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Abstract
Complex networks arise in many domains and often represent phenomena such as brain activity, social relationships, 
molecular interactions, hyperlinks, and re-tweets. In this work, we study the problem of predicting the category (domain) of 
arbitrary networks. This includes complex networks from different domains as well as synthetically generated graphs from 
six different network models. We formulate this problem as a multiclass classification problem and learn a model to predict 
the domain of a new previously unseen network using only a small set of simple structural features. The model is able to 
accurately predict the domain of arbitrary networks from 17 different domains with 95.7% accuracy. This work makes two 
important findings. First, our results indicate that complex networks from various domains have distinct structural properties 
that allow us to predict with high accuracy the category of a new previously unseen network. Second, synthetic graphs are 
trivial to classify as the classification model can predict with near-certainty the graph model used to generate it. Overall, the 
results demonstrate that networks drawn from different domains and graph models are distinguishable using a few simple 
structural features.

Keywords  Network categorization · Structural properties · Network science · Complex networks · Network classification

1  Introduction

Networks that arise in different domains often represent 
phenomena such as molecular interactions, hyperlinks, re-
tweets, and brain activity. While there are inherent simi-
larities in network structure across different domains (e.g., a 
power-law degree distribution), it is also generally believed 
that networks from different domains have inherently unique 
network characteristics. In this work, we find strong evi-
dence supporting this hypothesis by learning a multiclass 
classification model f ∶ � → y that is able to accurately pre-
dict (with 95.7% accuracy) the category of a new arbitrary 
network G′ described only by a D-dimensional feature vector 
�′, where y ∈ {1, 2,… ,K} is the class label representing the 
category of a graph, i.e., domain of a complex network or 
network model of a synthetically generated graph. The mul-
ticlass classification model f is learned using 1013 networks 

from K = 17 categories (see Fig. 1) that are characterized 
using 11 simple graph features. Studying this problem allows 
us to gain further understanding of complex networks across 
different domains and the different underlying phenomena 
that govern the formation and structure of such complex 
networks.

We also investigate a classification model that uses only 
four features for predicting the category of unknown net-
works. In particular, the four simple features used are den-
sity, average degree, assortativity, and maximum k-core. 
These structural features were selected since they are com-
putationally efficient for large networks while also being the 
most basic fundamental properties of networks that allow 
us to accurately predict the category (domain) of a previ-
ously unseen network. Obviously, more complex structural 
features such as those based on graphlets (network motifs) 
(Milo et al. 2002; Ahmed et al. 2015) are likely to further 
improve the accuracy. However, such complex structural 
features are more computationally expensive, but most 
importantly, the results in this work indicate that they are 
not needed to accurately predict the categories (domains) 
of networks. In other words, the results show that networks 
from different domains can be accurately distinguished using 
only the most basic and fundamental structural properties.
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Previous research has mainly focused on either (1) clas-
sification of synthetic graphs (Bonner et al. 2016b) or (2) 
graphs within a particular category/domain such as molecu-
lar graphs (Vishwanathan et al. 2010; Ralaivola et al. 2005; 
Lee et al. 2017). Other examples include distinguishing 
between brain or breast cancer cells (Li et al. 2012) or dis-
tinguishing between different social structures (Ugander 
et al. 2013). One of the challenges of network classification 
is collecting a sufficient amount of data to classify. For this 
reason, most work on network similarity and graph classifi-
cation has used synthetically generated graphs (Bonner et al. 
2016a), as these can easily be created and customized. Alter-
natively, research using real-world networks has largely used 
graphs from the same domain such as chemical compounds 
or protein interactions (Guo and Zhu 2013; Li et al. 2012). 
In those domains, generating a large number of graphs from 
the similar phenomenon is still relatively simple.

Our contributions. To improve our understanding of 
complex networks, we investigate the problem of predicting 
the domain (category) of arbitrary networks using a small 
set of graph features. This allows us to study questions such 
as whether network categories are distinguishable from one 
another (using both real complex networks from a variety 
of domains and synthetic graphs from network models), and 
which network properties are most useful for distinguishing 
the categories. To answer this question, we learn a random 
forest classifier using real and synthetic networks and use it 
to predict the domain of new previously unseen networks. 
Using this model, we achieve a classification accuracy of 
95.7% for predicting the domain (or network model) of both 
real complex networks and synthetically generated graphs. 

Overall, the results indicate that networks drawn from dif-
ferent domains and network models are trivial to distinguish 
using only a handful of simple structural properties. While 
the main motivation for studying this problem is to improve 
our understanding of complex networks (and synthetic graph 
models), the results and findings can also be used in many 
other ways, e.g., to recommend (or find) networks that are 
structurally similar to an unknown network given as input 
by the user (graph search engine), or to build better synthetic 
graph generators and improve evaluation of them. Other 
applications are discussed later in Sects. 3.1 and 5.

This work makes two important findings. First, real-world 
networks from various domains have distinct structural 
properties that allow us to predict with high accuracy the 
category of an arbitrary network. Second, synthetic graphs 
are trivial to classify as the classification model can predict 
with near-certainty the network model used to generate the 
synthetic graph.

