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Abstract

Leadership and followership are essential parts of collective decision and organization in social animals, including humans.
In nature, relationships of leaders and followers are dynamic and vary with context or temporal factors. Understanding
dynamics of leadership and followership, such as how leaders and followers change, emerge, or converge, allows scientists
to gain more insight into group decision-making and collective behavior in general. However, given only data of individual
activities, it is challenging to infer the dynamics of leaders and followers. In this paper, we focus on mining and modeling
frequent patterns of leading and following. We formalize new computational problems and propose a framework that can
be used to address several questions regarding group movement. We use the leadership inference framework, mFLICA, to
infer the time series of leaders and their factions from movement datasets and then propose an approach to mine and model
frequent patterns of both leadership and followership dynamics. We evaluate our framework performance by using several
simulated datasets, as well as the real-world dataset of baboon movement to demonstrate the applications of our framework.
These are novel computational problems and, to the best of our knowledge, there are no existing comparable methods to
address them. Thus, we modify and extend an existing leadership inference framework to provide a non-trivial baseline for
comparison. Our framework performs better than this baseline in all datasets. Our framework opens the opportunities for
scientists to generate testable scientific hypotheses about the dynamics of leadership in movement data.

Keywords Leadership - Followership - Coordination - Time series - Collective behavior

1 Introduction

Leadership is a process that leaders influence followers’
actions in order to achieve the collective goal (Hogg 2001;
Glowacki and von Rueden 2015). Leadership is an essential
part that fosters success of coordinated behaviors in social
species (Glowacki and von Rueden 2015; Couzin et al. 2005;
Hogg 2001), such as foraging, migration, territorial defense,
and so on. In most species, leadership is not permanent but
may change with context (the one who leads the group to
food or water may be different from the one who leads the
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flight from a predator) or other social circumstances (two
rivaling subgroups may come to a joint decision and merge
under single leadership or, vice versa, a group may split
to explore several directions). Understanding dynamics of
leadership, such as how leaders change, emerge, or converge,
allows scientists to gain more insight into group decision-
making and collective behavior in general. In this paper, we
focus on mining and modeling frequent patterns of leader-
ship dynamics.

One of the intuitive definitions of leadership that is
commonly found in nature is the initiation of coordinated
activities (Krause et al. 2000; Smith et al. 2015; Stueckle
and Zinner 2008). In the context of movement, leaders
are initiators who initiate coordinated movement that
everyone follows (Amornbunchornvej and Berger-Wolf
2018a). There are several works have been developed to
infer leaders from time series of movement data, such as
FLOCK method (Andersson et al. 2008), LPD framework
(Kjargaard et al. 2013), and methods based on a dynamic
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Table 1 Comparison of

Properties\frameworks
frameworks that can detect

MONIC TRACLUS, TCMM mFLICA

clusters in time series Cluster types

Members of clusters
Tracking clusters dynamics
Following relations

Static clusters Temporal clusters Factions

Data points Time series Time series
Yes No Yes
No No Yes

Static clusters are clusters that are defined over data points in each time step, while temporal clusters are
defined over segments of time series. Factions are temporal clusters that all members follow the same
leader. Tracking clusters dynamics implies that a framework can track evolution of clusters, such as merg-
ing or splitting of clusters over time. The following relation property implies that a framework can give a
relation of who follows whom for all pairs of members within a cluster

following network concept (Amornbunchornvej et al.
2018; Amornbunchornvej and Berger-Wolf 2018a).

Nevertheless, the challenges in the field still remain
regarding how to infer and model the dynamics of the
frequent patterns of leadership events. For example, sup-
pose i and j lead separate subgroups, how often do the two
groups merge to a larger group lead by k? How likely is
it that the group lead by i will split into more than three
subgroups?

However, only the state-of-the-art approach, mFLICA
(Amornbunchornvej and Berger-Wolf 2018a), is capable
of inferring dynamics of leadership—i.e., emergence,
convergence, or a change of leaders—during coordinated
movement. mFLICA detects clusters (factions) based on
the concept of following relations. In mFLCIA, the time
series from the same faction must follow the same leader.

There are many works focusing on inferring dynam-
ics of groups or clusters (Li et al. 2010; Lee et al. 2007;
Spiliopoulou et al. 2006). The work by Spiliopoulou et al.
(2006) proposed a framework named "MONIC’ to track
various types of clusters transition in time series, such
as expanding, splitting, and merging. However, MONIC
infers clusters based on time points without considering
following relations among time series to detect clusters.
The work by Li et al. (2010), Lee et al. (2007) proposed
frameworks (TRACLUS and TCMM) to detect tempo-
ral clusters from segments of time series. Nevertheless,
the temporal clusters are measured based on trajectory
similarity without the following relation property. Hence,
MONIC, TRACLUS, and TCMM frameworks cannot be
used to detect factions of time series, which implies that
they cannot detect leadership and followership dynamics.
Table 1 summarizes the comparison of these frameworks.

In this paper, we focus on mining frequent patterns of
leadership dynamics that requires our framework to iden-
tify both groups and leaders of those groups that change
over time. Moreover, since the groups following a leader
during coordination have a special structure of following
relations among members, the standard clustering methods
cannot be used in this case.
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MINING PATTERNS OF LEADERSHIP DyNamics: Given
time series of individual activities, the goal is to mine
and model frequent patterns of leadership dynamics,
including emergence of multiple leaders, convergence
of multiple leaders to a single one, or change of a
leader.

1.1 Previous contributions: leadership dynamics

To address these computational questions, in the previous
paper in Amornbunchornvej and Berger-Wolf (2018b), we
formalize the problem of MINING PATTERNS OF LEADERSHIP
Dynawmics, as well as propose a framework, which is the
extension of mFLICA (Amornbunchornvej and Berger-Wolf
2018a), as a solution to this problem. We adapt the tradi-
tional framework of frequent pattern mining (Agrawal et al.
1993; Han et al. 2007; Aggarwal and Han 2014) and the
Hidden Markov Model (HMM) approach (Rabiner 1989) to
model the dynamics of frequent patterns of leadership. Our
framework is capable of:

e Mining and modeling frequent patterns of leadership
dynamics inferring the transition diagram of frequent
dynamics of complex leadership events, such as ’a sin-
gle group lead by £ splits into two groups lead by i and
j’. In addition, we infer the probabilities of the transitions
between such two events in the diagram.

o [Evaluating the significance of leadership-event order
we propose a null model of the dynamics of leadership
events and perform hypothesis testing to compare fre-
quent pattern model of leadership dynamics inferred
from the given input to our proposed null model.

e  Mining sequence patterns of leadership dynamics finding
support values for the leadership dynamics sequences
from time series of movement data.

e Evaluating the significance of frequencies of leader-
ship-event sequences we propose a null model of the
sequences of leadership events and perform hypothesis
testing to compare the support distribution of leadership-
event sequences inferred from the given input to our pro-
posed null model.
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We use several simulated datasets from the work in Amorn-
bunchornvej and Berger-Wolf (2018a) that cover various
types of leadership dynamics for validation, as well as
a dataset of trajectories of baboons (Crofoot et al. 2015;
Strandburg-Peshkin et al. 2015) to demonstrate the applica-
tion of our framework. To the best of our knowledge, this is
the first work to deal with the topic of complex leadership
dynamics and there is no comparable method, and there-
fore, we indirectly compare our framework to an enhanced
FLOCK method (Andersson et al. 2008), used as a baseline
for leadership inference only.

