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Abstract
Overlapping communities are pervasive in real-world networks. Therefore, overlapping community detection is an impor-
tant task in network analysis. Recently, many overlapping community detection methods are proposed to achieve different 
goals. However, how to detect communities effectively and efficiently is still an open problem. In this paper, we use our 
previously proposed method LinkSHRINK to detect overlapping community detection, which is based on density structure 
and modularity optimization. It successfully solves the excessive overlapping problem. Moreover, it can detect both over-
lapping communities of multi-granularity and outliers. To deal with very large networks, we choose to sample on the large 
graph and then parallelize LinkSHRINK by distributed computing frameworks. Experiments are conducted on benchmark 
networks and some real-world networks with known ground-truth communities. The experimental results demonstrate that 
LinkSHRINK outperforms most of the baseline methods and its parallel versions PLinkSHRINK and MLinkSHRINK can 
process large networks efficiently.
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1 Introduction

At present, many complex systems are in the form of com-
plex networks or can be modeled by complex network such 
as interpersonal relationship in human society and academic 
collaboration networks. Complex networks usually present 
community structure in which nodes connect densely and 
connections between them are sparse. However, in real-
world networks, communities tend to have overlapping 

parts, and nodes in the network can be classified into more 
than one community. Thus, it is more meaningful to find the 
overlapping community structure in complex networks. Cur-
rent overlapping community detection methods are mainly 
divided into two categories:

1. Node-based methods This kind of methods is directly 
processed on the node graph. Well-known methods in 
this kind include spectral clustering method (Li et al. 
2018), Clique Percolation Method (CPM) (Palla et al. 
2005), label propagation methods COPRA (Gregory 
2010), SLPA (Xie and Szymanski 2012), hierarchi-
cal clustering method SHRINKO (Huang et al. 2011) 
and density-based methods SCAN (Xu et al. 2007) and 
OCDDP (Bai et al. 2017).

2. Link-based methods One kind of link-based methods cal-
culates the similarity between links and then partitions 
the links in the network by using link similarity. Well-
known method in this kind is LINK (Ahn et al. 2010). 
The other kind of link-based methods cannot directly be 
processed on the node graph, but on the edge graph or 
link graph induced from node graph. After the transfor-
mation from node graph to link graph has been done, it 
uses the non-overlapping community detection method 
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to detect communities based on link graph. After the 
non-overlapping community detection methods finished 
on the link structure, each link induced by two nodes 
will be classified into a determined community. Thus, 
nodes in the network can finally belong to multiple com-
munities. Well-known method of this kind is proposed 
by Evans and Lambiotte (2009).

Besides, some novel methods based on stochastic models 
such as Brain Ball et al. (2011), Gopalan and Blei (2013) 
and Sun et al. (2014) are proposed. Recently, there are also 
some novel methods based on nonnegative matrix factoriza-
tion (Zhang et al. 2018) and two-step (Sarswat et al. 2017). 
According to the existing two types of methods, we found 
there are some shortcomings as follows:

1. Nondeterministic results This situation usually happens 
in the methods using label propagation, such as COPRA. 
The community label of the nodes is determined by the 
random selection of the node label when more than one 
pair has the same maximum belonging coefficient, which 
means running the method many times in the same net-
work may find different communities every time.

2. Inaccurate communities For the aforementioned meth-
ods, most methods tend to make each node in the net-
work belonging to one community. However, in the 
real-world network, not all of the nodes belong to any 
community, called isolated nodes. These nodes have 
very few connections with others. In Fig. 1, node 6 is an 
isolated node which cannot be the member of the com-
munity which contains other five nodes.

3. Excessive overlapping problem There are too many 
highly overlapping nodes in the result of community 
detection. This phenomenon usually occurs in overlap-
ping community detection based on the link partition. 
We will introduce in detail in Sect. 2.

4. Complex parameters Recently, methods (Lim et  al. 
2014; Zhu et al. 2013) can solve the excessive overlap-

ping problem by improving density-based clustering 
method SCAN (Xu et al. 2007). But it comes to the 
problem that the experimental results highly depend on 
more than two complex parameters. How to reduce the 
influence of complex parameters on the algorithm is also 
a big challenge.

5. Longer running time For overlapping community detec-
tion based on link partition, it always takes quite long 
running time, because the link graph transformed from 
node graph can be very large.

Based on the above problems, in our previous work (Yin 
et al. 2016),1 we take advantage of both density-based clus-
tering and modularity-based methods to discover determin-
istic overlapping community structure in networks by using 
link graph, called LinkSHRINK. However, LinkSHRINK 
cannot deal with large-scale network. In this paper, we 
extend LinkSHRINK by using Spark, GraphX and Hadoop 
to find overlapping communities in large-scale networks. 
Our contributions are as follows:

1. We can successfully find not only the communities but 
also outliers (Ester et al. 1996). Compared with SCAN 
(Xu et al. 2007) requiring parameters � and � , we have 
the advantage of only needing one parameter easily 
tuned.

2. We introduce the notion of the community overlap 
degree � , which is essential in analyzing overlapping 
communities in complex network. Our algorithm can 
also find the communities with various overlapping 
granularity.

3. We choose to sample on the large networks and imple-
ment our algorithm by distributed computing frame-
works Hadoop and Spark GraphX, called MLink-
SHRINK and PLinkSHRINK, respectively.

4. We conduct sufficient experiments to show the advan-
tage of PLinkSHRINK. Experimental results show 
that PLinkSHRINK runs faster on large networks than 
MLinkSHRINK and LinkSHRINK do. The effective-
ness of PLinkSHRINK is about 1% worse than that of 
LinkSHRINK.

The rest of the paper is organized as follows. We first review 
the related work in Sect. 2 and introduce some backgrounds 
in Sect. 3. Then we elaborate LinkSHRINK algorithm in 
short and propose its parallel versions with detailed imple-
mentation in Sect. 4. We also show experimental results in 
comparison with existing methods in Sect. 5. Finally, we 

Fig. 1  An illustration of the isolated node

1 This manuscript is an extended version of a previous conference 
publication (Yin et al. 2016).
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summarize our work and suggest future research directions 
in Sect. 6.