2 � Related work

The majority of previous research has focused on classifica-
tion of graphs within a particular category (domain) such 
as molecular graphs (Gärtner et al. 2003; Gärtner 2003; 
Vishwanathan et al. 2010; Mahé et al. 2004; Ralaivola et al. 
2005; Lee et al. 2017). Other examples include distinguish-
ing between brain or breast cancer cells (Li et al. 2012) or 
distinguishing between different social structures (Ugan-
der et al. 2013). We call this problem the within-domain 
graph classification problem. This problem is fundamentally 

Fig. 1   Prediction results using 11 features. The model correctly predicts the category/domain of the networks with an accuracy of 95.7%. These 
results indicate that networks from different domains/categories are structurally distinguishable
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different from the one investigated in this work. In contrast, 
our work focuses on the across-domain graph classification 
problem as well as predicting the underlying network model 
(generative process) used to generate a particular synthetic 
graph.

For the within-domain graph classification problem, 
most research has focused on developing more accurate and 
better algorithms. For instance, Gärtner et al. (2003) pro-
posed an approach based on graph kernels. There has been 
numerous other work focused on deriving new graph ker-
nels for within-domain graph classification (Gärtner 2003; 
Mahé et al. 2004; Ralaivola et al. 2005; Vishwanathan et al. 
2010; Shervashidze et al. 2011). Alternatively, Shervashidze 
et al. (2009) proposed more efficient graphlet kernels for 
within-domain graph classification. In contrast, our work 
does not focus on developing new algorithms for classifica-
tion. Instead, we leverage existing classification methods to 
answer two main questions: (1) Are network categories dis-
tinguishable from one another? (2) and what is the minimum 
set of features required to accurately predict the categories 
of arbitrary networks?

Classification of synthetic graphs according to the genera-
tor that produced them is another related research problem. 
However, most work has simply used synthetic graphs as a 
way to evaluate/benchmark a proposed method. For instance, 
Bonner et al. (2016b) proposed a new approach called deep 
topology classification and evaluated the proposed method 
using synthetic graphs. Other work that used synthetic 
graphs for evaluation has mainly focused on parallel algo-
rithms for comparing such graphs (Bonner et al. 2016c). 
However, in this work we investigate whether we can clas-
sify synthetic graphs using standard classification models 
with simple graph features. In particular, we find that such 
graphs are trivial to classify and that synthetic graphs from 
a particular generator forms a tight cluster with extremely 
small variance, which makes these graphs trivial to classify 
correctly. This result is significant as it implies that using 
synthetic graphs for evaluation (as done previously) should 
be done with extreme caution. Moreover, this finding also 
highlights the limitations and problems of existing graph 
models and synthetic graph generation algorithms. In par-
ticular, one obvious problem is that the graphs generated 
from such models have extremely low variance and essen-
tially all appear to be extremely similar. More importantly, 
the goal of synthetic graph models is to derive synthetic 
graphs that are very similar to real-world graphs (e.g., for 
use in simulations, algorithm benchmarking, etc.), and there-
fore, the observations made in this work highlight the inabil-
ity of these models for deriving graphs that appear similar 
to real-world networks.

Research focused on measuring the similarity between 
graphs from the same domain has also received consider-
able attention (Goldsmith and Davenport 1990; Raymond 

et al. 2002; Zager and Verghese 2008; Abrahao et al. 2012; 
Rossi and Ahmed 2015b). There has also been a lot of 
work on graph matching and network alignment (Khan 
et  al. 2012; Milenković et  al. 2010; Kriege and Mut-
zel 2012; Kollias et al. 2014; Malod-Dognin and Pržulj 
2015). Koutra et al. (2013) proposed a fast graph align-
ment method for aligning large bipartite graphs. Other 
work has focused on fast and parallel algorithms for the 
matching problem (Kollias et al. 2014) as well as par-
allel approximation algorithms for network alignment 
(Khan et al. 2012). There has also been a lot of work on 
graph matching using graphlet and network motif features 
(Milenković et al. 2010; Kriege and Mutzel 2012; Malod-
Dognin and Pržulj 2015). More recently, Soundarajan 
et al. (2014) reviewed many different graph similarity 
measures for comparing graphs. Other work by Ali et al. 
(2016) has focused on sub-sampling techniques for net-
work comparison, whereas Onnela et al. (2012) presented 
a taxonomy of networks based on community structures. 
However, all of this work focuses on fundamentally differ-
ent problems. In contrast, this paper investigates whether 
or not the domain (category) of an arbitrary network can 
be predicted accurately.

Closest in spirit to our research is work by Ikehara 
(2016); Ikehara and Clauset (2017), which appeared pub-
licly at roughly the same time as our earlier work in Can-
ning et al. (2017, 2018). However, there are a number of 
key differences. First, that work mainly focused on under-
standing and analyzing the differences between networks 
from different domains, while our goal is to study whether 
the domain (category) of a network can be predicted using 
a multiclass classification model with simple graph fea-
tures. Second, while Ikehara (2016) used complex graphlet 
features (Ahmed et al. 2016), our work shows that sim-
ple graph features are sufficient to predict the category 
of networks. Third, Ikehara (2016) studied a binary clas-
sification problem, whereas we focus on the multiclass 
classification problem. Finally, we also examine a different 
set of network categories including 11 real-world network 
domains and six synthetic graph models.

There are also many methods for automatically learning 
a graph feature representation (Shervashidze et al. 2011; 
Duvenaud et al. 2015; Ahmed et al. 2017; Lee et al. 2017). 
Most approaches are not inductive and explicitly assume 
that the graphs are from the same domain and the node 
identifiers used in the various graphs are consistent. More 
recently, inductive methods for learning graph feature rep-
resentations have been proposed (Rossi et al. 2017). The 
features learned from these methods can be transferred 
across networks and therefore can be used for classify-
ing graphs from different domains (which is the problem 
investigated in this work).
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3 � Methodology

This section formally presents the problem (Sect. 3.1) and 
describes the network data and categories (Sect. 3.2), the 
synthetic graph models and parameters (Sect. 3.3), the sim-
ple structural features used to characterize the networks 
(Sect. 3.4), and the classification models and techniques used 
for predicting the domain of arbitrary networks (Sect. 3.5).

