indicates that the link creation has nothing to 
do with the content. In this case, we use �v to capture 
this probability.

Finally, we consider the influence of user v on user u as the 
probability to form a diffusion link dmu,i,mv,j

 where time for 
user message mu,i is greater than message mv,j , tu,i > tv,j . This 
is drawn from the users’ communities membership � , theirs 
communities’ topical interest � and their structural link prob-
ability su,v . The graphical model for PRIN is depicted in 
Fig.  2, while its generative process is summarized in 
Algorithm 1.

Fig. 2  Plate notation of 
PRIN model. Network-aware 
component in pink color, user-
aware component in green and 
content-aware component in 
blue (Color figure online)



Social Network Analysis and Mining (2021) 11:1 

1 3

Page 7 of 20 1

4.3  Inference task

In the inference task, we aim to infer the latent variables from 
the observed variables. Therefore, we use collapsed Gibbs 
sampling for such inference (Guille et al. 2013). Gibbs sam-
pling is an algorithm to approximate the joint distribution of 
multiple variables by drawing a sequence of samples, which 
iteratively updates each latent variable under the condition of 
fixing the remaining variables. Here, we describe the inference 
algorithm for PRIN based on collapsed Gibbs sampling.

Given a social network G = (U,M, E) and the pre-defined 
hyper parameters �, �, � , �, � , PRIN specifies the following full 
posterior distribution:

The joint distribution can be decomposed into a product of 
several factors:

(2)
P(�,� ,�, �, �,�,� ,w, z, c, s, y,

d ∣ U,M, E, �, �, � , �, �).

The task of posterior inference for PRIN is to determine 
the probability distribution of the hidden variables z, c, s, d 
given the observed words, timestamps, and network. How-
ever, exact inference is intractable due to the difficulty of 
calculating the normalizing constant in the posterior distri-
bution. We use collapsed Gibbs sampling for approximate 
inference. Because the model uses only conjugate priors 
(Doucet et al. 2000), we can reduce the number of param-
eters in the model by integrating out the multinomial dis-
tribution � = �,�, �,�,� . This has the effect of taking all 
possible values of � into account in our sampler, without 

(3)

P(�,� ,�, �, �,�,� ,w, z, c, s, y, d ∣ U,M, E, �, �, � , �, �)

∝
(
P(� ∣ �)P(� ∣ �)P(� ∣ �)P(� ∣ �)P(� ∣ �)

P(w ∣ �, z)P(z ∣ �, c)P(y ∣ �)P(c ∣ �)

(4)P(d ∣ z, c, s)P(s ∣ �,� , y)P(t ∣ psi, c, z)P(�),P(�)
)
.
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representing it as a variable explicitly and having to sample 
it at every iteration:

We are going to focus on ∫
�
P(cu,n ∣ �u)P(�u ∣ �u)d� , this 

apply for i ∈ �:

The definition of a Gibbs sampler specifies that in each itera-
tion, we assign a new value to variable cu,j by sampling from 

(5)

P(�,� ,�, �, �,�,� , d,w, z, c, s,

y ∣ U,M,S,D, �, �, � , �, �)

∝ ∫
�

P(y ∣ �)P(� ∣ �)d�

∫
�

P(w ∣ �, z)P(� ∣ �)d�

∫
�

P(c ∣ �)P(� ∣ �)d�

∫
�

P(� ∣ �)P(z ∣ �, c)d�

∫
�

P(� ∣ �)P(t ∣ � , c, z)d�

P(d ∣ z, c, s)P(s ∣ �,� , y)P(�),P(�).

(6)

∫
�

P(cu,n ∣ �u)P(�u ∣ �u)d�

= ∫
�

Γ(
∑C

i=1
�u)

∏C

i=1
Γ(�u)

C�

i=1

��u−1+Ni

u,c
d�

=
Γ(
∑C

i=1
�u)

∏C

i=1
Γ(�u)

∫
�

C�

i=1

��u−1+Ni

u,c
d�

=
Γ(
∑C

i=1
�u)

∏C

i=1
Γ(�u)

∏C

i=1
Γ(�u + Ni)

Γ(
∑C

i=1
�u + Ni)

.

the conditional distribution. Intuitively, at the start of an itera-
tions t, we have the collection of all current information at 
this point in the sampling process. When we want to sample 
the new value of cu,j , we temporarily remove all information 
about this community from the collection of information c−u,j.

where Ni,−j is the number message assigned to community i 
excluding message j.