2  Related work

2.1  Structural clustering algorithm 
with parameter‑free

Newman and Girvan (2004) proposed a metric, called modu-
larity, to measure the quality of the detected communities. The 
better result of community detection leads to the higher value 
of modularity. However, it is demonstrated that the community 
detection methods by maximizing modularity can hardly find 
small communities (Lancichinetti and Fortunato 2011), called 
modularity limit. SCAN (Xu et al. 2007) is a density-based 
method to find communities in network. It introduces two 
parameters to determine the core vertex. It can find small com-
munities in large network. Moreover, SHRINK (Huang et al. 
2010) is proposed to find hierarchical communities requiring 
no parameter. It not only finds communities, but also identifies 
hubs and outliers by combining density-based clustering and 
modularity optimization. Modularity Q (Newman and Girvan 
2004) is a metric for evaluating the quality of community dis-
covery which is proposed by Newman and Girvan. Modularity 
Q =

∑k

s=1
[
ls

L
− (

ds

2L
)2] , where L is the number of edges in the 

network, ls is the number of edges in the community s, ds is 
the sum of degree of the nodes in community s. It is suggested 
that the higher modularity Q is, the better network partition 
result the method gets. However, recent research shows that 
network partition with higher modularity Q cannot reveal rela-
tively smaller community structure. It usually tends to identify 
larger communities. In order to get rid of the restrictions, com-
pared with the methods based on modularity optimization, the 
SHRINK takes advantage of the density theory trying to get 
the relatively high modularity Q. In this paper, we are moti-
vated to find overlapping communities in the similar idea with 
SHRINK, which breaks the limit of modularity (Fortunato and 
Barthelemy 2007).

2.2  Clustering based on link partition

LINK (Ahn et al. 2010) was firstly proposed to find overlap-
ping community by using link partition. The basic idea of 
LINK is shown as follows.

Link graph is firstly constructed, and then LINK hierar-
chically clusters the nodes in link graph to detect the com-
munities. Initially, each link community only contains one 
link. Then LINK maximizes the value of objective function 

as shown in formula (1) by merging two link communities 
with the highest similarity.

where M denotes the number of the links in the network, c 
denotes a link community, mc represents the number of the 
links (edges) in the link community c, nc represents the num-
ber of the nodes in the link community c, the numerator 
mc − (nc − 1) denotes the number of edges linking the other 
nc − 1 edges induced by nc nodes, the denominator denotes 
the maximal number of edges linking the other nc − 1 edges, 
mc−(nc−1)

(nc−2)(nc−1)
 denotes the link density in the community c and 

D denotes the average link density of all the communities. 
After obtaining the link communities, LINK transforms the 
link communities into the node communities. The node com-
munity consists of the nodes contained in the edges of the 
link community. The edges induced by the common node 
belong to different link communities, and the common node 
will belong to different node communities. And the common 
node will be the overlapping node.

However, LINK partitions each edge into a deter-
mined link community, which may lead to excessive 
overlapping problem. As shown in Fig.  2, LINK finds 
three link communities colored by yellow, blue and 
green, and their corresponding node communities are 
{1,2,3,4,5,6},{6,7},{0,7,8,9}.Node 6 and 7 are considered 
as overlapping nodes in the network which is actually not in 
agreement with the reality.

2.3  Community detection in large networks

The traditional stand-alone algorithms have been unable 
to deal with large networks very well. Currently, there are 
mainly two ways to solve this problem. One way is to reduce 
the size of the large network by sampling which leads to lose 

(1)D =
2

M

∑

c

mc

mc − (nc − 1)

(nc − 2)(nc − 1)

Fig. 2  An illustration of the excessive overlapping problem (color fig-
ure online)



 Social Network Analysis and Mining (2019) 9:66

1 3

66 Page 4 of 17

a little accuracy to exchange for time efficiency. The well-
known method in this field includes Lim et al. (2014). The 
other way is the parallelization of existing methods based on 
the distributed computing frameworks, such as Hadoop and 
Spark. Well-known methods in this field include Qiao et al. 
2017 and Jin et al. 2015. Wang et al. (2015) parallelized 
the overlapping communities detection algorithm in paral-
lel framework GraphLab. Zeng and Yu (2015) presented a 
parallel hierarchical graph clustering algorithm that uses 
modularity as clustering criteria to effectively extract com-
munity structures in large graphs of different types. Zhang 
et al. (2016) proposed a parallel LPA to detect community 
in social network. Li et al. (2015) proposed a parallel multi-
label propagation method to detect overlapping commu-
nities. Wickramaarachchi et al. (2014) and Cheong et al. 
(2013) presented efficient approaches to detect communities 
in large-scale networks by parallelizing Louvain algorithm 
for community detection. Moon et al. (2016) developed two 
parallel versions of the GN algorithm to support large-scale 
networks based on MapReduce and GraphChi. Kuzmin 
et al. (2013) presented highly scalable variants of a commu-
nity detection algorithm called SLPA to detect overlapping 
communities of social networks. Thang (2017) parallelized 
BigClam (Yang and Leskovec 2013) to detect overlapping 
communities.

3  Background

In this section, we introduce method and platforms which 
are used in this paper.

1. SHRINK (Huang et al. 2010) detects community based 
on density. Due to SHRINK combined modularity opti-
mization-based method with heuristic strategy, it solves 
the problem of SCAN (Xu et al. 2007) which detects 
community depend on two sensitive parameters, � and � . 
And SHRINK keeps the advantage of finding both hub 
nodes and outliers. It defines the structural similarity 
between two nodes. Let �(u, v) be the structural similar-
ity of nodes u and v. If �(u, v) is the largest similarity 
between nodes u, v and their adjacent neighbor nodes, 
then {u, v} is a dense pair. A micro-community is a 
maximal connected component linked by edges induced 
by dense pairs. Greedy SHRINK clusters the network 
via greedy shrinkage of the dense pairs. Thus, each 
dense pair in a micro-community is considered sepa-
rately. Starting with an arbitrary node u in a network G, 
it finds the dense pair containing u. If there is a node v 
adjacent to u that forms a dense pair {u, v} and its modu-

larity gain is positive, it merges node v and u to form 
a super-node u′ . Then it checks whether there exists a 
dense pair containing u′ and tries to shrink it. The above 
process is repeated until there does not exist a shrinkable 
dense pair containing current node. Then the algorithm 
continues with next unvisited node. The clustering is 
accomplished when all the nodes in the network G are 
visited.

