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Abstract
Leadership and followership are essential parts of collective decision and organization in social animals, including humans. 
In nature, relationships of leaders and followers are dynamic and vary with context or temporal factors. Understanding 
dynamics of leadership and followership, such as how leaders and followers change, emerge, or converge, allows scientists 
to gain more insight into group decision-making and collective behavior in general. However, given only data of individual 
activities, it is challenging to infer the dynamics of leaders and followers. In this paper, we focus on mining and modeling 
frequent patterns of leading and following. We formalize new computational problems and propose a framework that can 
be used to address several questions regarding group movement. We use the leadership inference framework, mFLICA, to 
infer the time series of leaders and their factions from movement datasets and then propose an approach to mine and model 
frequent patterns of both leadership and followership dynamics. We evaluate our framework performance by using several 
simulated datasets, as well as the real-world dataset of baboon movement to demonstrate the applications of our framework. 
These are novel computational problems and, to the best of our knowledge, there are no existing comparable methods to 
address them. Thus, we modify and extend an existing leadership inference framework to provide a non-trivial baseline for 
comparison. Our framework performs better than this baseline in all datasets. Our framework opens the opportunities for 
scientists to generate testable scientific hypotheses about the dynamics of leadership in movement data.
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1  Introduction

Leadership is a process that leaders influence followers’ 
actions in order to achieve the collective goal (Hogg 2001; 
Glowacki and von Rueden 2015). Leadership is an essential 
part that fosters success of coordinated behaviors in social 
species (Glowacki and von Rueden 2015; Couzin et al. 2005; 
Hogg 2001), such as foraging, migration, territorial defense, 
and so on. In most species, leadership is not permanent but 
may change with context (the one who leads the group to 
food or water may be different from the one who leads the 

flight from a predator) or other social circumstances (two 
rivaling subgroups may come to a joint decision and merge 
under single leadership or, vice versa, a group may split 
to explore several directions). Understanding dynamics of 
leadership, such as how leaders change, emerge, or converge, 
allows scientists to gain more insight into group decision-
making and collective behavior in general. In this paper, we 
focus on mining and modeling frequent patterns of leader-
ship dynamics.

One of the intuitive definitions of leadership that is 
commonly found in nature is the initiation of coordinated 
activities (Krause et al. 2000; Smith et al. 2015; Stueckle 
and Zinner 2008). In the context of movement, leaders 
are initiators who initiate coordinated movement that 
everyone follows (Amornbunchornvej and Berger-Wolf 
2018a). There are several works have been developed to 
infer leaders from time series of movement data, such as 
FLOCK method (Andersson et al. 2008), LPD framework 
(Kjargaard et al. 2013), and methods based on a dynamic 

 *	 Chainarong Amornbunchornvej 
	 chainarong.amo@nectec.or.th

	 Tanya Y. Berger‑Wolf 
	 tanyabw@uic.edu

1	 National Electronics and Computer Technology Center 
(NECTEC), Pathum Thani, Thailand

2	 Department of Computer Science, University of Illinois 
at Chicago, Chicago, IL, USA

http://orcid.org/0000-0003-3131-0370
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-019-0600-z&domain=pdf


	 Social Network Analysis and Mining (2019) 9:58

1 3

58  Page 2 of 17

following network concept (Amornbunchornvej et  al. 
2018; Amornbunchornvej and Berger-Wolf 2018a).

Nevertheless, the challenges in the field still remain 
regarding how to infer and model the dynamics of the 
frequent patterns of leadership events. For example, sup-
pose i and j lead separate subgroups, how often do the two 
groups merge to a larger group lead by k? How likely is 
it that the group lead by i will split into more than three 
subgroups?

However, only the state-of-the-art approach, mFLICA 
(Amornbunchornvej and Berger-Wolf 2018a), is capable 
of inferring dynamics of leadership—i.e., emergence, 
convergence, or a change of leaders—during coordinated 
movement. mFLICA detects clusters (factions) based on 
the concept of following relations. In mFLCIA, the time 
series from the same faction must follow the same leader.

There are many works focusing on inferring dynam-
ics of groups or clusters (Li et al. 2010; Lee et al. 2007; 
Spiliopoulou et al. 2006). The work by Spiliopoulou et al. 
(2006) proposed a framework named ’MONIC’ to track 
various types of clusters transition in time series, such 
as expanding, splitting, and merging. However, MONIC 
infers clusters based on time points without considering 
following relations among time series to detect clusters. 
The work by Li et al. (2010), Lee et al. (2007) proposed 
frameworks (TRACLUS and TCMM) to detect tempo-
ral clusters from segments of time series. Nevertheless, 
the temporal clusters are measured based on trajectory 
similarity without the following relation property. Hence, 
MONIC, TRACLUS, and TCMM frameworks cannot be 
used to detect factions of time series, which implies that 
they cannot detect leadership and followership dynamics. 
Table 1 summarizes the comparison of these frameworks.

In this paper, we focus on mining frequent patterns of 
leadership dynamics that requires our framework to iden-
tify both groups and leaders of those groups that change 
over time. Moreover, since the groups following a leader 
during coordination have a special structure of following 
relations among members, the standard clustering methods 
cannot be used in this case.

Mining Patterns of Leadership Dynamics: Given 
time series of individual activities, the goal is to mine 
and model frequent patterns of leadership dynamics, 
including emergence of multiple leaders, convergence 
of multiple leaders to a single one, or change of a 
leader.

1.1 � Previous contributions: leadership dynamics

To address these computational questions, in the previous 
paper in Amornbunchornvej and Berger-Wolf (2018b), we 
formalize the problem of Mining Patterns of Leadership 
Dynamics, as well as propose a framework, which is the 
extension of mFLICA (Amornbunchornvej and Berger-Wolf 
2018a), as a solution to this problem. We adapt the tradi-
tional framework of frequent pattern mining (Agrawal et al. 
1993; Han et al. 2007; Aggarwal and Han 2014) and the 
Hidden Markov Model (HMM) approach (Rabiner 1989) to 
model the dynamics of frequent patterns of leadership. Our 
framework is capable of:

•	 Mining and modeling frequent patterns of leadership 
dynamics inferring the transition diagram of frequent 
dynamics of complex leadership events, such as ’a sin-
gle group lead by k splits into two groups lead by i and 
j’. In addition, we infer the probabilities of the transitions 
between such two events in the diagram.

•	 Evaluating the significance of leadership-event order 
we propose a null model of the dynamics of leadership 
events and perform hypothesis testing to compare fre-
quent pattern model of leadership dynamics inferred 
from the given input to our proposed null model.

•	 Mining sequence patterns of leadership dynamics finding 
support values for the leadership dynamics sequences 
from time series of movement data.

•	 Evaluating the significance of frequencies of leader-
ship-event sequences we propose a null model of the 
sequences of leadership events and perform hypothesis 
testing to compare the support distribution of leadership-
event sequences inferred from the given input to our pro-
posed null model.

