
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2019) 9:66
https://doi.org/10.1007/s13278-019-0609-3

ORIGINAL ARTICLE

PLinkSHRINK: a parallel overlapping community detection algorithm
with Link‑Graph for large networks

Yunlei Zhang1 · Dingyi Yin2 · Bin Wu1 · Feiyu Long1 · Yinchang Cui3 · Xun Bian4

Received: 14 May 2019 / Revised: 15 September 2019 / Accepted: 14 October 2019 / Published online: 5 November 2019
© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Abstract
Overlapping communities are pervasive in real-world networks. Therefore, overlapping community detection is an impor-
tant task in network analysis. Recently, many overlapping community detection methods are proposed to achieve different
goals. However, how to detect communities effectively and efficiently is still an open problem. In this paper, we use our
previously proposed method LinkSHRINK to detect overlapping community detection, which is based on density structure
and modularity optimization. It successfully solves the excessive overlapping problem. Moreover, it can detect both over-
lapping communities of multi-granularity and outliers. To deal with very large networks, we choose to sample on the large
graph and then parallelize LinkSHRINK by distributed computing frameworks. Experiments are conducted on benchmark
networks and some real-world networks with known ground-truth communities. The experimental results demonstrate that
LinkSHRINK outperforms most of the baseline methods and its parallel versions PLinkSHRINK and MLinkSHRINK can
process large networks efficiently.

Keywords Overlapping community · Community detection · Link graph · Multi-granularity · SHRINK · Parallelization

1 Introduction

At present, many complex systems are in the form of com-
plex networks or can be modeled by complex network such
as interpersonal relationship in human society and academic
collaboration networks. Complex networks usually present
community structure in which nodes connect densely and
connections between them are sparse. However, in real-
world networks, communities tend to have overlapping

parts, and nodes in the network can be classified into more
than one community. Thus, it is more meaningful to find the
overlapping community structure in complex networks. Cur-
rent overlapping community detection methods are mainly
divided into two categories:

1. Node-based methods This kind of methods is directly
processed on the node graph. Well-known methods in
this kind include spectral clustering method (Li et al.
2018), Clique Percolation Method (CPM) (Palla et al.
2005), label propagation methods COPRA (Gregory
2010), SLPA (Xie and Szymanski 2012), hierarchi-
cal clustering method SHRINKO (Huang et al. 2011)
and density-based methods SCAN (Xu et al. 2007) and
OCDDP (Bai et al. 2017).

2. Link-based methods One kind of link-based methods cal-
culates the similarity between links and then partitions
the links in the network by using link similarity. Well-
known method in this kind is LINK (Ahn et al. 2010).
The other kind of link-based methods cannot directly be
processed on the node graph, but on the edge graph or
link graph induced from node graph. After the transfor-
mation from node graph to link graph has been done, it
uses the non-overlapping community detection method

 * Dingyi Yin
 yindy.bri@chinatelecom.cn

 * Bin Wu
 wubin@bupt.edu.cn

1 Beijing Key Laboratory of Intelligence Telecommunications
Software and Multimedia, School of Computer Science,
Beijing University of Posts and Telecommunications,
Beijing 100876, China

2 User Behavior Big Data Research Center, China Telecom
Beijing Research Institute, Beijing 102200, China

3 Router and VRP Technology Development Department,
Huawei Technologies Co., Ltd., Beijing 100095, China

4 Shenzhen Branch Information Technology Department,
China Merchants Bank, Shenzhen 518000, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-019-0609-3&domain=pdf

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 2 of 17

to detect communities based on link graph. After the
non-overlapping community detection methods finished
on the link structure, each link induced by two nodes
will be classified into a determined community. Thus,
nodes in the network can finally belong to multiple com-
munities. Well-known method of this kind is proposed
by Evans and Lambiotte (2009).

Besides, some novel methods based on stochastic models
such as Brain Ball et al. (2011), Gopalan and Blei (2013)
and Sun et al. (2014) are proposed. Recently, there are also
some novel methods based on nonnegative matrix factoriza-
tion (Zhang et al. 2018) and two-step (Sarswat et al. 2017).
According to the existing two types of methods, we found
there are some shortcomings as follows:

1. Nondeterministic results This situation usually happens
in the methods using label propagation, such as COPRA.
The community label of the nodes is determined by the
random selection of the node label when more than one
pair has the same maximum belonging coefficient, which
means running the method many times in the same net-
work may find different communities every time.

2. Inaccurate communities For the aforementioned meth-
ods, most methods tend to make each node in the net-
work belonging to one community. However, in the
real-world network, not all of the nodes belong to any
community, called isolated nodes. These nodes have
very few connections with others. In Fig. 1, node 6 is an
isolated node which cannot be the member of the com-
munity which contains other five nodes.

3. Excessive overlapping problem There are too many
highly overlapping nodes in the result of community
detection. This phenomenon usually occurs in overlap-
ping community detection based on the link partition.
We will introduce in detail in Sect. 2.

4. Complex parameters Recently, methods (Lim et al.
2014; Zhu et al. 2013) can solve the excessive overlap-

ping problem by improving density-based clustering
method SCAN (Xu et al. 2007). But it comes to the
problem that the experimental results highly depend on
more than two complex parameters. How to reduce the
influence of complex parameters on the algorithm is also
a big challenge.

5. Longer running time For overlapping community detec-
tion based on link partition, it always takes quite long
running time, because the link graph transformed from
node graph can be very large.

Based on the above problems, in our previous work (Yin
et al. 2016),1 we take advantage of both density-based clus-
tering and modularity-based methods to discover determin-
istic overlapping community structure in networks by using
link graph, called LinkSHRINK. However, LinkSHRINK
cannot deal with large-scale network. In this paper, we
extend LinkSHRINK by using Spark, GraphX and Hadoop
to find overlapping communities in large-scale networks.
Our contributions are as follows:

1. We can successfully find not only the communities but
also outliers (Ester et al. 1996). Compared with SCAN
(Xu et al. 2007) requiring parameters � and � , we have
the advantage of only needing one parameter easily
tuned.

2. We introduce the notion of the community overlap
degree � , which is essential in analyzing overlapping
communities in complex network. Our algorithm can
also find the communities with various overlapping
granularity.

3. We choose to sample on the large networks and imple-
ment our algorithm by distributed computing frame-
works Hadoop and Spark GraphX, called MLink-
SHRINK and PLinkSHRINK, respectively.

4. We conduct sufficient experiments to show the advan-
tage of PLinkSHRINK. Experimental results show
that PLinkSHRINK runs faster on large networks than
MLinkSHRINK and LinkSHRINK do. The effective-
ness of PLinkSHRINK is about 1% worse than that of
LinkSHRINK.

The rest of the paper is organized as follows. We first review
the related work in Sect. 2 and introduce some backgrounds
in Sect. 3. Then we elaborate LinkSHRINK algorithm in
short and propose its parallel versions with detailed imple-
mentation in Sect. 4. We also show experimental results in
comparison with existing methods in Sect. 5. Finally, we

Fig. 1 An illustration of the isolated node

1 This manuscript is an extended version of a previous conference
publication (Yin et al. 2016).

Social Network Analysis and Mining (2019) 9:66

1 3

Page 3 of 17 66

summarize our work and suggest future research directions
in Sect. 6.