The same process apply for every element in � . After suf-
ficient number of sampling iterations. We list the update equa-
tions for each variable as below:

(7)

P(cu,j = c ∣ c−u,j, �u) =
P(cu,j, c−u,j, �u)

P(c−u,j, �u)

=

Γ(
∑C

i=1
�u)∏C

i=1
Γ(�u)

∏C

i=1
Γ(�u+Ni)

Γ(
∑C

i=1
�u+Ni)

Γ(
∑C

i=1
�u)∏C

i=1
Γ(�u)

∏C

i=1
Γ(�u+Ni,−j)

Γ(
∑C

i=1
�u+Ni,−j)

=

∏C

i=1
Γ(�u + Ni)Γ(

∑C

i=1
�u + Ni,−j)

∏C

i=1
Γ(�u + Ni,−j)Γ(

∑C

i=1
�u + Ni)

=
Γ(�u + N(cu,j))Γ(

∑C

i=1
�u + N

(c)

i,−j
)

Γ(�u + N
(cu,j)

i,−j
)Γ(

∑C

i=1
�u + N

(c)

i
)

=
�u + N

(cu,j)

i,−j

∑C

i=1
�u + Ni,−j

,

(8)

P(cu,i = c ∣ zu,i = k, tu,i = t, c−u,i, z−u,i, t−u,i, .)

∝
N(c)
u

+ �

N
(.)
u + ∣ C ∣ �

⋅

N(k)
c

+ �

N
(.)
c + ∣ K ∣ �

⋅

N
(t)

c,k
+ �

N
(.)

c,k
+ ∣ T ∣ �

Fig. 3  Architecture of the social 
influence analysis proposed
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Furthermore, we can estimate the user–user topical influ-
ence strength. Suppose �k,t(u, v) represent the influence 
strength from user u to user v on topic k, which satisfy that 
�t(u, v) =

∑∣K∣

k=1
�k,t(u, v) . Thus, user–user topical influence 

strength can be estimated by

where N(c)
u

 denotes the number of messages of user u 
assigned to community c; N(k)

c
 is the number of posts 

assigned to community c and generated by topic k; N(t)

c,k
 

denotes the number of times that time stamp t is generated 
by community c and topic k; N(v)

u,i
 is the number of times 

word v occurs in the message mu,i ; N
(v)

k
 denotes the number 

of times words v is assigned to topic k. Marginal counts are 
represented with dots, e.g., N(.)

c,k
 denotes the total number of 

time stamp generated by community c and topic k.

4.4  Time complexity

We now analyze the time complexity of the inference algo-
rithm. In each iteration, the latent variables are sampled. 
Updates are performed by iterative sampling each latent 
variable from its conditional distribution, given the current 
values of the other variables. Since all the counters (e.g., 
N(k)
c

 ) involved in the previous equations can be caught and 
updated in constant time for each cu,i being sampled. Thus, 
sampling all c takes linear time w.r.t. the number of mes-
sages. Then, sampling all z is linear in the number of words. 
Overall, the inference algorithm takes linear time in the 
amount of data.

(9)

P(zu,i = k ∣ cu,i = c, tu,i = t, c−u,i, z−u,i, t−u,i,w, .)

∝
N(k)
c

+ �

N
(.)
c + ∣ K ∣ �

⋅

N
(t)

c,k
+ �

N
(.)

c,k
+ ∣ T ∣ �

⋅

∏M

v=1

∏N
(v)

u,i
−1

q=0
(N

(v)

k
+ q + �)

∏N
(.)

u,i
−1

q=0
(N

(.)

k
+ q+ ∣ M ∣ �)

(10)

P(dmu,i,mv,j
= 1, u, v ∣ zu,i = k, zv,j = k, cu,i = c,

cv,j = c, su, v = s, c−u,i, z−u,i, c−v,j, z−v,j, .)

∝
N(k)
c

+ �

N
(.)
c + ∣ K ∣ �

⋅

N(c)
u

+ �

N
(.)
u + ∣ C ∣ �

⋅

N(c)
v

+ �

N
(.)
v + ∣ C ∣ �

⋅

N(s)
u,v

N
(.)
u,v+ ∣ C ∣ �

⋅

(11)

�k,t(u, v) =

Mu,t∑

mu,i=1

P(dmu,i,mv,j
= 1, u, v ∣ zu,i

=k, zv,j = k, cu,i = c, cv,j = c,

su, v = s, c−u,i, z−u,i, c−v,j, z−v,j, .)

5  PRIN architecture

We propose a component-based architecture for the SIA 
performed. Figure 3 contains the diagram depicting the 
architecture of the system. We apply the discovered influ-
ence on user behavior prediction. The system consists of 
three main components:

• Data collection This module is in charge of compil-
ing the user’s data from a social networking service 
for getting the input to our system. The data depends 
on the social network such as structural information 
(friendship links in case of Facebook, following links 
in case of Twitter or Instagram, connections between 
users in case of LinkedIn), diffusion information (posts, 
tweets, messages). It continuously crawls a social net-
work. Then, it stores the information gathered by the 
crawler in a Graph Database (Miller 2013).

• Machine learning pipeline This module generates 
a Bayesian network that describes the social influ-
ence process inside a social network. The stages are 
described below: 

1. Data ingestion The social network data is obtained 
and imported from the Graph Database, and this is 
called raw data.