Table 1   Comparison of 
frameworks that can detect 
clusters in time series

Static clusters are clusters that are defined over data points in each time step, while temporal clusters are 
defined over segments of time series. Factions are temporal clusters that all members follow the same 
leader. Tracking clusters dynamics implies that a framework can track evolution of clusters, such as merg-
ing or splitting of clusters over time. The following relation property implies that a framework can give a 
relation of who follows whom for all pairs of members within a cluster

Properties\frameworks MONIC TRACLUS, TCMM mFLICA

Cluster types Static clusters Temporal clusters Factions
Members of clusters Data points Time series Time series
Tracking clusters dynamics Yes No Yes
Following relations No No Yes
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We use several simulated datasets from the work in Amorn-
bunchornvej and Berger-Wolf (2018a) that cover various 
types of leadership dynamics for validation, as well as 
a dataset of trajectories of baboons (Crofoot et al. 2015; 
Strandburg-Peshkin et al. 2015) to demonstrate the applica-
tion of our framework. To the best of our knowledge, this is 
the first work to deal with the topic of complex leadership 
dynamics and there is no comparable method, and there-
fore, we indirectly compare our framework to an enhanced 
FLOCK method (Andersson et al. 2008), used as a baseline 
for leadership inference only.

1.2 � New contributions: followership dynamics

While our previous work in Amornbunchornvej and Berger-
Wolf (2018b) addressed several aspects of leadership 
dynamics, there are still gaps remaining in our understand-
ing of followership dynamics. For instance, assuming indi-
viduals i and j are in the same subgroup, how likely is it that 
they will be in different groups in the future? How many 
clusters of individuals are there such that members in each 
cluster stay together with a support at least 0.7? How likely 
is it for an individual i that its subgroup will be lead by an 
individual j from the same group?

Mining Patterns of Followership Dynamics: Given 
the time series of individual activities, the goal is to 
mine and model frequent patterns of followership 
dynamics, including the change of subgroups of fol-
lowers (unity), or the choice of whom to follow (loy-
alty).

To address these questions, in this paper, we extend our 
framework to include several aspects of followership dynam-
ics. In addition to the previous work in Amornbunchornvej 
and Berger-Wolf (2018b), our framework is capable of:

•	 Mining and modeling frequent patterns of faction mem-
bership estimating the frequency of a pair of individuals 
being in the same faction, as well as discovering faction 
clusters of individuals.

•	 Mining and modeling frequent patterns of leader–fol-
lower relationship estimating the frequency of each indi-
vidual being a follower of a group lead by a specific indi-
vidual, as well as discovering dynamics of the changes of 
a leader of each faction cluster.

We also use simulated datasets from the work in Amorn-
bunchornvej and Berger-Wolf (2018a) that contain complex 
leader–follower dynamics to evaluate our framework. Our 
approach is flexible to be generalized beyond the time series 
of movement data to arbitrary time series where subsets 
intentionally or spontaneously coordinate.

2 � Problem statement

In this paper, we use leadership definitions from the work 
in Amornbunchornvej and Berger-Wolf (2018a). Given a 
D-dimensional time series Q, we use Q(t) to refer to an ele-
ment of the time series Q at time t and, for a given � ∈ ℤ , 
Q� as a time-shifted version of Q where, Q(t) = Q�(t + �).

Definition 1  [σ-Following relation (Amornbunchornvej 
and Berger-Wolf 2018a)] Let U  be a set of time series, 
sim ∶ U × U → [0, 1] be a time series similarity function, 
and � ∈ [0, 1] be a similarity threshold. For any P,Q ∈ U , 
we say that Q follows P if Q and P are sufficiently similar 
within some time shift �:

Typically, to measure the following relation in Defini-
tion 1, the work by Amornbunchornvej and Berger-Wolf 
(2018a) used the dynamic time warping (DTW) developed by 
Sakoe and Chiba (1978). DTW is used to measure a distance 
between two time series. It can measure a distance of multi-
dimensional time series (Keogh and Ratanamahatana 2005). 
Since DTW uses Euclidean distance as a kernel to measure 
a distance between a pair of elements of two time series, 
the weighted Euclidean distance can be deployed in the case 
that we want to give some dimensions higher contribution 
to a distance measure. Additionally, DTW performs better 
than several methods (Kjargaard et al. 2013) and robust to 
the noise (Shokoohi-Yekta et al. 2015) for the task of follow-
ing relation inference (Amornbunchornvej et al. 2018). The 
following relation measure using DTW is bounded in [0, 1] 
interval (Eq. 2). In the case that sim is not bounded, and then, 
we need a threshold � to normalize the similarity measure. 
If sim ≥ � , then the similarity value is one, otherwise zero.

Definition 2  [Following network (Amornbunchornvej and 
Berger-Wolf 2018a)] Let U be a set of time series. A digraph 
G = (V ,E) is a following network of U where each node in V 
corresponds to a time series in U and (Q,P) ∈ E if Q follows P.

Definition 3  [Initiator of faction (Amornbunchornvej and 
Berger-Wolf 2018a)] Let G = (V ,E) be a following network. 
L ∈ V  is an initiator of faction FL if the out-degree of L is 
zero and the in-degree of L is greater than zero. The member 
nodes of FL are any nodes that have a directed path in G to L.

2.1 � Leadership dynamics

We create a dynamic following network G = ⟨Gt⟩ by con-
sidering each temporal sub-interval t of U  of length � 

max
�

(sim(P,Q�)) ≥ � and

min(argmax
�

sim(P,Q�) ≥ 0) ≠ �.
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(time window parameter) and creating a following net-
work Gt of that interval. We then define the notion of the 
time series of leaders of a dynamic following network 
below.

Definition 4  (Time series of leaders) Let U be a set of time 
series. L is a time series of leaders where L(t) is a set of fac-
tion initiators at time t in Gt.

We can use mFLICA framework (Amornbunchornvej 
and Berger-Wolf 2018a) to extract a time series of lead-
ers from time series of movement. Next, we define the 
support of a leader set S. Let T be the length of the time 
series of leaders and �x be an indicator function, which is 
1 if the statement x is true, and 0 otherwise.

suppL(S) indicates the support of having a particular set of 
initiators S lead multiple groups concurrently. For example, 
if suppL({L1, L2}) = 0.5 it means that half the time the lead-
ers are exactly {L1, L2} , leading their factions concurrently.

Definition 5  (Frequent-leader set) Let L be a time series 
of leaders, S be a set of faction initiators, and � ∈ [0, 1] 
be a support threshold. S is a frequent-leader set of L if 
suppL(S) ≥ �.

Definition 6  (Transition probability of leader sets) Let L be 
a time series of leaders, and Si, Sj be sets of faction initiators. 
A transition probability of leader sets �Si,Sj is a probability 
that L(t − 1) = Si and L(t) = Sj.

Now, we are ready to formally state the problem of 
Mining Patterns of Leadership Dynamics. 

Problem 1: Mining Patterns of Leadership Dynamics

Input: A set U = {U1,… ,Un} of m-dimensional time series and a 
support threshold �.

Output: A set of frequent-leader sets SL and a transition probability 
set P = {�Si ,Sj} where Si, Sj ∈ SL.

In this paper, we choose to represent a set of frequent-
leader sets as a diagram of leadership dynamics below.

Definition 7  (A diagram of leadership dynamics) Let L be a 
time series of leaders, � ∈ [0, 1] be a support threshold, and 
SL be set of frequent-leader sets. A digraph T = (VT,ET) is a 
diagram of leadership dynamics such that the nodes VT  rep-
resent frequent-leader sets SL and (vi, vj) ∈ ET  if 𝜆Si,Sj > 0.

(1)suppL(S) =

∑T

t=1
�S=L(t)

T
.

2.2 � Followership dynamics

Given a dynamic following network G = ⟨Gt⟩ of a set of time 
series U , we define the notion of the time series of factions 
of the dynamic following network below.