2 Related work

2.1 Structural clustering algorithm
with parameter‑free

Newman and Girvan (2004) proposed a metric, called modu-
larity, to measure the quality of the detected communities. The
better result of community detection leads to the higher value
of modularity. However, it is demonstrated that the community
detection methods by maximizing modularity can hardly find
small communities (Lancichinetti and Fortunato 2011), called
modularity limit. SCAN (Xu et al. 2007) is a density-based
method to find communities in network. It introduces two
parameters to determine the core vertex. It can find small com-
munities in large network. Moreover, SHRINK (Huang et al.
2010) is proposed to find hierarchical communities requiring
no parameter. It not only finds communities, but also identifies
hubs and outliers by combining density-based clustering and
modularity optimization. Modularity Q (Newman and Girvan
2004) is a metric for evaluating the quality of community dis-
covery which is proposed by Newman and Girvan. Modularity
Q =

∑k

s=1
[
ls

L
− (

ds

2L
)2] , where L is the number of edges in the

network, ls is the number of edges in the community s, ds is
the sum of degree of the nodes in community s. It is suggested
that the higher modularity Q is, the better network partition
result the method gets. However, recent research shows that
network partition with higher modularity Q cannot reveal rela-
tively smaller community structure. It usually tends to identify
larger communities. In order to get rid of the restrictions, com-
pared with the methods based on modularity optimization, the
SHRINK takes advantage of the density theory trying to get
the relatively high modularity Q. In this paper, we are moti-
vated to find overlapping communities in the similar idea with
SHRINK, which breaks the limit of modularity (Fortunato and
Barthelemy 2007).

2.2 Clustering based on link partition

LINK (Ahn et al. 2010) was firstly proposed to find overlap-
ping community by using link partition. The basic idea of
LINK is shown as follows.

Link graph is firstly constructed, and then LINK hierar-
chically clusters the nodes in link graph to detect the com-
munities. Initially, each link community only contains one
link. Then LINK maximizes the value of objective function

as shown in formula (1) by merging two link communities
with the highest similarity.

where M denotes the number of the links in the network, c
denotes a link community, mc represents the number of the
links (edges) in the link community c, nc represents the num-
ber of the nodes in the link community c, the numerator
mc − (nc − 1) denotes the number of edges linking the other
nc − 1 edges induced by nc nodes, the denominator denotes
the maximal number of edges linking the other nc − 1 edges,
mc−(nc−1)

(nc−2)(nc−1)
 denotes the link density in the community c and

D denotes the average link density of all the communities.
After obtaining the link communities, LINK transforms the
link communities into the node communities. The node com-
munity consists of the nodes contained in the edges of the
link community. The edges induced by the common node
belong to different link communities, and the common node
will belong to different node communities. And the common
node will be the overlapping node.

However, LINK partitions each edge into a deter-
mined link community, which may lead to excessive
overlapping problem. As shown in Fig. 2, LINK finds
three link communities colored by yellow, blue and
green, and their corresponding node communities are
{1,2,3,4,5,6},{6,7},{0,7,8,9}.Node 6 and 7 are considered
as overlapping nodes in the network which is actually not in
agreement with the reality.

2.3 Community detection in large networks

The traditional stand-alone algorithms have been unable
to deal with large networks very well. Currently, there are
mainly two ways to solve this problem. One way is to reduce
the size of the large network by sampling which leads to lose

(1)D =
2

M

∑

c

mc

mc − (nc − 1)

(nc − 2)(nc − 1)

Fig. 2 An illustration of the excessive overlapping problem (color fig-
ure online)

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 4 of 17

a little accuracy to exchange for time efficiency. The well-
known method in this field includes Lim et al. (2014). The
other way is the parallelization of existing methods based on
the distributed computing frameworks, such as Hadoop and
Spark. Well-known methods in this field include Qiao et al.
2017 and Jin et al. 2015. Wang et al. (2015) parallelized
the overlapping communities detection algorithm in paral-
lel framework GraphLab. Zeng and Yu (2015) presented a
parallel hierarchical graph clustering algorithm that uses
modularity as clustering criteria to effectively extract com-
munity structures in large graphs of different types. Zhang
et al. (2016) proposed a parallel LPA to detect community
in social network. Li et al. (2015) proposed a parallel multi-
label propagation method to detect overlapping commu-
nities. Wickramaarachchi et al. (2014) and Cheong et al.
(2013) presented efficient approaches to detect communities
in large-scale networks by parallelizing Louvain algorithm
for community detection. Moon et al. (2016) developed two
parallel versions of the GN algorithm to support large-scale
networks based on MapReduce and GraphChi. Kuzmin
et al. (2013) presented highly scalable variants of a commu-
nity detection algorithm called SLPA to detect overlapping
communities of social networks. Thang (2017) parallelized
BigClam (Yang and Leskovec 2013) to detect overlapping
communities.

3 Background

In this section, we introduce method and platforms which
are used in this paper.

1. SHRINK (Huang et al. 2010) detects community based
on density. Due to SHRINK combined modularity opti-
mization-based method with heuristic strategy, it solves
the problem of SCAN (Xu et al. 2007) which detects
community depend on two sensitive parameters, � and � .
And SHRINK keeps the advantage of finding both hub
nodes and outliers. It defines the structural similarity
between two nodes. Let �(u, v) be the structural similar-
ity of nodes u and v. If �(u, v) is the largest similarity
between nodes u, v and their adjacent neighbor nodes,
then {u, v} is a dense pair. A micro-community is a
maximal connected component linked by edges induced
by dense pairs. Greedy SHRINK clusters the network
via greedy shrinkage of the dense pairs. Thus, each
dense pair in a micro-community is considered sepa-
rately. Starting with an arbitrary node u in a network G,
it finds the dense pair containing u. If there is a node v
adjacent to u that forms a dense pair {u, v} and its modu-

larity gain is positive, it merges node v and u to form
a super-node u′ . Then it checks whether there exists a
dense pair containing u′ and tries to shrink it. The above
process is repeated until there does not exist a shrinkable
dense pair containing current node. Then the algorithm
continues with next unvisited node. The clustering is
accomplished when all the nodes in the network G are
visited.

2. Hadoop is a popular open-source software framework
for distributed storage and processing of very large data
deployed on computer clusters. The core of Hadoop
is composed of two parts. The one is the storage part
known as Hadoop distributed file system (HDFS). The
other one is the processing part called MapReduce
engine.

3. Spark is a distributed computing framework which is
designed for low latency and iterative computation
on historical data and streaming data. Compared with
Hadoop, Spark is more suitable for iterative and interac-
tive operations for the reason that Spark has an advanced
DAG execution engine that supports cyclic data flow and
in-memory computing.

4. GraphX is Apache Spark’s API for graphs and graph-
parallel computation. It is a distributed graph processing
framework and supplies rich easy interfaces for graph
computing and mining. GraphX unifies ETL, explora-
tory analysis, and iterative graph computation within a
single system. It also competes on performance with the
fastest graph systems while retaining Spark’s flexibility,
fault tolerance and ease of use.

4 Method

4.1 LinkSHRINK

In this paper, considering drawbacks mentioned above, we
introduce LinkSHRINK which discovers different types
of the communities with diverse levels of overlapping
granularity via parameter � . Some definitions and basic
concepts are shown as follows:

Definition 1 (outliers) Given a network G = (V ,E) ,
where V and E denote the node and edge set in the net-
work G, respectively. There usually are some inde-
pendent nodes, which cannot be grouped into
any communities. We define them as outliers:
Outliers = {v|v ∈ V ,∄V �

i
∈ CR ∧ v ∈ V �

i
} = V − ∪k

i=1
V �
i

 ,
where CR means all the communities detected in the net-
work G.

