
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2018) 8:61
https://doi.org/10.1007/s13278-018-0537-7

ORIGINAL ARTICLE

Stream graphs and link streams for the modeling of interactions
over time

Matthieu Latapy1  · Tiphaine Viard1 · Clémence Magnien1

Received: 13 March 2018 / Revised: 10 September 2018 / Accepted: 11 September 2018 / Published online: 3 October 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract
Graph theory provides a language for studying the structure of relations, and it is often used to study interactions over time
too. However, it poorly captures the intrinsically temporal and structural nature of interactions, which calls for a dedicated
formalism. In this paper, we generalize graph concepts to cope with both aspects in a consistent way. We start with elementary
concepts like density, clusters, or paths, and derive from them more advanced concepts like cliques, degrees, clustering coef-
ficients, or connected components. We obtain a language to directly deal with interactions over time, similar to the language
provided by graphs to deal with relations. This formalism is self-consistent: usual relations between different concepts are
preserved. It is also consistent with graph theory: graph concepts are special cases of the ones we introduce. This makes it
easy to generalize higher level objects such as quotient graphs, line graphs, k-cores, and centralities. This paper also considers
discrete versus continuous time assumptions, instantaneous links, and extensions to more complex cases.

Keywords  Stream graphs · Link streams · Temporal networks · Time-varying graphs · Dynamic graphs · Dynamic
networks · Longitudinal networks · Interactions · Time · Graphs · Networks

1  Introduction

Friendship, dependencies, similarities, or connections are
typical examples of relations modeled by graphs or net-
works, i.e., sets of nodes and links: nodes represent indi-
viduals and two individuals are linked together if they are
friends; nodes represent companies and they are linked
together if they signed contracts with each other; nodes
represent documents like web pages or articles, and they
are linked together if they are similar; nodes represent com-
puter devices and they are linked together if there is a wire
between them; etc.

For decades, graph theory, social network analysis, and
network science have developed a wide set of tools for the
study of such graphs. In particular, they developed a lan-
guage for describing networks, with elementary yet power-
ful concepts such as node degree (their number of links),
paths (sequences of links going from one node to another
one), density (the fraction of pairs of nodes actually linked

together), or cliques (sets of nodes all pairwise linked
together). This language forms the basis of network studies,
and there is a global consensus on a wide set of concepts
that are used in the field; with few variations, all courses and
reference books on graphs and networks start with them, see,
for instance, Berge (1962), Bondy (1976), Wasserman and
Faust (1994), West (2000), David and Jon (2010), Newman
(2010), Diestel (2012), Barabási and Pósfai (2016), Scott
(2017). Then, more advanced and specific concepts are
defined on this common ground.

Contacts, shopping, travels, or traffic are typical exam-
ples of interactions that take place over time, i.e., streams of
nodes and links active during specific periods of time: nodes
are individuals linked together whenever they call each
other; nodes are clients and products linked together when a
client buys a product; nodes are places linked together when
someone moves from one place to another; nodes are inter-
net devices linked together when they exchange data; etc.

Such sequences of interactions play a key role in many
areas, and they have been studied for a long time, see related
work in Sect. 21. Although many variations exist, the most
common approach is to model them by sequences of graphs
(each graph then aggregates the interactions that occurred
during a period of time), by labeled graphs (each link being

 *	 Matthieu Latapy
	 matthieu.latapy@lip6.fr

1	 Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR
7606, LIP6, 75005 Paris, France

http://orcid.org/0000-0002-0975-6109
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-018-0537-7&domain=pdf

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 2 of 29

labeled with its presence times), or other augmented graphs.
This makes it possible to use graph theory to study these
sequences of graphs, labeled graphs, and other variants.
Other works deal directly with higher level methods for stud-
ying graphs, like stochastic block models, for instance, and
extend them to cope with the dynamics. Finally, a few works
define specific properties combining temporal and structural
information, such as centrality measures, for instance.

In this paper, we propose a different approach: we develop a
formalism to directly cope with interactions over time, in a way
similar to what graph theory does for relations. This means
that we do not transform interactions into graphs, but rather
transform graph theory into a theory of interactions over time.
We model them as link streams and stream graphs (depending
on whether the dynamics is on links only, or on both nodes
and links), so named to emphasize their streaming nature and
the fact that they are not graphs or networks. Then, we start
with the most elementary graph concepts and we define their
equivalent for stream graphs and link streams. Finally, we elab-
orate on these basic concepts to extend more complex graph
concepts. With the aim to make our formalism as intuitive as
possible, we put much effort in proposing simple definitions,
explaining them with different points of view (especially com-
binatorial and probabilistic ones), and to provide illustrations
and detailed examples of all key concepts we introduce.

In addition to these subjective features, we also put much
emphasis on two more objective features to ensure the rele-
vance of our definitions. First, we want our formalism to be a
generalization of graph theory in a very precise sense: when
the stream has no dynamics, it is equivalent to a classical
graph and its properties should be the same as those of this
graph (see the end of Sect. 3). Second, we want the relations
that exist between various graph properties (between density
and degree, for instance) to still hold for stream properties.
Similarly, if a graph concept is derived from another one
(like clustering coefficient from density, for instance), we
want the corresponding stream concept to be derived from
the corresponding other stream concept. These features
ensure both the self-consistency of our formalism and its
consistency with graph theory.

After Sect. 2 that introduces a few notations needed in
the whole paper, we present our framework from Sect. 3 to
Sect. 17. Each of these sections is devoted to a key concept of
graph theory that we redefine in the stream context. Therefore,
they all have the same structure: first, we recall the relevant
graph concepts and their key properties in italics; then, we
introduce equivalent concepts for stream graphs with detailed
examples and discuss their properties; we introduce additional
related concepts specific to stream graphs; we discuss the case
of link streams, i.e., when there is no dynamics on nodes;
and we show that the newly introduced stream concepts are
equivalent to the graph ones, whenever this makes sense.
After these core sections, we show how our framework may

be used under either discrete and continuous modeling of time
in Sect. 18; we show how it generalizes Δ-analysis and may be
used with instantaneous links in Sect. 19; we show how it may
be extended to bipartite streams and other particular cases in
Sect. 20; and we present related work in Sect. 21. We discuss
our contributions and future work in Sect. 22.

2 � Preliminaries on set products and sizes

In this paper, we rely on a few notations that we introduce
below.

Given two finite sets X and Y, one may consider the
ordered pairs (x, y) with x ∈ X and y ∈ Y . Then, (x, y) ≠ (y, x)
and (x, x) exists if x ∈ X and x ∈ Y  . One may also consider
unordered pairs xy with x ∈ X and y ∈ Y  , with x ≠ y . Then,
xy = yx and xx do not exist. The set of ordered pairs, called
cartesian product of X and Y, is denoted by X × Y . One often
uses this notation for the set of unordered pairs too. In this
paper, however, we use both notions intensively and need to
make a clear distinction between them. We, therefore, denote
the set of unordered pairs of distinct elements by X ⊗ Y .

Throughout this paper, we deal with set sizes, denoted
by |X| for a given set X, but the meaning of this notation
depends on the type of X. If X is an interval [�,�] of ℝ ,
then |X| = � − � . If it is an interval [�,�] of ℕ , then
|X| = � − � + 1 . If X is the union of disjoint intervals of ℝ ,
then |X| is the sum of these intervals’ sizes. The same holds if
it is the union of disjoint intervals of ℕ . If X is the product of
sets of these types, then its size is the product of their sizes.
Notice that, if X contains just one element then depending
on the context it may be seen as a (degenerate) interval of ℝ
or ℕ , thus having size 0 or 1, respectively. For instance, the
union of the intervals [1, 2] and [3, 3] of ℝ has size 1, while
the union of the same intervals of ℕ has size 3.