2. Hadoop is a popular open-source software framework 
for distributed storage and processing of very large data 
deployed on computer clusters. The core of Hadoop 
is composed of two parts. The one is the storage part 
known as Hadoop distributed file system (HDFS). The 
other one is the processing part called MapReduce 
engine.

3. Spark is a distributed computing framework which is 
designed for low latency and iterative computation 
on historical data and streaming data. Compared with 
Hadoop, Spark is more suitable for iterative and interac-
tive operations for the reason that Spark has an advanced 
DAG execution engine that supports cyclic data flow and 
in-memory computing.

4. GraphX is Apache Spark’s API for graphs and graph-
parallel computation. It is a distributed graph processing 
framework and supplies rich easy interfaces for graph 
computing and mining. GraphX unifies ETL, explora-
tory analysis, and iterative graph computation within a 
single system. It also competes on performance with the 
fastest graph systems while retaining Spark’s flexibility, 
fault tolerance and ease of use.

4  Method

4.1  LinkSHRINK

In this paper, considering drawbacks mentioned above, we 
introduce LinkSHRINK which discovers different types 
of the communities with diverse levels of overlapping 
granularity via parameter � . Some definitions and basic 
concepts are shown as follows:

Definition 1 (outliers) Given a network G = (V ,E) , 
where V and E denote the node and edge set in the net-
work G, respectively. There usually are some inde-
pendent nodes, which cannot be grouped into 
any communities. We define them as outliers: 
Outliers = {v|v ∈ V ,∄V �

i
∈ CR ∧ v ∈ V �

i
} = V − ∪k

i=1
V �
i

 , 
where CR means all the communities detected in the net-
work G.
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Definition 2 (Structural similarity) Let G = (V ,E) be a 
unweighted undirected network. The structure neighborhood 
of a node u is the � (u) containing u and its adjacent nodes: 
� (u) = {v ∈ V|{u, v} ∈ E} ∪ {u} . The structural similarity 
between two adjacent nodes u and v is then

Definition 3  (Dense  Pair )  Give  a  network 
G = (V ,E) ,  �(u, v) is the structural similarity of 
nodes u and v. If �(u, v) is the largest similarity 
between nodes u, v and their adjacent neighbor nodes: 
�(u, v) = max{�(x, y)|(x = u, y ∈ � (u) − {u}) ∨ (x = v, y ∈

� (v) − {v})} , then {u, v} is called a dense pair in G, denoted 
by u ↔� v , where � = �(u, v) is the density of pair {u, v}.

Definition 4 (micro-community) Given a network 
G = (V ,E) , C(a) = (V �,E�, �) is a connected sub-graph of 
G represented by node a. C(a) is a local micro-commu-
nity iff (1) a ∈ V � ; (2) for all u ∈ V �,∃v ∈ V �(u ↔� v) ; (3) 
∄u ∈ V(u ↔� v ∧ u ∈ V � ∧ v ∉ V �) , which � is density of 
the micro-community C(a) and u ↔� v means similarity � 
is the largest similarity between nodes u, v and their adjacent 
neighbor nodes.

Definition 5 (community overlap degree) Let set of clusters 
CR = {C1,C2,… ,Ck} be the communities found from the 
network, where Ci is a set of nodes classified into the same 
community i. The community overlap degree � between 
community Ci and community Cj can be computed by for-
mula (3), which represents the degree of overlap between 
two communities.

where Ci ∩ Cj denotes the length of the intersection 
between community Ci and community Cj , and min(|Ci|, |Cj|) 
denotes the smaller length between community Ci and com-
munity Cj.

Definition 6  (communi ty  connec t ion )  Given 
a network G = (V ,E) ,  let C1 connect to C2 iff 
∃e(u, v) ∈ E ∧ u ∈ C1 ∧ v ∈ C2 , where C1,C2 ∈ CR.

The overall framework of LinkSHRINK is shown as in 
Algorithm 1. It consists of four steps, (1) generating the link 
graph (line 1); (2) detecting link communities (line 3); (3) 
transforming the link community to the node community 
(lines 6–12); and (4) merging communities (line 13).

(2)�(u, v) =
|� (u) ∩ � (v)|
|� (u) ∪ � (v)|

(3)�(Ci,Ck) =
|Ci ∩ Cj|

min(|Ci|, |Cj|)

Algorithm 1 LinkSHRINK
Require:

(i) a graph G=(V,E)
(ii)parameter ω for adjusting the overlap degree

Ensure:
Overlapping communities OC = {C1, C2, . . . , Ck}

1: Get link graph LC(G) = (V ′, E′) by using Link-graph
transformation process in section 4.1.1

2: /* Clustering based on LC(G) (Algorithm 2)*/
3: RLC = StructuralClustering(LC(G));
4: /* Node-Community Transformation */
5: NC ← ∅
6: for each LS ∈ RLC do
7: C ← ∅
8: for each Ve(x,y) in LSi do
9: C ← C ∪ {x, y}
10: NC = NC ∪ C
11: end for
12: end for
13: Get overlapping community OC by using Merge Com-

muntiy process in section 4.1.3
14: return OC

4.1.1  Link‑Graph transformation

Given a graph G = (V ,E) , where V = {v1, v2,… , vn} rep-
resents the node set and E = {e1, e2,… , em} represents the 
edge set. Among edges, e = (u, v) represents an edge induced 
by two nodes u and v. Edge e(u, v) in the original graph is 
corresponding to node ve(u, v) in the link graph. There is 
an edge between two nodes in link graph only if their cor-
responding two edges in original graph are induced by a 
common node. Figure 3 shows the transformation from an 
original graph to a link graph. In Fig. 3, edge (1,2) in origi-
nal graph is transformed to node 1–2 in link graph. Nodes 
1–2 and 2–4 in link graph are linked because edges (1,2) and 
(2,4) in original graph are induced by the common node 2.

4.1.2  Algorithm based on modularity and hierarchical 
clustering

Algorithm 2 shows the procedure of the clustering on the 
link graph. This procedure is based on the framework of 

Fig. 3  An illustration of the transformation from original graph to 
link graph
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method SHRINK (Huang et al. 2010), and we make some 
changes.