Social Network Analysis and Mining (2019) 9:66

1 3

Page 5 of 17 66

Definition 2 (Structural similarity) Let G = (V ,E) be a
unweighted undirected network. The structure neighborhood
of a node u is the � (u) containing u and its adjacent nodes:
� (u) = {v ∈ V|{u, v} ∈ E} ∪ {u} . The structural similarity
between two adjacent nodes u and v is then

Definition 3 (Dense Pair) Give a network
G = (V ,E) , �(u, v) is the structural similarity of
nodes u and v. If �(u, v) is the largest similarity
between nodes u, v and their adjacent neighbor nodes:
�(u, v) = max{�(x, y)|(x = u, y ∈ � (u) − {u}) ∨ (x = v, y ∈

� (v) − {v})} , then {u, v} is called a dense pair in G, denoted
by u ↔� v , where � = �(u, v) is the density of pair {u, v}.

Definition 4 (micro-community) Given a network
G = (V ,E) , C(a) = (V �,E�, �) is a connected sub-graph of
G represented by node a. C(a) is a local micro-commu-
nity iff (1) a ∈ V � ; (2) for all u ∈ V �,∃v ∈ V �(u ↔� v) ; (3)
∄u ∈ V(u ↔� v ∧ u ∈ V � ∧ v ∉ V �) , which � is density of
the micro-community C(a) and u ↔� v means similarity �
is the largest similarity between nodes u, v and their adjacent
neighbor nodes.

Definition 5 (community overlap degree) Let set of clusters
CR = {C1,C2,… ,Ck} be the communities found from the
network, where Ci is a set of nodes classified into the same
community i. The community overlap degree � between
community Ci and community Cj can be computed by for-
mula (3), which represents the degree of overlap between
two communities.

where Ci ∩ Cj denotes the length of the intersection
between community Ci and community Cj , and min(|Ci|, |Cj|)
denotes the smaller length between community Ci and com-
munity Cj.

Definition 6 (communi ty connec t ion) Given
a network G = (V ,E) , let C1 connect to C2 iff
∃e(u, v) ∈ E ∧ u ∈ C1 ∧ v ∈ C2 , where C1,C2 ∈ CR.

The overall framework of LinkSHRINK is shown as in
Algorithm 1. It consists of four steps, (1) generating the link
graph (line 1); (2) detecting link communities (line 3); (3)
transforming the link community to the node community
(lines 6–12); and (4) merging communities (line 13).

(2)�(u, v) =
|� (u) ∩ � (v)|
|� (u) ∪ � (v)|

(3)�(Ci,Ck) =
|Ci ∩ Cj|

min(|Ci|, |Cj|)

Algorithm 1 LinkSHRINK
Require:

(i) a graph G=(V,E)
(ii)parameter ω for adjusting the overlap degree

Ensure:
Overlapping communities OC = {C1, C2, . . . , Ck}

1: Get link graph LC(G) = (V ′, E′) by using Link-graph
transformation process in section 4.1.1

2: /* Clustering based on LC(G) (Algorithm 2)*/
3: RLC = StructuralClustering(LC(G));
4: /* Node-Community Transformation */
5: NC ← ∅
6: for each LS ∈ RLC do
7: C ← ∅
8: for each Ve(x,y) in LSi do
9: C ← C ∪ {x, y}
10: NC = NC ∪ C
11: end for
12: end for
13: Get overlapping community OC by using Merge Com-

muntiy process in section 4.1.3
14: return OC

4.1.1 Link‑Graph transformation

Given a graph G = (V ,E) , where V = {v1, v2,… , vn} rep-
resents the node set and E = {e1, e2,… , em} represents the
edge set. Among edges, e = (u, v) represents an edge induced
by two nodes u and v. Edge e(u, v) in the original graph is
corresponding to node ve(u, v) in the link graph. There is
an edge between two nodes in link graph only if their cor-
responding two edges in original graph are induced by a
common node. Figure 3 shows the transformation from an
original graph to a link graph. In Fig. 3, edge (1,2) in origi-
nal graph is transformed to node 1–2 in link graph. Nodes
1–2 and 2–4 in link graph are linked because edges (1,2) and
(2,4) in original graph are induced by the common node 2.

4.1.2 Algorithm based on modularity and hierarchical
clustering

Algorithm 2 shows the procedure of the clustering on the
link graph. This procedure is based on the framework of

Fig. 3 An illustration of the transformation from original graph to
link graph

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 6 of 17

method SHRINK (Huang et al. 2010), and we make some
changes.

Algorithm 2 Structural Clustering Based On The
Link Graph
Require:

A link-graph LC(G) = (V ′, E′)
Ensure:

Set of cluster RLC = {C1, C2, . . . , Ck}
1: RLC ← {{vi}|vi ∈ V ′}
2: while true do
3: //Search the candidate for combining
4: ∆Qs ← 0
5: for each v ∈ V ′ do
6: C(v) ← ∅
7: Queue q
8: q.insert(v)
9: ε ← max{σ(v, x)|x ∈ Γ (v)− {v}}
10: while q.empty() �= true do
11: u ← q.pop()
12: if u = v∨max{σ(u, x)|x ∈ Γ (u)−{u}} = ε

then
13: C(v) ← C(v) ∪ {u}
14: for each w ∈ Γ (u)− {u} do
15: if σ(w, u) = ε then
16: q.insert(w)
17: end if
18: end for
19: end if
20: end while
21: //Merge the candidate micro-communities
22: if |C(v)| > 1 ∧∆Qs(C(v)) > 0 then
23: ṽ ← {v|v ∈ C(v)}
24: RLC ← (RLU − ∪vi∈C(v){{vi}}) ∪ {ṽ}
25: V ′ ← (V ′ − ṽ) ∪ {v1|v1 ∈ C(v)}
26: ∆Qs ← ∆Qs +∆Qs(C(v))
27: end if
28: end for
29: if ∆Qs = 0 then
30: break
31: end if
32: end while
33: return RLC

Initially, each node is considered as an independent
micro-community. Then in lines 4–20, the candidate micro-
community C(i) is obtained, where similarity � between
them is the largest similarity for them and their adjacent
neighbors. After that, in lines 22–27, we use the similarity-
based modularity function Qs proposed by Feng et al. (2007)
to determine whether those candidate micro-communities
can be merged. �Qs can be calculated by formulas (4) and
(5) where USi,j =

∑
u∈Ci,v∈Cj

�(u, v) is the total similarities of
the links between two communities, DSi =

∑
u∈Ci,v∈V

�(u, v)
is the total similarities between nodes in cluster Ci and any
node in the network, and TS =

∑
u,v∈V �(u, v) is the total

similarities between any two nodes in the network.

(4)�Qs =Q
Ci∪Cj

s − QCi

s
− Q

Cj

s

If 𝛥Qs(C) > 0 , nodes in set C will be merged into a new
micro-community MC represented by any node in set C,
called super-node v. All other nodes in set C will be ignored,
and edges induced by them link to the representative super-
node v. Continue this procedure until there are no micro-
communities available to be merged. The procedure of Algo-
rithm 2 is shown in Fig. 4.