3.1 � Problem formulation

To improve our understanding of complex networks (and 
synthetic graph models/generators), we investigate the fol-
lowing problem:

Problem  1  Given N training graphs {�i, yi}Ni=1, where 
each �i ∈ ℝ

D is a D-dimensional feature vector for Gi and 
yi ∈ {1, 2,… ,K} is the class label (category/domain) of 
Gi , we learn a multiclass classification model f ∶ � → y . 
The classification model f is then used to predict the cat-
egory (domain) y′ of a new arbitrary unknown network G′ 
described only by a D-dimensional feature vector �′ . More 
formally, given f and the D-dimensional feature vector �′ for 
G′ , the category y′ is predicted as

where ŷ′ is the predicted category of G′ and y′ is the actual 
ground-truth category.

The above problem has two main parts: (1) learning a 
model f from training data and then (2) using the model 
to infer the domain/category of unknown networks. As an 
aside, the category refers to the domain for real-world net-
works. For synthetic graphs, a category refers to the specific 
graph model (synthetic graph generator) used to generate a 
given graph.

While the main motivation for studying this problem is 
to improve our understanding of complex networks and syn-
thetic graph models, the results and findings of this work can 
also be used for many other important applications:

•	 Find networks and categories that are structurally similar 
to a graph of interest (given as input by the user).

•	 Use results to improve the metadata in data repositories, 
e.g., suppose a user donates an arbitrary network, then we 
can use the model to recommend a category/domain and 
possibly other metadata based on the structural properties 
alone.

•	 Improve evaluation and understanding of synthetic graph 
models and generators.

(1)ŷ� = f (��),

Many other potential applications of this work are discussed 
in Sect. 5.

3.2 � Network data and categories

In this work, we use a data set consisting of 1013 graphs 
from K = 17 categories/domains. The network classifica-
tion data set includes real-world networks from 11 different 
domains/categories along with synthetic graphs from six 
different graph models. A list of the network categories is 
shown in Fig. 1.

3.2.1 � Real‑world network data

Data were obtained from the Network Repository (NR) 
(Rossi and Ahmed 2015a) for all non-synthetic graphs.1 We 
accessed the data from NR on May 25, 2017. This included 
complex networks from 11 different domains/categories. 
The categories (class labels for the graphs) are naturally 
defined based on the underlying domain of the complex 
network data. This work uses the categories/domains from 
NetworkRepository (last accessed May 25, 2017). A list of 
the network categories is provided in Fig. 1 (first 11 rows/
columns). NR also includes collections of networks from 
computational and algorithmic challenges (DIMACS, 
DIMACS10 and BHOSLIB), dynamic networks, temporal 
reachability graphs, and a few others. As these collections 
are fundamentally different from static networks from a dis-
cipline or field, they were discarded as outside the prob-
lem scope. Finally, the cheminformatics category had sig-
nificantly more instances than all others and therefore was 
downsampled to be comparable to the next largest category.

3.2.2 � Synthetic graph data

In addition to this large collection of real-world networks, 
we also generated synthetic graphs from six different graph 
models including: 75 from Barabási–Albert (BA) graph 
model (Albert and Barabási 2002), 75 from Chung-Lu (CL) 
graph model (Chung and Lu 2002), 75 from Erdős–Rényi 
(ER) model (Erdős and Rényi 1960), 75 from Kronecker 
Product Graph Model (KPGM) (Leskovec et al. 2010), 75 
from Power-Law Clustering (PLC) graph model (Holme and 
Kim 2002), and 108 from Watts–Strogatz Small-World (SW) 
model (Watts and Strogatz 1998). These six different graph 
models and the parameters used to generate graphs from 
each of them are described in Sect. 3.3. The final data set 
consists of 1013 graphs from K = 17 categories.

1  http://netwo​rkrep​osito​ry.com.

http://networkrepository.com
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3.2.3 � Data availability

In the spirit of reproducible research and future work on this 
problem, the network classification data used in this study have 
been made available online: http://netwo​rkrep​osito​ry.com/
class​ifica​tion/data.csv

It can also be explored in real time over the Web using 
an interactive visual graph analytics tool (Ahmed and Rossi 
2015). This tool can be accessed at: http://netwo​rkrep​osito​
ry.com/class​ifica​tion

The structure including the node and links of individual net-
works and their properties can also be interactively visualized 
and explored online at: http://netwo​rkrep​osito​ry.com/graph​vis

3.3 � Synthetic graph models and settings

This section describes the six different synthetic graph genera-
tors used in this work along with the graph model parameters 
used for each graph generator. For these generators, we always 
ensure the graphs returned have variance. For instance, we 
select n to be approximately around the specific n by selecting 
a random number that is within +∕ − 20% of n (i.e., +∕ − 20% 
of 1000, 10,000, and 100,000).