Algorithm 2 Structural Clustering Based On The
Link Graph
Require:

A link-graph LC(G) = (V ′, E′)
Ensure:

Set of cluster RLC = {C1, C2, . . . , Ck}
1: RLC ← {{vi}|vi ∈ V ′}
2: while true do
3: //Search the candidate for combining
4: ∆Qs ← 0
5: for each v ∈ V ′ do
6: C(v) ← ∅
7: Queue q
8: q.insert(v)
9: ε ← max{σ(v, x)|x ∈ Γ (v)− {v}}
10: while q.empty() �= true do
11: u ← q.pop()
12: if u = v∨max{σ(u, x)|x ∈ Γ (u)−{u}} = ε

then
13: C(v) ← C(v) ∪ {u}
14: for each w ∈ Γ (u)− {u} do
15: if σ(w, u) = ε then
16: q.insert(w)
17: end if
18: end for
19: end if
20: end while
21: //Merge the candidate micro-communities
22: if |C(v)| > 1 ∧∆Qs(C(v)) > 0 then
23: ṽ ← {v|v ∈ C(v)}
24: RLC ← (RLU − ∪vi∈C(v){{vi}}) ∪ {ṽ}
25: V ′ ← (V ′ − ṽ) ∪ {v1|v1 ∈ C(v)}
26: ∆Qs ← ∆Qs +∆Qs(C(v))
27: end if
28: end for
29: if ∆Qs = 0 then
30: break
31: end if
32: end while
33: return RLC

Initially, each node is considered as an independent 
micro-community. Then in lines 4–20, the candidate micro-
community C(i) is obtained, where similarity � between 
them is the largest similarity for them and their adjacent 
neighbors. After that, in lines 22–27, we use the similarity-
based modularity function Qs proposed by Feng et al. (2007) 
to determine whether those candidate micro-communities 
can be merged. �Qs can be calculated by formulas (4) and 
(5) where USi,j =

∑
u∈Ci,v∈Cj

�(u, v) is the total similarities of 
the links between two communities, DSi =

∑
u∈Ci,v∈V

�(u, v) 
is the total similarities between nodes in cluster Ci and any 
node in the network, and TS =

∑
u,v∈V �(u, v) is the total 

similarities between any two nodes in the network.

(4)�Qs =Q
Ci∪Cj

s − QCi

s
− Q

Cj

s

If 𝛥Qs(C) > 0 , nodes in set C will be merged into a new 
micro-community MC represented by any node in set C, 
called super-node v. All other nodes in set C will be ignored, 
and edges induced by them link to the representative super-
node v. Continue this procedure until there are no micro-
communities available to be merged. The procedure of Algo-
rithm 2 is shown in Fig. 4.

4.1.3  Merge community

After the procedure of clustering on the link graph, we 
obtain the link partitions which will be transformed into 
node communities. Actually, node communities obtained at 
this step always tend to have high overlapping degree. To 
find communities with different overlapping granularity, we 
need to merge communities based on the community over-
lap degree � . The main idea of this step is combining two 
connected communities Cx , Cy with �(Cx,Cy) ≥ � where � 
denotes threshold value. It is noticed that the set of clusters 
NC = {C1,C2,… ,Ck} actually has links between communi-
ties. There exists an edge between cluster Ci and Cj if there 
exists edges or an edge between nodes in Ci and Cj . There-
fore, after a round of the merging, we need adjust the edge 
structure in clusters NC.

With varying the parameter � , we can find different 
kinds of the overlapping communities with different over-
lapping granularity. For example in Fig. 5, our method 
can find one overlapping node 7 in the toy network which 
LINK can also do. However, LinkSHRINK also finds 

(5)
�Qs(C) =

∑
i,j∈{1,2,…,k},i≠j 2USij

TS

−

∑
i,j∈{1,2,…,k},i≠j 2DSi ⋅ DSj

(TS)2

Fig. 4  An illustration of structural clustering
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the outlier node 14 which belongs to none of the clus-
ters and LINK cannot do. In Fig. 5b, we find four clusters 
with the overlapping nodes 1, 4, 5, 7, 8, 11, 12. It can be 
seen that connections between nodes in cluster in Fig. 5a 
are relatively more sparse than connection in cluster in 
Fig. 5b. Hence, Fig. 5b shows the overlapping granularity 
of the community partition is more precise compared with 
Fig. 5a. Two types of the overlapping community results 
shown in Fig. 5 seem to be reasonable both. However, 
most overlapping community detection methods can only 
find the result in Fig. 5a. In addition, we also show our 
algorithm LinkSHRINK can find reasonable clusters on 
other toy networks in Fig. 6.

For the network in Fig. 2, edge e(6, 7) is considered as 
a outlier which cannot belong to any cluster in link graph 
by our method. Accordingly, we find the overlapping com-
munities solving the excessive overlapping problem which 
is shown in Fig. 7.

4.1.4  Running time complexity

Finally, we analyze the computational complexity of Link-
SHRINK. Let n, n′ , m and m′ denote the number of nodes 
and edges in the original graph and link graph, respectively. 
Let k denote the number of communities. Transforming orig-
inal graph to link graph requires O(mm�) . After forming the 
link graph, finding micro-communities using Algorithm 2 
requires O(m� log n�) , where log n′ denotes the number of 
iteration in Algorithm 2. Transforming link communities 
to node communities needs O(n�) computations. Merging 
communities requires O(k2) which k is far smaller than n. 
Overall, LinkSHRINK requires O(mm� + m� log n� + n� + k2) 
computations.

4.2  LinkSHRINK based on parallel computing 
framework

For a node x in original graph having l edges with other 
nodes, it will generate (l ∗ (l − 1))∕2 new edges in Link-
Graph. Therefore, the size of the Link-Graph is far larger 
than the original graph. LinkSHRINK is hard to handle 

Fig. 5  An illustration of the results of different overlap degree

Fig. 6  An illustration of the typical overlapping networks

Fig. 7  Community detection result of the network in Fig. 2 by Link-
SHRINK
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the large networks efficiently due to its time complexity. 
To solve this problem, we first sample on the generated 
Link-Graph. Then we parallelize the LinkSHRINK based 
on Hadoop and Spark, called MLinkSHRINK and PLink-
SHRINK, respectively.