4.1.3 Merge community

After the procedure of clustering on the link graph, we
obtain the link partitions which will be transformed into
node communities. Actually, node communities obtained at
this step always tend to have high overlapping degree. To
find communities with different overlapping granularity, we
need to merge communities based on the community over-
lap degree � . The main idea of this step is combining two
connected communities Cx , Cy with �(Cx,Cy) ≥ � where �
denotes threshold value. It is noticed that the set of clusters
NC = {C1,C2,… ,Ck} actually has links between communi-
ties. There exists an edge between cluster Ci and Cj if there
exists edges or an edge between nodes in Ci and Cj . There-
fore, after a round of the merging, we need adjust the edge
structure in clusters NC.

With varying the parameter � , we can find different
kinds of the overlapping communities with different over-
lapping granularity. For example in Fig. 5, our method
can find one overlapping node 7 in the toy network which
LINK can also do. However, LinkSHRINK also finds

(5)
�Qs(C) =

∑
i,j∈{1,2,…,k},i≠j 2USij

TS

−

∑
i,j∈{1,2,…,k},i≠j 2DSi ⋅ DSj

(TS)2

Fig. 4 An illustration of structural clustering

Social Network Analysis and Mining (2019) 9:66

1 3

Page 7 of 17 66

the outlier node 14 which belongs to none of the clus-
ters and LINK cannot do. In Fig. 5b, we find four clusters
with the overlapping nodes 1, 4, 5, 7, 8, 11, 12. It can be
seen that connections between nodes in cluster in Fig. 5a
are relatively more sparse than connection in cluster in
Fig. 5b. Hence, Fig. 5b shows the overlapping granularity
of the community partition is more precise compared with
Fig. 5a. Two types of the overlapping community results
shown in Fig. 5 seem to be reasonable both. However,
most overlapping community detection methods can only
find the result in Fig. 5a. In addition, we also show our
algorithm LinkSHRINK can find reasonable clusters on
other toy networks in Fig. 6.

For the network in Fig. 2, edge e(6, 7) is considered as
a outlier which cannot belong to any cluster in link graph
by our method. Accordingly, we find the overlapping com-
munities solving the excessive overlapping problem which
is shown in Fig. 7.

4.1.4 Running time complexity

Finally, we analyze the computational complexity of Link-
SHRINK. Let n, n′ , m and m′ denote the number of nodes
and edges in the original graph and link graph, respectively.
Let k denote the number of communities. Transforming orig-
inal graph to link graph requires O(mm�) . After forming the
link graph, finding micro-communities using Algorithm 2
requires O(m� log n�) , where log n′ denotes the number of
iteration in Algorithm 2. Transforming link communities
to node communities needs O(n�) computations. Merging
communities requires O(k2) which k is far smaller than n.
Overall, LinkSHRINK requires O(mm� + m� log n� + n� + k2)
computations.

4.2 LinkSHRINK based on parallel computing
framework

For a node x in original graph having l edges with other
nodes, it will generate (l ∗ (l − 1))∕2 new edges in Link-
Graph. Therefore, the size of the Link-Graph is far larger
than the original graph. LinkSHRINK is hard to handle

Fig. 5 An illustration of the results of different overlap degree

Fig. 6 An illustration of the typical overlapping networks

Fig. 7 Community detection result of the network in Fig. 2 by Link-
SHRINK

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 8 of 17

the large networks efficiently due to its time complexity.
To solve this problem, we first sample on the generated
Link-Graph. Then we parallelize the LinkSHRINK based
on Hadoop and Spark, called MLinkSHRINK and PLink-
SHRINK, respectively.

4.2.1 Sample

Sampling can reduce the running time. Let LG = (V �,E�)
be a Link-Graph, for each node v ∈ V � , we take a random
sample of size nv from the set of incident links of v. It is
important to choose size nv . Formula (6) shows the calcula-
tion of nv:

where dv is the degree of node v. For parameter � and � ,
they are set to 2 < dv > or < dv > and 1 respectively which
perform well on all data sets in Sect. 5.

4.2.2 PLinkSHRINK

For spark, we implement the PLinkSHRINK by using
GraphX. There are two main structures in GraphX:
NodeRDD[VD], EdgeRDD[ED], where VD and ED are
the attribute of Node and edge, respectively. Then a graph
G can be created by NodeRDD and EdgeRDD just like
Graph[VD,ED].

(6)nv = min{dv, � + � ln dv}

Algorithm 3 PLinkSHRINK
Require:

(i)a new original graph with new edges G′ = (V,E)
(ii)Link-Graph LG = (V ′, E′)
(iii)label data like (V’id, srcId, dstId)

Ensure:
Set of final clusters OC = {C1, C2, . . . , Ck}

1: //Calculate similarity for Link-Graph
2: Generate original graph RDD G′RDD
3: Generate link graph RDD LG′RDD where node A’s VD

consists of the nodes linked by the edge A in Link-Graph
4: Generate similarityOfNodeGraph RDD simRDD by

aggregateMessages() and OuterJoinV ertices()
5: Generate simGraphRDD where key=nodes connected by

edge in Original graph, value=similarity between them.
6: Generate linkGraphPRDD where key=nodes in Link-

Graph, value=edge(srcId,dstId) in Link-Graph.
7: Generate edgeRDD finalGraphRDD by linkGraph-

PRDD. leftOuterJoin(simGraphRDD)
8: Generate GraphRDD finalGraph using edgeRDD
9: // Cluster on Link-Graph finalGraph
10: The graph for each iteration G(V,E) ← finalGraph
11: Generate link Community OLC ← G.vertices.map()
12: Q ← 1
13: while Q > 0 do
14: message ← G.sendMessage
15: G ← G.join(message)
16: G.sendMessage generate the neighborRDD with

node information
17: G ← G.join(neighborRDD)
18: Calculate deltaQ by G.triplets() then generate

V RDD to be merged
19: commitiyRDD ← V RDD.map()
20: edgeRDD ← G.edges.map()
21: ISGraph ← G.join(V RDD)
22: count ← V RDD.count()
23: if count > 0 then
24: new edgeRDD←

edgeRDD.leftOuterJoin(commnityRDD).
leftOuterJoin(commnityRDD)

25: new edgeRDD merge repeated edges and filter
edge.srcId == edge.dstId

26: // generate IS value for new Graph
27: G ← Graph.fromEdges(new edgeRDD)
28: OLC ← OLC. leftOuterJoin(communityId)
29: G ← G.join(IsRDD).join(edgeMerge)
30: else
31: Q = 0
32: end if
33: end while
34: transform OLC to node Community OC =

{C1, C2, . . . , Ck}
35: return OC

The main process of PLinkSHRINK as shown in Algo-
rithm 3 is on the whole the same as LinkSHRINK. The
main difference between them is that LinkSHRINK merges
one micro-community candidate at each iteration, while
PLinkSHRINK combines all micro-community candidates
at each iteration by two leftOuterJoin Spark RDD actions
which saves a lot of time. Figure 8 shows how the two

Fig. 8 Reconstruction of the Graph

Social Network Analysis and Mining (2019) 9:66

1 3

Page 9 of 17 66

leftOuterJoin actions work, where nodes 1 and 2 need to
be merged and so are the nodes 4 and 5.

Note that, when we calculate similarity for Link-Graph
(lines 3–10), the original graph G′ is the input graph with
new edges which connecting two nodes having at lest one
common neighbor. In lines 27–29, new Link-Graph is gener-
ated with initialing node IS value. Here, we split DSi value
into two parts, one is ISi and the other is OSi where ISi is
total similarities of nodes in micro-community Si , OSi is
total similarities of nodes in micro-community Si and any
other nodes out of the micro-community Si . The relationship
between them shows as formula (7).