Definition 8  (Time series of factions) Let U be a set of time 
series and G = ⟨Gt⟩ be a dynamic following network of U , 
where Gt = (Vt,Et) is a following network at time t. We say 
that F  is a time series of factions, where F(t) is a set of fac-
tions {FL} at time t in Gt = (Vt,Et) and FL ⊆ Vt is a set of 
faction members of initiator L (Definition 3).

The time series of factions contains the information of 
who belongs to which specific faction over time. Having 
defined the time series of factions, we can formalize the 
concept of a pair of individuals who frequently stay together 
in the same faction.

Definition 9  (Frequent co-faction pair) Let F  be a time 
series of factions, �CO be a threshold, and V = {1,… , n} be 
a set of individual indices. We say that individuals i and j in 
V are a frequent co-faction pair if the frequency of i and j 
being in the same faction of F  is greater than �CO.

A frequent co-faction pair might indicate friendship or 
other strong affiliation between individuals. At the group 
level, we define the notion of a frequent co-faction cluster 
below.

Definition 10  (Frequent co-faction cluster) Let F  be a time 
series of factions, �CO be a threshold, and V = {1,… , n} 
be a set of individual indices. We say that a set C ⊆ V  is a 
frequent co-faction cluster if every member pair i, j in C is 
a frequent co-faction pair with respect to F  and �CO and 
there is no other frequent co-faction cluster C′ ⊆ V  where 
C ⊂ C′ . In other words, C is a maximal set of frequent co-
faction pairs.

A frequent co-faction cluster represents a concept of 
cohesion. If an entire group has a strong level of cohesion, 
then there are a few clusters. In contrast, if a group has a 
weak level of cohesion, then there are multiple clusters. The 
members within the same cluster might either be loyal to a 
specific leader, share the same interests, or be a group of 
friends or other strong affiliates.

In general, given a time series of factions as an input, 
the problem of finding global faction clusters of individu-
als is NP-hard, and an approximated solution was given by 
Tantipathananandh et al. (2007). However, in our setting, a 
faction or cluster is a group of followers lead by a particular 
frequent leader. Hence, the problem of finding global faction 
clusters reduces to the problem of finding followers of each 
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frequent leader, which can be done in polynomial time in 
one scan over the time series.

To illustrate the concept of loyalty of a follower toward 
a specific leader, we formalize the notion of a frequent 
leader–follower pair below.

Definition 11  (Frequent leader–follower pair) Let F  be a 
time series of factions, �LF be a threshold, and V = {1,… , n} 
be a set of individual indices. We define the order pair (i, j) 
in V is the frequent leader–follower pair if the frequency 
of having i within a faction that has j as the initiator with 
respect to F  is greater than �LF.

A frequent leader–follower pair i, j implies that i is a 
member of a faction lead by j most of the time. This implies 
that i might be a loyal follower of j (or have a strong affilia-
tion with a loyal follower of j).

Now, we are ready to formally state the problem of Min-
ing Patterns of Followership Dynamics. 

Problem 2: Mining Patterns of Followership Dynamics

Input   : A set U = {U1,… ,Un} of m-dimensional time series, 
threshold �CO , and threshold �LF.

Output: A set of co-faction pairs SCO , a set of frequent co-faction 
clusters SCL , and a set of frequent leader–follower pair 
SLF.

In this paper, we choose to represent a set of frequent 
co-faction pairs as a co-faction network, as well as choose 
to represent a set of frequent leader–follower pairs as a 
lead–follow network below.

Definition 12  (A co-faction network) Let F  be a time series 
of factions, �CO be a threshold, and V = {1,… , n} be a set of 
individual indices. An undirected graph GCO = (V ,ECO) is a 
co-faction network such that there is an edge (vi, vj) ∈ ECO 
if a pair (vi, vj) is a frequent co-faction pair w.r.t. F  and �CO . 

The weight of the edge (vi, vj) is a frequency of having i, j in 
the same faction.

Definition 13  (A lead–follow network) Let F  be a time series 
of factions, �LF be a threshold, and V = {1,… , n} be a set of 
individual indices. A bipartite graph GLF = (VF,VL,ELF) is 
a lead–follow network where VF represents a set of follower 
nodes, and VL represents a set of initiator nodes. For any 
vi ∈ VF and vj ∈ VL , there is a directed edge (vi, vj) ∈ ELF if 
an order pair (vi, vj) is a frequent leader–follower pair w.r.t. 
F  and �LF.

3 � Methods

3.1 � Leadership dynamics

To solve Problem 1, we propose the framework consisting of 
four parts (Fig. 1). Given a set of time series of movement 
U = {U1,… ,Un} , where Ui ∈ U is a two-dimensional time 
series of length T; first, we infer a dynamic following net-
work and time series of leaders L using mFLICA framework 
(Amornbunchornvej and Berger-Wolf 2018a) (Sect. 3.2). 
Second, we infer a diagram of leadership dynamics T  from 
L in Sect. 3.3. Third, we detect the sequence patterns on L 
in Sect. 3.4. Finally, we deploy hypothesis tests to evaluate 
significance of leadership dynamics compared to our pro-
posed null models in Sect. 3.5.

3.2 � mFLICA

Given a pair of time series U and Q, mFLICA uses dynamic 
time warping (DTW) (Sakoe and Chiba 1978) to infer a 
following relation. Suppose PU,Q is an optimal warping 
path from DTW dynamic programming matrix, where 
(i, j) ∈ PU,Q implies U(i) matched with Q(j) in the matrix. 
Intuitively, if U is followed by Q with the time delay �i,j , 

Fig. 1   High-level overview of 
the proposed framework for 
inferring leadership dynamics
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then j − i = �i,j . Hence, we can compute the following rela-
tion by the equation below.

Suppose we have a similarity threshold � , then we say there 
is a following relation if |f(PU,Q)| ≥ � , where Q follows U if 
f(PU,Q) ≥ � and U follows Q if f(PU,Q) ≤ −� . We set � = 0.5 
as a default.

Next, given a time window � and a sliding window 
parameter � = 0.1� , we have the ith time window interval 
w(i) = [(i − 1) × �, (i − 1) × � + �] . mFLICA creates a fol-
lowing network for each set of time series within interval 
w(i) of U  . An edge of a following network is inferred by 
Eq. 2 with the weight |f(PU,Q)| . Hence, after every interval 
w(i) has its following network, and we have a dynamic fol-
lowing network G = ⟨Gt⟩ of U.

Lastly, for each time step t, mFLICA uses breadth-first 
search (BFS) to infer factions and initiators within a fol-
lowing network Gt . The faction initiators are nodes with 
out-degree zero and in-degree nonzero. By applying BFS 
to dynamic following network G , we have the time series 
of leaders L = (L(1),… ,L(T)) as well as the time series 
of factions F = (F(1),… ,F(T)) as the outputs of this step.

3.3 � Inferring transition diagram of leadership 
dynamics

We use Hidden Markov Model (HMM) (Rabiner 1989) to 
model a diagram of leadership dynamics T = (VT,ET) in 
Definition 7 and use Baum–Welch algorithm (Jelinek et al. 
1975) to infer the maximum likelihood estimates of param-
eters of HMM from the time series of leader L . In this set-
ting, we have a set of frequent-leader sets SL as a set of states 
in HMM with the support threshold � = 0.01 . In HMM, the 
stochastic transition matrix A, which has its size |SL| × |SL| , 
describes estimated probabilities that a group changes its 
current set of leaders to another set of leaders (e.g., group 
merging or splitting). However, since we are interested only 
in the events of state changes, we ignore the self-transition 
probability and normalize A to be A∗ (Eq. 3), which is the 
adjacency matrix of T .