4.2.1  Sample

Sampling can reduce the running time. Let LG = (V �,E�) 
be a Link-Graph, for each node v ∈ V � , we take a random 
sample of size nv from the set of incident links of v. It is 
important to choose size nv . Formula (6) shows the calcula-
tion of nv:

where dv is the degree of node v. For parameter � and � , 
they are set to 2 < dv > or < dv > and 1 respectively which 
perform well on all data sets in Sect. 5.

4.2.2  PLinkSHRINK

For spark, we implement the PLinkSHRINK by using 
GraphX. There are two main structures in GraphX: 
NodeRDD[VD], EdgeRDD[ED], where VD and ED are 
the attribute of Node and edge, respectively. Then a graph 
G can be created by NodeRDD and EdgeRDD just like 
Graph[VD,ED].

(6)nv = min{dv, � + � ln dv}

Algorithm 3 PLinkSHRINK
Require:

(i)a new original graph with new edges G′ = (V,E)
(ii)Link-Graph LG = (V ′, E′)
(iii)label data like (V’id, srcId, dstId)

Ensure:
Set of final clusters OC = {C1, C2, . . . , Ck}

1: //Calculate similarity for Link-Graph
2: Generate original graph RDD G′RDD
3: Generate link graph RDD LG′RDD where node A’s VD

consists of the nodes linked by the edge A in Link-Graph
4: Generate similarityOfNodeGraph RDD simRDD by

aggregateMessages() and OuterJoinV ertices()
5: Generate simGraphRDD where key=nodes connected by

edge in Original graph, value=similarity between them.
6: Generate linkGraphPRDD where key=nodes in Link-

Graph, value=edge(srcId,dstId) in Link-Graph.
7: Generate edgeRDD finalGraphRDD by linkGraph-

PRDD. leftOuterJoin(simGraphRDD)
8: Generate GraphRDD finalGraph using edgeRDD
9: // Cluster on Link-Graph finalGraph
10: The graph for each iteration G(V,E) ← finalGraph
11: Generate link Community OLC ← G.vertices.map()
12: Q ← 1
13: while Q > 0 do
14: message ← G.sendMessage
15: G ← G.join(message)
16: G.sendMessage generate the neighborRDD with

node information
17: G ← G.join(neighborRDD)
18: Calculate deltaQ by G.triplets() then generate

V RDD to be merged
19: commitiyRDD ← V RDD.map()
20: edgeRDD ← G.edges.map()
21: ISGraph ← G.join(V RDD)
22: count ← V RDD.count()
23: if count > 0 then
24: new edgeRDD←

edgeRDD.leftOuterJoin(commnityRDD).
leftOuterJoin(commnityRDD)

25: new edgeRDD merge repeated edges and filter
edge.srcId == edge.dstId

26: // generate IS value for new Graph
27: G ← Graph.fromEdges(new edgeRDD)
28: OLC ← OLC. leftOuterJoin(communityId)
29: G ← G.join(IsRDD).join(edgeMerge)
30: else
31: Q = 0
32: end if
33: end while
34: transform OLC to node Community OC =

{C1, C2, . . . , Ck}
35: return OC

The main process of PLinkSHRINK as shown in Algo-
rithm 3 is on the whole the same as LinkSHRINK. The 
main difference between them is that LinkSHRINK merges 
one micro-community candidate at each iteration, while 
PLinkSHRINK combines all micro-community candidates 
at each iteration by two leftOuterJoin Spark RDD actions 
which saves a lot of time. Figure 8 shows how the two 

Fig. 8  Reconstruction of the Graph
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leftOuterJoin actions work, where nodes 1 and 2 need to 
be merged and so are the nodes 4 and 5.

Note that, when we calculate similarity for Link-Graph 
(lines 3–10), the original graph G′ is the input graph with 
new edges which connecting two nodes having at lest one 
common neighbor. In lines 27–29, new Link-Graph is gener-
ated with initialing node IS value. Here, we split DSi value 
into two parts, one is ISi and the other is OSi where ISi is 
total similarities of nodes in micro-community Si , OSi is 
total similarities of nodes in micro-community Si and any 
other nodes out of the micro-community Si . The relationship 
between them shows as formula (7).

For large networks, such as network with millions nodes, 
because of the limit of the leftOuterJoin action, the time of 
each iteration increases. However, in the last several itera-
tions, there are only very few nodes that need to be merged. 
For saving running time, we ignore these left nodes which 
will not have a significant impact on the results. Therefore, 
we set a threshold � . PLinkSHRINK stops when the propor-
tion of nodes to be merged in Link-Graph is smaller than 
threshold � . Here, the set of � is a trade-off between the 
effectiveness and efficiency. Given a small � such as 10−4 , 
PLinkSHRINK cannot early stop in a small network which 
means PLinkSHRINK stops only if there is no node left to 
be merged. However, PLinkSHRINK early stops when the 
proportion of nodes to be merged in Link-Graph is smaller 
than � in a large network.

4.2.3  MLinkSHRINK

Next, we will introduce the implementation of the parallel 
LinkSHRINK algorithm, MLinkSHRINK. MLinkSHRINK 
consists of 6 jobs based on MapReduce.

Job1: Calculation of Link-Graph’s Similarity
Map Phase The mapper takes a pair of (key, value) as 

input, where key is the node input and value is its adja-
cency node list. The node in the Link-Graph corresponds to 
an edge in the original graph. The input node in the Link-
Graph consists of the id of the adjacent nodes. To illustrate 
MLinkSHRINK, we take the node and its adjacency node 
list < v ∶ v1, v2,… , vs > as an example. Note that one edge 
is represented by using the node pair in an increasing order. 
For each neighbor node vi(i = 1, 2,… , s) of v, the mapper 
emits a (key, value) pair, in which key is the edge(v, vi ) and 
value is the adjacency node list of v.

Reduce Phase In the reducer, for the key (v, vi) , the cor-
responding values will include the adjacency node lists 
of v and vi . The two adjacency node lists consist of all the 
information needed to calculate the similarity of the edge, 
including the adjacency information of two adjacent nodes 

(7)DS = IS + OS

in original graph. Therefore, we can calculate the similarity 
of (v, vi) in the reducer.