For large networks, such as network with millions nodes,
because of the limit of the leftOuterJoin action, the time of
each iteration increases. However, in the last several itera-
tions, there are only very few nodes that need to be merged.
For saving running time, we ignore these left nodes which
will not have a significant impact on the results. Therefore,
we set a threshold � . PLinkSHRINK stops when the propor-
tion of nodes to be merged in Link-Graph is smaller than
threshold � . Here, the set of � is a trade-off between the
effectiveness and efficiency. Given a small � such as 10−4 ,
PLinkSHRINK cannot early stop in a small network which
means PLinkSHRINK stops only if there is no node left to
be merged. However, PLinkSHRINK early stops when the
proportion of nodes to be merged in Link-Graph is smaller
than � in a large network.

4.2.3 MLinkSHRINK

Next, we will introduce the implementation of the parallel
LinkSHRINK algorithm, MLinkSHRINK. MLinkSHRINK
consists of 6 jobs based on MapReduce.

Job1: Calculation of Link-Graph’s Similarity
Map Phase The mapper takes a pair of (key, value) as

input, where key is the node input and value is its adja-
cency node list. The node in the Link-Graph corresponds to
an edge in the original graph. The input node in the Link-
Graph consists of the id of the adjacent nodes. To illustrate
MLinkSHRINK, we take the node and its adjacency node
list < v ∶ v1, v2,… , vs > as an example. Note that one edge
is represented by using the node pair in an increasing order.
For each neighbor node vi(i = 1, 2,… , s) of v, the mapper
emits a (key, value) pair, in which key is the edge(v, vi) and
value is the adjacency node list of v.

Reduce Phase In the reducer, for the key (v, vi) , the cor-
responding values will include the adjacency node lists
of v and vi . The two adjacency node lists consist of all the
information needed to calculate the similarity of the edge,
including the adjacency information of two adjacent nodes

(7)DS = IS + OS

in original graph. Therefore, we can calculate the similarity
of (v, vi) in the reducer.

Job2: Adding the Similarity of the Edge to the Adjacency
Nodes List of the Two Adjacent Nodes.

Map phase The mapper takes a pair of (key, value) as
input, where the key is the input edge and the value is its
similarity. For each adjacent node of the edge, the mapper
emits a (key, value) pair, in which the key is node and the
value is the joint of the other node and the similarity.

Reduce phase The reducer combines all the adjacent
information of every node.

Job3: Calculation of the Sum of the Similarity
Map phase The mapper calculates the sum of the similar-

ity of every node.
Reduce phase The reducer calculates the sum of all the

similarity.
After the above preparation, MLinkSHRINK steps into

the stage of iterations. In the process of each iteration,
MLinkSHRINK needs three jobs which are running in
sequence until the algorithm stops.

Job4: Finding the nodes to be merged
Map phase The mapper takes a pair of (key, value) as

input, where the key is input node and the value is the adja-
cent node list which contains the information of adjacent
nodes and the similarity of the corresponding edge. The
mapper emits a (key, value) pair, in which the key is the
edge with the largest similarity and the value consists of the
set of the cohesion of node, the overall similarity of the node
and the similarity of the edge.

Reduce phase If the size of the received values of the
edge is two, two adjacent nodes, respectively, select the edge
in the map phase. Then the edge can be regarded as a can-
didate edge to be cut. The reducer gets the information of
two nodes and the edge. After the calculation of �Q . If �Q
is positive, reducer outputs the edge. Otherwise, the edge is
cut in the next job.

Job5: Reconstruction of the Graph
In this step, MLinkSHRINK needs to get the informa-

tion of the edge to be cut, which can be obtained by job 4
in advance. Then, the information is saved in hash table for
quickly query.

Map phase The mapper takes a pair of (key, value) as
input, where the key is the input node and the value is
the adjacent node list. Firstly, mapper checks whether this
node is in the hash table. If not, we make this node as the
key to be emitted. Otherwise, some adjacent edges of this
node are to be cut. The mapper gets the information of
the adjacent node from the hash table. If this node id is
smaller than the adjacent node, then we make this node as
the key. And smaller one will be the representative node.
This edge can be cut off. After that, for each adjacent node
in the adjacent list, the reducer checks whether the adja-
cent node is in the hash table. If not, mapper emits a (key,

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 10 of 17

value) pair, in which the value is the joint of the adjacent
node and the similarity of the edge. Otherwise, we get
the adjacent node of the adjacent node from hash table.
Choose the smaller one as the value and combine with the
similarity of the edge as the value to be emitted.

Reduce phase The reducer combines all the information
of adjacent nodes for this node and updates the similar-
ity of the edges. The reducer emits a (key, value) pair,
in which the key is node and the value is the combined
adjacent list. After this phase, we achieved the goal of
reconstruction of the graph.

Job6: Updating the Partition of the Community in the
Link-Graph

Map Phase First communities are obtained in previous
iteration. The mapper takes a pair of (key, value) as input,
where the key is the representative node of the community
and the value is the members of the community. Then we
check whether the representative node is in hash table. If
not, the mapper emits a (key, value) pair, in which the key
is the representative node and the value is the members of
the community. Otherwise, some edges of the representa-
tive node need to be removed. If the representative node
id is smaller than the adjacent nodes obtained from hash
table, the mapper emits a (key, value) pair, in which the
key is the representative node and the value is the mem-
bers of the community. Otherwise, the mapper emits a
(key, value) pair, in which the key is adjacent node and the
value is joint of the representative node and the members
of the community of the representative node.

Reduce Phase The reducer takes a pair of (key, values)
as input. The key is set to be the new representative node
and the combination of information in values to be the
members of the community.

Note that jobs 4, 5 and 6 are repeated until the output
of the job 4 is empty, which means none of the edges are
to be cut. Finally, another job transforms the community
structure of link partition to the node communities.

Both PLinkSHRINK and MLinkSHRINK can find the
same communities as LinkSHRINK does in the toy net-
work in Fig. 4.

5 Experiment

In this section, we evaluate the performance of our pro-
posed algorithm LinkSHRINK using both synthetic bench-
marks and real-world networks. LinkSHRINK is imple-
mented in C++. We compare LinkSHRINK with some
other state-of-the-art overlapping community detection
algorithms which are listed as follows:

1. The CPM (Clique Percolation Method) (Palla et al.
2005)2

2. The COPRA (Community Overlap Propagation Algo-
rithm) (Gregory 2010)3

3. The link partition method: LINK (Ahn et al. 2010)4

4. The link partition method: LINK1. Here, we do a lit-
tle change on the LINK algorithm. We simply delete
the link community which only contains a single edge
founded by LINK.

5. The SHRINKO (Huang et al. 2011): SHRINKO trans-
formed from SHRINK simply by recognizing the hubs
in the network as the overlapping nodes.

6. The OCDDP (Bai et al. 2017): OCDDP detects overlap-
ping communities based on density peaks. It adopts a
similarity-based method to set distances among nodes,
a three-step process to select cores of communities and
membership vectors to represent belongings of nodes.

7. The GraphSAGE (Hamilton et al. 2017): GraphSAGE is
a network embedding approach which maps the nodes in
network into low-dimension vector, and then we adopt
fuzzy C-means method (Bezdek et al. 1984) to detect
overlapping communities.

8. The PBigClam (Thang 2017): PBigClam is a parallel
version of BigClam (Yang and Leskovec 2013) which
detects overlapping communities by using nonnegative
matrix factorization.