Notice that |X × Y| = |X| ⋅ |Y| , and therefore, |X × X| = n2
if |X| = n . This is different from |X ⊗ Y| = |(X⧵Y) × Y|+
|(Y⧵X) × X| − |(X⧵Y) × (Y⧵X)| + |X∩Y|2−|X∩Y|

2
 , leading to

|X ⊗ X| = n⋅(n−1)

2
 if |X| = n , and |X ⊗ Y| = |X| ⋅ |Y| if X and

Y are disjoint.

3 � Stream graphs and link streams

A (simple undirected1) graph G = (V ,E) is defined by a
finite set of nodes V and a set of links E ⊆ V ⊗ V  . Then,
uv ∈ E means that u and v are linked together in G.

1  Unless explicitly specified, we always consider simple and undi-
rected graphs and stream graphs; we discuss more general cases in
Sect. 20.

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 3 of 29  61

Graphs model relations between nodes. For instance,
nodes may represent individuals and links may represent
friendship relations. Nodes may represent computers and
links may represent physical connections between them.
Examples are countless, making graphs the key formalism
for studying network structures.

We define a (simple undirected 2 ) stream graph
S = (T ,V ,W,E) by a finite set of nodes V, a measurable set
of time instants T, a set of temporal nodes W ⊆ T × V  , and
a set of links E ⊆ T × V ⊗ V  , such that (t, uv) ∈ E implies
(t, u) ∈ W and (t, v) ∈ W  . Then, (t, v) ∈ W means that node
v is present at time t in S, and (t, uv) ∈ E means that nodes u
and v are linked together at time t in S.

The set of time instants T may be continuous or discrete,
which has little influence on the following, as we explain in
Sect. 18. Until then, all the examples we give assume that T
is an interval of ℝ+.

We define vt = 1 if (t, v) ∈ W and vt = 0 otherwise, as
well as uvt = 1 if (t, uv) ∈ E and uvt = 0 otherwise. When
vt = 1 we say that node v is involved in S at time t or that
v is present at time t, and when uvt = 1 we say that nodes
u and v are linked together at time t, or that link uv is pre-
sent at time t. We denote by T

v
 the set of time instants at

which v is present, by T
uv

 the set of time instants at which
uv is present, by V

t
 the set of nodes present at time t, and

by E
t
 the set of links present at time t: T

v
= {t, vt = 1} ,

T
uv
= {t, uvt = 1} , V

t
= {v, vt = 1} , and E

t
= {uv, uvt = 1} .

Notice that T
uv
⊆ T

u
∩ T

v
.

If all nodes are present all the time, i.e., T
v
= T for all v

or, equivalently, V
t
= V for all t, then we say that S is a link

stream and we denote it by L = (T ,V ,E) (with W = T × V
implicitly). Indeed, there is no dynamics on nodes in this
case, and S is fully defined by this triplet. Link streams play
an important role in many situations, and therefore, we pay
special attention to this case in all this paper.

We illustrate these definitions in Fig. 1 with drawings
designed as follows. We display node names on a vertical
axis on the left of the figure and time on a horizontal axis
at the bottom of the figure. Each node presence times are

represented by a horizontal dotted line in front of its name,
whenever the node is present. Each link presence times are
represented by a horizontal solid line parallel to the two dot-
ted lines of involved nodes and a vertical solid line joining
these two dotted lines (marked with bullets) when the two
nodes start interacting. In Fig. 1, for instance, in S (left-
most example), the node a arrives at time 0 and stays until
time 10, and therefore, [0, 10] × {a} ⊆ W  , i.e., T

a
= [0, 10] .

This is represented by a dotted line from time 0 to 10 in
front of a in the drawing. Likewise, b arrives at time 0,
then leaves at time 4, joins again at time 5, and stays until
time 10, and therefore, ([0, 4] ∪ [5, 10]) × {b} ⊆ W  , i.e.,
T
b
= [0, 4] ∪ [5, 10] . This is represented by a dotted line from

time 0 to 4 and another one from time 5 to 10 in front of b.
These two nodes interact from time 1 to time 3 and from
time 7 to time 8, and therefore, ([1, 3] ∪ [7, 8]) × {ab} ⊆ E ,
i.e., T

ab
= [1, 3] ∪ [7, 8] . This is represented by a solid line at

time 1 between the dotted lines of a and b, with a horizontal
line starting from its middle until time 3, and another such
solid line at time 7 with a horizontal line until time 8.

Given a stream graph S = (T ,V ,W,E) , we define
G

t
= (V

t
,E

t
) , the graph induced by S at time t. In

Fig. 1, for instance, we obtain for S at time 2 the graph
G2 = ({a, b, d}, {ab, bd}).

We also define G(S) = ({v,T
v
≠ �}, {uv,T

uv
≠ �}) =

(
⋃

t∈T Vt
,
⋃

t∈T Et
) the graph induced by S: its nodes are

those present in S and they are linked together in G(S) if
there exists a time instant in T such that they are linked
together in S. In other words, it is the graph, where there is
a link between two nodes if they interacted at least once. In
Fig. 1, for instance, G(S) = ({a, b, c, d}, {ab, ac, bc, bd}) and
G(L) = ({a, b, c, d}, {ab, ac, bc, bd, cd}) . One may, in addi-
tion, associate with each node v or link uv a weight captur-
ing a quantity of interest, like, for instance, their presence
duration |T

v
| and |T

uv
|.

Stream graphs model interactions between nodes over
time, as well as the dynamics of nodes themselves. For
instance, nodes may represent individuals present in a given
building and links may represent contacts between them.

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 1   Simple examples of stream graphs and link streams. Left: a
stream graph S = (T ,V ,W,E) with T = [0, 10] ⊆ ℝ , V = {a, b, c, d} ,
W = [0, 10] × {a} ∪ ([0, 4] ∪ [5, 10]) × {b} ∪ [4, 9] × {c} ∪ [1, 3] × {d}   ,
and E = ([1, 3] ∪ [7, 8]) × {ab} ∪ [4.5, 7.5] × {ac} ∪ [6, 9] × {bc}∪
[2, 3] × {bd} . In other words, T

a
= [0, 10] , T

b
= [0, 4] ∪ [5, 10] , T

c
=

[4, 9] , T
d
= [1, 3] , T

ab
= [1, 3] ∪ [7, 8] , T

ac
= [4.5, 7.5] , T

bc
= [6, 9] ,

T
bd

= [2, 3] , and T
ad

= T
cd

= � . Right: a link stream L = (T ,V ,E) with
T = [0, 10] ⊆ ℝ , V = {a, b, c, d} , and E = ([0, 4] ∪ [6, 9]) × {ab}∪

[2, 5] × {ac} ∪ [1, 8] × {bc} ∪ [7, 10] × {bd} ∪ [6, 9] × {cd} . In other
words, T

a
= T

b
= T

c
= T

d
= T and T

ab
= [0, 4] ∪ [6, 9] , T

ac
= [2, 5] ,

T
bc
= [1, 8] , T

bd
= [7, 10] and T

cd
= [6, 9]

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 4 of 29

Nodes may represent online computers and links may repre-
sent data exchanges between them. Examples are countless,
and we aim at making stream graphs the key formalism for
studying jointly the dynamics and structure of interactions.

Since in a stream graph S = (T ,V ,W,E) nodes are not
present all the time in general, W may differ significantly
from T × V  . To capture this, we define the coverage of S as
follows:

For instance, in Fig. 1, the stream graph S has coverage
cov (S) =

26

40
= 0.65.