1.2 New contributions: followership dynamics

While our previous work in Amornbunchornvej and Berger-
Wolf (2018b) addressed several aspects of leadership
dynamics, there are still gaps remaining in our understand-
ing of followership dynamics. For instance, assuming indi-
viduals i and j are in the same subgroup, how likely is it that
they will be in different groups in the future? How many
clusters of individuals are there such that members in each
cluster stay together with a support at least 0.7? How likely
is it for an individual i that its subgroup will be lead by an
individual j from the same group?

MINING PATTERNS OF FoLLOWERSHIP DyNAMIcCS: Given
the time series of individual activities, the goal is to
mine and model frequent patterns of followership
dynamics, including the change of subgroups of fol-
lowers (unity), or the choice of whom to follow (loy-
alty).

To address these questions, in this paper, we extend our
framework to include several aspects of followership dynam-
ics. In addition to the previous work in Amornbunchornve;j
and Berger-Wolf (2018b), our framework is capable of:

e  Mining and modeling frequent patterns of faction mem-
bership estimating the frequency of a pair of individuals
being in the same faction, as well as discovering faction
clusters of individuals.

e Mining and modeling frequent patterns of leader—fol-
lower relationship estimating the frequency of each indi-
vidual being a follower of a group lead by a specific indi-
vidual, as well as discovering dynamics of the changes of
a leader of each faction cluster.

We also use simulated datasets from the work in Amorn-
bunchornvej and Berger-Wolf (2018a) that contain complex
leader—follower dynamics to evaluate our framework. Our
approach is flexible to be generalized beyond the time series
of movement data to arbitrary time series where subsets
intentionally or spontaneously coordinate.

2 Problem statement

In this paper, we use leadership definitions from the work
in Amornbunchornvej and Berger-Wolf (2018a). Given a
D-dimensional time series Q, we use Q(¥) to refer to an ele-
ment of the time series Q at time ¢ and, for a given 4 € Z,
0, as a time-shifted version of Q where, Q(f) = Q (¢ + A).

Definition 1 [o-Following relation (Amornbunchornvej
and Berger-Wolf 2018a)] Let U be a set of time series,
sim : UXU — [0, 1] be a time series similarity function,
and o € [0, 1] be a similarity threshold. For any P, Q € U,
we say that Q follows P if Q and P are sufficiently similar
within some time shift A:

mAax(sim(P, Q4) = 0o and

min(argmax sim(P, Q) > 0) # @.
4

Typically, to measure the following relation in Defini-
tion 1, the work by Amornbunchornvej and Berger-Wolf
(2018a) used the dynamic time warping (DTW) developed by
Sakoe and Chiba (1978). DTW is used to measure a distance
between two time series. It can measure a distance of multi-
dimensional time series (Keogh and Ratanamahatana 2005).
Since DTW uses Euclidean distance as a kernel to measure
a distance between a pair of elements of two time series,
the weighted Euclidean distance can be deployed in the case
that we want to give some dimensions higher contribution
to a distance measure. Additionally, DTW performs better
than several methods (Kjargaard et al. 2013) and robust to
the noise (Shokoohi-Yekta et al. 2015) for the task of follow-
ing relation inference (Amornbunchornvej et al. 2018). The
following relation measure using DTW is bounded in [0, 1]
interval (Eq. 2). In the case that sim is not bounded, and then,
we need a threshold 7 to normalize the similarity measure.
If sim > 7, then the similarity value is one, otherwise zero.

Definition 2 [Following network (Amornbunchornvej and
Berger-Wolf 2018a)] Let U be a set of time series. A digraph
G = (V,E)is a following network of U where each node in V
corresponds to a time series in I/ and (Q, P) € E if Q follows P.

Definition 3 [Initiator of faction (Amornbunchornvej and
Berger-Wolf 2018a)] Let G = (V, E) be a following network.
L € V is an initiator of faction F;_ if the out-degree of L is
zero and the in-degree of L is greater than zero. The member
nodes of F; are any nodes that have a directed path in G to L.

2.1 Leadership dynamics

We create a dynamic following network G = (G,) by con-
sidering each temporal sub-interval ¢ of ¢/ of length w
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(time window parameter) and creating a following net-
work G, of that interval. We then define the notion of the
time series of leaders of a dynamic following network
below.

Definition 4 (Time series of leaders) Let U be a set of time
series. L is a time series of leaders where L(t) s a set of fac-
tion initiators at time ¢ in G,.

We can use mFLICA framework (Amornbunchornve;j
and Berger-Wolf 2018a) to extract a time series of lead-
ers from time series of movement. Next, we define the
support of a leader set S. Let T be the length of the time
series of leaders and 1, be an indicator function, which is
1 if the statement x is true, and O otherwise.

T
Zt:l ﬂS:ﬁ(t)
—T .

supp(S) = (1)

supp(S) indicates the support of having a particular set of
initiators S lead multiple groups concurrently. For example,
if supp.({L;,L,}) = 0.5it means that half the time the lead-
ers are exactly {L,, L, }, leading their factions concurrently.

Definition 5 (Frequent-leader set) Let L be a time series
of leaders, S be a set of faction initiators, and ¢ € [0, 1]
be a support threshold. S is a frequent-leader set of L if

supp.(S) > ¢.

Definition 6 (Transition probability of leader sets) Let L be
a time series of leaders, and S;, Sj be sets of faction initiators.
A transition probability of leader sets Ag_ s, is a probability

that £(z — 1) = S;and L(2) = S;.

Now, we are ready to formally state the problem of
MINING PATTERNS OF LEADERSHIP DYNAMICS.

Problem 1: MINING PATTERNS OF LEADERSHIP DYNAMICS

Input:  Asetd = {U,,...,U,}of m-dimensional time series and a

support threshold ¢.

Output: A set of frequent-leader sets S, and a transition probability
set P = {455} where S,. §; € S.

In this paper, we choose to represent a set of frequent-
leader sets as a diagram of leadership dynamics below.

Definition 7 (A diagram of leadership dynamics) Let L be a
time series of leaders, ¢ € [0, 1]be a support threshold, and
S, be set of frequent-leader sets. A digraph 7= (Vi Episa
diagram of leadership dynamics such that the nodes V- rep-
resent frequent-leader sets S and (v;,v;) € E7 if Asi,sf > 0.