2. Data preparation A series of transformations in 
the raw data is performed to obtain it in the correct 
form. The transformations involve filling missing 
values or removing duplicate records or normaliz-
ing. This is where the feature extraction, construc-
tion, and selection takes place too to get the data 
model.

3. Code the model The structure of the Bayesian net-
work is built from a social network. It takes as input 
the number of users, number of topics, number of 
communities.

4. Train, evaluate, and tune the model The data model 
is split into subsets of data to train the model, test 
it, and further validate how it performs against new 
data. The train set is used to calculate the param-
eters (probability distributions of the random vari-
ables). Then, the performance of the model is evalu-
ated using the test and validation subsets of data to 
understand how accurate the prediction is. This is an 
iterative process until the model is calibrated.

5. Model deployment Once the chosen model is pro-
duced, it is stored and embedded in decision-making 
frameworks as a part of an analytics solution.

6. Manage the model and version The model is con-
tinuously monitored to observe how it behaved and 
calibrated accordingly to new data.
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• User interface The user interface is composed of an infer-
ence algorithm that uses the model to answer queries and 
a visualization tool for the results.

6  Experimental evaluation

We performed extensive experiments with real-world data 
sets to quantitatively evaluate the performance of PRIN. The 
empirical evaluation is divided into multiple stages. First, 
we evaluated the PRIN’s content component capability to 
extract topics. Moreover, we tested the PRIN’s user compo-
nent effectiveness for community detection. Then, we evalu-
ated the PRIN’s network component, where diffusion-links 
prediction performance was reported. At last, we performed 
a parameter analysis over the whole system for diffusion-
links predicting.

6.1  Evaluation metrics

We used case studies to demonstrate further the effective-
ness of our proposed model in real social networks using the 
following performance metrics.

• Log-Likelihood The log-likelihood is, as the term sug-
gests, the natural logarithm of the likelihood. The like-
lihood measures the probability of the observed data, 
given the model, i.e., how well a model fits the observed 
data. The highest the likelihood, the better the model for 
the given data. For many applications, the log-likelihood 
is more convenient to work with (Koller et al. 2009). 
This is because we are generally interested in where the 
likelihood reaches its maximum value: the logarithm is 
a strictly increasing function, so the logarithm of a func-
tion achieves its maximum value at the same points as 
the function itself, and hence the log-likelihood can be 
used in place of the likelihood in maximum likelihood 
estimation and related techniques.

• Perplexity It is also a measure of model quality, and Nat-
ural Language Processing is often used as “perplexity per 
number of words.” It describes how well a model predicts 
a sample, i.e., how much it is “perplexed” by a sample 
from the observed data. A lower perplexity score indi-
cates better generalization performance. The perplexity 
of a discrete probability distribution (Brown et al. 1992) 
is calculated as follows: 

 where H(P) is the entropy of the distribution P(x), and x 
is a random variable over all possible events.

(12)2H(P) = 2
∑

x P(x) log2 P(x),

• AUC (Area Under the Curve) ROC (Receiver Operat-
ing Characteristics) curve AUC–ROC curve is a per-
formance measurement for the classification problem at 
various threshold settings. ROC is a probability curve, 
and AUC represents the degree or measure of separabil-
ity. It tells how much model is capable of distinguish-
ing between classes. The curve is created by plotting the 
True Positive Rate (TPR) against the False Positive Rate 
(FPR). The area under the curve is used to give a score 
to the model. If the area under the curve is 0.5, then the 
TPR is equal to the FPR, and the model is doing no better 
than random guessing.

Generally, a model with higher log-likelihood and lower 
perplexity is considered to be good. Then, a rough guide 
for evaluating a model with the AUC value is the traditional 
academic point system:

• .90–1 means the model is Excellent.
• .80–.90 means the model is Good.
• .70–.80 means the model is Fair.
• .60–.70 means the model is Poor.
• .50–.60 means the model Fails.

6.2  Baseline algorithms

We compared the results of our approach with previous work 
to evaluate PRIN. We choose baseline based on the follow-
ing guidelines (1) They are state of the art to model hetero-
geneous networks; (2) They model diffusion prediction at 
the task level. Finally, we selected the baselines below and 
list our differences with them in Table 2.

• Poisson Mixed-Topic Link Model (PMTLM) proposed 
by Zhu et al. (2013) defines a generative process for both 
text and links between users.

• Followship-LDA (FLDA) proposed by Zhu et al. (2013) 
integrates both content topic discovery and social influ-
ence analysis in the same generative process. FLDA is a 
Bayesian generative model that extends Latent Dirichlet 
Allocation (LDA).

• COmmunity Level Diffusion Model (COLD) proposed 
by Hu et al. (2015) probabilistic generative model captur-
ing influence between communities at different topics.

• Community Profiling and Detection (CPD) proposed by 
Cai et al. (2017) offers a generative model to formalize 
the concept of community profiling. They characterize 
a community in terms of its member users and both its 
internal content profile and external diffusion profile.