3.3.1 � Barabási–Albert (BA) graph model

The Barabási–Albert (BA) preferential attachment model 
(Albert and Barabási 2002) matches expected scale-free 
degree distributions. The BA graph model starts with a con-
nected network of one or more nodes and then adds nodes one 
at a time such that each new node is connected to � existing 
nodes with a probability proportional to the number of links 
already existing in the graph. Thus, the new node has a prefer-
ence to connect up to nodes that already have large degrees. 
More formally, the probability pi of a new node forming an 
edge with node i is pi =

ki∑
j kj
, where ki denotes the degree of 

node i and 
∑

j kj denotes the sum of degrees from all nodes that 
currently exist in the graph. We generated 25 BA graphs with 
1000 nodes using � ∈ {10, 40, 60} , 25 BA graphs with 10,000 
nodes using � ∈ {40, 60, 100} , and 25 BA graphs with 
100,000 nodes using � ∈ {40, 60, 100}.

3.3.2 � Chung‑Lu (CL) graph model

The Chung-Lu (CL) graph model (Chung and Lu 2002) gener-
ates a synthetic graph with a given expected degree sequence. 
Given a vector of expected degrees � =

[
w1 w2 ⋯ wn

]
 , an 

edge is created between node i and j with probability

(2)pij =
wiwj∑
k wk

The expected degrees are based on the power-law model 
with exponent � . We generate CL graphs with the fol-
lowing parameters :  � ∈ {1.7, 1.8, 1.9, 2.0, 2.1} and 
n ∈ {102, 103, 104, 105, 106} is the number of nodes.

3.3.3 � Erdős–Rényi (ER) graph model

Let ER(n, p) denote an Erdős–Rényi (ER) (Erdős and Rényi 
1960) graph that arises from fixing n nodes and generat-
ing edges independently with probability p. Thus, the 
expected degree for each node is simply p(n − 1) . We gen-
erate three sets of 25 Erdős–Rényi graphs such that each 
set of 25 graph has a different number of nodes, that is, 
n ∈ {1000, 10000, 100000} . This gives a total of 75 ER 
graphs. To select the probability p that an edge exists between 
two nodes in the ER model, we looked at the densities of 
different sizes of graphs and chose p such that the resulting 
ER graph would have a similar density to the real-world 
networks used in this study. For graphs with 1000 nodes, 
we used p ∈ {0.05, 0.1, 0.2} ; for graphs with 10,000 nodes, 
we used p ∈ {0.0005, 0.005, 0.001} ; and for graphs with 
100,000 nodes, we used p ∈ {0.0005, 0.00005, 0.000005}.

3.3.4 � Kronecker product graph model (KPGM)

For the Kronecker product graph model (KPGM) (Leskovec 
et al. 2010), we follow the same methodology as described 

in [24]. In particular, the initiator matrix used is: 
[
0.57 0.19

0.19 0.05

]
 . 

The number of nodes is n = 2k, where k ∈ {8, 10, 12, 14, 16} 
and the number of edges is �n, where � ∈ {8, 10, 12, 14, 16} . 
We repeat each combination of k and � three times to gener-
ate a total of 75 Kronecker graphs.

3.3.5 � Power‑law clustering (PLC) graph model

We also use the power-law clustering (PLC) graph model 
(Holme and Kim 2002) for generating synthetic graphs with 
power-law degree distributions and approximate average 
clustering. This model is similar to the BA graph model with 
an additional step that adds an edge to close a triangle with 
some probability p. We generate 25 PLC graphs for each 
n ∈ {1000, 10, 000, 100, 000} . There are two other param-
eters: (1) the number of edges � to create between a new 
node and the existing nodes and (2) the triad closure prob-
ability p given to each random edge such that it has a chance 
of creating an edge to one of its neighbors too and therefore 
closing a triangle. Given n, the other parameters � and p 
are selected uniformly at random from � ∈ {10, 40, 60} and 
p ∈ {0.3, 0.2, 0.1}.

http://networkrepository.com/classification/data.csv
http://networkrepository.com/classification/data.csv
http://networkrepository.com/classification
http://networkrepository.com/classification
http://networkrepository.com/graphvis
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3.3.6 � Small‑world (SW) graph model

We also use synthetic graphs generated by the Watts–Stro-
gatz small-world graph model (Watts and Strogatz 1998). 
This model creates a ring over n nodes then joins each node 
to its k-nearest neighbors. Edges are randomly rewired 
with a constant probability p. For these graphs, we use 
n ∈ {100, 1000, 10, 000} , k ∈ {3, 4, 5, 6} , and randomly 
rewire the edges with p ∈ {0.1, 0.2, 0.3} . We repeat each 
combination of parameters (n, k, p) three times to generate 
a total of 108 small-world networks.

3.4 � Structural graph features

In this work, we are interested in finding the simplest and 
most computationally efficient structural features that allow 
us to predict with high accuracy the domain (category) of 
each network data set. We represent each graph using only 
D simple structural features. The features used for classifi-
cation are defined as follows. Although one could use more 
complex features, such as 4-node graphlet features (Ahmed 
et al. 2015), we find that the simple properties that we con-
sider are sufficient to achieve a high classification accuracy. 
Nevertheless, our results do not depend on the use of these 
more complex features.

3.4.1 � Normalization

All graph features are normalized appropriately using 
min–max scaling before using them to train the classification 
models. More formally, each N-dimensional feature vector � 
(e.g., average degree) is scaled as follows:

where 0 ≤ x̂i ≤ 1 , for i = 1,… ,N . This ensures the feature 
values in �̂ ∈ ℝ

N are between zero and one.

3.4.2 � Feature definitions

The definitions of the features used in this work are pro-
vided as follows (van Steen 2010; Newman 2010). Let 
G = (V ,E) be a graph with |V| nodes and |E| edges. Further, 
let �i = { j | (i, j) ∈ E } denote the set of nodes adjacent to 
node i and di = |�i| is the degree of i. 