@ Springer

2.2 Followership dynamics

Given a dynamic following network G = (G,) of a set of time
series U, we define the notion of the time series of factions
of the dynamic following network below.

Definition 8 (Time series of factions) Let U be a set of time
series and G = (G,) be a dynamic following network of I/,
where G, = (V,, E,) is a following network at time 7. We say
that F is a time series of factions, where F(¢) is a set of fac-
tions {F }at time ¢ in G, = (V,,E,) and F| C V, is a set of
faction members of initiator L (Definition 3).

The time series of factions contains the information of
who belongs to which specific faction over time. Having
defined the time series of factions, we can formalize the
concept of a pair of individuals who frequently stay together
in the same faction.

Definition 9 (Frequent co-faction pair) Let F be a time
series of factions, ¢ be a threshold, and V = {1, ... ,n} be
a set of individual indices. We say that individuals i and j in
V are a frequent co-faction pair if the frequency of i and j
being in the same faction of F is greater than ¢,

A frequent co-faction pair might indicate friendship or
other strong affiliation between individuals. At the group
level, we define the notion of a frequent co-faction cluster
below.

Definition 10 (Frequent co-faction cluster) Let F be a time
series of factions, ¢ be a threshold, and V = {1, ..., n}
be a set of individual indices. We say that a set C C Vis a
frequent co-faction cluster if every member pair i, j in C is
a frequent co-faction pair with respect to F and ¢ and
there is no other frequent co-faction cluster C’ C V where
C C C'. In other words, C is a maximal set of frequent co-
faction pairs.

A frequent co-faction cluster represents a concept of
cohesion. If an entire group has a strong level of cohesion,
then there are a few clusters. In contrast, if a group has a
weak level of cohesion, then there are multiple clusters. The
members within the same cluster might either be loyal to a
specific leader, share the same interests, or be a group of
friends or other strong affiliates.

In general, given a time series of factions as an input,
the problem of finding global faction clusters of individu-
als is NP-hard, and an approximated solution was given by
Tantipathananandh et al. (2007). However, in our setting, a
faction or cluster is a group of followers lead by a particular
frequent leader. Hence, the problem of finding global faction
clusters reduces to the problem of finding followers of each
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Fig. 1 High-level overview of
the proposed framework for 1
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frequent leader, which can be done in polynomial time in
one scan over the time series.

To illustrate the concept of loyalty of a follower toward
a specific leader, we formalize the notion of a frequent
leader—follower pair below.

Definition 11 (Frequent leader—follower pair) Let F be a
time series of factions, ¢; i be a threshold, and V = {1, ..., n}
be a set of individual indices. We define the order pair (i, j)
in V is the frequent leader—follower pair if the frequency
of having i within a faction that has j as the initiator with
respect to F is greater than ¢ .

A frequent leader—follower pair i, j implies that i is a
member of a faction lead by j most of the time. This implies
that i might be a loyal follower of j (or have a strong affilia-
tion with a loyal follower of ).

Now, we are ready to formally state the problem of Min-
ING PATTERNS OF FOLLOWERSHIP DYNAMICS.

Problem 2: MINING PATTERNS OF FOLLOWERSHIP DYNAMICS

Input : AsetUd ={U,,...,U,} of m-dimensional time series,

threshold ¢, and threshold ¢, .

Output: A set of co-faction pairs S, a set of frequent co-faction
clusters S¢;, and a set of frequent leader—follower pair

Sir

In this paper, we choose to represent a set of frequent
co-faction pairs as a co-faction network, as well as choose
to represent a set of frequent leader—follower pairs as a
lead—follow network below.

Definition 12 (A co-faction network) Let F be a time series
of factions, ¢ be a threshold, and V = {1, ... ,n} be a set of
individual indices. An undirected graph G = (V, E¢g)is a
co-faction network such that there is an edge (v;,v;) € Eq
if a pair (v;, v;) is a frequent co-faction pair w.r.t. F and ¢,

Dynamics
- Sequence Patterns
- Hypothesis testing
result

Outputs

{1H234H3H4AX1})..

Sequence Mining

The weight of the edge (v;, v;) is a frequency of having i, j in
the same faction.

Definition 13 (A lead—follow network) Let F be a time series
of factions, ¢  be a threshold, and V = {1, ... ,n} be a set of
individual indices. A bipartite graph G, = (Vg, V|, E; ) is
a lead—follow network where Vy; represents a set of follower
nodes, and V| represents a set of initiator nodes. For any
v; € Vpand v; € V, there is a directed edge (v;,v;) € Eyp if
an order pair (v;,v;) is a frequent leader—follower pair w.r.t.
F and ¢ f.

3 Methods
3.1 Leadership dynamics

To solve Problem 1, we propose the framework consisting of
four parts (Fig. 1). Given a set of time series of movement
U=1{U,,...,U,}, where U; € U is a two-dimensional time
series of length T; first, we infer a dynamic following net-
work and time series of leaders £ using mFLICA framework
(Amornbunchornvej and Berger-Wolf 2018a) (Sect. 3.2).
Second, we infer a diagram of leadership dynamics 7 from
L in Sect. 3.3. Third, we detect the sequence patterns on L
in Sect. 3.4. Finally, we deploy hypothesis tests to evaluate
significance of leadership dynamics compared to our pro-
posed null models in Sect. 3.5.

3.2 mFLICA

Given a pair of time series U and Q, mFLICA uses dynamic
time warping (DTW) (Sakoe and Chiba 1978) to infer a
following relation. Suppose Py, , is an optimal warping
path from DTW dynamic programming matrix, where
(i,)) € Py implies U(i) matched with Q(j) in the matrix.
Intuitively, if U is followed by Q with the time delay 4, ;,

@ Springer



58 Page6of 17

Social Network Analysis and Mining (2019) 9:58

then j — i = 4;;. Hence, we can compute the following rela-
tion by the equation below.

Z(i/‘)eP sign(j — i)
f(Pyp) = |1§ | : )
U0

Suppose we have a similarity threshold o, then we say there
is a following relation if [f(Py 5)| > o, where Q follows U if
f(Py o) 2 o and U follows Qif f(P; ») < —o. We seto = 0.5
as a default.

Next, given a time window w and a sliding window
parameter 6 = 0.1w, we have the i time window interval
w(i@)=[I—-1)%x6,(i—1)X 6+ w]. mFLICA creates a fol-
lowing network for each set of time series within interval
w(i) of U. An edge of a following network is inferred by
Eq. 2 with the weight [f(P;, ,)|. Hence, after every interval
w(i) has its following network, and we have a dynamic fol-
lowing network G = (G,) of .

Lastly, for each time step t, mFLICA uses breadth-first
search (BFS) to infer factions and initiators within a fol-
lowing network G,. The faction initiators are nodes with
out-degree zero and in-degree nonzero. By applying BFS
to dynamic following network G, we have the time series
of leaders £ = (L(1), ..., L(T)) as well as the time series
of factions F = (F(1), ..., F(T)) as the outputs of this step.