Notice that cov (S) = 1 if and only if all nodes are present
all the time, and therefore, it is equivalent to saying that S
is a link stream.

If in addition for all u and v in V, T
uv
∈ {�, T} , i.e., all

existing links are present all the time, then there is no sig-
nificant distinction between S and G(S), and we say that S
is a graph-equivalent stream. This gives a formal ground to
our wanted feature that stream graphs generalize graphs: we
extend graph concepts to stream graphs in a way, such that if
a stream graph S has a given stream graph property and hap-
pens to be a graph-equivalent stream, then its induced graph
G(S) has the corresponding graph property. In the following,
we systematically check that this feature holds.

4 � Size, duration, uniformity,
and compactness

The number of nodes of a graph G = (V ,E) is denoted by
n = |V| and its number of links by m = |E|.

Given a stream graph S = (T ,V ,W,E) , we now define its
number of nodes and links, as well as its duration. First
notice that, unlike in graphs, some nodes may be present for
much longer than others. To capture this, we define the con-
tribution of node v as nv =

|T
v
|

|T|  , which may be seen as the
notion of coverage restricted to a node v. We then define the
number of nodes in S as follows:

Then, each node contributes to the total number of nodes
proportionally to its involvement in S: v in V accounts for 1
node only if it is present in S all the time.

We define similarly the contribution of a pair of nodes uv
as muv =

|T
uv
|

|T| and the number of links in S:

cov (S) =
|W|

|T × V|
.

n =
∑

v∈V

nv =
|W|
|T|

.

m =
∑

uv∈V⊗V

muv =
|E|
|T|

.

Like nodes, each link then contributes to m proportionally
to its presence in S: uv in V ⊗ V accounts for 1 link only if
it is present in S all the time.

Finally, we define the node and link contributions of a
time instant t as kt =

|V
t
|

|V| and lt =
|E

t
|

|V⊗V| , leading to the fol-

lowing definition of the node duration k in S and the link
duration l in S:

Like the number of nodes n and the number of links m, the
node duration k may be seen as a duration of S, where each
time contributes proportionally to the number of nodes pre-
sent at this time, and the link duration l as a duration of S,
where each time contributes proportionally to the number of
links present at this time.

Notice that n is the expected value of |V
t
| when one takes

a random time t in T. Likewise, m, k, and l are the expected
value of |E

t
| , |T

v
| , and |T

uv
| when one takes a random time

t in T, a random node v in V or a random pair of nodes in
V ⊗ V  , respectively.

The following relation also hold: cov (S) =
|W|

|T×V| =
n

|V| =
k

|T| ,

n ⋅ |T| = k ⋅ |V| = |W| , and m ⋅ |T| = l ⋅ |V ⊗ V| = |E|.
For the examples in Fig. 1, we obtain for S the following val-

ues: n =
|T

a
|

10
+

|T
b
|

10
+

|T
c
|

10
+

|T
d
|

10
= 1 + 0.9 + 0.5 + 0.2 = 2.6

nodes , m =
|T

ab
|

10
+

|T
ac
|

10
+

|T
bc
|

10
+

|T
bd
|

10
= 0.3 + 0.3 + 0.3+

0.1 = 1 link, k = 26

4
= 6.5 time units, and l = 10

6
= 1.66...

time units. For L, we obtain n = 4 nodes, m = 0.7 + 0.3+

0.7 + 0.3 + 0.3 = 2.3 links, k = 10 time units and l = 23

6
=

3.833... time units.
In a link stream L = (T ,V ,E) , by definition T

v
= T for all

v in V, and therefore, nv = 1 and n = |V| . Likewise, for all t,
V
t
= V  , and therefore, kt = 1 and k = |T| . In a graph-equiv-

alent stream, in addition T
uv
∈ {�, T} for all uv in V ⊗ V and

E
t
 is the same for all t. Then, the number of nodes and links

in the stream are equal to the number of nodes and links in
the corresponding graph.

Notice now that, in a given stream graph, for two nodes
u and v, such that |T

u
| = |T

v
| both T

u
= T

v
 or T

u
∩ T

v
= � are

possible, as well as all intermediary situations. This has a
crucial influence on the possible existence of links between u
and v, and so on the structure of S. To capture this, we define
the uniformity of S as follows:

If S has uniformity 1, then we say that it is uniform: for all
u and v in V, T

u
= T

v
 , i.e., all nodes are present at the same

times.

k = ∫t∈T

ktdt =
|W|
|V|

and l = ∫t∈T

ltdt =
|E|

|V ⊗ V|
.

⋓(S) =

∑
uv∈V⊗V �Tu ∩ T

v
�

∑
uv∈V⊗V �Tu ∪ T

v
�
.

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 5 of 29  61

We also define for any pair of nodes u and v in V the uni-
formity ⋓(u, v) = |T

u
∩T

v
|

|T
u
∪T

v
| . It measures the overlap between the

presence times of u and v, thus their ability to be linked
together.

Given a stream graph S = (T ,V ,W,E) , we define
S� = (T �,V �,W,E) such that T � = [min{t,∃(t, v) ∈ W}, max

{t,∃(t, v) ∈ W}] and V � = {v,∃(t, v) ∈ W} . We then define
the compactness of S as follows:

If S has a compactness of 1, then we say that it is compact:
for all v in V, T

v
= [b, e] ⊆ T  , i.e., the presence times of all

nodes is the same interval of T.
For the examples in Fig. 1, S has uniformity

 and compactness c(S) = cov(S) =
26

40
 , since on this particular

case, T � = T and V � = V  , and therefore, S� = S.
If S is a link stream, then its uniformity and compactness

are necessarily equal to 1, like L in Fig. 1.

5 � Density

The density of graph G = (V ,E) is the probability when one
takes a random element uv in V ⊗ V that there is a link
between u and v in E: �(G) = 2m

n(n−1)
 . If n ∈ {0, 1} then �(G)

is defined to be 0.
We define the density of stream graph S = (T ,V ,W,E) as

the probability when one takes a random element (t, uv) of
T × V ⊗ V such that (t, u) and (t, v) are in W, that (t, uv) is in E:

If
∑

uv∈V⊗V �Tu ∩ T
v
� = ∫

t∈T
�V

t
⊗ V

t
�dt = 0 then we define

�(S) to be 0.
In other words, the density is the probability when one

takes a random time and two random nodes such that a link
may exist between them at this time that the link indeed
exists. It is the fraction of possible links that do exist.

Notice that
∑

uv∈V⊗V �Tuv� = ∫
t∈T

�E
t
�dt = �E� . In addi-

tion,
∑

uv∈V⊗V �Tu ∩ T
v
� = ∫

t∈T
�V

t
⊗ V

t
�dt is related to the

c(S) =
|W|

|T � × V �|
= cov (S�).

⋓(S) =
|T

a
∩ T

b
| + |T

a
∩ T

c
| + |T

a
∩ T

d
| + |T

b
∩ T

c
| + |T

b
∩ T

d
| + |T

c
∩ T

d
|

|T
a
∪ T

b
| + |T

a
∪ T

c
| + |T

a
∪ T

d
| + |T

b
∪ T

c
| + |T

b
∪ T

d
| + |T

c
∪ T

d
|

=
(4 + 5) + 5 + 2 + 4 + 2 + 0

10 + 10 + 10 + 10 + (4 + 4) + (2 + 5)
=

22

55
= 0.4

𝛿(S) =

∑
uv∈V⊗V �Tuv�∑

uv∈V⊗V �Tu ∩ T
v
�
=

∫
t∈T

�E
t
�dt

∫
t∈T

�Vt ⊗ Vt�dt

a
b
c

0 1 time

a
b
c

0 1 time

Fig. 2   Two stream graphs with n = 2 nodes, m = 1 link, but with dif-
ferent densities: Left: � = 0.75 . Right: � = 1

uniformity ⋓(S) of S, but it cannot be directly derived from
|T|, |V|, |W|, and |E|.