• Deepinf proposed by Qiu et al. (2018) deep neural net-
work used for predicting social influence.
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• Support Vector Machine (SVM). We use the support 
vector machine with a linear kernel as a classifications 
model.

• Logistic Regression (LR). We also use the logistic regres-
sion (LR) to train a classification model.

6.3  Case study: Content component for topic 
modeling from Amazon reviews

The goal of this case study is to evaluate the performance 
of the PRIN content component for topic modeling with 
labeled data. We selected log-likelihood and perplexity as 
evaluation metrics.

6.3.1  Methodology

• Data set For evaluation of the PRIN’s content compo-
nent, we used Amazon products reviews data set. The 
data set is a list of 34,660 consumer reviews for Ama-
zon products like the Kindle, Fire TV Stick, and more 
provided by Datafiniti’s Product Database1. The data set 
includes basic product information, rating, review text, 
and more for each product. We decided to use this data 
set because it is labeled meaning by product; therefore, 
we can use this information for comparing our results. 
Besides, it is composed of short text like the ones that 
are shared in most social networks (Diao et al. 2012).

• Data set preparation For the aim of this study we 
extracted the following features: categories and reviews.
text. Then, we only keep reviews with less than 200 
words. The remained reviews followed these character-
istics:

• The average number of words in a review is 14.64.
• The minimum number of words in a review is 5.
• The maximum number of words in a review is 80.
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Fig. 4  Word cloud of the Amazon review corpus

1 https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-
products
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   Figure 4 presents the word cloud of the corpus, and Fig. 5 
shows the review distribution per category (38 total catego-
ries). It can be observed that there is an imbalanced problem 
in the data set; for solving this problem, we use the oversam-
pling technique. Table 3 shows the name of the categories 
presented in Fig. 5. We processed the above data set follow-
ing the practice in existing work for cleaning the data (Vega 
and Mendez-Vazquez 2016). However, we use a Bag of word 
(Goldberg 2017) approach for feature representation.

• Experimental setup Table 4 shows the values of the used 
parameters; batch size is the number of reviews to be 
used in each training chunk, alpha determines how often 
the model parameters should be updated, and epochs are 
the total number of training passes. After all, we were 
interested in determining what topic a given review is 
about, and we assigned this topic base on the highest 
percentage contribution of the topic in that review.

6.3.2  Results

Figure 6 shows the log-likelihood value under varying num-
ber of topics, and Fig. 7 shows the perplexity values under 
varying number of topics. Therefore, it can be observed that 
with K = 15 , the model has a balance between perplexity 
and log-likelihood.

6.4  Case study: Content component for topic 
modeling from Twitter

The goal of this case study is to evaluate the PRIN con-
tent component performance for topic modeling in Tweets 
against other algorithms. However, in this case study, we do 
not have label data. Therefore, we evaluated the performance 
qualitatively following the practice of Chang et al. (2009) 
and quantitative using perplexity as a metric.

6.4.1  Methodology

• Data set The data set was crawled from Twitter. We 
started by choosing top popular users in specific top-
ics such as Katty Perry, Donald Trump, Bill Gates, and 
Cristiano Ronaldo. Using these users as seed users, we 
crawled a network with about 3661 active users (Huber-
man et al. 2008). We extracted all the information posted 
by them from 12-14-2018 to 12-18-2018, which gave 
rise to 44209 following relationships, 56918 tweets, and 
24649 retweets.

• Data set preparation For the aim of this study, we used 
only the users’ tweets. Then, we processed the data set 
following the practice in existing work for cleaning the 
data (Vega and Mendez-Vazquez 2016). However, we use 
a Bag of words (Goldberg 2017) approach for feature 
representation.

• Experimental setup We used the same parameter setting 
as in Case study 6.3 presented in Table 4.

Fig. 5  Amazon reviews per categories
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Table 3  Amazon reviews categories

Id Categories

0 Electronics, iPad and Tablets, All Tablets, Fire Tablets, Tablets, Computers and Tablets
1 eBook Readers, Kindle E-readers, Computers and Tablets, E-Readers and Accessories, E-Readers
2 Electronics, eBook Readers and Accessories, Covers, Kindle Store, Amazon Device Accessories, Kindle E-Reader Accessories, Kindle (5th 

Generation) Accessories, Kindle (5th Generation) Covers
3 Tablets, Fire Tablets, Electronics, Computers, Computer Components, Hard Drives and Storage, Computers and Tablets, All Tablets
4 Tablets, Fire Tablets, Computers and Tablets, All Tablets
5 Amazon Devices and Accessories, Amazon Device Accessories, Power Adapters and Cables, Kindle Store, Kindle E-Reader Accessories, 