��	� Average degree The average degree over all nodes in a 
graph G is defined as davg = 1∕�V�

∑
i di, where di = |�i| 

is the degree of node i.
��	� Assortativity coefficient The assortativity coefficient 

captures the tendency of nodes to connect to other 

(3)�̂ =
� −min(�)

max(�) −min(�)
,

nodes with similar degree, or in contrast, the tendency 
of dissimilar nodes to connect (Newman 2002). More 
formally, the assortativity coefficient of a graph G is 
defined as 

where di and dj are the degrees of the nodes at the ends of 
the edge (i, j) ∈ E . The summations above are obviously over 
the set of edges E and thus is linear in the number of edges 
taking O(|E|) time to compute.
��	� Maximum k-core A k-core of G is a maximal sub-

graph of G such that for all vertices in the subgraph, the 
degree is greater or equal to k. The maximum k-core of 
G is the largest k and denoted by K(G).

��	� Density The density of a graph G denoted as �(G) is 
the ratio of edges in the graph to the amount of possible 
edges.

3.4.3 � Other structural features

Many of the results in this work use only the four simple 
structural graph features defined above. However, we also 
investigated a model with seven additional structural features 
including: 

��	� Maximum degree The max degree is defined as 
Δ(G) = max{d1,… , d|V|}, where di is the degree of 
node i ∈ V  , i.e., the number of nodes adjacent to node 
i in the graph (neighbors of node i).

��	� Minimum degree The minimum degree in G is defined 
as �(G) = min{d1, d2,… , dN} . If there are nodes not 
connected to any other, the minimum degree is 0.

��	� Total triangles A triangle is a complete subgraph with 
exactly three vertices (3-clique). The total number of 
triangles in a graph G is the sum of all such triangles 
in G defined as T(G) = 1

3

∑
e=(i,j)∈E ��i ∩ �j�.

��	� Average triangles Average number of triangles 
formed by the edges in G. More formally, let Te denote 
the number of triangles containing edge e = (i, j) ∈ E , 
then Tavg = 1∕�E�

∑
e∈E Te.

��	� Maximum triangles The maximum number of trian-
gles centered at any edge in the graph G defined as 
Tmax = maxe∈E Te, where Te = |�i ∩ �j| is the number 
of triangles containing edge e = (i, j) ∈ E.

(4)

r(G) =

�E�−1 ∑
(i,j)∈E

didj −
�
�E�−1 ∑

(i,j)∈E

1

2
(di + dj)

�2

�E�−1 ∑
(i,j)∈E

1

2
(d2

i
+ d2

j
) −

�
�E�−1 ∑

(i,j)∈E

1

2
(di + dj)

�2 ,
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���	� Average clustering coefficient The clustering coeffi-
cient of a graph quantifies how a node in a graph tends 
to cluster together (Watts and Strogatz 1998). More 
formally, the local clustering coefficient of a node 
i ∈ V  is Ci = Ti∕Wi, where Ti is the number of trian-
gles centered at node i and Wi = di(di − 1)∕2 (paths of 
length two centered at i). Thus, the average local clus-
tering coefficient of G is defined as C(G) = 1

N

∑
i∈V Ci.

���	� Fraction of closed triangles (global clustering coef-
ficient) (Newman et al. 2001): Let T(G) denote the 
number of triangles in G and let W(G) denote the num-
ber of wedges (two-star paths), then the global cluster-
ing coefficient (density of triangles in G) is defined as 
�(G) = T(G)∕W(G).

 Results that use “all features” leverage the seven structural 
features defined above as well as the initial 4 for a total of 11 
graph features altogether. The different classification models 
along with the different feature sets used are described in 
Sect. 3.5.

3.5 � Predictive models

In random forests, we learn each decision tree by sampling 
with replacement (bootstrap sampling) from the training set. 
Furthermore, whenever splitting a node in the tree, we select 
the best split among a random subset of the D features. In 
this work, we learn an ensemble of 50 decision trees and 
use entropy (information gain) to measure the quality of a 
split. Instead of allowing each classifier to vote for a single 
class as proposed originally in Breiman (2001), we com-
bine the classifiers by averaging their probabilistic predic-
tion. Thus, we predict the class label of an unseen graph by 
taking the class with largest average probability. Besides 
random forests, we also investigated Gaussian Naïve Bayes 
(GNB) (Friedman et al. 2001), support vector machines 
(SVM) (Cortes and Vapnik 1995) and logistic regression 
(LR) (Bishop 2006). However, these classification models 
all performed very similar to random forests and therefore 
were removed for brevity. Random forests are favored since 
they performed slightly better than the other models while 
also being based on decision trees which are simple and 
computationally efficient.

The classification model f is trained using N networks 
from the K = 17 categories (see Fig. 1) which are charac-
terized by D simple structural features. The model f is then 
used to predict the domain of a held-out network charac-
terized only by a D-dimensional structural feature vector 
�′ . More formally, given f and the structural feature vector 
�′ from a new previously unseen network G′ , the domain/
category is predicted as ŷ� = f (��), where ŷ� ∈ {1,… ,K} is 
the predicted category. This is repeated for all networks, 

i.e., we hold out each network, learn a model with the oth-
ers, and then predict the held-out network. This process is 
called leave one out cross-validation (LOOCV) (Friedman 
et al. 2001) and has many advantages over traditional k-fold 
cross-validation (CV). LOOCV is used in this work for two 
main reasons. First, it allows us to include network domains 
where there are only a small number of networks available 
to us. Second, traditional k-fold CV is known to have larger 
variance and bias than LOOCV, and thus allows us to obtain 
more scientifically accurate findings to the questions investi-
gated. In general, LOOCV is typically preferred over k-fold 
CV as long as the computational cost involved in LOOCV 
is not an issue. In this work, we obviously prefer more sci-
entifically accurate results over a slightly more convenient 
evaluation that is less computationally expensive.