All stand-alone experiments are conducted on a 2.66-GHz
and 8-GB RAM Pentium IV computer.

For PLinkSHRINK and MLinkSHRINK, we conduct
experiments on some small networks to verify the correct-
ness of the results compared with LinkSHRINK. Then we
also conduct experiments on some larger networks to com-
pare time performance among them.

We deploy PLinkSHRINK and MLinkSHRINK on a clus-
ter of five nodes as DataNodes and NodeManagers, within
which one node acts as both NameNode and Resource-
Manager. The hardware specific of each node is Intel Xeon
E5-2620 v2 CPU, 64 GB main memory. Hadoop version
is 2.6.0, while Spark version is 1.5.1. Spark is operating in
conjunction with Hadoop in the scheme of ON YARN.

5.1 Synthetic networks

1. Data Sets For synthetic networks, we adopt the LFR
benchmark networks (Lancichinetti and Fortunato
2009). Some important parameters of the benchmark
network are shown in Table 1.

2 http://www.cfind er.org/.
3 http://www.cs.bris.ac.uk/steve /netwo rks/softw are/copra .html.
4 http://barab asila b.neu.edu/proje cts/linkc ommun ities /.

http://www.cfinder.org/
http://www.cs.bris.ac.uk/steve/networks/software/copra.html
http://barabasilab.neu.edu/projects/linkcommunities/

Social Network Analysis and Mining (2019) 9:66

1 3

Page 11 of 17 66

2. Evaluation Metric The ground-truth community is given
in the synthetic network. Hence, we use an extended
version of the normalized mutual information (NMI)
for overlapping community detection proposed by Lan-
cichinetti et al. (2009). So far, NMI is the most famous
and widely used to evaluate the result of the community
detection on the networks with the ground-truth com-
munity. The larger NMI is, the better cluster result is.
The value of NMI is from 0 to 1. NMI equal to 1 means
two partitions of the network are identical and equal to
0 on the contrary.

 NMI can be computed by formula (8), where X and Y
denote the cluster partitions and H(X|Y) represents the
normalized conditional entropy of a cover X with respect
to Y which is shown in formula (9). Here, C represents
the real community partition of a network.

3. Parameters Set The main parameters of LFR benchmark
networks are shown in Table 2.

Here, for S1, S2 and S4, S5, parameter on is set to 100
and 300 which represent networks with less and more over-
lapping nodes, respectively. For S1 and S3, parameter mu
is set to 0.1 and 0.3 which represent networks with low and

(8)NMI(X|Y) = 1 − [H(X|Y) + H(Y|X)]∕2

(9)H(X|Y) = 1

|C|
∑

k

H(Xk|Y)
H(Xk)

high mixing degree, respectively. S6 represents networks
with varying degree k .

The parameters of each algorithm are set as follows: k in
CPM is set to 3–8, v in COPRA is set to 2–10, � in Link-
SHRINK is set to 0.5–1. We always adopt the best experi-
mental results of every method. Here LinkSHRINK does
not consider the useless small communities, and we can
simply delete the community in which the number of nodes
is smaller than the minc . Figure 9 shows the community
detection results on six groups of LFR benchmark networks
by using eight algorithms mentioned above, respectively. It
is noticed that LS, CPM, GS, L, L1, COPRA, SO, OCDDP
represent LinkSHRINK, CPM, GraphSAGE, LINK, LINK1,
COPRA, SHRINKO, OCDDP methods, respectively.

1. Compared with LINK and LINK1 On every LFR bench-
mark network, our algorithm performs better than LINK
and LINK1 do. This is because our algorithm is more
reasonable to deal with the isolated edges in networks.

2. Compared with COPRA It can be seen, the NMI of the
community detection result by our algorithm is better
than COPRA almost on all the LFR benchmark networks
except some networks such as S6 with the k = 12, 15
and S1 with the om = 6 . With the increase in om, find-
ing overlapping community becomes more difficult and
the NMI of these networks by our algorithm showing a
downward trend which is reasonable. However, results
of COPRA have a vibration trend for the reason that the
result of COPRA is nondeterministic.

3. Compared with CPM The NMI of our algorithm is bet-
ter than that of CPM on all of the LFR benchmark net-
works.

4. Compared with SHRINKO As the COPRA, our algo-
rithm performs better than SHRINKO on most of the
LFR benchmark networks except the networks S1
with the om = 6 and S3 with the om = 6 . However,
SHRINKO comes to the problem of the having vibra-
tion trend obviously what we mentioned in Sect. 2.

5. Compared with OCDDP Overall, OCDDP almost has the
same performance with LinkSHRINK. LinkSHRINK
only obtains 15 of 30 better results than OCDDP does.

6. Compared with GraphSAGE The NMI of our algo-
rithm is better than that of GraphSAGE on most of the

Table 1 Parameters of the benchmark network

Parameter name Description

N Number of nodes
k Average degree
max_k Maximum degree
min_c Minimum community size
max_c Maximum community size
on Number of overlapping nodes
om Number of memberships of

the overlapping nodes
mu Mixing parameter

Table 2 Statistics of LFR
benchmark networks

ID N k max_k min_c max_c on om mu

S1 1000 10 50 10 50 100 – 0.1
S2 1000 10 50 10 50 300 – 0.1
S3 1000 10 50 10 50 100 – 0.3
S4 1000 10 30 10 50 100 2 –
S5 1000 10 30 10 50 300 2 –
S6 1000 – 30 10 50 100 2 0.1

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 12 of 17

LFR benchmark networks except the networks S2 with
om = 5, 6.

As shown above, LinkSHRINK can find better overlap-
ping community structure on synthetic networks compared
with some others mentioned above.

To evaluate sampling on Link-Graph, we conduct experi-
ments on some larger synthetic networks whose detail is
shown in Table 3. Here, we process LinkSHRINK on every

data set which has two versions: one is generating Link-
Graph with sampling, and the other is generating Link-Graph
without sampling. The results are shown in Figs. 10 and 11.

It can be seen that sampling on the data set has nonsig-
nificant impact on the performance. However, its running
time reduces by about 30 percents and the level of the time
reduction is proportional to the size of the data.

Fig. 9 Overlapping community
detection results on synthetic
networks

2 3 4 5 6
om

0

0.2

0.4

0.6

0.8

1

O
ve

rla
pp

in
g

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LS CPM GS L L1 COPRA SO OCDDP

(a) Results on S1

2 3 4 5 6
om

0

0.2

0.4

0.6

0.8

1

O
ve

rla
pp

in
g

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LS CPM GS L L1 COPRA SO OCDDP

(b) Results on S2

2 3 4 5 6
om

0

0.2

0.4

0.6

0.8

1

O
ve

rla
pp

in
g

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LS CPM GS L L1 COPRA SO OCDDP

(c) Results on S3

0.10 0.15 0.20 0.25 0.30
mixing parameter

0

0.2

0.4

0.6

0.8

1

O
ve

rla
pp

in
g

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LS CPM GS L L1 COPRA SO OCDDP

(d) Results on S4

0.10 0.15 0.20 0.25 0.30
mixing parameter

0

0.2

0.4

0.6

0.8

1

O
ve

rla
pp

in
g

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LS CPM GS L L1 COPRA SO OCDDP

(e) Results on S5

5 8 10 12 15
degree

0

0.2

0.4

0.6

0.8

1

O
ve

rla
pp

in
g

N
or

m
al

iz
ed

 M
ut

ua
l I

nf
or

m
at

io
n

LS CPM GS L L1 COPRA SO OCDDP

(f) Results on S6

Social Network Analysis and Mining (2019) 9:66

1 3

Page 13 of 17 66

5.2 Real‑world networks

1. Data Sets
 For real-world networks, we choose four very clas-

sic and commonly used community evaluation data sets
whose details are shown in Table 4:

2. Evaluation Metrics
 Due to the unknown ground truth in real-world net-

works, we cannot adopt NMI to evaluate the effective-
ness of the community detection methods. Accordingly,
we use extended modularity QE

ov
 (Shen et al. 2009) for

overlapping community detection which uses the num-
ber of communities to which a node belongs as a weight
for Q as shown in formula (10).

where Oi denotes the number of communities to which
node i belongs. Aij is equal to 1 if there is an edge
between nodes i and j, otherwise 0. ki denotes the degree
of the node i. m denotes the number of all edges in the
network and c denotes a community.