Kindle Paperwhite Accessories
6 Electronics, iPad and Tablets, All Tablets, Computers/Tablets and Networking, Tablets and eBook Readers, Computers and Tablets, E-Read-

ers and Accessories, E-Readers, Used:Computers Accessories, Used:Tablets, Computers, iPads Tablets, Kindle E-readers, Electronics 
Features

7 Computers/Tablets and Networking, Tablets and eBook Readers, Electronics, eBook Readers and Accessories, eBook Readers
8 Fire Tablets, Tablets, Computers and Tablets, All Tablets, Electronics, Tech Toys, Movies, Music, Electronics, iPad and Tablets, Android 

Tablets, Frys
9 Kindle E-readers, Electronics Features, Computers and Tablets, E-Readers and Accessories, E-Readers, eBook Readers
10 Computers and Tablets, E-Readers and Accessories, eBook Readers, Kindle E-readers
11 Fire Tablets, Tablets, Computers and Tablets, All Tablets
12 Frys, Software and Books, eReaders and Accessories, Tablet Cases Covers, Tablet Accessories, Computer Accessories
13 Electronics, Categories, Streaming Media Players, Amazon Devices
14 Computers/Tablets and Networking, Tablets and eBook Readers, Computers and Tablets, Tablets, All Tablets
15 Amazon Device Accessories, Kindle Store, Kindle Touch (4th Generation) Accessories, Kindle E-Reader Accessories, Covers, Kindle 

Touch (4th Generation) Covers
16 Walmart for Business, Office Electronics, Tablets, Office, Electronics, iPad and Tablets, Windows Tablets, All Windows Tablets, Computers 

and Tablets, E-Readers and Accessories, E-Readers, eBook Readers, Kindle E-readers, Computers/Tablets and Networking, Tablets and 
eBook Readers, Electronics Features, Books and Magazines, Book Accessories, eReaders, TVs and Electronics, Computers and Laptops, 
Tablets and eReaders

17 Walmart for Business, Office Electronics, Tablets, Electronics, iPad and Tablets, All Tablets, Computers and Tablets, E-Readers and Acces-
sories, Kindle E-readers, Electronics Features, eBook Readers, See more Amazon Kindle Voyage (Wi-Fi)

18 Electronics, Categories, Fire TV, Kindle Store
19 Electronics, Computers, Computer Accessories, Cases and Bags, Fire Tablets, Electronics Features, Tablets, Computers and Tablets, Kids’ 

Tablets, Electronics, Tech Toys, Movies, Music, iPad and Tablets, Top Rated
20 Electronics, iPad and Tablets, All Tablets, Computers and Tablets, Tablets, eBook Readers
21 Kindle Store, Categories, eBook Readers and Accessories, Fire TV Accessories, Electronics, Power Adapters and Cables, Amazon Device 

Accessories, Power Adapters
22 Fire Tablets, Tablets, Computers and Tablets, All Tablets, Computers/Tablets and Networking, Tablets and eBook Readers
23 Categories, Streaming Media Players, Electronics
24 Computers and Tablets, Tablets, All Tablets, Computers/Tablets and Networking, Tablets and eBook Readers, Fire Tablets, Frys
25 Electronics Features, Fire Tablets, Computers and Tablets, Tablets, All Tablets, Computers/Tablets and Networking, Tablets and eBook 

Readers
26 Stereos, Remote Controls, Amazon Echo, Audio Docks and Mini Speakers, Amazon Echo Accessories, Kitchen and Dining Features, 

Speaker Systems, Electronics, TVs Entertainment, Clearance, Smart Hubs and Wireless Routers, Featured Brands, Wireless Speakers, 
Smart Home and Connected Living, Home Security, Kindle Store, Home Automation, Home, Garage and Office, Home, Voice-Enabled 
Smart Assistants, Virtual Assistant Speakers, Portable Audio and Headphones, Electronics Features, Amazon Device Accessories, iPod, 
Audio Player Accessories, Home and Furniture Clearance, Consumer Electronics, Smart Home, Surveillance, Home Improvement, Smart 
Home and Home Automation Devices, Smart Hubs, Home Safety and Security, Voice Assistants, Alarms and Sensors, Amazon Devices, 
Audio, Holiday Shop

27 Fire Tablets, Tablets, Computers and Tablets, All Tablets, Frys
28 TVs Entertainment, Wireless Speakers, Virtual Assistant Speakers, Featured Brands, Electronics, Amazon Devices, Home, Home Improve-

ment, Home Safety and Security, Home Security, Alarms and Sensors, Smart Home and Home Automation Devices, Smart Hubs and 
Wireless Routers, Smart Hubs, Consumer Electronics, Voice-Enabled Smart Assistants, Smart Home and Connected Living, Home, 
Garage and Office, Smart Home, Voice Assistants, Surveillance, Home Automation, Speakers, Electronics Features, Holiday Shop, TV, 
Video and Home Audio, Internet and Media Streamers, Amazon Echo, Hubs and Controllers
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6.4.2  Results

We reported the PRIN’s content component capacity in 
extracting latent topics in the Twitter data set. For qualitative 
evaluation, we presented four example word clouds in Fig. 8.