Job2: Adding the Similarity of the Edge to the Adjacency 
Nodes List of the Two Adjacent Nodes.

Map phase The mapper takes a pair of (key, value) as 
input, where the key is the input edge and the value is its 
similarity. For each adjacent node of the edge, the mapper 
emits a (key, value) pair, in which the key is node and the 
value is the joint of the other node and the similarity.

Reduce phase The reducer combines all the adjacent 
information of every node.

Job3: Calculation of the Sum of the Similarity
Map phase The mapper calculates the sum of the similar-

ity of every node.
Reduce phase The reducer calculates the sum of all the 

similarity.
After the above preparation, MLinkSHRINK steps into 

the stage of iterations. In the process of each iteration, 
MLinkSHRINK needs three jobs which are running in 
sequence until the algorithm stops.

Job4: Finding the nodes to be merged
Map phase The mapper takes a pair of (key, value) as 

input, where the key is input node and the value is the adja-
cent node list which contains the information of adjacent 
nodes and the similarity of the corresponding edge. The 
mapper emits a (key, value) pair, in which the key is the 
edge with the largest similarity and the value consists of the 
set of the cohesion of node, the overall similarity of the node 
and the similarity of the edge.

Reduce phase If the size of the received values of the 
edge is two, two adjacent nodes, respectively, select the edge 
in the map phase. Then the edge can be regarded as a can-
didate edge to be cut. The reducer gets the information of 
two nodes and the edge. After the calculation of �Q . If �Q 
is positive, reducer outputs the edge. Otherwise, the edge is 
cut in the next job.

Job5: Reconstruction of the Graph
In this step, MLinkSHRINK needs to get the informa-

tion of the edge to be cut, which can be obtained by job 4 
in advance. Then, the information is saved in hash table for 
quickly query.

Map phase The mapper takes a pair of (key, value) as 
input, where the key is the input node and the value is 
the adjacent node list. Firstly, mapper checks whether this 
node is in the hash table. If not, we make this node as the 
key to be emitted. Otherwise, some adjacent edges of this 
node are to be cut. The mapper gets the information of 
the adjacent node from the hash table. If this node id is 
smaller than the adjacent node, then we make this node as 
the key. And smaller one will be the representative node. 
This edge can be cut off. After that, for each adjacent node 
in the adjacent list, the reducer checks whether the adja-
cent node is in the hash table. If not, mapper emits a (key, 
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value) pair, in which the value is the joint of the adjacent 
node and the similarity of the edge. Otherwise, we get 
the adjacent node of the adjacent node from hash table. 
Choose the smaller one as the value and combine with the 
similarity of the edge as the value to be emitted.

Reduce phase The reducer combines all the information 
of adjacent nodes for this node and updates the similar-
ity of the edges. The reducer emits a (key, value) pair, 
in which the key is node and the value is the combined 
adjacent list. After this phase, we achieved the goal of 
reconstruction of the graph.

Job6: Updating the Partition of the Community in the 
Link-Graph

Map Phase First communities are obtained in previous 
iteration. The mapper takes a pair of (key, value) as input, 
where the key is the representative node of the community 
and the value is the members of the community. Then we 
check whether the representative node is in hash table. If 
not, the mapper emits a (key, value) pair, in which the key 
is the representative node and the value is the members of 
the community. Otherwise, some edges of the representa-
tive node need to be removed. If the representative node 
id is smaller than the adjacent nodes obtained from hash 
table, the mapper emits a (key, value) pair, in which the 
key is the representative node and the value is the mem-
bers of the community. Otherwise, the mapper emits a 
(key, value) pair, in which the key is adjacent node and the 
value is joint of the representative node and the members 
of the community of the representative node.

Reduce Phase The reducer takes a pair of (key, values) 
as input. The key is set to be the new representative node 
and the combination of information in values to be the 
members of the community.

Note that jobs 4, 5 and 6 are repeated until the output 
of the job 4 is empty, which means none of the edges are 
to be cut. Finally, another job transforms the community 
structure of link partition to the node communities.

Both PLinkSHRINK and MLinkSHRINK can find the 
same communities as LinkSHRINK does in the toy net-
work in Fig. 4.

5  Experiment

In this section, we evaluate the performance of our pro-
posed algorithm LinkSHRINK using both synthetic bench-
marks and real-world networks. LinkSHRINK is imple-
mented in C++. We compare LinkSHRINK with some 
other state-of-the-art overlapping community detection 
algorithms which are listed as follows:

1. The CPM (Clique Percolation Method) (Palla et  al. 
2005)2

2. The COPRA (Community Overlap Propagation Algo-
rithm) (Gregory 2010)3

3. The link partition method: LINK (Ahn et al. 2010)4

4. The link partition method: LINK1. Here, we do a lit-
tle change on the LINK algorithm. We simply delete 
the link community which only contains a single edge 
founded by LINK.

5. The SHRINKO (Huang et al. 2011): SHRINKO trans-
formed from SHRINK simply by recognizing the hubs 
in the network as the overlapping nodes.

6. The OCDDP (Bai et al. 2017): OCDDP detects overlap-
ping communities based on density peaks. It adopts a 
similarity-based method to set distances among nodes, 
a three-step process to select cores of communities and 
membership vectors to represent belongings of nodes.

7. The GraphSAGE (Hamilton et al. 2017): GraphSAGE is 
a network embedding approach which maps the nodes in 
network into low-dimension vector, and then we adopt 
fuzzy C-means method (Bezdek et al. 1984) to detect 
overlapping communities.

8. The PBigClam (Thang 2017): PBigClam is a parallel 
version of BigClam (Yang and Leskovec 2013) which 
detects overlapping communities by using nonnegative 
matrix factorization.

All stand-alone experiments are conducted on a 2.66-GHz 
and 8-GB RAM Pentium IV computer.

For PLinkSHRINK and MLinkSHRINK, we conduct 
experiments on some small networks to verify the correct-
ness of the results compared with LinkSHRINK. Then we 
also conduct experiments on some larger networks to com-
pare time performance among them.