3.3 Inferring transition diagram of leadership
dynamics

We use Hidden Markov Model (HMM) (Rabiner 1989) to
model a diagram of leadership dynamics 7= (V5 Ep) in
Definition 7 and use Baum—Welch algorithm (Jelinek et al.
1975) to infer the maximum likelihood estimates of param-
eters of HMM from the time series of leader £. In this set-
ting, we have a set of frequent-leader sets S as a set of states
in HMM with the support threshold ¢ = 0.01. In HMM, the
stochastic transition matrix A, which has its size |S,| X |S,|,
describes estimated probabilities that a group changes its
current set of leaders to another set of leaders (e.g., group
merging or splitting). However, since we are interested only
in the events of state changes, we ignore the self-transition
probability and normalize A to be A* (Eq. 3), which is the
adjacency matrix of 7.

Given a time series of leaders £, we can easily infer a set
of leader sets S;. Then, let Sy be a set of states in HMM
where Sy and S are in one-to-one correspondence. We
represent each state in Sy as @ number in [1, |[Syyv|], and
then, we create L, by replacing each element in £ with
the number of corresponding state in Sy For example,
in Fig. 3 (Dynamic Type 1), we have a set of leader sets S,
and Sy, Where {ID1}, {ID2,1D3,1D4}, {ID3}, and {ID4},
in S, have corresponding elements in Sy as 1, 2, 3, and
4, respectively.
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Initially, we set a stochastic transition matrix A = {ai:,-} @,
are the states) and the initial state distribution x; uniformly.
We have the set of observation values Y = {1, ..., |Sgvm! -
In this setting, there is no hidden state since an observation
value is an identity of a state. However, in HMM, at any state
i, there is a required probability b, ; of observing value j at the
state i (typically represented by a matrix B = {b, ;}). Here, the
probability b;; = 1if i = j and zero otherwise.

We use Baum—Welch algorithm (Jelinek et al. 1975) to
infer A ={aq,;}, and then, we normalize A to create
A* = {az].} by the equation below.

(o i=j
4=\ =ma—, Otherwise. 3)

k=1 ki ik

3.4 Mining sequence patterns of leadership
dynamics

After having a diagram of leadership dynamics 7= (V. E7),
for each pair of nodes (i, j) € V, we find a sequence pattern,
which is a path P;; = (v(1) =i, ..., v(k) = j), where for all
WE VT dy 1) > Dty

Pi,,' is an order sequence that the previous state
v(t — 1) € P;; has the highest probability to change to the
next consecutive state v(r) € P;;, given a starting point at i
and the final state at j.

Given A* = {aj.:].} as an adjacency matrix of 7', we convert
A*tobe A’ = {a;J} where a;J = LL Then, we use the standard
Dijkstra’s algorithm to find the stlortest path between every
two nodes in A’. Hence, P; J is the shortest path between i and
jin A" Let v be a number of times that the full sequence of
P,;; occurs in £ and N be a number of times that leadership
state change happens in £ (e.g., two subgroups merged
together, changing the leader), we can find the support of P;;

in the time series of leader £ by the equation below:

VX (Pl - 1)

2

N “

supppath([”Pi,j) =
Specifically, v is a number of times that all pairs of nodes
v(t—=1),v(t) € P,-J- s.t. v(t — 1) appear before v(¥) in P,-J- also
appear in L.

3.5 Hypothesis testing

3.5.1 Evaluating the significance of leadership-event order

Given a time series of leaders £ and a diagram of leader-
ship dynamics 7 inferred from £, we perform a random

! Note, this can be done since the probability condition is independ-
ent of each pair and not cumulative over the path
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Table 2 Details of
nonparametric tests used in this

Method

Null hypothesis H,,

paper

Kolmogorov—Smirnov test (Massey 1951)

Two samples are from the same distribution

Wilcoxon rank sum test (Wilcoxon 1945)
Kruskal-Wallis test (Kruskal and Wallis 1952)

A significant level has been set at a = 0.01 for all experiments

Fig.2 High-level overview of
the proposed framework for 1

inferring followership dynamics Multidimensional

Time Series Data
| — VU™ ‘ .

Input

Dynamic ‘Following’
Network Inference

‘ 3 Sub-faction analysis

Faction
Detection

mFLICA Framework

J Co-faction network Lead-follow network

inference ° inference 0 R

permutation of elements in £ to create £, 4, and then, we
infer a diagram of leadership dynamics 7,4 from £, 4 by
the method described by the previous section. Afterward,
we test the similarity of the edge-weight distributions of 7°
and 7,,.4. We deploy three nonparametric methods, shown
in Table 2, to perform the tests. If all three methods success-
fully reject the null hypothesis with the significant threshold
a = 0.01, then we conclude that the edge-weight distribution
of 7 is significantly different from 7,,,,’s although the sup-
port value of each node in both graphs is the same.

3.5.2 Evaluating the significance of frequencies
of leadership-event sequences

After finding all the sequences for every pair of nodes in
Sect. 3.4, we compute the support supp,,,, (£, P;;) of each
sequence P;;. This gives the sequence-support distribu-
tion of 7. Next, we rewire 7 to be 7,4 by uniformly and
randomly changing the end points of each edge in 7, and
then, we calculate the sequence-support distribution of 7,
(Eq. 4). Lastly, we test whether 7 and 7,4 sequence-support
distributions are different the same way as in the previous
section.

We repeat both types of significance tests 100 times and
report the percentage of times that the tests successfully

reject H, for each dataset.

Co-faction network
Lead-follow network
Cohesion measure

®© 0o o '
L

Outputs

3.6 Followership dynamics

To solve Problem 2, we propose the framework that consists
of three parts (Fig. 2).

LetUd = {U,, ..., U,} be aset of time series of movement,
where U; € U is a time series of length 7. In the first step, we
infer a dynamic following network as well as a time series of
factions F using mFLICA framework (Amornbunchornve;j
and Berger-Wolf 2018a) (Sect. 3.2).

Second, we infer a co-faction network Goo = (V, E)
(Sect. 3.6.1) and a lead—follow network G;r = (V,Ep)
(Sect. 3.6.2) from F. Afterward, we infer a set of frequent
co-faction clusters { C} (Sect. 3.6.3).

3.6.1 Co-faction network inference

To infer a co-faction network, the first step is to infer a pair
of frequent co-faction in Definition 9.

Given a time series of factions F with the length 7" and an
indicator function 1, (which is 1 if the statement x is true, and
0 otherwise), we define the support of having individuals i and
Jj in the same faction below.

Z,T—1 Varern (ij}CF
= = Q)]

csupp(i.j) = -
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Here, csupp £(i, j) indicates the support of having a particular
pair of individuals i and j being within the same faction in F.