 Figure 12 shows a comparison between our three
algorithms and other six methods: COPRA, SHRINKO,
LINK, OCDDP, GraphSAGE and PBigClam. All the
parameters set are the same as the parameters set in the
LFR benchmark. From the results, we can see that the
performances of our three approaches are better than
SHRINKO and much better than the other five meth-
ods on most networks. Besides, we can see our methods
LinkSHRINK, PLinkSHRINK and MLinkSHRINK
have almost the same performance on these data sets.

3. Example: PDZBase Network
 PDZBase network is a network of protein–protein

interactions from PDZBase. The community structures
in this network majorly present radiation and star-like
structure. Overlapping community detection algorithms
based on node-structure is more difficult to find the star-
like community structure. As illustrated in Fig. 13, the
LinkSHRINK algorithm can achieve good result on this
network, where 19 communities as well as 1 outlier are
found. Almost all communities present the shape of star
which seems very reasonable. However, COPRA is dif-
ficult to find communities in this network and achieves
the lowest value of QE

ov
 observed in Fig. 12.

(10)QE
ov
=

1

2m

∑

c

∑

i,j∈c

[
Aij −

kikj

2m

]
1

OiOj

Table 3 Statistics of lager
networks

ID N k max_k mu on om

L1 5000 15 30 0.1 500 3
L2 6000 15 30 0.1 600 3
L3 8000 15 30 0.1 800 3
L4 9000 15 30 0.1 900 3
L5 10,000 15 30 0.1 1000 3

Fig. 10 Comparison of running time (seconds)

Fig. 11 Comparison of performance

Table 4 Statistics of real-world networks

Data set V E Data set V E

Karate club 34 78 Euroroad 1109 1367
PDZBase 164 209 Power 4941 6594

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 14 of 17

4. Large Network
 For large real-world networks, we choose DBLP col-

laboration network with 317,080 nodes and 1,049,866
edges. After transforming original graph into link graph,

there are about 1,049,866 nodes and 21,780,889 edges in
link graph which becomes a huge network. After sam-
pling on the original network with the parameters � and
� being equal to 1 ×⟨dv⟩ and 1, the edges in link graph
descend about 67 percent which looks very effective in
Fig. 14.

We run algorithms LinkSHRINK, PLinkSHRINK and
MLinkSHRINK on the link graph transformed from DBLP
network. Here parameter � for PLinkSHRINK is set to
0.0001 which is quite small. Note that LinkSHRINK can-
not finish for the reason that computation resources such as
CPU and memory are overflowed, while PLinkSHRINK,
MLinkSHRINK and PBigClam finish in 3, 6.3 and 5.4 h,
respectively, shown in Fig. 15. PLinkSHRINK finds more
than 76,400 author communities whose size distribution is
shown in Fig. 16.

Karate Power PDZBase Euroroad
Dataset

0

0.1

0.2

0.3

0.4

0.5

0.6
O

ve
rla

pp
in

g
M

od
ul

ar
ity

COPRA
SHRINKO
LINK
LinkSHRINK
PLinkSHRINK
MLinkSHRINK
OCDDP
GraphSAGE
PBigClam

Fig. 12 Comparison in terms of overlapping modularity QE

ov

Fig. 13 The clustering result of LinkSHRINK on the PDZBase net-
work

Fig. 14 Comparison of network size before and after sampling on the
DBLP network

PLinkSHRINK PBigClam MLinkSHRINK
0

1

2

3

4

5

6

7

R
un

ni
ng

 T
im

e(
H

ou
rs

)

Fig. 15 Comparison of running time on DBLP network

Social Network Analysis and Mining (2019) 9:66

1 3

Page 15 of 17 66

For Spark, the running time of PLinkSHRINK corre-
lates with the executer cores. Performance improving by
increasing number of cores is shown in Fig. 17. For cases of

executer cores are at least and most, the running time differ-
ence between them is close to 1 h.

Besides, we use LFR benchmark to generate five large
networks from 100,000 nodes to 300,000 nodes, the detail
of data set is shown as in Table 5.

Note that LinkSHRINK cannot finish on these large data
sets. However, by sampling on the data sets and the dis-
tributed computing framework, we can complete overlap-
ping community detection in a reasonable period of time,
especially PLinkSHRINK. As shown in Fig. 18, the running
time of MLinkSHRINK increases more strongly. PBigClam
needs longer running time than PLinkSHRINK does. On
the other hand, the running time of PLinkSHRINK is 80
percent lower than that of MLinkSHRINK. The reason is
that LinkSHRINK is iterative which is better by Spark. For
MLinkSHRINK, each iteration needs to start three jobs need
more time. When there are too many iterations, that will be
a big expense.

6 Conclusions

LinkSHRINK is overlapping community detection method
combining density-based clustering with modularity optimi-
zation. It maximizes modularity by using density-based clus-
tering in link graph. Finally, it finds overlapping communities
by merging reductant nodes with parameter � . LinkSHRINK
not only finds overlapping communities, but also identifies the
hubs and outliers. It avoids the problem of excessive overlap-
ping problem and reveals the overlapping community structure
with different overlap degrees by using parameter � . To make
LinkSHRINK handle large network, we sample the Link-
Graph to improve the efficiency with losing little accuracy.
Meanwhile, we implement LinkSHRINK based on Spark and
Hadoop. LinkSHRINK outperforms state-of-the-art methods
on the synthetic and real-world networks. PLinkSHRINK and
MLinkSHRINK can also find communities in large network
with millions of edges efficiently without losing accuracy
much. In the future, we would like to extend LinkSHRINK
to detect overlapping communities in dynamic networks and
in larger networks, such as networks with millions of nodes.

0 100 200 300 400 500 600 700

Number of Nodes per Community

100

101

102

103

104

105
N

um
be

r
of

 C
om

m
un

iti
es

Fig. 16 Community distribution detected by PLinkSHRINK

Fig. 17 Speedup of different number of cores on DBLP

Table 5 Statistics of large
synthetic networks

ID N (k) k max_k mu on (k) om E

L6 100 15 20 0.1 10 3 980,538
L7 150 15 20 0.1 15 3 2,178,006
L8 200 15 20 0.1 20 3 2,904,726
L9 250 15 20 0.1 25 3 3,630,770
L10 300 15 20 0.1 30 3 4,352,964

 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 16 of 17

Acknowledgements This work is supported by the National Key R&D
Program of China under Grant 2018YFC0831500. We are grateful
to the anonymous reviewers for their careful reading and valuable
suggestions.