Table 3  (continued)

Id Categories

29 Chargers and Adapters, Computers and Accessories, Tablet and E-Reader Accessories, Amazon Devices and Accessories, Fire Tablet 
Accessories, Electronics, Power Adapters and Cables, Cell Phones, Amazon Device Accessories, Cell Phone Accessories, Cell Phone Bat-
teries and Power, Tablet Accessories, Featured Brands, Kindle Fire (2nd Generation) Accessories, Kindle Store, Home Improvement, Fire 
(5th Generation) Accessories, Electrical, Amazon Devices, Home, Tablets and E-Readers, Cables and Chargers

30 Cases, Kindle Store, Amazon Device Accessories, Accessories, Tablet Accessories
31 Electronics, eBook Readers and Accessories, Power Adapters, Computers/Tablets and Networking, Tablet and eBook Reader Accs, Charg-

ers and Sync Cables, Power Adapters and Cables, Kindle Store, Amazon Device Accessories, Kindle Fire (2nd Generation) Accessories, 
Fire Tablet Accessories

32 Electronics, Tablets and E-Readers, Tablets, Back To College, College Electronics, College Ipads and Tablets, Featured Brands, Amazon 
Devices, Electronics Deals, Computers and Tablets, All Tablets, Electronics Features, eBook Readers

33 Featured Brands, Electronics, Amazon Devices, Home, Home Improvement, Home Safety and Security, Home Security, Alarms and 
Sensors, Smart Home and Home Automation Devices, Mobile, Mobile Speakers, Mobile Bluetooth Speakers, Smart Hubs and Wireless 
Routers, Smart Hubs, Home, Garage and Office, Smart Home, Voice Assistants, Smart Home and Connected Living, Amazon Tap, Port-
able Audio, MP3 Accessories, Speakers, Amazon Echo, Electronics Features, TVs and Electronics, Portable Audio and Electronics, MP3 
Player Accessories, Home Theater and Audio, Kindle Store, Frys, Electronic Components, Home Automation, Electronics, Tech Toys, 
Movies, Music, Audio, Bluetooth Speakers

34 Rice Dishes, Ready Meals, Beauty, Moisturizers, Lotions
35 Back To College, College Electronics, College Tvs and Home Theater, Electronics, Tvs and Home Theater, Streaming Devices, Featured 

Brands, Amazon Devices, Holiday Shop, Ways To Shop, TV and Home Theater, Streaming Media Players, All Streaming Media Players, 
TVs Entertainment, Video Games, Kindle Store, Electronics Features, Kids and Family, Fire TV

36 Electronics, Amazon Device Accessories, Kindle Store, Covers, Kindle E-Reader Accessories, Kindle DX (2nd Generation, Global Wire-
less) Accessories

37 Computers/Tablets and Networking, Tablet and eBook Reader Accs, Chargers and Sync Cables, Power Adapters and Cables, Kindle Store, 
Amazon Device Accessories, Fire Tablet Accessories, Kindle Fire (2nd Generation) Accessories

Table 4  Parameter setting for 
Case study 6.3

Parameter Value

Batch size 128
Alpha 1
Epochs 500

Fig. 6  Log-likelihood scores 
of PRIN’s content component 
(the high, the better) from Case 
study 6.3
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For quantitative evaluation, Fig. 9 shows the perplexity 
values under varying number of topics. It revealed that PRIN 
( K = 100 ) has the lowest perplexity, indicating the best topic 
discovery performance among all the competitors. Perplex-
ity scores for COLD and PRIN were close, and both signifi-
cantly outperform PMTLM.

6.5  Case of study: User component for community 
detection in Twitter

The goal of this case study is to evaluate the performance 
of the PRIN user component for community detection. For 

quantitative evaluation, due to the lack of ground truth for 
communities inside the network, we use link prediction, a 
widely used quantitative measurement in the mixed-mem-
bership community setting without community labels (Bis-
was and Biswas 2017). Link prediction is defined to estimate 
the probability of a link between two users. Moreover, as 
there is not a predefined threshold for link prediction, we 
used AUC as the evaluation metric.

6.5.1  Methodology

• Data set The Higgs Boson Twitter data set (De Domenico 
et al. 2013) was built after monitoring the spreading pro-

Fig. 7  Perplexity scores of 
PRIN’s content component 
(the less, the better) from Case 
study 6.3

Fig. 8  Word clouds of extracted 
topics



 Social Network Analysis and Mining (2021) 11:1

1 3

1 Page 16 of 20

cesses on Twitter before, during, and after the announce-
ment of the discovery of a new particle with the features 
of the elusive Higgs Boson on July 4th, 2012. The data 
set contains three types of social interaction mentioning, 
retweeting, replying to existing “Higgs” related tweets and 
friends/followers social relationships among users involved 
in the above activities. The data set statistics are presented 
in Table 5. It is worth remarking that the user IDs have been 
anonymized, and the same user ID is used for all networks.