Given a time series of leaders L , we can easily infer a set 
of leader sets SL . Then, let SHMM be a set of states in HMM 
where SHMM and SL are in one-to-one correspondence. We 
represent each state in SHMM as a number in [1, |SHMM|] , and 
then, we create LHMM by replacing each element in L with 
the number of corresponding state in SHMM . For example, 
in Fig. 3 (Dynamic Type 1), we have a set of leader sets SL 
and SHMM , where {ID1}, {ID2, ID3, ID4}, {ID3} , and {ID4} , 
in SL have corresponding elements in SHMM as 1, 2, 3, and 
4, respectively.

(2)f(PU,Q) =

∑
(i,j)∈PU,Q

sign(j − i)

�PU,Q�
.

Initially, we set a stochastic transition matrix A = {ai,j} (i, j 
are the states) and the initial state distribution �i uniformly. 
We have the set of observation values Y = {1,… , |SHMM|} . 
In this setting, there is no hidden state since an observation 
value is an identity of a state. However, in HMM, at any state 
i, there is a required probability bi,j of observing value j at the 
state i (typically represented by a matrix B = {bi,j} ). Here, the 
probability bi,j = 1 if i = j and zero otherwise.

We use Baum–Welch algorithm (Jelinek et al. 1975) to 
infer A = {ai,j} , and then, we normalize A to create 
A∗ = {a∗

i,j
} by the equation below.

3.4 � Mining sequence patterns of leadership 
dynamics

After having a diagram of leadership dynamics T = (VT,ET) , 
for each pair of nodes (i, j) ∈ VT  , we find a sequence pattern, 
which is a path Pi,j = (v(1) = i,… , v(k) = j) , where for all 
u ∈ VT  , a∗

v(t−1),v(t)
> a∗

v(t−1),u
.

Pi,j is an order sequence that the previous state 
v(t − 1) ∈ Pi,j has the highest probability to change to the 
next consecutive state v(t) ∈ Pi,j , given a starting point at i 
and the final state at j.

Given A∗ = {a∗
i,j
} as an adjacency matrix of T  , we convert 

A∗ to be A� = {a�
i,j
} where a�

i,j
=

1

a∗
i,j

 . Then, we use the standard 

Dijkstra’s algorithm to find the shortest path between every 
two nodes in A′ . Hence, Pi,j is the shortest path between i and 
j in A′.1 Let � be a number of times that the full sequence of 
Pi,j occurs in L and N be a number of times that leadership 
state change happens in L (e.g., two subgroups merged 
together, changing the leader), we can find the support of Pi,j 
in the time series of leader L by the equation below:

Specifically, � is a number of times that all pairs of nodes 
v(t − 1), v(t) ∈ Pi,j s.t. v(t − 1) appear before v(t) in Pi,j also 
appear in L.

3.5 � Hypothesis testing

3.5.1 � Evaluating the significance of leadership‑event order

Given a time series of leaders L and a diagram of leader-
ship dynamics T  inferred from L , we perform a random 

(3)a∗
i,j
=

�
0, i = j

ai,j
∑�SHMM �

k=1,k≠j
ai,k

, Otherwise.

(4)supppath(L,Pi,j) =
� × (|Pi,j| − 1)

N
.

1  Note, this can be done since the probability condition is independ-
ent of each pair and not cumulative over the path
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permutation of elements in L to create Lrand , and then, we 
infer a diagram of leadership dynamics Trand from Lrand by 
the method described by the previous section. Afterward, 
we test the similarity of the edge-weight distributions of T  
and Trand . We deploy three nonparametric methods, shown 
in Table 2, to perform the tests. If all three methods success-
fully reject the null hypothesis with the significant threshold 
� = 0.01 , then we conclude that the edge-weight distribution 
of T  is significantly different from Trand ’s although the sup-
port value of each node in both graphs is the same.

3.5.2 � Evaluating the significance of frequencies 
of leadership‑event sequences

After finding all the sequences for every pair of nodes in 
Sect. 3.4, we compute the support supppath(L,Pi,j) of each 
sequence Pi,j . This gives the sequence-support distribu-
tion of T  . Next, we rewire T  to be Trand by uniformly and 
randomly changing the end points of each edge in T  , and 
then, we calculate the sequence-support distribution of Trand 
(Eq. 4). Lastly, we test whether T  and Trand sequence-support 
distributions are different the same way as in the previous 
section.

We repeat both types of significance tests 100 times and 
report the percentage of times that the tests successfully 
reject H0 for each dataset.

3.6 � Followership dynamics

To solve Problem 2, we propose the framework that consists 
of three parts (Fig. 2).

Let U = {U1,… ,Un} be a set of time series of movement, 
where Ui ∈ U is a time series of length T. In the first step, we 
infer a dynamic following network as well as a time series of 
factions F  using mFLICA framework (Amornbunchornvej 
and Berger-Wolf 2018a) (Sect. 3.2).

Second, we infer a co-faction network GCO = (V ,ECO) 
(Sect.  3.6.1) and a lead–follow network GLF = (V ,ELF) 
(Sect. 3.6.2) from F  . Afterward, we infer a set of frequent 
co-faction clusters {C} (Sect. 3.6.3).

3.6.1 � Co‑faction network inference

To infer a co-faction network, the first step is to infer a pair 
of frequent co-faction in Definition 9.

Given a time series of factions F  with the length T and an 
indicator function �x (which is 1 if the statement x is true, and 
0 otherwise), we define the support of having individuals i and 
j in the same faction below.

(5)csuppF(i, j) =

∑T

t=1
�∃F∈F(t),{i,j}⊆F

T
.

Table 2   Details of 
nonparametric tests used in this 
paper

A significant level has been set at � = 0.01 for all experiments

Method Null hypothesis H0

Kolmogorov–Smirnov test (Massey 1951) Two samples are from the same distribution
Wilcoxon rank sum test (Wilcoxon 1945)
Kruskal–Wallis test (Kruskal and Wallis 1952)

Fig. 2   High-level overview of 
the proposed framework for 
inferring followership dynamics
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Here, csuppF(i, j) indicates the support of having a particular 
pair of individuals i and j being within the same faction in F .

After we compute the supports csupp for all pairs of 
individuals, we have a co-faction network GCO = (V ,ECO) . 
Given a threshold �CO , there is an edge (vi, vj) ∈ ECO if 
csuppF(i, j) ≥ �CO . The edge weight of (vi, vj) is csuppF(i, j).

3.6.2 � Lead–follow network inference

To infer a lead–follow network, the first step is to infer a fre-
quent leader–follower pair i, j in Definition 11. Given a time 
series of factions F  with the length T and an indicator function 
�x (which is 1 if the statement x is true, and 0 otherwise), we 
can define a support of having individual i in the faction lead 
by an initiator j below.

where Fj is a set of faction members leading by j. Here, 
lfsuppF(i, j) indicates the support of having a particular indi-
vidual i in the faction leading by an initiator j in F .

After we compute the supports lfsupp for all pairs of indi-
viduals, we have a lead–follow network GLF = (VF,VL,ELF) . 
Given a threshold �LF , for any i ∈ VF and j ∈ VL , there is a 
directed edge (vi, vj) ∈ ECO if lfsuppF(i, j) ≥ �LF . The edge 
weight of (vi, vj) is lfsuppF(i, j) . Higher lfsuppF(i, j) implies 
that there is a higher frequency that i is a member of j’s faction. 
Hence, we can use lfsuppF(i, j) as a proxy of loyalty of i to j. 
Higher lfsuppF(i, j) implies that i is more loyal to j.