For S defined in Fig. 1 (left),
∑

uv∈V⊗V
�T

uv
� = �T

ab
�+

|T
ac
| + |T

bc
| + |T

bd
| = 3 + 3 + 3 + 1 = 10,

∑
uv∈V⊗V

�T
u
∩

T
v
| = |T

a
∩ T

b
| + |T

a
∩ T

c
| + |T

a
∩ T

d
| + |T

b
∩ T

c
| + |T

b
∩

T
d
| + |T

c
∩ T

d
| = 9 + 5 + 2 + 4 + 2 + 0 = 22 , and we obtain

�(S) =
10

22
∼ 0.45 . For L defined in this figure (right),

∑
uv∈V⊗V �Tuv� = 7 + 3 + 7 + 3 + 3 = 23 ,

∑
uv∈V⊗V

�T
u
∩ T

v
�

= |V ⊗ V| ⋅ |T| = 60 and we obtain �(L) = 23

60
∼ 0.38.

Notice that there is in general no relation between the
density � , the number of nodes n and the number of links m
in a stream graph, see Fig. 2.

However, the classical graph relation � =
2m

n(n−1)
 holds

for a link stream L = (T ,V ,E) . Indeed, we then have
T
u
= T

v
= |T| for all u and v, and n = |V| , which leads to

In addition, �(L) is equal to the average density of Gt :

, since, in L, Vt = V for all t.
Finally, if we consider a graph-equivalent stream, then its

density is equal to the density of the corresponding graph.
In addition to the global concept of density introduced

above, we define the density of a pair of nodes uv in V ⊗ V  ,
the density of a node v in V, and the density at a time instant
t in T, respectively, as follows:

𝛿(L) =

∑
uv∈V⊗V �Tuv�∑
uv∈V⊗V �T�

=
2 ⋅

∑
uv∈V⊗V �Tuv�

n ⋅ (n − 1) ⋅ �T�
=

2 ⋅ m

n ⋅ (n − 1)
.

1

|T| �t

𝛿(G
t
)dt =

1

|T| �t

|E
t
|

|V
t
⊗ V

t
|
dt =

1

|T| ⋅ |V ⊗ V| �t

|E
t
|dt

=
∫
t
|E

t
|dt

∫
t
|V

t
⊗ V

t
|dt

= 𝛿(L)

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 6 of 29

If |T
u
∩ T

v
| = 0 ,

∑
u∈V ,u≠v �Tu ∩ T

v
� = 0 or |V

t
⊗ V

t
| = 0 ,

respectively, then we define �(uv) , �(v) and �(t) to be 0.
The density of uv is the probability that there is a link

between u and v whenever this is possible, i.e., when they
are both present. The density of v is the probability that a
link between v and any other node exists whenever this is
possible, and the density of t is equal to �(Gt) , the density of
the graph Gt , i.e., the probability that a link exists between
any two nodes present at time t.

For S defined in Fig. 1 (left), for instance, we obtain
�(ab) =

|T
ab
|

|T
a
∩T

b
| =

3

9
=

1

3
 and �(bd) = |T

bd
|

|T
b
∩T

d
| =

1

2
= 0.5 . We

also obtain �(d) = |T
da
|+|T

db
|+|T

dc
|

|T
d
∩T

a
|+|T

d
∩T

b
|+|T

d
∩T

c
| =

0+1+0

2+2+0
= 0.25 and

𝛿(2) =
|E

2
|

|V
2
⊗V

2
| =

2

3⋅2∕2
=

2

3
.

Notice that uvt is strongly related to the concept of
density: it is the probability that u and v are linked
together at time t, which is equal to 1 or 0 depending
on whether (t, uv) is in E or not. We then have
�(uv) =

∫
t∈T

uvtdt

∫
t∈T

ut⋅vtdt
 , �(v) =

∑
u∈V ∫

t∈T
uvtdt∑

u∈V ∫
t∈T

ut⋅vtdt
 , and 𝛿(t) =

∑
uv∈V⊗V uvt∑
uv∈V⊗V ut⋅vt

 .

Likewise, 𝛿(S) =
∑

uv∈V⊗V ∫
t∈T

uvtdt∑
uv∈V⊗V ∫

t∈T
ut⋅vtdt

.

In a link stream L = (T ,V ,E) , T
v
= T for all v and V

t
= V

for all t, and therefore, �(uv) = |T
uv
|

|T| = muv , 𝛿(t) =
|E

t
|

|V⊗V| = lt ,

and as shown above, �(L) is equal to the average of �(t) . In a
graph-equivalent stream, �(uv) ∈ {0, 1} , and �(t) is equal to
the density of the induced graph.

The density �(v) of node v is strongly related to its degree,
that we introduce in Sect. 8.

6 � Sub‑streams and clusters

A graph G� = (V �,E�) is a sub-graph of G = (V ,E) if V ′ ⊆ V
and E′ ⊆ E . This is denoted by G′ ⊆ G.

𝛿(uv) =
�T

uv
�

�T
u
∩ T

v
�
, 𝛿(v) =

∑
u∈V ,u≠v �Tuv�∑

u∈V ,u≠v �Tu ∩ T
v
�

and

𝛿(t) =
�E

t
�

�V
t
⊗ V

t
�
.

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 3   Example of cluster with its induced sub-stream. Left: the clus-
ter, displayed in blue, is C = ([1, 4] ∪ [5, 8]) × {a} ∪ [5, 9] × {b}
∪[3, 8] × {c} . Right: the sub-stream induced by C is S(C) = ([0, 10],

{a, b, c, d},C,E(C)) with E(C) = [6, 8] × {ab} ∪ [3, 4] × {ac} ∪ [5, 8]
×{bc}

Given two graphs G = (V ,E) and G� = (V �,E�) , their
intersection is the graph G ∩ G� = (V ∩ V �,E ∩ E�) . It is their
largest (with respect to inclusion) common sub-graph. Their
union is G ∪ G� = (V ∪ V �,E ∪ E�) ; it is the smallest graph
having both G and G′ for sub-graphs.

A cluster C of G = (V ,E) is a subset of V. The set of links
between nodes in C is E(C) = {uv ∈ E, u ∈ C and v ∈ C} ,
and G(C) = (C,E(C)) denotes the sub-graph of G induced
by C.

Given a cluster C, the properties of its induced sub-graph
are said to be the properties of C; for instance, �(C) denotes
�(G(C)).

We say that a stream S� = (T �,V �,W �,E�) is a sub-stream
of S = (T ,V ,W,E) if T ′ ⊆ T  , V ′ ⊆ V  , W ′ ⊆ W  , and E′ ⊆ E .
We denote this by S′ ⊆ S.

Given two stream graphs S = (T ,V ,W,E) and
S� = (T �,V �,W �,E�) , their intersection is the stream graph
S ∩ S� = (T ∩ T �,V ∩ V �,W ∩W �,E ∩ E�) . It is their largest
(with respect to inclusion) common sub-stream. Their union
is S ∪ S� = (T ∪ T �,V ∪ V �,W ∪W �,E ∪ E�) ; it is the small-
est stream graph having both S and S′ for sub-streams.