We deploy PLinkSHRINK and MLinkSHRINK on a clus-
ter of five nodes as DataNodes and NodeManagers, within 
which one node acts as both NameNode and Resource-
Manager. The hardware specific of each node is Intel Xeon 
E5-2620 v2 CPU, 64 GB main memory. Hadoop version 
is 2.6.0, while Spark version is 1.5.1. Spark is operating in 
conjunction with Hadoop in the scheme of ON YARN.

5.1  Synthetic networks

1. Data Sets For synthetic networks, we adopt the LFR 
benchmark networks (Lancichinetti and Fortunato 
2009). Some important parameters of the benchmark 
network are shown in Table 1.

2 http://www.cfind er.org/.
3 http://www.cs.bris.ac.uk/steve /netwo rks/softw are/copra .html.
4 http://barab asila b.neu.edu/proje cts/linkc ommun ities /.

http://www.cfinder.org/
http://www.cs.bris.ac.uk/steve/networks/software/copra.html
http://barabasilab.neu.edu/projects/linkcommunities/
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2. Evaluation Metric The ground-truth community is given 
in the synthetic network. Hence, we use an extended 
version of the normalized mutual information (NMI) 
for overlapping community detection proposed by Lan-
cichinetti et al. (2009). So far, NMI is the most famous 
and widely used to evaluate the result of the community 
detection on the networks with the ground-truth com-
munity. The larger NMI is, the better cluster result is. 
The value of NMI is from 0 to 1. NMI equal to 1 means 
two partitions of the network are identical and equal to 
0 on the contrary. 

 NMI can be computed by formula (8), where X and Y 
denote the cluster partitions and H(X|Y) represents the 
normalized conditional entropy of a cover X with respect 
to Y which is shown in formula (9). Here, C represents 
the real community partition of a network. 

3. Parameters Set The main parameters of LFR benchmark 
networks are shown in Table 2.

Here, for S1, S2 and S4, S5, parameter on is set to 100 
and 300 which represent networks with less and more over-
lapping nodes, respectively. For S1 and S3, parameter mu 
is set to 0.1 and 0.3 which represent networks with low and 

(8)NMI(X|Y) = 1 − [H(X|Y) + H(Y|X)]∕2

(9)H(X|Y) = 1

|C|
∑

k

H(Xk|Y)
H(Xk)

high mixing degree, respectively. S6 represents networks 
with varying degree k .

The parameters of each algorithm are set as follows: k in 
CPM is set to 3–8, v in COPRA is set to 2–10, � in Link-
SHRINK is set to 0.5–1. We always adopt the best experi-
mental results of every method. Here LinkSHRINK does 
not consider the useless small communities, and we can 
simply delete the community in which the number of nodes 
is smaller than the minc . Figure 9 shows the community 
detection results on six groups of LFR benchmark networks 
by using eight algorithms mentioned above, respectively. It 
is noticed that LS, CPM, GS, L, L1, COPRA, SO, OCDDP 
represent LinkSHRINK, CPM, GraphSAGE, LINK, LINK1, 
COPRA, SHRINKO, OCDDP methods, respectively.

1. Compared with LINK and LINK1 On every LFR bench-
mark network, our algorithm performs better than LINK 
and LINK1 do. This is because our algorithm is more 
reasonable to deal with the isolated edges in networks.

2. Compared with COPRA It can be seen, the NMI of the 
community detection result by our algorithm is better 
than COPRA almost on all the LFR benchmark networks 
except some networks such as S6 with the k = 12, 15 
and S1 with the om = 6 . With the increase in om, find-
ing overlapping community becomes more difficult and 
the NMI of these networks by our algorithm showing a 
downward trend which is reasonable. However, results 
of COPRA have a vibration trend for the reason that the 
result of COPRA is nondeterministic.

3. Compared with CPM The NMI of our algorithm is bet-
ter than that of CPM on all of the LFR benchmark net-
works.

4. Compared with SHRINKO As the COPRA, our algo-
rithm performs better than SHRINKO on most of the 
LFR benchmark networks except the networks S1 
with the om = 6 and S3 with the om = 6 . However, 
SHRINKO comes to the problem of the having vibra-
tion trend obviously what we mentioned in Sect. 2.

5. Compared with OCDDP Overall, OCDDP almost has the 
same performance with LinkSHRINK. LinkSHRINK 
only obtains 15 of 30 better results than OCDDP does.

6. Compared with GraphSAGE The NMI of our algo-
rithm is better than that of GraphSAGE on most of the 

Table 1  Parameters of the benchmark network

Parameter name Description

N Number of nodes
k Average degree
max_k Maximum degree
min_c Minimum community size
max_c Maximum community size
on Number of overlapping nodes
om Number of memberships of 

the overlapping nodes
mu Mixing parameter

Table 2  Statistics of LFR 
benchmark networks

ID N k max_k min_c max_c on om mu

S1 1000 10 50 10 50 100 – 0.1
S2 1000 10 50 10 50 300 – 0.1
S3 1000 10 50 10 50 100 – 0.3
S4 1000 10 30 10 50 100 2 –
S5 1000 10 30 10 50 300 2 –
S6 1000 – 30 10 50 100 2 0.1
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LFR benchmark networks except the networks S2 with 
om = 5, 6.

As shown above, LinkSHRINK can find better overlap-
ping community structure on synthetic networks compared 
with some others mentioned above.

To evaluate sampling on Link-Graph, we conduct experi-
ments on some larger synthetic networks whose detail is 
shown in Table 3. Here, we process LinkSHRINK on every 

data set which has two versions: one is generating Link-
Graph with sampling, and the other is generating Link-Graph 
without sampling. The results are shown in Figs. 10 and 11.

It can be seen that sampling on the data set has nonsig-
nificant impact on the performance. However, its running 
time reduces by about 30 percents and the level of the time 
reduction is proportional to the size of the data.