After we compute the supports csupp for all pairs of
individuals, we have a co-faction network G- = (V, Eqq).-
Given a threshold ¢, there is an edge (v;,v;) € E¢q if
csupp (i, j) = pco- The edge weight of (v;, v;) is csupp £(i, j)-

3.6.2 Lead-follow network inference

To infer a lead—follow network, the first step is to infer a fre-
quent leader—follower pair i, j in Definition 11. Given a time
series of factions F with the length 7 and an indicator function
1, (which is 1 if the statement x is true, and 0 otherwise), we
can define a support of having individual i in the faction lead
by an initiator j below.

PO :
=1 EIF/-e]-'(t),zeFj. (6)

Ifsupp (i, j) = T

where F is a set of faction members leading by j. Here,
Ifsupp (i, j) indicates the support of having a particular indi-
vidual i in the faction leading by an initiator j in F.

After we compute the supports Ifsupp for all pairs of indi-
viduals, we have a lead—follow network G; x = (Vg, Vi, E; p).
Given a threshold ¢, for any i € Vi and j € V, there is a
directed edge (v;,v;) € Ecq if Ifsupp£(i,j) > ¢ . The edge
weight of (v;,v;) is lfsupp (i, /). Higher Ifsupp £(i, ) implies
that there is a higher frequency that i is a member of j’s faction.
Hence, we can use Ifsupp (i, j) as a proxy of loyalty of i to j.
Higher Ifsupp £(i, j) implies that i is more loyal to j.

3.6.3 Clustering and cohesion measure

We use the standard Hierarchical clustering with the short-
est distance to link clusters (Sibson 1973) to demonstrate
our framework ability. However, any clustering algorithm
can be used in our framework to perform the analysis. The
Hierarchical clustering algorithm is an agglomerative clus-
tering approach that starts with each individual in a cluster
by itself. Then, it keeps merging two closest clusters to be
a single new cluster. The algorithm keeps merging on a
set of clusters until there is only a single cluster. Given C
and C’ are clusters and ADJ, is an adjacency matrix of a
co-faction network that has its element as csupp (i, ), the
distance between two clusters is defined below.

distgingrerink(C> C')
= ierg}gC,(dlst(ADJCO(z, *), ADJ o (J, *)))

where ADJ(i, *) represents an ith vector row of ADJq
and dist() is a standard euclidean distance. The reason that
we compute the distance between the vector of weights of
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i to all individuals and the vector of weights of j to all indi-
viduals in distgjgierink(C> C') is that because two individuals
who share the same set of csupp (7, j) are likely members of
the same faction. Hence, they should have a small distance.

Next, since there are two types of edges in ADJ: edges
that connect members within the same clusters and edges
that connect individuals of different clusters. We can use
k-means algorithm where k = 2 to cluster a list of edge
weight of the hierarchical tree into two types: internal edges
and external edges. Finally, we link any leaves (individuals)
of hierarchical tree that are reachable using internal edges
to be a member of the same group to represent a frequent
co-faction cluster in Definition 10.

To measure the degree of cohesion of ADJ-,, we use the
standard modularity measure (Q-value) proposed by New-
man and Girvan (2004) below.

IC|

Q(ADJ,C) = Y (e;; —a)), ®)
c=1

where ¢;; is a fraction of edges that have one end connected
to a node in a cluster i and another end connected to a
member of a cluster j, and a; = ¥ ¢;;. The value of Q has
a range between —1 and 1. If the value is a large positive,
then there are multiple strong clusters; the numbers of edges
within groups are greater than the numbers of edges between
groups. When there are multiple subgroups that have higher
edge weight within the same cluster while edges that con-
nect nodes from different clusters have lower edge weights,
then Q is close to one. In contrast, if either there is only one
cluster or edge weights of all pairs of nodes are not differ-
ent from each other, then Q is close to zero. In other words,
higher Q implies the higher number of subgroups that have
relatively high edge weight between nodes within the same
cluster compared to edge weights of nodes from different
clusters. Hence, we can use Q as a proxy of cohesion of
group. Higher Q implies lower cohesion.

3.7 Time and space complexity

The time complexity of mFLICA is O(n> X w X T), where
n is a number of time series, T is a length of time series,
and w is a time window parameter. The time complex-
ity of Baum—Welch algorithm to infer a diagram of lead-
ership dynamics is O(m? x T) where m is the number of
frequent-leader sets. Typically, m < n since there are fewer
frequent-leader sets than individuals. In the followership
part, we can scan a time series of factions F only once
to compute everything, which has the time complexity at
most O(n X n X T). Hence, our framework’s overall time
complexity is O(n?> X w x T). For the space complexity, the
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Type 1 Dynamics: Splitting/Merging coordination event

\ a/

Start

200 steps 200 steps 200 steps

200 steps

Type 2 Dynamics: Linear coordination event

“@—0—0—

200 steps 200 steps 200 steps 200 steps

Fig.3 Splitting/Merging (above) and linear (below) coordination
event. Each node represents the ID of leader of each subgroup at the
particular time, and each edge represents the change of group’s lead-
ers

most expensive part of our framework is the space for the
dynamic following network, which is O(n? x T).

3.8 Parameters sensitivity

For the time window parameter w, the work by Amornbun-
chornvej et al. (2018) reported that the following relation is
robust to the noise. However, if we set w below the maxi-
mum time delay between time series, then the result can
be severely affected. Hence, a user should try to guess the
maximum time delay on his/her dataset before setting w.
Since the core engine of mFLICA is the following relation
measure, it is important to set @ properly. The other param-
eter such as significant level a should be fine-tuned w.r.t.
the task.

4 Evaluation datasets
We evaluate our method on synthetic datasets generated

using a variety of leadership models with a variety of pat-
terns of leadership dynamics.

4.1 Leadership models

There are three leadership models that we consider in this
paper below.

4.1.1 Dictatorship model (DM) (Amornbunchornvej
and Berger-Wolf 2018a)

Initially, all individuals stay in the initial area. Then, a single
initiator moves toward a target path before others. After-
ward, all other individuals follow the initiator with some
time delay.

4.1.2 Hierarchical model (HM) (Amornbunchornvej
and Berger-Wolf 2018a)

Each individual has been assigned the unique ranking value
at the beginning. Lower-rank individuals always follow
higher-rank individuals. An initiator who has the highest
rank individual (initiator) starts moving first, and then, the
second high-rank individual follows the first-rank individual
with sometime delay and so on (the k + 1th rank individual
follows the kth-rank individual).

4.1.3 Independent cascade model (IC) (Kempe et al. 2003)

Initially, all individuals are deactivated. At the beginning,
each individual has a chance to be active with the probability
p. After activation, the active individuals move following the
initiator except the initiator itself that follows in the target
direction. In every time step, active individuals attempt to
activate their k-nearest inactive neighbors with the probabil-
ity of success p. Active individuals cannot attempt to acti-
vate the same individual twice. In this paper, we determine
the parameter space on a combination of: k € {3,5, 10} and
p € {0.25,0.50,0.75}.