We define a cluster C of S = (T ,V ,W,E) as a subset of
W. We define the set of links between nodes involved in
C as E(C) = {(t, uv) ∈ E, (t, u) ∈ C and (t, v) ∈ C} , and we
denote by S(C) = (T ,V ,C,E(C)) the sub-stream of S induced
by C, see Fig. 3.

Given a cluster C, we say that the properties of its induced
sub-stream are the properties of C; for instance, we denote
�(S(C)) by �(C) . For any v in V, we also denote by TC

v
 the

set of times at which v is in C, and for any u and v in V, we
denote by TC

uv
 the set of time instants at which u and v are in

C and are linked together. For any t in T, we denote by VC
t

the set of nodes present at time t in C and by EC

t
 the set of

links between nodes in C at time t.
In Fig. 3, for instance, TC

a
= [1, 4] ∪ [5, 8] , TC

b
= [5, 9] ,

TC
c
= [3, 8] and TC

d
= � ; TC

ab
= [6, 8] , TC

ac
= [3, 4] ∪ {5} , and

TC
bc
= [5, 8] ; VC

7
= {a, b, c} and EC

7
= {ab, bc}.

Notice that the sub-streams of S induced by its clusters are
defined over the same set of nodes V and the same time space
T as S. We, therefore, define the sub-stream of S induced by a
subset V ′ of V as the sub-stream induced by the node cluster

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 7 of 29  61

(T × V �) ∩W  , i.e., (T ,V �, (T × V �) ∩W, (T × V � ⊗ V �) ∩ E)
of S. Likewise, we define the sub-stream of S induced by a
subset T ′ of T as the sub-stream induced by (T � × V) ∩W  ,
i.e., (T �,V , (T � × V) ∩W, (T � × V ⊗ V) ∩ E) of S.

For the example in Fig. 3, for instance, the sub-stream
induced by {a, b, c} and [6, 9] is ([6, 9], {a, b, c}, [6, 9]×
{a, b, c},E�) with E� = [6, 9] × {ab} ∪ [6, 8] × {bc}.

7 � Cliques

A clique of graph G is a cluster C of G of density 1. In other
words, all pairs of nodes involved in C are linked together
in G. A clique C is maximal if there is no other clique C′
such that C ⊂ C′.

We define a clique of stream graph S as a cluster C of S
of density 1. In other words, all pairs of nodes involved in C
are linked in S whenever both are involved in C. A clique C
is maximal if there is no other clique C′ , such that C ⊂ C′.

We say that a clique is compact (resp. uniform) if its
induced sub-stream is compact (resp. uniform). It is then fully
defined by a set of nodes and a time interval (resp. a time set)
meaning that all pairs of nodes are linked together at all these
times.

For instance, in Fig. 4, the cluster [0, 1] × {a, b} is a com-
pact clique. However, it is not maximal, as it is included
in [0, 4] × {a, b} , which is a maximal compact clique.
This clique intersects another maximal compact clique,
[2, 4] × {a, b, c} . There is a unique other maximal com-
pact clique involving three nodes, [8, 9] × {b, c, d} . The

maximal compact clique [0, 4] × {a, b} is not a maximal
clique, because it is, for instance, included in the clique
[0, 4] × {a, b} ∪ [6, 9] × {c, d} (which is not compact). This
clique is not maximal either, as it is, for instance, included
in the clique [0, 4] × {a, b} ∪ [6, 9] × {c, d} ∪ [5, 6] × {d}.

A clique in S does not in general induce a clique in G(S):
for instance, [0, 1] × {a, b} ∪ [8, 9] × {c, d} is a clique for the
example in Fig. 4, but {a, b, c, d} is not a clique in its induced
graph. Instead, for any [b, e] ⊆ T and X ⊆ V  , if [b, e] × X is
a compact clique in S, then X necessarily is a clique in G(S).
However, if [b, e] × X is maximal in S, then X is not necessar-
ily maximal in G(S), see, for instance, [0, 4] × {a, b} in Fig. 4
( {a, b} is a clique in G(S), but it is included in its other clique
{a, b, c} ). Conversely, if a cluster X of G(S) is a clique, then,
in general, there is no [b, e], such that [b, e] × X is a compact
clique in S, see Viard et al. (2016) for a more detailed dis-
cussion and practical evidence of the differences between
maximal cliques in streams and their induced graphs. Finally,
if one considers a graph-equivalent stream, then its maximal
cliques are necessarily compact, and they correspond exactly
to the maximal cliques of its induced graph.

8 � Neighborhood and degree

In the graph G = (V ,E) , the neighborhood N(v) of v ∈ V is
the cluster N(v) = {u, uv ∈ E} , and the degree d(v) of v is the
number of nodes in this cluster, which is equal to the number
of links involving v. We then have

∑
v∈V d(v) = 2 ⋅ m.

The average degree in G is d(G) = 1

n
⋅
∑

v∈V d(v) , and
the following relation between density and average degree
holds: �(G) = d(G)

n−1
.

In a stream graph S = (T ,V ,W,E) , we define the neigh-
borhood of a node v as the following cluster:

and the degree d(v) of v as the number of nodes in this
cluster. As with graphs, this is equal to the number of links
involving v:

N(v) = {(t, u), (t, uv) ∈ E}

d(v) =
|N(v)|
|T|

=
∑

u∈V

|T
uv
|

|T|
=
∑

u∈V

muv.

a
b
c
d

0 2 4 6 8 time

Fig. 4   Examples of maximal compact cliques. We display the two maxi-
mal compact cliques involving three nodes of the link stream L of Fig. 1
(right): [2, 4] × {a, b, c} and [7, 8] × {b, c, d} . Its other maximal compact
cliques are [0, 4] × {a, b} , [6, 9] × {a, b} , [2, 5] × {a, c} , [1, 8] × {b, c} ,
[7, 10] × {b, d} , [6, 9] × {c, d} (involving two nodes each)

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 5   Two examples of neighborhoods and degrees of nodes. We dis-
play in black the links involving the node under concern, and in grey
the other links. Left: N(a) = ([1, 3] ∪ [7, 8]) × {b} ∪ [4.5, 7.5] × {c} is

in blue, leading to d(a) = 3

10
+

3

10
= 0.6 . Right: N(c) = [2, 5] × {a}∪

[1, 8] × {b} ∪ [6, 9] × {d} is in blue, leading to d(c) = 13

10
= 1.3

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 8 of 29

With this definition, each node u contributes to the degree of
v proportionally to the duration of its links with v, see Fig. 5
for an illustration.

As with graphs, the sum of the degree of all nodes in S is
equal to twice the number of links in S:

∑
v∈V d(v) =

∑
v∈V∑

u∈V

�T
uv
�

�T� = 2 ⋅ m.

We now define the average node degree of S as follows:

In this definition, the contribution of each node v to the aver-
age node degree of S is weighted by its presence duration
|T

v
|.
As a consequence, there is no direct relation between the

average node degree and the total number of links of S, as
illustrated in Fig. 6. Likewise, the usual relation between
average node degree and density does not hold in general.

Instead, in a link stream L = (T ,V ,E) , we have nv = 1
for all v, and therefore, the following relation holds:
d(L) =

1

n
⋅
∑

v∈V d(v) =
2⋅m

n
 . We have seen in Sect. 5 that

�(L) =
2⋅m

n⋅(n−1)
 ; therefore, the relation �(L) = d(L)

n−1
 also holds.

Going further, we have �(v) =
∑

u∈V ,u≠v �Tuv�∑
u∈V ,u≠v �T�

=
�N(v)�

(�V�−1)⋅�T� =
d(v)

n−1
.

Finally, if we consider a graph-equivalent stream, then the
degree of any of its nodes is equal to the degree of this node
in the corresponding graph, and the average node degree is
preserved.