3.6.3 � Clustering and cohesion measure

We use the standard Hierarchical clustering with the short-
est distance to link clusters (Sibson 1973) to demonstrate 
our framework ability. However, any clustering algorithm 
can be used in our framework to perform the analysis. The 
Hierarchical clustering algorithm is an agglomerative clus-
tering approach that starts with each individual in a cluster 
by itself. Then, it keeps merging two closest clusters to be 
a single new cluster. The algorithm keeps merging on a 
set of clusters until there is only a single cluster. Given C 
and C′ are clusters and ADJCO is an adjacency matrix of a 
co-faction network that has its element as csuppF(i, j) , the 
distance between two clusters is defined below.

where ADJCO(i, ∗) represents an ith vector row of ADJCO 
and dist() is a standard euclidean distance. The reason that 
we compute the distance between the vector of weights of 

(6)lfsuppF(i, j) =

∑T

t=1
�∃Fj∈F(t),i∈Fj

T
.

(7)
distSingleLink(C,C

�)

= min
i∈C,j∈C�

(dist(ADJCO(i, ∗), ADJCO(j, ∗)))

i to all individuals and the vector of weights of j to all indi-
viduals in distSingleLink(C,C�) is that because two individuals 
who share the same set of csuppF(i, j) are likely members of 
the same faction. Hence, they should have a small distance.

Next, since there are two types of edges in ADJCO : edges 
that connect members within the same clusters and edges 
that connect individuals of different clusters. We can use 
k-means algorithm where k = 2 to cluster a list of edge 
weight of the hierarchical tree into two types: internal edges 
and external edges. Finally, we link any leaves (individuals) 
of hierarchical tree that are reachable using internal edges 
to be a member of the same group to represent a frequent 
co-faction cluster in Definition 10.

To measure the degree of cohesion of ADJCO , we use the 
standard modularity measure (Q-value) proposed by New-
man and Girvan (2004) below.

where ei,j is a fraction of edges that have one end connected 
to a node in a cluster i and another end connected to a 
member of a cluster j, and ai =

∑
j ei,j . The value of Q has 

a range between −1 and 1. If the value is a large positive, 
then there are multiple strong clusters; the numbers of edges 
within groups are greater than the numbers of edges between 
groups. When there are multiple subgroups that have higher 
edge weight within the same cluster while edges that con-
nect nodes from different clusters have lower edge weights, 
then Q is close to one. In contrast, if either there is only one 
cluster or edge weights of all pairs of nodes are not differ-
ent from each other, then Q is close to zero. In other words, 
higher Q implies the higher number of subgroups that have 
relatively high edge weight between nodes within the same 
cluster compared to edge weights of nodes from different 
clusters. Hence, we can use Q as a proxy of cohesion of 
group. Higher Q implies lower cohesion.

3.7 � Time and space complexity

The time complexity of mFLICA is O(n2 × � × T) , where 
n is a number of time series, T is a length of time series, 
and � is a time window parameter. The time complex-
ity of Baum–Welch algorithm to infer a diagram of lead-
ership dynamics is O(m2 × T) where m is the number of 
frequent-leader sets. Typically, m < n since there are fewer 
frequent-leader sets than individuals. In the followership 
part, we can scan a time series of factions F  only once 
to compute everything, which has the time complexity at 
most O(n × n × T) . Hence, our framework’s overall time 
complexity is O(n2 × � × T) . For the space complexity, the 

(8)Q(ADJ, C) =

|C|∑

c=1

(ei,i − a2
i
),
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most expensive part of our framework is the space for the 
dynamic following network, which is O(n2 × T).

3.8 � Parameters sensitivity

For the time window parameter � , the work by Amornbun-
chornvej et al. (2018) reported that the following relation is 
robust to the noise. However, if we set � below the maxi-
mum time delay between time series, then the result can 
be severely affected. Hence, a user should try to guess the 
maximum time delay on his/her dataset before setting � . 
Since the core engine of mFLICA is the following relation 
measure, it is important to set � properly. The other param-
eter such as significant level � should be fine-tuned w.r.t. 
the task.

4 � Evaluation datasets

We evaluate our method on synthetic datasets generated 
using a variety of leadership models with a variety of pat-
terns of leadership dynamics.

4.1 � Leadership models

There are three leadership models that we consider in this 
paper below.

4.1.1 � Dictatorship model (DM) (Amornbunchornvej 
and Berger‑Wolf 2018a)

Initially, all individuals stay in the initial area. Then, a single 
initiator moves toward a target path before others. After-
ward, all other individuals follow the initiator with some 
time delay.

4.1.2 � Hierarchical model (HM) (Amornbunchornvej 
and Berger‑Wolf 2018a)

Each individual has been assigned the unique ranking value 
at the beginning. Lower-rank individuals always follow 
higher-rank individuals. An initiator who has the highest 
rank individual (initiator) starts moving first, and then, the 
second high-rank individual follows the first-rank individual 
with sometime delay and so on (the k + 1 th rank individual 
follows the kth-rank individual).

4.1.3 � Independent cascade model (IC) (Kempe et al. 2003)

Initially, all individuals are deactivated. At the beginning, 
each individual has a chance to be active with the probability 
� . After activation, the active individuals move following the 
initiator except the initiator itself that follows in the target 
direction. In every time step, active individuals attempt to 
activate their k-nearest inactive neighbors with the probabil-
ity of success � . Active individuals cannot attempt to acti-
vate the same individual twice. In this paper, we determine 
the parameter space on a combination of: k ∈ {3, 5, 10} and 
� ∈ {0.25, 0.50, 0.75}.

4.2 � Synthetic trajectory simulation

We use simulated datasets to evaluate the performance of 
our framework. Each dataset consists of 30 individuals. The 
trajectory of each individual is two-dimensional time series 
of length 4000 time steps. Each dataset has been generated 
from one of the three leadership models described above. 
There are five coordination events in each dataset. One coor-
dination event lasts for 800 time steps. There are two types 
of coordination events as follows.

4.2.1 � Type 1 dynamics: Splitting/Merging coordination 
event (Amornbunchornvej and Berger‑Wolf 2018a)

In this type of coordination event (Fig. 3), ID1 leads the 
entire group for 200 time steps. Then, the group splits into 
three equal size subgroups lead by ID2, ID3, and ID4, for 
the duration of 200 time steps. Afterward, all subgroups are 
merged into a single group again lead by ID3 for another 
200 time steps. Finally, ID4 leads the entire group for the 
last 200 time steps.

Fig. 3   Splitting/Merging (above) and linear (below) coordination 
event. Each node represents the ID of leader of each subgroup at the 
particular time, and each edge represents the change of group’s lead-
ers
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4.2.2 � Type 2 dynamics: Linear coordination event 
(Amornbunchornvej and Berger‑Wolf 2018a)

In this type of coordination event (Fig. 3), ID1 leads first, and 
then, ID2 leads, ID3 leads after ID2, and ID4 leads after ID3. 
Each leader leads the group for 200 time steps.

After a coordination event ends, the group stops moving 
and the next coordination event repeats the pattern. In this 
paper, we generated 100 datasets for each leadership model 
and coordination type (e.g., DM with Type 1 dynamics has 
100 datasets). One exception: IC has nine cases of differ-
ent parameters settings, and we have a 100 datasets for each 
parameter setting and dynamics type. In total, we have 400 
datasets for DM and HM but 1800 datasets for IC.