4.2 Synthetic trajectory simulation

We use simulated datasets to evaluate the performance of
our framework. Each dataset consists of 30 individuals. The
trajectory of each individual is two-dimensional time series
of length 4000 time steps. Each dataset has been generated
from one of the three leadership models described above.
There are five coordination events in each dataset. One coor-
dination event lasts for 800 time steps. There are two types
of coordination events as follows.

4.2.1 Type 1 dynamics: Splitting/Merging coordination
event (Amornbunchornvej and Berger-Wolf 2018a)

In this type of coordination event (Fig. 3), ID1 leads the
entire group for 200 time steps. Then, the group splits into
three equal size subgroups lead by ID2, ID3, and ID4, for
the duration of 200 time steps. Afterward, all subgroups are
merged into a single group again lead by ID3 for another
200 time steps. Finally, ID4 leads the entire group for the
last 200 time steps.
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4.2.2 Type 2 dynamics: Linear coordination event
(Amornbunchornvej and Berger-Wolf 2018a)

In this type of coordination event (Fig. 3), ID1 leads first, and
then, ID2 leads, ID3 leads after ID2, and ID4 leads after ID3.
Each leader leads the group for 200 time steps.

After a coordination event ends, the group stops moving
and the next coordination event repeats the pattern. In this
paper, we generated 100 datasets for each leadership model
and coordination type (e.g., DM with Type 1 dynamics has
100 datasets). One exception: IC has nine cases of differ-
ent parameters settings, and we have a 100 datasets for each
parameter setting and dynamics type. In total, we have 400
datasets for DM and HM but 1800 datasets for IC.

4.3 Baboon dataset

We also deploy our framework on a dataset of GPS trajectories
of wild olive baboons (Papio anubis) living at Mpala Research
Centre, Kenya (Crofoot et al. 2015; Strandburg-Peshkin et al.
2015). The dataset consists of latitude—longitude location time
series of 16 baboons recorded for every second for a nine-day
period (419,095 time steps). We employ this dataset to demon-
strate the potential of our framework to uncover relationships
within data to generate scientific hypotheses.

5 Evaluation criteria
5.1 Leadership dynamics

In simulated datasets, we compare the inferred adjacency
matrix A = {q;;} of a digraph of leadership dynamics
T= (V5 Ep) against the ground-truth matrix A* = {a;‘J}. For
the Splitting/Merging coordination event, the ground-truth set
of frequent-leader sets is

S, = {{ID1}, {ID2,1D3,1D4}, {ID3}, {ID4} }.
All elements in A* are zero except

ES

%k
Ap1},{1D2,1D3,1D4) — 4{ID2,ID3,ID4},{ID3}

= {13y >4} = Yay o1y = 1
For the Linear coordination event,
S, = {{ID1}, {ID2}, {ID3}, (ID4} }
and all elements in A* are zero except
aTIDl],{ID2} = aTIDZ},{IDS} = aTIDS},{IDM = aTID4],{IDl} =1

Let S, and S;. be the predicted and the ground-truth sets
of frequent-leader sets, respectively. The loss function of A
and A* is below:

@ Springer

loss(A,A™)
Tjesns, laiy — @l + FP(A, A% + FN@A, A (9)
B Ty
FPA. A = D layl (10)

ij€S\S;

FN(A4,A*%) = Z |la* |

iy
ijE€S\S,

1)

where n,. is the number of elements within A*. The first
term in Eq. 9 represents the L1-norm difference between
each element in A and A* (probabilities) when the predicted
states are the same as the ground truth. The second term
represents the false positive case when the framework pre-
dicts the states that do not exist in the ground truth. The last
term represents the false negative case when the framework
misses prediction of a state that exists in the ground truth.

5.2 Followership dynamics
5.2.1 Co-faction network

In simulated datasets, we compare an inferred adjacency
matrix A = {a;;} of a co-faction network against the ground-
truth matrix A* = {aj.‘J. }. All members from the same cluster

are connected with edges that have the weights

A ={ai} =1,

while two nodes from different clusters have the weight
A* = {afJ} =0.75.

For the Splitting/Merging coordination datasets, the ground
truth is that there are three clusters:

C, ={ID1,1D3,ID5, ..., ID10},
C, ={ID4,1ID11, ..., ID19},
C, ={ID2,1D20, ..., ID30}.

For Linear coordination datasets, all individuals are in the
single cluster. Given Vis a set of nodes of # individuals, we
use the absolute loss function to evaluate the difference
between predicted A = {a;;} and the ground truth A* = {az].}
below:

Zi,,‘ev |ai,j - aiJl

()

loss(A, A*) = (12)
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5.2.2 Lead-follow network

We also compare an inferred adjacency matrix A = {q;;} of
a lead—follow network against the ground-truth matrix
A* = {a] }of Gir = (V5 V', E; ). In both Splitting/Merging
and Linear coordination datasets, ID1, ID2, ID3, and ID4 are
only initiators. Hence, VE = {ID1,1ID2,ID3,ID4} and
Vi ={ID1,...,1ID30}.
For Splitting/Merging coordination datasets, given a
leader L = ID1, for any j € V, a;‘:J =0.25.
e If L=1D2 and j € C;, then a;‘;}. = 0.25, while a]’iJ, =0
for j & C;.
e IfL =ID3and j € C|, then aEJ = 0.50, while aEJ, =0.25
for j & C,.
e IfL=1ID4andj € C,, then a]’:i = 0.50, while ari,‘/ =0.25
for j & C,.

In Linear coordination datasets, for L € V{’f and j eV},
a]’ij = 0.25.

Let V} and V} be the predicted and the ground-truth sets
of initiators of a lead—follow network, respectively, and we
compare the inferred A and the ground truth A* using the
loss function below:

loss; p(A,A™)
Tjevean, 1y — @] + FPLL(A, A") + FNL(4,4%)

e

FPr(A,A) = ) layl
ijeVi\Vy

FN, :(4,A%) = Z la7 |
ijeViv

13)

where ny. is the number of elements within A*.