3.5.1 � Classification with different features

We investigate three different classification models that dif-
fer only in the set of structural features used for prediction. 
The classification models used in this work are as follows:

•	 3 Features ( ��–�� ): This model uses only three simple 
structural features to characterize each network, namely 
average degree, assortativity, and maximum k-core.

•	 4 Features  ( ��–�� ): In addition to average degree, assor-
tativity, and maximum k-core ( ��–�� ), this model also 
includes density ( ��).

•	 All Features  ( ��–��� ): This model uses 11 features to 
describe each network.

The 3- and 4-feature models described above use extremely 
simple structural features that are computationally efficient 
with a time complexity that is no larger than O(|E|) . In addi-
tion to these extremely simple structural features, the model 
that uses D = 11 features also includes a few simple triangle-
based features.

4 � Results

The experiments are designed to answer the following 
important fundamental questions: 

Q1	� Can we correctly predict the domain/category that an 
arbitrary network belongs using a few simple struc-
tural properties?

Q2	� Are synthetic graphs from a wide variety of graph gen-
erators difficult to distinguish from real-world complex 
networks? or can we accurately predict not only that 
a synthetic graph is indeed generated by a model, but 
can we also predict the synthetic graph model that an 
arbitrary synthetic graph was derived from?
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Q3	� What is the minimum and simplest set of features that 
can be used to accurately predict the category/domain 
of networks?

 To answer the question of whether the category of an 
unknown network can be accurately predicted, we learn a 
multiclass classification model f using simple graph features 
and use it for prediction. The full classification results using 
all 11 structural graph features are provided in Fig. 1. Nota-
bly, we achieve 95.7% accuracy in classification using a ran-
dom forest model. This supports several important findings.

Result 1  The network category (domain) of both real-world 
networks and synthetically generated graphs can be accu-
rately predicted (Fig. 1).

Figure 1 shows the classification results including the pre-
cision and recall for each category of networks. The model f 
learned using only a few simple structural features is able to 
accurately distinguish between graphs from different domains. 
An overall accuracy of 95.7% is achieved using a random 
forest model. In other words, the model f learned using only 
D = 11 structural features is able to predict the domain of 
95.7% of the more than 1000 networks from 17 different cat-
egories/domains. Furthermore, the overall F1 score is 96%. 
Result 1 implies that complex networks from various domains 
have distinct structural properties (acting as a signature) that 
allow us to predict with high accuracy the domain (category) 
of an arbitrary network. This result is important, as it not only 
improves our understanding of such complex networks and 
synthetic graph models, but also has many important high-
impact applications. See Sect. 5 for discussion of a few such 
applications. The precision, recall, and F1 scores for the dif-
ferent categories of networks are shown in Fig. 2.

Network/category-specific findings and insights can also 
be found by analyzing the mislabeled graphs in Fig. 1. As 
an example, 10 of the 117 brain networks are non-human, 
and all 8 mislabeled graphs in Fig. 1 are non-human. This 
is strong evidence that either the human brain networks are 
truly distinct from the non-human brain networks, or the 

network discovery process is not sufficiently standardized 
for brain networks. Another interesting observation is that 
a visual inspection of the graphs mislabeled as retweet net-
works shows surprising similarities to one another. This sug-
gests that in addition to predicting the domain of arbitrary 
networks, classification models can also provide valuable 
insights.

Result 2  Synthetic graphs are easily distinguishable from 
real-world networks as shown in Fig. 1. Moreover, the graph 
model used to generate a synthetic graph is trivial to predict.

Figure 1 shows that synthetically generated graphs from 
six different synthetic graph models are easily distinguish-
able from real-world networks. Synthetic graphs are distinct 
enough from their real-world counterparts that only nine 
other networks are classified as either BA, CL, ER, KPGM, 
PLC or SW. Nevertheless, we are able to correctly predict 
that a graph is a synthetic graph 100% of the time, but more 
importantly, we can even predict the specific graph model 
that it arises from with 100% accuracy across all six differ-
ent synthetic graph models. In other words, the synthetically 
generated graphs generated by the different graph models are 
themselves easy to distinguish between. For example, the 
structure of KPGM graphs is fundamentally different from 
CL graphs. Furthermore, we are also able to correctly classify 
that an arbitrary graph is not only synthetic or not, but also 
the specific graph model used to generate it. This observation 
indicates that synthetic graphs derived from these graph mod-
els have low variance, and thus form tightly-knit clusters that 
are structurally distinct from other synthetic graphs as well 
as real-world networks. This result is surprising since many 
synthetic graph generators are evaluated based on whether 
they preserve the properties of real-world networks (Leskovec 
et al. 2010; Rossi et al. 2013; Mahadevan et al. 2007).