The definitions above generalize graph concepts to stream
graphs. However, the temporal features of stream graphs
make it natural to consider other generalizations that we
now introduce.

Given a stream graph S = (T ,V ,W,E) , we define
the instantaneous neighborhood of a node v at time t as
Nt(v) = {u, (t, uv) ∈ E} , and the instantaneous degree of v
at time t as the number of nodes in Nt(v) . If v is not involved
in S at time t, then Nt(v) = � and dt(v) = 0 . If v is involved
in S at time t, then Nt(v) and dt(v) are nothing, but the neigh-
borhood and the degree of v in the graph Gt induced by S
at time t.

d(V) =
1

n
⋅
∑

v∈V

nv ⋅ d(v) =
∑

v∈V

|T
v
|

|W|
⋅ d(v).

The degree of v is exactly the average instantaneous
degree of v at time t for all t in T: d(v) = ∫

t

dt(v)

|T| dt . It is also

natural to consider the average only for t in T
v
 , which is

the expected instantaneous degree of v when it is involved
in S; we call it the expected degree of v and denote it by
d̂(v) = ∫

t

dt(v)

|T
v
| dt.

We also consider these two ways to average instantaneous
degrees over nodes; either over all nodes in V, leading to ∑

v

dt(v)

�V� which we call the degree at t and denote by d(t), by

analogy with d(v) = ∫
t

dt(v)

|T| dt ; or over nodes in Vt only, lead-

ing to d̂(t) =
∑

v
1

�Vt�
dt(v) , the expected degree at time t,

which is exactly the average degree of Gt.
Let us now consider ways to average d(v) and d(t) over

S as a whole.
The weighted average of d(v),

∑
v∈V

�T
v
�

�W�d(v) =
1

n

∑
v∈V

n
v
⋅ d(v) , is the average node degree of S, denoted by d(V)

and introduced above. Similarly, we introduce the weighted
average of d(t), ∫

t

|V
t
|

|W|d(t)dt =
1

k
∫
t
kt ⋅ d(t)dt , which we call

the average time degree of S and denote by d(T). Notice that,
in general, d(V) ≠ d(T) , as illustrated in Fig. 7.

For averages over all V and T, we obtain a unique quan-
tity:

∑
v

1

�V�d(v) =
2�E�
�T×V� =

∫
t

1

�T�d(t)dt , which is the average

instantaneous degree of v at time t for a random (t, v) in
T × V  ; we call it the degree of S and denote it by d(S).

Finally, it is also natural to consider the average instanta-
neous degree for (t, v) in W only:

∑
v
∫
t
d
t
(v)dt

�W� =
∫
t

∑
v
d
t
(v)dt

�W� =

2|E|
|W| =

2m

n
 . We call it the average expected degree of S and

denote it by d̂(S).
In a link stream, we have d(v) = d̂(v) , d(t) = d̂(t) , and

d(V) = d(T) = d(S) = d̂(S) . In a graph-equivalent stream,
we have in addition d(t) = d(V) , and, as already said, d(V)
is the average degree in the corresponding graph and d(v) is
the degree of v in this graph.

9 � Clustering coefficient and transitivity ratio

In the graph G = (V ,E) , the clustering coefficient of a given
node v is the density of its neighborhood: cc(v) = �(N(v)) . In
other words, cc(v) is the probability that two randomly cho-
sen neighbors of v are linked together in G. By definition of
the density, if d(v) < 2 then cc(v) = 0 . The clustering coef-
ficient of G as a whole is the average clustering coefficient
of all its nodes: cc(G) = 1

n
⋅
∑

v∈V cc(v) . It is the probability
when one takes a random node v that this node has more
than one neighbor and that two of its neighbors chosen at
random are linked together.

a
b
c

0 1 2 time

a
b
c

0 1 2 time

Fig. 6   These two stream graphs have density 1 (all possible links exist),
2 nodes, and 1 link. However, the leftmost one has average node degree
d(V) =

|Ta|
|W| d(a) +

|Tb|
|W| d(b) +

|Tc|
|W| d(c) =

2

8
0.5 +

4

8
1 +

2

8
0.5 = 0.75 and

the rightmost one has average node degree 1

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 9 of 29  61

and (t, vw) ∈ E . We denote by ∨ the set of all connected
triplets of S. If in addition, there is a link between u and w at
time t, i.e., (t, uw) ∈ E , then we say that (t, (u, v, w)) is a
triangle and we denote the set of all triangles of S by ▿ . We
define the transitivity ratio tr(S) of S as the probability, when
one takes a random connected triplet, that it is a triangle:
tr(S) =

|▿|
|∨|.

In Fig. 8, for instance, the set ∨ of all connected triplets
contains [2, 4] × {(b, a, c), (c, a, b)} , because for all t in [2, 4],
the links (t, ba) = (t, ab) and (t, ac) = (t, ca) are in E. The set
▿ of all triangles also contains [2, 4] × {(b, a, c), (c, a, b)} ,
since for all t in [2, 4], the link (t, bc) = (t, cb) also is in E.
This leads to

 and

. We thus obtain tr(S) = 2⋅6+1⋅6

2⋅2+(3+2)⋅2+1⋅2+2⋅2+3⋅2+2⋅2+2⋅2
=

9

17
∼0.52

.
In a link stream L = (T ,V ,E) , nv = 1 for all v, and there-

fore, cc(V) = 1

n

∑
v cc(v) . In a graph-equivalent stream, cc(v)

in the stream is equal to cc(v) in the corresponding graph G,
and cc(V) is equal to cc(G). Likewise, the transitivity ratio
of a graph-equivalent stream is equal to the one of its cor-
responding graph.

Like with degrees in Sect. 8, the temporal features of
stream graphs make it natural to consider other generaliza-
tions of clustering coefficient that we now introduce.

Given a stream graph S = (T ,V ,W,E) , we define the
instantaneous clustering coefficient of v at time t as
cct(v) =

∑
uw vut⋅vwt⋅uwt∑

uw vut⋅vwt

 . If v is not involved in S at time t, then

cct(v) = 0 . If v is involved in S at time t, then cct(v) is exactly
the clustering coefficient of v in Gt.

Like for degrees, it is natural to consider the following
ways to average the instantaneous clustering coefficient:
∫
t

cct(v)

|T
v
| dt , ∫t cct(v)

|T| dt ,
∑

v

cct(v)

�Vt�
= cc(Gt) , and

∑
v

cct(v)

�V� .

Notice that cc(v) ≠ ∫
t

cct(v)

|T| dt , but cc(v) is related to cct(v)

by: cc(v) =
∑

uw
�T

vu
∩T

vw
∩T

uw
�

∑
uw

�Tvu∩Tvw�
=

∑
uw

∫
t
vut ⋅vwt ⋅uwtdt∑

uw
∫
t
vut ⋅vwtdt

=
∫
t
cct(v)

∑
uw

vut ⋅vwtdt

∫
t

∑
uw

vut ⋅vwtdt
 .

It is then natural to define cc(t) as such: cc(t) =∑
v
cc

t
(v)

∑
uw

vu
t
⋅vw

t∑
v

∑
uw

vu
t
⋅vw

t

 , which is exactly tr(Gt).