References

Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal mul-
tiscale complexity in networks. Nature 466(7307):761

Bai X, Yang P, Shi X (2017) An overlapping community detection
algorithm based on density peaks. Neurocomputing 226:7–15

Ball B, Karrer B, Newman ME (2011) Efficient and principled method
for detecting communities in networks. Phys Rev E 84(3):036103

Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means cluster-
ing algorithm. Comput Geosci 10(2–3):191–203

Cheong CY, Huynh HP, Lo D, Goh RSM (2013) Hierarchical paral-
lel algorithm for modularity-based community detection using
gpus. In: European conference on parallel processing, Springer,
pp 775–787

Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm
for discovering clusters in large spatial databases with noise. In:
International conference on knowledge discovery and data mining,
AAAI Press, pp 226–231

Evans T, Lambiotte R (2009) Line graphs, link partitions, and overlap-
ping communities. Phys Rev E 80(1):016105

Feng Z, Xu X, Yuruk N, Schweiger TA (2007) A novel similarity-based
modularity function for graph partitioning. In: International con-
ference on data warehousing and knowledge discovery, Springer,
pp 385–396

Fortunato S, Barthelemy M (2007) Resolution limit in community
detection. Proc Natl Acad Sci 104(1):36–41

Gopalan PK, Blei DM (2013) Efficient discovery of overlap-
ping communities in massive networks. Proc Natl Acad Sci
110(36):14534–14539

Gregory S (2010) Finding overlapping communities in networks by
label propagation. New J Phys 12(10):103018

Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learn-
ing on large graphs. In: Advances in neural information processing
systems, pp 1024–1034

Huang J, Sun H, Han J, Deng H, Sun Y, Liu Y (2010) Shrink: a struc-
tural clustering algorithm for detecting hierarchical communities

in networks. In: ACM international conference on information and
knowledge management, ACM, pp 219–228

Huang J, Sun H, Han J, Feng B (2011) Density-based shrinkage for
revealing hierarchical and overlapping community structure in
networks. Phys A Stat Mech Appl 390(11):2160–2171

Jin S, Yu PS, Li S, Yang S (2015) A parallel community structure min-
ing method in big social networks. Math Probl Eng 2015:934301

Kuzmin K, Shah SY, Szymanski BK (2013) Parallel overlapping com-
munity detection with slpa. In: 2013 international conference on
social computing, IEEE, pp 204–212

Lancichinetti A, Fortunato S (2009) Benchmarks for testing commu-
nity detection algorithms on directed and weighted graphs with
overlapping communities. Phys Rev E 80(1):016118

Lancichinetti A, Fortunato S (2011) Limits of modularity maximization
in community detection. Phys Rev E 84(6):066122

Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlap-
ping and hierarchical community structure in complex networks.
New J Phys 11(3):033015

Li R, Guo W, Guo K, Qiu Q (2015) Parallel multi-label propagation
for overlapping community detection in large-scale networks. In:
International workshop on multi-disciplinary trends in artificial
intelligence, Springer, pp 351–362

Li Y, He K, Kloster K, Bindel D, Hopcroft J (2018) Local spectral clus-
tering for overlapping community detecion. ACM Trans Knowl
Discov Data 12(2):17

Lim S, Ryu S, Kwon S, Jung K, Lee JG (2014) Linkscan*: overlap-
ping community detection using the link-space transformation.
In: IEEE international conference on data engineering, IEEE, pp
292–303

Moon S, Lee JG, Kang M, Choy M, Jw Lee (2016) Parallel commu-
nity detection on large graphs with mapreduce and graphchi. Data
Knowl Eng 104:17–31

Newman ME, Girvan M (2004) Finding and evaluating community
structure in networks. Phys Rev E 69(2):026113

Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the over-
lapping community structure of complex networks in nature and
society. Nature 435(7043):814

Qiao S, Guo J, Han N, Zhang X, Yuan C, Tang C (2017) Parallel
algorithm for discovering communities in large-scale complex
networks. Chin J Comput

Sarswat A, Jami V, Guddeti RMR (2017) A novel two-step approach for
overlapping community detection in social networks. Soc Netw
Anal Min 7(1):47

Shen H, Cheng X, Guo J (2009) Quantifying and identifying the over-
lapping community structure in networks. J Stat Mech Theory
Exp 2009(07):P07042

Sun B, Shen H, Cheng X (2014) Detecting overlapping communities
in massive networks. Europhys Lett 108(6):68001

Thang ND (2017) Community detection in large-scale networks. Mas-
ter’s thesis, ThangLong University

Wang S, Dong Y, Li Z, Chen H, Qian J (2015) The identification of
overlapping communities in large-scale complex networks. Acta
Electron Sin 43(8):1575–1581

Wickramaarachchi C, Frincu M, Small P, Prasanna VK (2014) Fast
parallel algorithm for unfolding of communities in large graphs.
In: 2014 IEEE high performance extreme computing conference,
IEEE, pp 1–6

Xie J, Szymanski BK (2012) Towards linear time overlapping commu-
nity detection in social networks. In: Pacific-Asia conference on
knowledge discovery and data mining, Springer, pp 25–36

Xu X, Yuruk N, Feng Z, Schweiger TA (2007) Scan: a structural clus-
tering algorithm for networks. In: ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp
824–833

Yang J, Leskovec J (2013) Overlapping community detection at scale:
a nonnegative matrix factorization approach. In: Proceedings of

L6 L7 L8 L9 L10
Dataset

0

2

4

6

8

10

R
un

ni
ng

 T
im

e(
H

ou
rs

)
PLinkSHRINK
MLinkSHRINK
PBigClam

Fig. 18 Running time comparison among MLinkSHRINK, PLink-
SHRINK and PBigClam

Social Network Analysis and Mining (2019) 9:66

1 3

Page 17 of 17 66

the sixth ACM international conference on Web search and data
mining, ACM, pp 587–596

Yin D, Wu B, Zhang Y (2016) Linkshrink: overlapping community
detection with link-graph. In: IEEE international conference on
data science in cyberspace, IEEE, pp 44–53

Zeng J, Yu H (2015) Parallel modularity-based community detection
on large-scale graphs. In: 2015 IEEE international conference on
cluster computing, IEEE, pp 1–10

Zhang H, Niu X, King I, Lyu MR (2018) Overlapping community
detection with preference and locality information: a non-negative
matrix factorization approach. Soc Netw Anal Min 8(1):43

Zhang Q, Qiu Q, Guo W, Guo K, Xiong N (2016) A social commu-
nity detection algorithm based on parallel grey label propagation.
Comput Netw 107:133–143

Zhu M, Meng F, Zhou Y (2013) Density-based link clustering algo-
rithm for overlapping community detection. J Comput Res Dev
12(006)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	PLinkSHRINK: a parallel overlapping community detection algorithm with Link-Graph for large networks
	Abstract
	1 Introduction
	2 Related work
	2.1 Structural clustering algorithm with parameter-free
	2.2 Clustering based on link partition
	2.3 Community detection in large networks

	3 Background
	4 Method
	4.1 LinkSHRINK
	4.1.1 Link-Graph transformation
	4.1.2 Algorithm based on modularity and hierarchical clustering
	4.1.3 Merge community
	4.1.4 Running time complexity

	4.2 LinkSHRINK based on parallel computing framework
	4.2.1 Sample
	4.2.2 PLinkSHRINK
	4.2.3 MLinkSHRINK

	5 Experiment
	5.1 Synthetic networks
	5.2 Real-world networks

	6 Conclusions
	Acknowledgements
	References