• Data set preparation For the aim of this study, we used 
only the followers’ social relationships among users. We 
processed the data set as follows: for every pair of users, we 
generated a positive instance if there is a follower relation-
ship; otherwise, we created a negative instance. Our target 
is to distinguish positive instances from negative ones.

• Experimental setup Table 6 shows the values of the used 
parameters.

6.5.2  Results

Figure 10 shows the AUC values for the models. PRIN 
( C = 100 , K = 100 ) outperformed all other methods. 
Moreover, COLD and PRIN were significantly better than 
PMTLM.

6.6  Case study: Network component for influence 
prediction in Twitter

The goal of this case study is to evaluate the PRIN network per-
formance for diffusion link prediction (retweets) on Twitter. For 
quantitative evaluation, we selected AUC as an evaluation metric, 
since there is not a predefined threshold for link prediction.

6.6.1  Methodology

• Data set We used the Hibbs Boson Twitter network 
detailed in Case study 6.5.

• Data set preparation We processed the data set following 
the practice in existing work (Zhang et al. 2013, 2015). 

Fig. 9  Perplexity scores from Case study 6.4

Table 5  Data set statistics of Higgs Twitter Data set

Social network statistics

Nodes 456,626
Edges 14,855,842
Nodes in largest WCC 456,290 (0.999)
Edges in largest WCC 14,855,466 (1.000)
Nodes in largest SCC 360,210 (0.789)
Edges in largest SCC 14,102,605 (0.949)
Average clustering coefficient 0.1887
Number of triangles 83,023,401
Fraction of closed triangles 0.002901
Diameter (longest shortest path) 9
90-percentile effective diameter 3.7
Retweet network statistics
Nodes 256,491
Edges 328,132
Nodes in largest WCC 223,833 (0.873)
Edges in largest WCC 308,596 (0.940)
Nodes in largest SCC 984 (0.004)
Edges in largest SCC 3850 (0.012)
Average clustering coefficient 0.0156
Number of triangles 21,172
Fraction of closed triangles 0.0001085
Diameter (longest shortest path) 19
90-percentile effective diameter 6.8
Reply network statistics
Nodes 38,918
Edges 32,523
Nodes in largest WCC 12,839 (0.330)
Edges in largest WCC 14,944 (0.459)
Nodes in largest SCC 322 (0.008)
Edges in largest SCC 708 (0.022)
Average clustering coefficient 0.0058
Number of triangles 244
Fraction of closed triangles 0.0001561
Diameter (longest shortest path) 29
90-percentile effective diameter 10

Table 6  Parameter setting for 
Case study 6.5

Parameter Value

Batch size 128
Alpha 1
Epochs 350
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Furthermore, for a user v who was influenced to perform 
a social action a at some timestamp t, we generate a posi-
tive instance. Moreover, if a user v was never observed to 
be active in our observation window, we create a negative 
instance. For instance, analyzing observation windows of 
5 consecutive days, for a tweet a generated at timestamp 
t by a user v, we analyze if it is a retweet from another 
tweet. In this case, we generate a positive instance; oth-
erwise, it will be considered as a negative instance in that 
observation window. Our target is to distinguish positive 
instances from negative ones in the observation window.

• Experimental setup We performed nested cross-val-
idation over a windows time per user in the sampled 
social network of 100 users. The window size used for 
the experiments was of 5 days. The historical validation 
consists of the following: 

1. Extract all the timeline information (observed varia-
bles) from the set of users: message, structural links, 
and diffusion links.

2. Split the timeline into K “folds” (sets) of the size 
according to the window size: the most recent infor-
mation will be used as a test set, and the oldest will 
be used as a train set.

3. Calculate the CPDs using the train set for the K-fold.
4. Calculate the predictions from the test set, removing 

the feature of diffusion and set the rest of the vari-
ables as evidence.

5. Compare the prediction with the real labels calculat-
ing the AUC.

6. Repeat Step 3 to 5 for every fold, merging the previ-
ous train set K with the new one K + 1.

7. Get the average AUC for all the folds.

6.6.2  Results

We compared the prediction performance of all methods 
across the Higgs Boson data set; Fig. 11 presents the results. 
PRIN achieved significantly better performance over base-
lines in terms of AUC, demonstrating the effectiveness of 
our model.

6.7  Case of study: Parameter analysis

PRIN model is mostly affected by two parameters, i.e., a 
number of communities C and a number of topics K. We 
investigated how the prediction performance varies with 
these parameters.

Fig. 10  Structural link prediction performance

Fig. 11  Diffusion link prediction performance from Case study 6.6

Fig. 12  The impact of model parameters C and K in the task of diffu-
sion link prediction
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6.7.1  Methodology

• Data set We used same Twitter data set as in Case 
study 6.4.