5.2.3 Clustering evaluation

For Splitting/Merging coordination datasets, the ground
truth of first cluster is C,. The second cluster is C,. The third
cluster is C5. For Linear coordination datasets, all individu-
als are in the single cluster. We use F'1 score to measure the
difference between inferred and ground-truth clusters. Given
C; is a ground-truth cluster and C‘j is a predicted cluster that
have the most common members with C;. The true positive is
a sum of number of common members between all pair of C;
and C'] The: false positive is a sum of number of individuals
that are in C/' but not in C;, and the false negativAe is a sum of
number of individuals that are in C; but not in C;.

supp, :0.26 (XED

1.00

1.00

supp:0.03 supp,:0.14

supp,:0.21

supp,:0.33 supp,:0.03

0.80

Fig.4 Example of the inferred diagram of leadership dynamics by
our framework from a Type-1-HM dataset. Comparing the inferred
diagram with the ground truth, only nodes {2,4} and {2, 3} are false
positive nodes. The support of {1}, {2,3,4},{3} and {4} should be
0.25, and our framework can infer the support for each node closely
to 0.25

supp,:0.26

supp,:0.27

supp,:0.27 supp,:0.20

Fig.5 Example of the inferred diagram of leadership dynamics by
our framework using a Type-2-HM dataset. Comparing the inferred
diagram with the ground truth, there are no false positive nodes. The
support of {1}, {2}, {3} and {4} should be 0.25, and our framework
can infer the support for each node closely to 0.25

6 Results
6.1 Leadership dynamics

We set the time window parameter @ using the inference
method in Amornbunchornvej and Berger-Wolf (2018a).
Figures 4 and 5 show the examples of inferred diagrams of
leadership dynamics by our framework from Type-1-HM
(Hierarchical model with Splitting/Merging coordination
events) and Type-2-HM (Hierarchical model with Linear
coordination events) datasets, respectively. In Fig. 4, com-
paring the inferred diagram with the ground truth, only
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Table 3 Example of sequences of leadership dynamics that have the
highest support from HM datasets

Datasets Sequences SUPPpaen (L, P )
Type-1-HM {2,3.4}.{3}.{4}.{1} 0.71
Type-2-HM {1},{2},{3}.{4) 0.95

nodes {2,4} and {2, 3} are false positive nodes, both with
very low support of 0.03.

This implies that despite the complex dynamics of lead-
ership in Type-1 Dynamics case, our framework was still
able to retrieve the diagram of leadership dynamics accu-
rately. For the Type-2-HM dataset, which is less complex
than Typel-HM case, Fig. 5 shows that there are no false
positive nodes in the inferred diagram. Moreover, in both
Type-1-HM and Type-2-HM cases, the support of each node
should be 0.25, and our framework can infer the support for
each node closely to 0.25.

Regarding the mining sequence patterns of leadership
dynamics described in Sect. 3.4, Table 3 shows an example
of max-support sequences of leadership dynamics that our
framework reported from HM datasets. In both dynamics
types, the sequences are consistent with the ground truth
in Fig. 3.

Next, we compared our framework, which uses the fol-
lowing networks concept (Amornbunchornvej and Berger-
Wolf 2018a), to the method based on direction networks
proposed in FLOCK method (Andersson et al. 2008) to infer
a diagram of leadership dynamics. In direction networks,
at any time ¢, if 7 is moving toward the same direction as j
but j is in front of i, then i follows j. The median of all loss
distributions in both Type-1 and Type-2 dynamics datasets
is reported in Table 4. The first row of Table 4 shows the dis-
tribution of loss values (Eq. 9) in Type-1 dynamics datasets.
The direction network approach was reasonably competitive

for the Type-1 dynamics. We were able to use the direction
networks to infer the states with splits and merges, but the
change of leadership was often missed by this underlying
method. Not surprisingly, then, the direction network-based
method performed significantly worse than the following
network-based approach for the Type-2 dynamics. Quali-
tatively, and as a distribution of the loss values overall, the
following networks as the basis for the diagram inference
performed better than the direction networks in our frame-
work. In the second row of Table 4, the following networks
also performed better than direction networks in Type-2-dy-
namics datasets.

In Table 5, we reported the hypothesis testing results of
the significance of leadership-event order (Sect. 3.5.1). With
respect to the type of the leadership model, for the HM,
which is a well-structure model, the inferred diagrams are
more significantly different from the null-model diagram
than for the other leadership models. With respect to the
types of the dynamics, in the complex type-1-dynamics data-
sets our framework inferred diagrams that are more signifi-
cantly different from the null model. Lastly, the following
networks were able to infer diagrams that are more different
from the null model than the direction networks.

For hypothesis testing of the significance of frequencies
of leadership-event sequences (Sect. 3.5.2), the result is
shown in Table 6. Similar to the edge-weight distribution
testing, the support distributions of the well-structure model,
HM, are significantly different from the support distribution
of the null model. The following networks also can be used
to infer diagrams that are different from the rewiring dia-
grams than the direction networks based approach. However,
in the simple type-2-dynamics datasets, our framework was
able to infer diagrams that are more different from the null
model compared to the complex type-1-dynamics case.

For the baboon dataset, we reported the information that
we can retrieve from the dataset using our framework as a

Table 4 Median of loss

Dyn. t Type 1 Type 2
values in the prediction task yn-type pe vpe
of diagrams of leadership Model HM DM IC HM DM IC
dynamics
Following network 0.13 0.19 0.24 0 0.03 0.08
Direction network 0.19 0.19 0.25 0.19 0.19 0.25
Table 5 Hypot.hes.is testing Dyn. type Type 1 Type 2
results of the significance
of leadership-event order in Model HM DM IC HM DM IC
Sect. 3.5.1
Following network 0.99 0.55 0.38 0.86 0.08 0.20
Direction network 0.00 0.00 0.06 0.00 0.00 0.06

We reject H, at @ = 0.01. Each element in the table represents the percentage of the times when the tests

successfully reject H,
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Table 6 Hypothesis testing

Dyn. t T 1 T 2
results of the significance of - pe pe vpe
frequencies of leadership-event Model HM DM IC HM DM IC
sequences in Sect. 3.5.2
Following network 0.95 0.35 0.23 0.94 0.84 0.66
Direction network 0.07 0.08 0.20 0.07 0.07 0.20

We reject H, at @ = 0.01. Each element in the table represents the percentage of the case when the test suc-

cessfully rejects H,

State Machine of Leadership Dynamic of Baboons

{M11}:sup0.04 0.60
{F18}:sup0.07
{F18,F22}:sup0.01

{F9):sup0.19 0.50
{M3}:sup0.11

{F4}:sup0.09
{M3,F9}:sup0.03
{F9,F22}:sup0.02
{F22}:sup0.08
{M1}:sup0.02
{F6}:sup0.01
{M3,F4}:sup0.01
{F4,F9}:sup0.03
{M19}:sup0.03
{M2,M3}:sup0.01
{M2}:sup0.03
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Fig. 6 Inferred diagram of leadership dynamics of the baboon dataset
from our framework. Each row represents the node of leader sets of
the previous state, and each column represents the next state. Each
row label consists of baboon gender: ‘M’ or ‘F’, a set of frequent-
leader IDs, and the support value of frequent-leader set. For exam-
ple, in row 3 and column 2, the event that two female baboons F18
and F22 are leading their separate subgroups concurrently can happen
with the support 0.1 (out of all the coordination times). These two
subgroups have a chance to be merged together to a larger group lead
by F18 with the probability 0.29.