∨ = [2, 4] × {(b, a, c), (c, a, b)} ∪ ([1, 4] ∪ [6, 8]) × {(a, b, c), (c, b, a)} ∪ [7, 8] × {(c, b, d), (d, b, c)} ∪ [7, 9]

× {(a, b, d), (d, b, a)} ∪ [2, 5] × {(a, c, b), (b, c, a)} ∪ [6, 8] × {(b, c, d), (d, c, b)} ∪ [7, 9] × {(b, d, c), (c, d, b)}

▿ = [2, 4] × {(b, a, c), (c, a, b), (a, b, c), (c, b, a),

(a, c, b), (b, c, a)} ∪ [7, 8]

× {(c, b, d), (d, b, c), (b, c, d), (d, c, b), (b, d, c), (c, d, b)}

a
b
c

0 2 4 6 8 time

Fig. 7   Simple stream graph S = (T ,V ,W,E) such that d(V) ≠ d(T) .
Indeed, we compute d(V) with n = 2.5 , na = nb = 1 , nc = 0.5 ,
d(a) = 0.5 , d(b) = 1 , and d(c) = 0.5 , leading to d(V) = 1

n

∑
v∈V nv⋅

d(v) =
1

2.5
(1 ⋅ 0.5 + 1 ⋅ 1 + 0.5 ⋅ 0.5) = 0.7, and we compute d(T) with

k =
25

3
 , kt = 1 for t ∈ [0, 5] , kt =

2

3
 for t ∈]5, 10] , and d(t) = 2

3
 for all

t, leading to d(T) = 1

k
∫
t
k
t
⋅ d(t)dt =

3

25
(∫ 5

0
1 ⋅

2

3
dt + ∫ 10

5

2

3
⋅
2

3
dt) =

3

25
(5 ⋅

2

3
+ 5 ⋅

4

9
dt) =

3

25
⋅
50

9
=

2

3

In G, the triplet (u, v, w) in V × V × V with u ≠ v ≠ w is
a connected triplet if there is both a link between u and v
and between v and w, i.e., uv ∈ E and vw ∈ E . The set of
all connected triplets of G is denoted by ∨ . If in addition,
there is a link between u and w, i.e., uw ∈ E , then (u, v, w)
is a triangle and the set of all triangles of G is denoted by
▿ . The transitivity ratio of G is the probability, when one
takes a random connected triplet, that it is a triangle:
tr(G) =

|▿|
|∨|.

In a stream graph S = (T ,V ,W,E) , we define the clus-
tering coefficient of a given node v as the density of its
neighborhood:

In other words, cc(v) is the probability when one takes two
random neighbors u and w of v at time t, i.e., a random
(t, uw) in T × V ⊗ V  , such that (t, vu) and (t, vw) are in E,
that u is linked to w in S at time t, i.e., that (t, uw) is in E. By
definition of density, if there is no such triplet then cc(v) = 0 ,
see Fig. 8 for an illustration.

We define the node clustering coefficient of S as the aver-
age clustering coefficient of all its nodes, weighted by their
presence in S:

In S, we say that (t, (u, v, w)) in T × (V × V × V) with
u ≠ v ≠ w is a connected triplet if at time t there is both a
link between u and v and between v and w, i.e., (t, uv) ∈ E

cc(v) = 𝛿(N(v)) =

∑
uw∈V⊗V �Tvu ∩ T

vw
∩ T

uw
�

∑
uw∈V⊗V �Tvu ∩ T

vw
�

.

cc(V) =
1

n
⋅
∑

v∈V

nv ⋅ cc(v) =
∑

v∈V

|T
v
|

|W|
⋅ cc(v).

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 10 of 29

One may then consider the following ways to average cc(v)
and cc(t):

∑
v

1

�V�cc(v) , ∫t 1

|T|cc(t)dt , cc(V) =
∑

v

�T
v
�

�W�cc(v) ,

cc(T) = ∫
t

|V
t
|

|W|cc(t)dt , and cc(S) = ∫
t

1

�T�
∑

v

cc
t
(v)

�V� dt =
∑

v

1

�V�

∫
t

cc
t
(v)

�T� dt =
1

�T×V�
∑

v
∫
t
cc

t
(v)dt , thus introducing the time

clustering coefficient of S, cc(T), and the clustering coefficient
of S, cc(S), by extending the definition of cc(V), like we did
for d(T) and d(S) from d(V) in Sect. 8.

Finally, notice that cc(t), cc(v), and tr(S) may be obtained
from the definition of cct(v) =

∑
uw vut⋅vwt⋅uwt∑

uw vut⋅vwt

 as follows:
∑

v

∑
uw vut⋅vwt⋅uwt∑

v

∑
uw vut⋅vwt

= cc(t)  ; ∫
t

∑
uw vut⋅vwt⋅uwtdt

∫
t

∑
uw vut⋅vwtdt

= cc(v)  ; a n d
∫
t

∑
v

∑
uw vut⋅vwt⋅uwtdt

∫
t

∑
v

∑
uw vut⋅vwtdt

= tr(S).

10 � Neighborhoods and degrees
in and of clusters

Given a graph G = (V ,E) and a cluster C of G, the inter-
nal neighborhood of v in C is N

C
(v) = N(v) ∩ C = {u ∈ C,

uv ∈ E} a n d i t s ex t e r n a l n e i g h b o r h o o d i s
NC(v) = N(v)⧵C = {u ∉ C, uv ∈ E} . The internal and
external degrees of v in C, denoted, respectively, by dC(v)
and dC(v) , are the number of nodes in NC(v) and NC(v) . The
internal neighborhood and the internal degree of v in C are
also its neighborhood and degree in G(C).

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 8   Example of clustering coefficient. Left: we display in black the
links involving node c in S, in grey the other links, and in blue the
neighborhood of c, like in Fig. 5. Right: the sub-stream induced by

N(c). The clustering coefficient of c in S, cc(c), is the density of this
sub-stream, S(N(C)). Here, we obtain cc(c) = �(S(N(C))) =

3

5
= 0.6

a
b
c

0 2 4 6 8 time

Fig. 9   Example of cluster (in blue) with its neighborhood (in red).
C = ([1, 3] ∪ [6, 10]) × {b} ∪ [7, 9] × {a} . We then have N

C
(a) = [7, 9]×

{b} , NC(a) = � , NC(b) = [7, 9] × {a} , N
C
(b) = ([1, 2] ∪ [9, 10]) × {a}∪

[2, 3] × {c} , NC(c) = NC(c) = � , and N(C) = ([1, 2] ∪ [7, 10])×
{a} ∪ [7, 9] × {b} ∪ [2, 3] × {c} . The intersection of N(C) with C
appears as overlaps between blue and red areas, leading to d(C) =
|[7,9]×{b}∪[7,9]×{a}|

10
= 0.4 and d(C) = |([1,2]∪[9,10])×{a}∪[2,3]×{c}|

10
= 0.3

The average degree in C, denoted by dC(C) or simply
dC , is the average degree of G(C); it is equal to the average
internal degree of nodes in C.

The neighborhood N(C) of a cluster C is
N(C) = ∪v∈CN(v) . Notice that N(C) may intersect C, but
it is not included in C in general. The numbers of nodes
in N(C) ∩ C and N(C)⧵C are often called the internal and
external degrees of C, respectively, denoted by d(C) and
d(C).

Given a stream graph S = (T ,V ,W,E) and a cluster C of
S, we define the internal neighborhood of v involved in C
as NC(v) = ∪(t,v)∈C{(t, u) ∈ C, (t, uv) ∈ E} and the external
neighborhood of v as NC(v) = ∪(t,v)∈C{(t, u) ∉ C, (t, uv) ∈ E} .
Notice that, unlike for graphs, NC(v) ≠ N(v) ∩ C and
NC(v) ≠ N(v)⧵C , and therefore, NC(v) ∪ NC(v) ≠ N(v) in
general. Indeed, we take into account the neighbors of v
only when v is involved in C, see Fig. 9 for an illustration.