4.3 � Baboon dataset

We also deploy our framework on a dataset of GPS trajectories 
of wild olive baboons (Papio anubis) living at Mpala Research 
Centre, Kenya (Crofoot et al. 2015; Strandburg-Peshkin et al. 
2015). The dataset consists of latitude–longitude location time 
series of 16 baboons recorded for every second for a nine-day 
period (419,095 time steps). We employ this dataset to demon-
strate the potential of our framework to uncover relationships 
within data to generate scientific hypotheses.

5 � Evaluation criteria

5.1 � Leadership dynamics

In simulated datasets, we compare the inferred adjacency 
matrix A = {ai,j} of a digraph of leadership dynamics 
T = (VT,ET) against the ground-truth matrix A∗ = {a∗

i,j
} . For 

the Splitting/Merging coordination event, the ground-truth set 
of frequent-leader sets is

All elements in A∗ are zero except

For the Linear coordination event,

and all elements in A∗ are zero except

Let SL and S∗
L
 be the predicted and the ground-truth sets 

of frequent-leader sets, respectively. The loss function of A 
and A∗ is below:

S
∗
L
= {{ID1}, {ID2, ID3, ID4}, {ID3}, {ID4}}.

a∗
{ID1},{ID2,ID3,ID4}

= a∗
{ID2,ID3,ID4},{ID3}

= a∗
{ID3},{ID4}

= a∗
{ID4},{ID1}

= 1.

S
∗
L
= {{ID1}, {ID2}, {ID3}, {ID4}}

a∗
{ID1},{ID2}

= a∗
{ID2},{ID3}

= a∗
{ID3},{ID4}

= a∗
{ID4},{ID1}

= 1.

where nA∗ is the number of elements within A∗ . The first 
term in Eq. 9 represents the L1-norm difference between 
each element in A and A∗ (probabilities) when the predicted 
states are the same as the ground truth. The second term 
represents the false positive case when the framework pre-
dicts the states that do not exist in the ground truth. The last 
term represents the false negative case when the framework 
misses prediction of a state that exists in the ground truth.

5.2 � Followership dynamics

5.2.1 � Co‑faction network

In simulated datasets, we compare an inferred adjacency 
matrix A = {ai,j} of a co-faction network against the ground-
truth matrix A∗ = {a∗

i,j
} . All members from the same cluster 

are connected with edges that have the weights

while two nodes from different clusters have the weight

For the Splitting/Merging coordination datasets, the ground 
truth is that there are three clusters:

For Linear coordination datasets, all individuals are in the 
single cluster. Given V is a set of nodes of n individuals, we 
use the absolute loss function to evaluate the difference 
between predicted A = {ai,j} and the ground truth A∗ = {a∗

i,j
} 

below:

(9)

loss(A,A∗)

=

∑
i,j∈S∗

L
∩SL

�ai,j − a∗
i,j
� + FP(A,A∗) + FN(A,A∗)

nA∗

(10)FP(A,A∗) =
∑

i,j∈SL⧵S
∗
L

|ai,j|

(11)FN(A,A∗) =
∑

i,j∈S∗
L
⧵SL

|a∗
i,j
|

A∗ = {a∗
i,j
} = 1,

A∗ = {a∗
i,j
} = 0.75.

C1 ={ID1, ID3, ID5,… , ID10},

C2 ={ID4, ID11,… , ID19},

C3 ={ID2, ID20,… , ID30}.

(12)loss(A,A∗) =

∑
i,j∈V �ai,j − ai,j�

�
n

2

� .
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5.2.2 � Lead–follow network

We also compare an inferred adjacency matrix A = {ai,j} of 
a lead–follow network against the ground-truth matrix 
A∗ = {a∗

i,j
} of G∗

LF
= (V∗

F
,V∗

L
,E∗

LF
) . In both Splitting/Merging 

and Linear coordination datasets, ID1, ID2, ID3 , and ID4 are 
only initiators. Hence, V∗

L
= {ID1, ID2, ID3, ID4} and 

V∗
F
= {ID1,… , ID30}.
For Splitting/Merging coordination datasets, given a 

leader L = ID1 , for any j ∈ V∗
F
, a∗

L,j
= 0.25.

•	 If L = ID2 and j ∈ C3 , then a∗
L,j

= 0.25 , while a∗
L,j�

= 0 
for j ∉ C3.

•	 If L = ID3 and j ∈ C1 , then a∗
L,j

= 0.50 , while a∗
L,j�

= 0.25 
for j ∉ C1.

•	 If L = ID4 and j ∈ C2 , then a∗
L,j

= 0.50 , while a∗
L,j�

= 0.25 
for j ∉ C2.

In Linear coordination datasets, for L ∈ V∗
L
 and j ∈ V∗

F
 , 

a∗
L,j

= 0.25.

Let VL and V∗
L
 be the predicted and the ground-truth sets 

of initiators of a lead–follow network, respectively, and we 
compare the inferred A and the ground truth A∗ using the 
loss function below:

where nA∗ is the number of elements within A∗.

5.2.3 � Clustering evaluation

For Splitting/Merging coordination datasets, the ground 
truth of first cluster is C1 . The second cluster is C2 . The third 
cluster is C3 . For Linear coordination datasets, all individu-
als are in the single cluster. We use F1 score to measure the 
difference between inferred and ground-truth clusters. Given 
Ci is a ground-truth cluster and Ĉj is a predicted cluster that 
have the most common members with Ci . The true positive is 
a sum of number of common members between all pair of Ci 
and Ĉj . The false positive is a sum of number of individuals 
that are in Ĉj but not in Ci , and the false negative is a sum of 
number of individuals that are in Ci but not in Ĉj.

(13)

lossLF(A,A
∗)

=

∑
i,j∈V∗

L
∩VL

�ai,j − a∗
i,j
� + FPLF(A,A

∗) + FNLF(A,A
∗)

nA∗

FPLF(A,A
∗) =

�

i,j∈VL⧵V
∗
L

�ai,j�

FNLF(A,A
∗) =

�

i,j∈V∗
L
⧵VL

�a∗
i,j
�

6 � Results

6.1 � Leadership dynamics

We set the time window parameter � using the inference 
method in Amornbunchornvej and Berger-Wolf (2018a). 
Figures 4 and 5 show the examples of inferred diagrams of 
leadership dynamics by our framework from Type-1-HM 
(Hierarchical model with Splitting/Merging coordination 
events) and Type-2-HM (Hierarchical model with Linear 
coordination events) datasets, respectively. In Fig. 4, com-
paring the inferred diagram with the ground truth, only 

Fig. 4   Example of the inferred diagram of leadership dynamics by 
our framework from a Type-1-HM dataset. Comparing the inferred 
diagram with the ground truth, only nodes {2, 4} and {2, 3} are false 
positive nodes. The support of {1}, {2, 3, 4}, {3} and {4} should be 
0.25, and our framework can infer the support for each node closely 
to 0.25

Fig. 5   Example of the inferred diagram of leadership dynamics by 
our framework using a Type-2-HM dataset. Comparing the inferred 
diagram with the ground truth, there are no false positive nodes. The 
support of {1}, {2}, {3} and {4} should be 0.25, and our framework 
can infer the support for each node closely to 0.25
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nodes {2, 4} and {2, 3} are false positive nodes, both with 
very low support of 0.03.