To further understand the significance of this finding, 
we also investigated a binary classification task that pre-
dicts whether a graph is synthetically generated or not. In 
this classification task, synthetic graphs from any of the 
six graph models are relabeled as “synthetic,” whereas the 

Fig. 2   Precision, recall, and F1 
results for different categories of 
networks (using all 11 features)
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remaining real-world networks from the 11 domains (brain, 
cheminformatics, ecology, etc.) are relabeled as “real-world 
networks.” This gives us two groups of graphs: real and syn-
thetic. Hence, this task is simply to predict whether a previ-
ously unseen graph is a real-world network or not. Using 
only four simple structural features, the model is able to 
accurately classify 98.42% of the networks. However, if we 
use D = 11 features, we are able to predict 99.01% of the 
networks correctly as being either synthetically generated 
or a real-world complex network from one of the 11 net-
work domains. Interestingly, only three synthetic graphs 
were incorrectly classified as real, whereas 13 real graphs 
were incorrectly classified as synthetic. The above is from 
the model that uses D = 4 features. This result illustrates 
the extent that these synthetic graph models fail to generate 
realistically looking graphs. For instance, even using four 
simple structural features, we are able to accurately distin-
guish whether a graph is synthetic or not.

The goal of many synthetic graph generators is to gener-
ate graphs that are indistinguishable from actual real-world 
networks (Mahadevan et al. 2007; Wang et al. 2007; Moreno 
et al. 2010; Leskovec et al. 2010; Rossi et al. 2013). As such, 
many synthetic graph generators are designed such that the 
synthetic graphs (and their structural properties such as the 
distribution of degrees and triangle counts) closely resem-
ble graphs from a specific category/domain such as social 
networks (Leskovec et al. 2010; Rossi et al. 2013). Unfortu-
nately, this experiment demonstrates that not only do these 
graph models fail to generate graphs that appear realistic, 

but they are all easily detected as synthetic using extremely 
simple structural features. These results also hint at a bet-
ter and more robust approach for evaluating synthetic graph 
generators. Previous work has mainly focused on generating 
graphs that preserve specific graph properties or distributions 
(e.g., degree, triangle). However, as a first step, it would be 
better to first evaluate whether the graphs generated are indis-
tinguishable from real networks using the simple structural 
features above. Since if the synthetic graphs are easily classi-
fied as synthetic graphs (as opposed to real-world networks) 
using such simple structural features, then certainly whether 
the model preserves a specific property or distribution that is 
substantially more complex is less relevant.

Now, we investigate whether the category/domain of net-
works can be predicted using only three or four simple graph 
features.

Result 3  Networks from different domains/categories are 
structurally distinguishable using only a few basic structural 
features (Figs. 3 and 4). A few simple features are sufficient 
to accurately predict the category of networks.

Figure 3 shows prediction results for a model learned with 
only four simple and computationally efficient graph fea-
tures. Notably, we learn a random forest model using only 
four features to characterize each graph, including density 
�(G) , average degree davg , assortativity r(G), and maximum 
k-core number K(G) as features ( ��–�� ). Despite using only 
these four features to describe each network, the predictive 

Fig. 3   Predicting domain of networks using only four simple struc-
tural features. A model is learned using D = 4 simple and computa-
tionally efficient features, including density, average degree, assor-
tativity, and maximum k-core. Using only these simple features, 
the model correctly predicts the domain of 94.57% of the networks. 

Hence, the model remains highly accurate for predicting the domain 
of an arbitrary network. These results indicate that networks from dif-
ferent domains are structurally distinguishable even using very simple 
structural properties. Notably, there exists key structural differences 
among the network even at the most basic fundamental level
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model is able to accurately predict with 94.57% accuracy 
the category (domain) of arbitrary networks. Hence, the 
model remains highly accurate for predicting the domain of 
arbitrary networks. Furthermore, the difference in classifi-
cation performance compared to the previous model using 
11 features is small. These results indicate that networks 
from different domains are structurally distinguishable even 
using very simple structural properties. Notably, there exists 
key structural differences among the networks even when 
characterized using only four simple structural properties.

In addition, Fig. 4 shows prediction results from a model 
learned using only D = 3 features to describe each network. 
In particular, the features used to characterize each network 
include average degree, assortativity, and maximum k-core 
( ��–�� ). The model achieves an accuracy of 92.6%. Hence, 
the model remains highly accurate and able to predict the 
domain of most networks. These results indicate that net-
works from different domains/categories are structurally 
distinguishable using only three structural features. We also 

investigated models with even fewer features. However, in 
all cases, the overall accuracy decreases significantly, e.g., 
from 92.6% to around 84%.

Importantly, the results in Figs. 3 and 4 indicate that a 
networks domain can be accurately predicted with only a 
few features that are all computationally efficient with a time 
complexity of at most O(|E|) . Notice the difference in accu-
racy, recall, and precision compared to Fig. 1 is small. In this 
experiment, we removed the features that tend to correlate 
with the size of the network such as the maximum degree 
and total triangles. This provides additional evidence that 
different categories of networks from a variety of domains 
have distinct structural properties that can be used to learn a 
model to accurately distinguish between them. Observe that 
we are still able to correctly classify all the synthetic graphs 
that arise from the six different synthetic graph models.

F1 score results for each network category are shown 
in Fig. 5. From these results, there are three main find-
ings. First, synthetic graphs from any generator are easy to 

Fig. 4   Prediction results using D = 3 simple structural features 
including average degree, assortativity, and maximum k-core ( ��–�� ). 
The model accurately predicts the domain of most networks achiev-

ing an accuracy of 92.6% . These results indicate that networks from 
different domains/categories are structurally distinguishable using a 
few important fundamental structural features

Fig. 5   F1 score results for 
different complex network 
domains
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classify as the graphs generated from any of the generators 
are significantly different structurally from any other syn-
thetic graph generated by another model as well as any other 
real-world network category/domain. Second, most complex 
networks are easy to correctly predict their domain/category 
even when using only four simple structural features of the 
graphs. Third, the simpler model sometimes outperforms 
the other that uses all available features (e.g., web graphs).