Table 7 Baboons’ sequences of leadership dynamics that have the
top-4 highest support

Baboon Sequences SUPPpn (L, Py))
Seq. 1 {M11}, {F9}, {M3} 0.0354
Seq. 2 {M18}, {F9}, {M3} 0.0354
Seq. 3 {M18}, {F9}, {M22} 0.0354
Seq. 4 {M4}, {F9}, {M2} 0.0354

case study. Fig. 6 shows the inferred diagram of leadership
dynamics from our framework. Each row represents the
node of leader sets of the previous state, and each column
represents the next state. Each row label consists of baboon
gender: ‘M’ or ‘F’, a set of frequent-leader IDs, and the sup-
port value of frequent-leader set. For example, in row 3 and
column 2, the event that two female baboons F18 and F22
are leading their separate subgroups concurrently can hap-
pen with the support 0.1 (out of all the coordination times).

These two subgroups have a chance to be merged together to
a larger group lead by F18 with the probability 0.29. In 4th
column ({F9}), we found that no matter what the previous
subgroups were, there was a high chance that the next group
would be lead solely by the female baboon F9. In 4th row, F9
has the highest support (0.19), which means F9 (who hap-
pens to be the dominant female) often leads the troop, with
the next highest support of 0.11 for the male baboon M3
(5th column, the alpha male). Lastly, at row 5 and column
4, if M3 and F9 are leading their separate subgroups, then
the two groups will be merged to a larger group lead by F9
with probability 0.63.

The hypothesis testing of the edge-weight distribution
shows that the baboon’s diagram is significantly different
from the null model, with 100% of the time the tests suc-
cessfully rejecting H,. However, for the hypothesis testing
of sequence-support distributions, the baboons’ sequences
of leadership dynamics are not significantly different from
the rewired diagram. Only 5% of the times the tests success-
fully reject H,,. This indicates that while individual leaders
identity is non-random and pairwise leadership transition
patterns are significant, there are no leadership sequences
that often appear significantly within the baboon dataset.
Nevertheless, Table 7 shows baboons’ sequences of lead-
ership dynamics that have the top-4 highest support. This
result is the evidence that F9 is an important individual who
frequently leads the group.

These results show that our framework provides the
opportunity for scientists to gain more insight into their
datasets in order to generate scientific hypotheses, which
might lead to important scientific discoveries (in this case,
about the collective behavior and leadership dynamics of
social animals).

6.2 Followership dynamics

6.2.1 Co-faction and lead—follow networks

Figure 7 shows the results of ground-truth and predicted
adjacency matrices of co-faction network by our frame-
work from Type-1-HM (Hierarchical model with Splitting/

Merging coordination events) and Type-2-HM (Hierarchi-
cal model with Linear coordination events) datasets. Each
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Fig.7 Adjacency matrices of ground-truth and predicted co-faction
networks. (Top-left) Ground-truth matrix of Type-1 dynamics. (Top-
right) Predicted matrix of Type-1 dynamics. (Bottom-left) Ground-
truth matrix of Type-2 dynamics. (Bottom-right) Predicted matrix of

predicted matrix is the result of aggregation of co-faction
adjacency matrices from 100 datasets. The result shows that
our inferred matrices are mostly similar to the ground-truth
matrices with some variations due to noise. ID4 has the
highest error in Fig. 7 since it appears during the interval
when the group stop moving. Because mFLICA is designed
to handle movement initiation analysis, it has a limitation to
analyze stopping intervals of movement. Hence, mFLICA
cannot capture the behavior of a leader ID4 well.

Figure 8 shows the results of ground-truth and pre-
dicted adjacency matrices of lead—follow networks with
¢ = 0.1. Each predicted matrix is the result of aggrega-
tion of lead—follow adjacency matrices from 100 datasets.
The result also shows that our inferred matrices are mostly
similar to the ground-truth matrices with some variations.
The ID4 result has the highest error because of mFLICA
limitation that we have just discussed.

We also report the quantitative result of prediction of
both co-faction and lead—follow networks using following
networks compared with direction networks in Table 8.
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Type-2 dynamics. Each predicted matrix is the result of aggregation
of co-faction adjacency matrices from 100 datasets. The lighter color
implies a higher value of csupp £(i, /)

Overall, our proposed framework using following networks
performed better than the direction network framework. For
co-faction networks, the loss values are higher than lead—fol-
low network loss values. This implies that finding who are in
the same faction frequently is a bit harder than finding who
are loyal members of specific leaders.

6.2.2 Clustering results

In the clustering task, given a co-faction network as
an input, we compared our proposed framework with a
standard community detection algorithm in Newman
(2004). The NM community detection method greedily
searches for the partition of individuals that maximize the
Q-value in Eq. 8. Table 9 shows the result of Q-values of
our framework and NM community detection. For type-1
dynamics, we should have a high value of Q-value since
there are three strong clusters. Table 9 shows that even
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Fig.8 Adjacency matrices of ground-truth and predicted lead—follow
networks. (Top-left) Ground-truth matrix of Type-1 dynamics. (Top-
right) Predicted matrix of Type-1 dynamics. (Bottom-left) Ground-
truth matrix of Type-2 dynamics. (Bottom-right) Predicted matrix
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of Type-2 dynamics. Each predicted matrix is the result of aggrega-
tion of lead—follow adjacency matrices from 100 datasets. The lighter
color implies a higher value of Ifsupp £(i, L) where i is a column indi-
vidual (follower) and L is a row individual (initiator)

Table 8 Loss values of
co-faction and lead—follow

Following Network

Direction Network

networks inference Type-1 Type-2 Type-1 Type-2
Co-fact loss 0.184 + 0.013 0.187 + 0.030 0.398 +0.014 0.451 £ 0.011
Lead—foll loss 0.054 + 0.012 0.026 + 0.001 0.063 + 0.007 0.057 £ 0.002

Each element represents a mean of loss value + two standard deviations from 100 datasets. A lower value
implies a better performance of inference

Table 9 Q-value in Eq. 8 of clustering results

Table 10 F1-score of ground-truth versus inferred clustering results

Our framework NM community detection Our framework NM clustering
Type-1 dynamics 0.6934 + 0 0.460 + 0.145 Type-1 dynamics 0.983 + 0.003 0.940 + 0.096
Type-2 dynamics 0.064 + 0 0.066 +0 Type-2 dynamics 1+0 0983 +0

Each element represents a mean of Q-value value + two standard

deviations from 100 datasets. We expect Type-1 dynamics to have
higher Q-value since there are three strong clusters, while Type-2
dynamics should have the Q-value around zero. We report the results
from our framework and the candidate approach NM (Newman 2004)

though NM method tried to find the best clustering parti-
tion that maximizes Q-value, our framework found a set of
better clusters that has a higher O-value than NM’s clus-
ters. For type-2 dynamics, since there is only one cluster,
we expect that the Q-value should be close to zero. Both
methods performed well in this case.

We also reported the results of clustering comparison
between the ground-truth and inferred clusters. The result

Each element represents a mean of Fl-score value + two standard
deviations from 100 datasets. A higher F1 score value implies a better
performance of clustering inference. We report the results from our
framework and the candidate approach NM (Newman 2004)

in Table 10 shows that our framework performed better
than NM in both types of dynamics.

6.3 Baboon followersh