This implies that despite the complex dynamics of lead-
ership in Type-1 Dynamics case, our framework was still 
able to retrieve the diagram of leadership dynamics accu-
rately. For the Type-2-HM dataset, which is less complex 
than Type1-HM case, Fig. 5 shows that there are no false 
positive nodes in the inferred diagram. Moreover, in both 
Type-1-HM and Type-2-HM cases, the support of each node 
should be 0.25, and our framework can infer the support for 
each node closely to 0.25.

Regarding the mining sequence patterns of leadership 
dynamics described in Sect. 3.4, Table 3 shows an example 
of max-support sequences of leadership dynamics that our 
framework reported from HM datasets. In both dynamics 
types, the sequences are consistent with the ground truth 
in Fig. 3.

Next, we compared our framework, which uses the fol-
lowing networks concept (Amornbunchornvej and Berger-
Wolf 2018a), to the method based on direction networks 
proposed in FLOCK method (Andersson et al. 2008) to infer 
a diagram of leadership dynamics. In direction networks, 
at any time t, if i is moving toward the same direction as j 
but j is in front of i, then i follows j. The median of all loss 
distributions in both Type-1 and Type-2 dynamics datasets 
is reported in Table 4. The first row of Table 4 shows the dis-
tribution of loss values (Eq. 9) in Type-1 dynamics datasets. 
The direction network approach was reasonably competitive 

for the Type-1 dynamics. We were able to use the direction 
networks to infer the states with splits and merges, but the 
change of leadership was often missed by this underlying 
method. Not surprisingly, then, the direction network-based 
method performed significantly worse than the following 
network-based approach for the Type-2 dynamics. Quali-
tatively, and as a distribution of the loss values overall, the 
following networks as the basis for the diagram inference 
performed better than the direction networks in our frame-
work. In the second row of Table 4, the following networks 
also performed better than direction networks in Type-2-dy-
namics datasets.

In Table 5, we reported the hypothesis testing results of 
the significance of leadership-event order (Sect. 3.5.1). With 
respect to the type of the leadership model, for the HM, 
which is a well-structure model, the inferred diagrams are 
more significantly different from the null-model diagram 
than for the other leadership models. With respect to the 
types of the dynamics, in the complex type-1-dynamics data-
sets our framework inferred diagrams that are more signifi-
cantly different from the null model. Lastly, the following 
networks were able to infer diagrams that are more different 
from the null model than the direction networks.

For hypothesis testing of the significance of frequencies 
of leadership-event sequences (Sect. 3.5.2), the result is 
shown in Table 6. Similar to the edge-weight distribution 
testing, the support distributions of the well-structure model, 
HM, are significantly different from the support distribution 
of the null model. The following networks also can be used 
to infer diagrams that are different from the rewiring dia-
grams than the direction networks based approach. However, 
in the simple type-2-dynamics datasets, our framework was 
able to infer diagrams that are more different from the null 
model compared to the complex type-1-dynamics case.

For the baboon dataset, we reported the information that 
we can retrieve from the dataset using our framework as a 

Table 3   Example of sequences of leadership dynamics that have the 
highest support from HM datasets

Datasets Sequences supppath(L,Pi,j)

Type-1-HM {2,3,4},{3},{4},{1} 0.71
Type-2-HM {1},{2},{3},{4} 0.95

Table 4   Median of loss 
values in the prediction task 
of diagrams of leadership 
dynamics

Dyn. type Type 1 Type 2

Model HM DM IC HM DM IC

Following network 0.13 0.19 0.24 0 0.03 0.08
Direction network 0.19 0.19 0.25 0.19 0.19 0.25

Table 5   Hypothesis testing 
results of the significance 
of leadership-event order in 
Sect. 3.5.1

We reject H0 at � = 0.01 . Each element in the table represents the percentage of the times when the tests 
successfully reject H0

Dyn. type Type 1 Type 2

Model HM DM IC HM DM IC

Following network 0.99 0.55 0.38 0.86 0.08 0.20
Direction network 0.00 0.00 0.06 0.00 0.00 0.06
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case study. Fig. 6 shows the inferred diagram of leadership 
dynamics from our framework.  Each row represents the 
node of leader sets of the previous state, and each column 
represents the next state. Each row label consists of baboon 
gender: ‘M’ or ‘F’, a set of frequent-leader IDs, and the sup-
port value of frequent-leader set. For example, in row 3 and 
column 2, the event that two female baboons F18 and F22 
are leading their separate subgroups concurrently can hap-
pen with the support 0.1 (out of all the coordination times). 

These two subgroups have a chance to be merged together to 
a larger group lead by F18 with the probability 0.29. In 4th 
column ( {F9} ), we found that no matter what the previous 
subgroups were, there was a high chance that the next group 
would be lead solely by the female baboon F9. In 4th row, F9 
has the highest support (0.19), which means F9 (who hap-
pens to be the dominant female) often leads the troop, with 
the next highest support of 0.11 for the male baboon M3 
(5th column, the alpha male). Lastly, at row 5 and column 
4, if M3 and F9 are leading their separate subgroups, then 
the two groups will be merged to a larger group lead by F9 
with probability 0.63.

The hypothesis testing of the edge-weight distribution 
shows that the baboon’s diagram is significantly different 
from the null model, with 100% of the time the tests suc-
cessfully rejecting H0 . However, for the hypothesis testing 
of sequence-support distributions, the baboons’ sequences 
of leadership dynamics are not significantly different from 
the rewired diagram. Only 5% of the times the tests success-
fully reject H0 . This indicates that while individual leaders 
identity is non-random and pairwise leadership transition 
patterns are significant, there are no leadership sequences 
that often appear significantly within the baboon dataset. 
Nevertheless, Table 7 shows baboons’ sequences of lead-
ership dynamics that have the top-4 highest support. This 
result is the evidence that F9 is an important individual who 
frequently leads the group.

These results show that our framework provides the 
opportunity for scientists to gain more insight into their 
datasets in order to generate scientific hypotheses, which 
might lead to important scientific discoveries (in this case, 
about the collective behavior and leadership dynamics of 
social animals).

6.2 � Followership dynamics

6.2.1 � Co‑faction and lead–follow networks

Figure 7 shows the results of ground-truth and predicted 
adjacency matrices of co-faction network by our frame-
work from Type-1-HM (Hierarchical model with Splitting/
Merging coordination events) and Type-2-HM (Hierarchi-
cal model with Linear coordination events) datasets. Each 

Table 6   Hypothesis testing 
results of the significance of 
frequencies of leadership-event 
sequences in Sect. 3.5.2

We reject H0 at � = 0.01 . Each element in the table represents the percentage of the case when the test suc-
cessfully rejects H0

Dyn. type Type 1 Type 2

Model HM DM IC HM DM IC

Following network 0.95 0.35 0.23 0.94 0.84 0.66
Direction network 0.07 0.08 0.20 0.07 0.07 0.20
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Fig. 6   Inferred diagram of leadership dynamics of the baboon dataset 
from our framework. Each row represents the node of leader sets of 
the previous state, and each column represents the next state. Each 
row label consists of baboon gender: ‘M’ or ‘F’, a set of frequent-
leader IDs, and the support value of frequent-leader set. For exam-
ple, in row 3 and column 2, the event that two female baboons F18 
and F22 are leading their separate subgroups concurrently can happen 
with the support 0.1 (out of all the coordination times). These two 
subgroups have a chance to be merged together to a larger group lead 
by F18 with the probability 0.29.