To gain further understanding of the previous classifica-
tion results, we analyze the possible correlations between the 
features as follows. To understand the potential correlations 
between the graph features, we measure the pairwise Pearson 
correlation between each pair of features � = �⟨�i, �j⟩, ∀i, j, 
where � is a D × D symmetric correlation matrix and � is a 
similarity function which in this case is Pearson correlation. The 
correlation matrix is shown in Fig. 6, where 1 is a positive linear 
correlation, 0 is no correlation, and −1 is negative correlation. In 
Fig. 6, we observe that many of the features are either not cor-
related at all (i.e., Cij is close to 0) or weakly correlated. There 
are a few notable exceptions including average degree davg and 
the maximum k-core number of a graph G denoted by K(G). 
Future work will explore whether better classification results 
can be achieved when replacing average degree with a less cor-
related feature that is still simple and computationally efficient.

5 � Conclusion

This work investigated whether the domain or generative 
process of a complex network can be accurately predicted 
using only a handful of simple graph features. Our results 

indicate that networks drawn from different domains (and 
network models) are trivial to distinguish using only a few 
graph features. In particular, we achieve 95.7% accuracy 
using a simple random forest model to predict the domain 
and/or generative process governing the formation of the 
network (Fig. 1). More strikingly, a model learned using 
only four simple structural features is able to accurately 
predict the domain of 94.5% of the networks (Fig. 3). This 
implies that real-world complex networks from various 
domains have distinct structural properties (acting as a 
signature) that allow us to predict with high accuracy the 
domain (category) of an arbitrary network.

We also find that synthetic graphs are trivial to classify as 
the model can predict with near-certainty whether a graph 
is synthetic or not but more importantly the network model 
used to generate it. This result requires careful consideration 
as it implies that using synthetic graphs for evaluation, as 
done previously, should only be carried out with extreme 
caution. Moreover, this finding also highlights the limita-
tions inherent in common graph models and graph genera-
tion algorithms. Since synthetic graph models are generally 
intended to replicate features in real networks, the observa-
tions made in our work highlight the difficulty these models 
have in creating graphs that appear similar to any of the 
categories of real-world networks we investigated.

Future Work and Applications The results and find-
ings of this work have a variety of practical applications 
beyond expanding the understanding of real-world complex 
networks and synthetic graph models. One important appli-
cation is to predict the best method (e.g., lowest error, fast-
est) to use for a specific problem based on the underlying 
structural properties of the graph. Indeed, the performance 
of graph algorithms depends largely on the structural prop-
erties of the underlying graph of interest. Recent research 
has focused on identifying the methods that perform best 
for specific network categories, e.g., designing approxima-
tion algorithms that perform best for social networks. For 
instance, some work has focused on grouping methods for 
crawling/network sampling methods (Ahmed et al. 2014), 
maximum and k-clique problem (Rossi et al. 2014), coloring 
(Rossi and Ahmed 2014), among others. Given the mapping 
of methods to specific network categories (that consist of 
graphs with similar structural properties), we can then use 
the results and findings of our work to predict the category 
of the network and therefore predicting the method that is 
likely to perform best for graphs with similar underlying 
structural properties. In other words, given a previously 
unseen network and a problem of interest, we can predict 
the category of the network using the previous model f and 
then select the method that performs best for graphs with 
similar underlying structural properties.

In addition, the models learned in this work to accu-
rately predict the category (domain) of a network can be 

Fig. 6   Structural feature correlations. We measure pairwise 
Pearson correlation between each pair of structural features 
� = �⟨�i, �j⟩, ∀i, j, where � is a D × D symmetric correlation matrix 
and � is the Pearson correlation function
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used in network data repositories (data archives) such 
as NetworkRepository (Rossi and Ahmed 2015a). For 
instance, suppose a user donates an arbitrary network, we 
can then use the multiclass classification models to rec-
ommend a category (domain) and possibly other metadata 
that was not provided by the user. In addition, we can use 
the results of this work to recommend “structurally related 
networks” to users. For instance, if a user is analyzing a 
particular network using the interactive visual graph min-
ing tools provided by NR (Rossi and Ahmed 2015a), then 
we can automatically recommend other relevant graphs 
that are structurally similar to the network being analyzed 
by the user.

Furthermore, we are also currently using the key findings 
of this work to build a “graph search engine.” The engine 
would allow users to search for graphs that are structur-
ally similar to the graph of interest given as input by the 
user. In particular, given a graph G provided as input by 
a user, we compute a few computationally efficient struc-
tural properties from G denoted by � and then derive 
� = K(�, �i), for i = 1, 2,… , |G|, where G is the set of graphs 
in the graph database (e.g., all graphs available at NR (Rossi 
and Ahmed 2015a)); K is a similarity function between the 
input graph G and each graph Gi ∈ G ; and � =

[
r1 r2 ⋯

]
 is 

a score vector. Each ri indicates how similar G is to Gi ∈ G . 
Thus, we order the graphs from most similar to least by sort-
ing � and output the top-k graphs that closely resemble the 
input graph G provided by the user.

One important direction for future work is to further 
explore and understand why graphs from synthetic genera-
tors are trivial to classify. These results and findings will be 
important for building better synthetic generators. Future 
work should also investigate other synthetic graph genera-
tors and complex networks from other domains/categories. 
Furthermore, another open question is whether there is a 
smaller set of features that can achieve comparable or bet-
ter predictive performance. Finally, future work should also 
explore other features and classification models.
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