• Data set preparation We applied the same data prepara-
tion as in Case study 6.6.

• Experimental setup We used the same parameter values 
as in Case study 6.4 presented in Table 4.

6.7.2  Results

Figure 12 shows the AUC values of diffusion link prediction 
under different settings, such as a number of topics and a 
number of communities.

7  Discussion

This research was focused on the social influence’s char-
acterization problem. We proposed a probabilistic model 
called PRIN. PRIN was designed to reveal the rich spectrum 
of the online social influence process. Then, we validated 
each component with case studies. We discussed their main 
findings in this section.

In Case study 6.3, we evaluated content component with a 
labeled data set. We were expected the best performed with 
38 numbers of topics, due to this value was the real number 
of categories labeled by Amazon. However, we discovered 
that the model performed well with 15 topics, with a low 
perplexity and high log-likelihood. This is due to the fact 
that some of the categories overlap each other, as follows:

• eBook Readers, Kindle E-readers, Computers and Tab-
lets, E-Readers and Accessories, E-Readers.

• Electronics, eBook Readers and Accessories, Covers, 
Kindle Store, Amazon Device Accessories, Kindle 
E-Reader Accessories, Kindle (5th Generation) Acces-
sories, Kindle (5th Generation) Covers.

• Electronics, iPad and Tablets, All Tablets, Computers/
Tablets, and Networking, Tablets and eBook Readers, 
Computers and Tablets, E-Readers and Accessories, 
E-Readers, Used:Computers Accessories, Used:Tablets, 
Computers, iPads Tablets, Kindle E-readers, Electronics 
Features.

• Electronics, iPad and Tablets, All Tablets, Computers and 
Tablets, Tablets, eBook Readers.

Moreover, the results of the Content component’s perfor-
mance in Case study 6.4 were the lowest perplexity, against 
the other algorithms for topic modeling in Tweets. This 
means that the component is doing well compared with the 
state-of-the-art algorithms. Furthermore, Case study 6.5 pre-
sented the AUC values for structural link prediction. PRIN 

( C = 100 , K = 100 ) outperformed the others algorithms 
with a sample of 100 users. This can be attributed to their 
lack of representation of the user’s profile. Besides, as shown 
in Fig. 11 from Case study 6.6, our model consistently out-
performs all the baselines, thanks to our modeling various 
diffusion factors and heterogeneous user links, in contrast 
with the baselines in Table 2. Then, in Case study 6.7 is 
observed that the model is highly dependent on the values 
of the K and C parameters. They together exert influence 
on diffusion prediction accuracy. The performance is stable 
under a broad range of parameter settings, indicating little 
tuning is required in actual deployment.

Generally, the quality of the predictions depends on two 
things: the degree to which the original model accurately 
reflects real-world situations, and the amount of data you 
provide. One limitation of our research was the sample size, 
which was too small for large-scale social networks. How-
ever, from the results of those limited number of users, it 
seems that the model can reflect the social influence process 
with high values of AUC.

Moreover, our research only focuses on one type of social 
networks such as Twitter2, the results can be generalized 
to any other social networks such as Diggs3, Reddit4. On 
Twitter, the user action is defined as whether a user posts/
re-tweets a blog on a specific topic. On Digg and Reddit, 
the action is defined as whether a user submits/votes a story 
on a topic.

8  Conclusion and future work

In this paper, we study the social influence modeling prob-
lem. We introduce a Probabilistic Reasoning System for 
Social Influence Analysis (PRIN) to describe the problem 
using a graphical probabilistic model. The model leverages 
both heterogeneous link information, time, and content 
associated with each user in the network to mine topic-level 
influence strength in online social networks.

The extensive experimental results demonstrate the effec-
tiveness of our model. PRIN achieved the best performance 
in the tasks of link prediction and text perplexity among 
several competitors.

The existing models fail to give a complete view of social 
influence interaction dynamics. The proposed model pro-
vides a visual and more in-depth understanding of user inter-
actions, which can intuitively capture the process that drives 
social influence.

2 http://www.twitter.com, a microblogging system.
3 http://www.digg.com, a social news sharing and voting website.
4 https://www.reddit.com/r/socialmedia/, a social sharing website.
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For future work, it is known that users’ behaviors are dis-
tributed in different networks, we are interested in merging 
the information from various social networks and leverage 
the correlation between them to better performance of the 
influence learning. Then, since the proposed model is gen-
erative, this means that arbitrary queries can be answered, 
not only about the probability of a diffusion. It will be inter-
esting to explore other questions such as community mem-
berships and interest detection in a topic. Another interesting 
issue is to employ semisupervised learning to incorporate 
user feedback into our approach. Then, the content com-
ponent could be replaced for a supervised algorithm which 
could improve the accuracy of the predictions. Besides, 
since social networks are growing in size, it will be interest-
ing to explore a distributed implementation of the proposed 
architecture to handle large-scale social networks.
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