Table 7   Baboons’ sequences of leadership dynamics that have the 
top-4 highest support

Baboon Sequences supppath(L,Pi,j)

Seq. 1 {M11}, {F9}, {M3} 0.0354
Seq. 2 {M18}, {F9}, {M3} 0.0354
Seq. 3 {M18}, {F9}, {M22} 0.0354
Seq. 4 {M4}, {F9}, {M2} 0.0354
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predicted matrix is the result of aggregation of co-faction 
adjacency matrices from 100 datasets. The result shows that 
our inferred matrices are mostly similar to the ground-truth 
matrices with some variations due to noise. ID4 has the 
highest error in Fig. 7 since it appears during the interval 
when the group stop moving. Because mFLICA is designed 
to handle movement initiation analysis, it has a limitation to 
analyze stopping intervals of movement. Hence, mFLICA 
cannot capture the behavior of a leader ID4 well.

Figure  8 shows the results of ground-truth and pre-
dicted adjacency matrices of lead–follow networks with 
�LF = 0.1 . Each predicted matrix is the result of aggrega-
tion of lead–follow adjacency matrices from 100 datasets. 
The result also shows that our inferred matrices are mostly 
similar to the ground-truth matrices with some variations. 
The ID4 result has the highest error because of mFLICA 
limitation that we have just discussed.

We also report the quantitative result of prediction of 
both co-faction and lead–follow networks using following 
networks compared with direction networks in Table 8. 

Overall, our proposed framework using following networks 
performed better than the direction network framework. For 
co-faction networks, the loss values are higher than lead–fol-
low network loss values. This implies that finding who are in 
the same faction frequently is a bit harder than finding who 
are loyal members of specific leaders.

6.2.2 � Clustering results

In the clustering task, given a co-faction network as 
an input, we compared our proposed framework with a 
standard community detection algorithm in Newman 
(2004). The NM community detection method greedily 
searches for the partition of individuals that maximize the 
Q-value in Eq. 8. Table 9 shows the result of Q-values of 
our framework and NM community detection. For type-1 
dynamics, we should have a high value of Q-value since 
there are three strong clusters. Table 9 shows that even 
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Fig. 7   Adjacency matrices of ground-truth and predicted co-faction 
networks. (Top-left) Ground-truth matrix of Type-1 dynamics. (Top-
right) Predicted matrix of Type-1 dynamics. (Bottom-left) Ground-
truth matrix of Type-2 dynamics. (Bottom-right) Predicted matrix of 

Type-2 dynamics. Each predicted matrix is the result of aggregation 
of co-faction adjacency matrices from 100 datasets. The lighter color 
implies a higher value of csuppF(i, j)
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though NM method tried to find the best clustering parti-
tion that maximizes Q-value, our framework found a set of 
better clusters that has a higher Q-value than NM’s clus-
ters. For type-2 dynamics, since there is only one cluster, 
we expect that the Q-value should be close to zero. Both 
methods performed well in this case.

We also reported the results of clustering comparison 
between the ground-truth and inferred clusters. The result 

in Table 10 shows that our framework performed better 
than NM in both types of dynamics.

6.3 � Baboon followership dynamics

For the baboon dataset, we reported the result of co-fac-
tion clustering (Fig. 9) and lead–follow network (Fig. 10) 

Fig. 8   Adjacency matrices of ground-truth and predicted lead–follow 
networks. (Top-left) Ground-truth matrix of Type-1 dynamics. (Top-
right) Predicted matrix of Type-1 dynamics. (Bottom-left) Ground-
truth matrix of Type-2 dynamics. (Bottom-right) Predicted matrix 

of Type-2 dynamics. Each predicted matrix is the result of aggrega-
tion of lead–follow adjacency matrices from 100 datasets. The lighter 
color implies a higher value of lfsuppF(i,L) where i is a column indi-
vidual (follower) and L is a row individual (initiator)

Table 8   Loss values of 
co-faction and lead–follow 
networks inference

Each element represents a mean of loss value ± two standard deviations from 100 datasets. A lower value 
implies a better performance of inference

Following Network Direction Network

Type-1 Type-2 Type-1 Type-2

Co-fact loss 0.184 ± 0.013 0.187 ± 0.030 0.398 ± 0.014 0.451 ± 0.011
Lead–foll loss 0.054 ± 0.012 0.026 ± 0.001 0.063 ± 0.007 0.057 ± 0.002

Table 9   Q-value in Eq. 8 of clustering results

Each element represents a mean of Q-value value ± two standard 
deviations from 100 datasets. We expect Type-1 dynamics to have 
higher Q-value since there are three strong clusters, while Type-2 
dynamics should have the Q-value around zero. We report the results 
from our framework and the candidate approach NM (Newman 2004)

Our framework NM community detection

Type-1 dynamics 0.6934 ± 0 0.460 ± 0.145
Type-2 dynamics 0.064 ± 0 0.066 ± 0

Table 10   F1-score of ground-truth versus inferred clustering results

Each element represents a mean of F1-score value ± two standard 
deviations from 100 datasets. A higher F1 score value implies a better 
performance of clustering inference. We report the results from our 
framework and the candidate approach NM (Newman 2004)

Our framework NM clustering

Type-1 dynamics 0.983 ± 0.003 0.940 ± 0.096
Type-2 dynamics 1 ± 0 0.983 ± 0
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inferred from the trajectories of baboon during pre-coordi-
nation intervals of high-coordination events.

Figure 9 shows five major clusters in the dataset. The 
interesting cluster is the cluster of ID3 and ID9. ID3 is an 
alpha male while ID9 is an alpha female. Since they are in 
the same cluster, this implies that they might be a couple.

Figure 9 shows a lead–follow network of the troop. It 
shows that ID3 and ID9 frequently act as initiators of the 
group that everyone follows. In both Figs. 9 and 10, we 
support the hypothesis that ID3 and ID9 might be a center 
of influence of the group decision-making.

7 � Conclusion

In this paper, we proposed a new approach to analyze time 
series of group movement data. We formalized a new com-
putational problem, Mining Patterns of Leadership Dynam-
ics, and Mining Patterns of Followership Dynamics, as well 
as proposed a framework as a solution of these problems. 
Our framework can be used to address several questions 
regarding leadership and followership dynamics of group 
movement, such as ‘what is the probability of having two 
subgroups lead by i and j being merged together to be a larger 
group lead by k later?’, ‘what is the frequency of having i 
and k co-leading their subgroups concurrently?’, and ‘how 
likely is it that a specific subgroup that i is a member will be 
leading by an individual j from the same faction?’. We use 
the leadership inference framework, mFLICA (Amornbun-
chornvej and Berger-Wolf 2018a), to infer the time series of 
leaders and their factions from movement datasets and then 
propose an approach to mine and model frequent patterns of 
both leadership and followership dynamics. We evaluate our 
framework performance by using several simulated datasets, 
as well as the real-world dataset of baboon movement to 
demonstrate the applications of our framework. These are 
novel computational problems and, to the best of our knowl-
edge, there are no existing comparable methods to address 
them. Thus, we modify and extend an existing leadership 
inference framework to provide a non-trivial baseline for 
comparison. Our framework performs better than this base-
line in all datasets. Our framework opens the opportunities 
for scientists to generate testable scientific hypotheses about 
the dynamics of leadership in movement data.

Fig. 9   Co-faction clusters of the baboons dataset inferred by our 
framework. Each node is a cluster labeled with IDs of cluster mem-
bers and each edge is a median of csuppF  of members between clus-
ters

Fig. 10   Lead–follow network of 
the baboon dataset inferred by 
our framework
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