Fig. 9  Overlapping community 
detection results on synthetic 
networks
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(a) Results on S1
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(b) Results on S2
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(c) Results on S3
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(d) Results on S4
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(e) Results on S5
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(f) Results on S6
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5.2  Real‑world networks

1. Data Sets
  For real-world networks, we choose four very clas-

sic and commonly used community evaluation data sets 
whose details are shown in Table 4:

2. Evaluation Metrics
  Due to the unknown ground truth in real-world net-

works, we cannot adopt NMI to evaluate the effective-
ness of the community detection methods. Accordingly, 
we use extended modularity QE

ov
 (Shen et al. 2009) for 

overlapping community detection which uses the num-
ber of communities to which a node belongs as a weight 
for Q as shown in formula (10). 

where Oi denotes the number of communities to which 
node i belongs. Aij is equal to 1 if there is an edge 
between nodes i and j, otherwise 0. ki denotes the degree 
of the node i. m denotes the number of all edges in the 
network and c denotes a community.

  Figure 12 shows a comparison between our three 
algorithms and other six methods: COPRA, SHRINKO, 
LINK, OCDDP, GraphSAGE and PBigClam. All the 
parameters set are the same as the parameters set in the 
LFR benchmark. From the results, we can see that the 
performances of our three approaches are better than 
SHRINKO and much better than the other five meth-
ods on most networks. Besides, we can see our methods 
LinkSHRINK, PLinkSHRINK and MLinkSHRINK 
have almost the same performance on these data sets.

3. Example: PDZBase Network
  PDZBase network is a network of protein–protein 

interactions from PDZBase. The community structures 
in this network majorly present radiation and star-like 
structure. Overlapping community detection algorithms 
based on node-structure is more difficult to find the star-
like community structure. As illustrated in Fig. 13, the 
LinkSHRINK algorithm can achieve good result on this 
network, where 19 communities as well as 1 outlier are 
found. Almost all communities present the shape of star 
which seems very reasonable. However, COPRA is dif-
ficult to find communities in this network and achieves 
the lowest value of QE

ov
 observed in Fig. 12.

(10)QE
ov
=

1

2m

∑

c

∑

i,j∈c

[
Aij −

kikj

2m

]
1

OiOj

Table 3  Statistics of lager 
networks

ID N k max_k mu on om

L1 5000 15 30 0.1 500 3
L2 6000 15 30 0.1 600 3
L3 8000 15 30 0.1 800 3
L4 9000 15 30 0.1 900 3
L5 10,000 15 30 0.1 1000 3

Fig. 10  Comparison of running time (seconds)

Fig. 11  Comparison of performance

Table 4  Statistics of real-world networks

Data set V E Data set V E

Karate club 34 78 Euroroad 1109 1367
PDZBase 164 209 Power 4941 6594
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4. Large Network
  For large real-world networks, we choose DBLP col-

laboration network with 317,080 nodes and 1,049,866 
edges. After transforming original graph into link graph, 

there are about 1,049,866 nodes and 21,780,889 edges in 
link graph which becomes a huge network. After sam-
pling on the original network with the parameters � and 
� being equal to 1 ×⟨dv⟩ and 1, the edges in link graph 
descend about 67 percent which looks very effective in 
Fig. 14.

We run algorithms LinkSHRINK, PLinkSHRINK and 
MLinkSHRINK on the link graph transformed from DBLP 
network. Here parameter � for PLinkSHRINK is set to 
0.0001 which is quite small. Note that LinkSHRINK can-
not finish for the reason that computation resources such as 
CPU and memory are overflowed, while PLinkSHRINK, 
MLinkSHRINK and PBigClam finish in 3, 6.3 and 5.4 h, 
respectively, shown in Fig. 15. PLinkSHRINK finds more 
than 76,400 author communities whose size distribution is 
shown in Fig. 16.
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Fig. 12  Comparison in terms of overlapping modularity QE
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Fig. 13  The clustering result of LinkSHRINK on the PDZBase net-
work

Fig. 14  Comparison of network size before and after sampling on the 
DBLP network
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Fig. 15  Comparison of running time on DBLP network
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For Spark, the running time of PLinkSHRINK corre-
lates with the executer cores. Performance improving by 
increasing number of cores is shown in Fig. 17. For cases of 

executer cores are at least and most, the running time differ-
ence between them is close to 1 h.

Besides, we use LFR benchmark to generate five large 
networks from 100,000 nodes to 300,000 nodes, the detail 
of data set is shown as in Table 5.

Note that LinkSHRINK cannot finish on these large data 
sets. However, by sampling on the data sets and the dis-
tributed computing framework, we can complete overlap-
ping community detection in a reasonable period of time, 
especially PLinkSHRINK. As shown in Fig. 18, the running 
time of MLinkSHRINK increases more strongly. PBigClam 
needs longer running time than PLinkSHRINK does. On 
the other hand, the running time of PLinkSHRINK is 80 
percent lower than that of MLinkSHRINK. The reason is 
that LinkSHRINK is iterative which is better by Spark. For 
MLinkSHRINK, each iteration needs to start three jobs need 
more time. When there are too many iterations, that will be 
a big expense.

6  Conclusions

LinkSHRINK is overlapping community detection method 
combining density-based clustering with modularity optimi-
zation. It maximizes modularity by using density-based clus-
tering in link graph. Finally, it finds overlapping communities 
by merging reductant nodes with parameter � . LinkSHRINK 
not only finds overlapping communities, but also identifies the 
hubs and outliers. It avoids the problem of excessive overlap-
ping problem and reveals the overlapping community structure 
with different overlap degrees by using parameter � . To make 
LinkSHRINK handle large network, we sample the Link-
Graph to improve the efficiency with losing little accuracy. 
Meanwhile, we implement LinkSHRINK based on Spark and 
Hadoop. LinkSHRINK outperforms state-of-the-art methods 
on the synthetic and real-world networks. PLinkSHRINK and 
MLinkSHRINK can also find communities in large network 
with millions of edges efficiently without losing accuracy 
much. In the future, we would like to extend LinkSHRINK 
to detect overlapping communities in dynamic networks and 
in larger networks, such as networks with millions of nodes.
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Fig. 16  Community distribution detected by PLinkSHRINK

Fig. 17  Speedup of different number of cores on DBLP

Table 5  Statistics of large 
synthetic networks

ID N (k) k max_k mu on (k) om E

L6 100 15 20 0.1 10 3 980,538
L7 150 15 20 0.1 15 3 2,178,006
L8 200 15 20 0.1 20 3 2,904,726
L9 250 15 20 0.1 25 3 3,630,770
L10 300 15 20 0.1 30 3 4,352,964
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