We define the internal and external degree of v involved
in C, denoted, respectively, by dC(v) and dC(v) , as the num-
ber of nodes in NC(v) and NC(v) . The internal neighborhood
and the internal degree of v are its neighborhood and degree
in S(C).

We define the average node degree in C, denoted by dC ,
as the average node degree of S(C); it is the average internal
degree of nodes involved in C, weighted by their presence
in C: dC =

∑
v

�TC
v
�

�C� dC(v).

We define the neighborhood N(C) of cluster C as
N(C) = ∪(t,v)∈C{(t, u), (t, uv) ∈ E} , see Fig. 9. Notice that
N(C) may intersect C, but it is not necessarily included in
C. We call the numbers of nodes in N(C) ∩ C and N(C)⧵C
the internal and external degrees of C, respectively, denoted
by d(C) and d(C).

In a graph-equivalent stream, any compact cluster
C = TC × VC induces the cluster VC in the corresponding
graph, and the internal (resp. external) neighborhood of any
node involved in C is equal to TC times its internal (resp.
external) neighborhood in VC . Likewise, the neighborhood
of C in the stream is equal to TC times the neighborhood of
VC in the graph.

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 11 of 29  61

11 � Relations between clusters and quotient
stream

Let us consider a family F = (C1,C2,… ,Ck) of k clusters
of G = (V ,E) . The quotient graph induced by F is the graph
Q = ({1, 2,… , k},E�) , where ij is in E′ if i ≠ j and there is a
u in Ci and a v in Cj , such that uv is in E.

Intuitively, the quotient graph captures relations between
clusters: its nodes are the clusters of the original graph, and
there is a link between two clusters if they contain nodes that
are linked together in the original graph.

Notice that, if F = ({v})v∈V , then Q is equivalent to G.
The intra-cluster density �(F) of F is the probability

when one takes a random pair of distinct nodes in a same
cluster of F that there is a link between them in G:
𝛿(F) =

∑
i �(Ci⊗Ci)∩E�∑

i �Ci⊗Ci�
. The inter-cluster density �(F) of F is the

probability, when one takes a random pair of distinct nodes
in two different clusters of F, that there is a link between

them in G: 𝛿(F) =
∑

i≠j �(Ci⊗Cj)∩E�∑
i≠j �Ci⊗Cj�

.

The density �(C) of C is equal to the intra-cluster density
of the family composed of C alone or the inter-cluster den-
sity of the family (C, C). The external density of C, denoted
by �(C) , is defined as the inter-cluster density of the family
(C,V⧵C) . It is the probability when one takes a random node
u in C and a random node v outside C that there is a link
between them in G.

Given a family F = (C1,C2,… ,Ck) of k clusters of
S = (T ,V ,W,E) , we define the quotient stream induced by
F as the stream graph Q = (T , {1, 2,… , k},W �,E�) , where
(t, i) is in W ′ when there is a v, such that (t, v) is in Ci , and
(t, ij) is in E′ when i ≠ j and there is a (t, u) in Ci and (t, v)
in Cj , such that (t, uv) is in E, see Fig. 10 for an illustration.

Intuitively, the quotient stream captures relations between
clusters: its nodes are the clusters of the original stream, and
there is a link between two clusters at a given time instant
if they contain nodes that are linked together in the original
stream at this time instant. In Fig. 10, for instance, there is a
link between clusters A and B from time 9 to time 10 in the
quotient stream, because during this time interval, a node of
A and a node of B (b and d, respectively) are linked together
in the original stream.

Notice that if F = (T
v
× {v})v∈V , then Q is equivalent to S.

The intra-cluster density �(F) of F is the probability,
when one takes a random element (t, uv) of T × V ⊗ V , such
that (t, u) and (t, v) are in a same cluster of F, that there is a
link (t, uv) in S:

�(F) =

∑
i

∑
u≠v �T

Ci

u ∩ T
Ci

v ∩ T
uv
�

∑
i

∑
u≠v �T

Ci

u ∩ T
Ci

v �
.

The inter-cluster density �(F) of F is the probability, when
one takes a random element (t, uv) of T × V ⊗ V  , such that
(t, u) and (t, v) are in different clusters of F, that there is a
link (t, uv) in S:

As with graphs, the density �(C) of C is equal to the intra-
cluster density of the family composed of C alone, or the
inter-cluster density of the family (C, C). We define the
external density of C, denoted by �(C) , as the inter-cluster
density of the family (C,W⧵C) . It is the probability when
one takes a random (t, u) in C and a random (t, v) in W but
outside C that there is a link (t, uv) between them in S.

12 � Line streams

The line graph Ĝ of G = (V ,E) is the graph Ĝ = (E, Ê) ,
where each node is a link of G and two nodes are linked
together if they have an extremity in common: if A = uv
and B = xy are two elements of E, then AB is in Ê if
{u, v} ∩ {x, y} ≠ � . In general, ̂̂G ≠ G.

The set of links in G involving a given node v corresponds
to a cluster in Ĝ and this cluster has density 1. If, instead, we
consider a set C of independent links (i.e., if uv and xy are in
C, then {u, v} ∩ {x, y} = � ), then the corresponding cluster in
Ĝ has density 0. Finally, if we consider a clique of G of more
than three nodes, then the cluster of Ĝ corresponding to the
links of this clique has density lower than 1, and it tends to
0 when the size of the clique grows.

We define the line stream Ŝ of S = (T ,V ,W,E) as the
stream graph ̂S = (T , V̂ , Ŵ, Ê) . The set ̂V = {uv,∃(t, uv) ∈ E}
is the set of links in G(S). The set Ŵ is such that each node
A = uv is present in Ŝ during the times at which the link uv
is present in S, leading to Ŵ = E . Finally, for all A = uv and
B = xy in V̂  , there is a link (t, AB) in Ê if {u, v} ∩ {x, y} ≠ �
and {(t, uv), (t, xy)} ⊆ E . In other words, A and B are linked
together at time t if they have an extremity in common and
are both present at time t, see Fig. 11 for an illustration. As
with graphs, in general, ̂̂S ≠ S.

The set of links in S involving a given node v corresponds
to a cluster in Ŝ , and this cluster has density 1. If, instead,
we consider a set C of independent links (i.e., if (t, uv) and
(s, xy) are in C, then {u, v} ∩ {x, y} = � or t ≠ s ), then the
corresponding cluster in Ŝ has density 0. As with graphs,
the density of a cluster of Ŝ corresponding to the links of a
clique of S tends to 0.

For all t, the graph induced by Ŝ at time t is the line
graph of Gt . As a consequence, the line stream of a graph-
equivalent stream is a graph-equivalent stream too, and its

�(F) =

∑
i≠j

∑
u≠v �T

Ci

u ∩ T
Cj

v ∩ T
uv
�

∑
i≠j

∑
u≠v �T

Ci

u ∩ T
Cj

v �
.

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 12 of 29

corresponding graph is the line graph of the graph corre-
sponding to the initial stream.

13 � k‑cores

The k-core of the graph G = (V ,E) is its largest cluster
Ck ⊆ V  , such that for all v in Ck , d(v) ≥ k in the sub-graph
G(Ck) of G induced by Ck . This cluster is unique for a given
k and Ck+1 ⊆ Ck for all k. The k-core may be computed by
iteratively removing from G all elements of V of degree
lower than k. The 0-core of G is V, and the k-core contains
all cliques of size k + 1 of G. The core number of v in V is
the largest k, such that v ∈ Ck . The k-shell of G is Ck⧵Ck+1.

We define the k-core of the stream graph S = (T ,V ,W,E)
as its largest cluster Ck ⊆ W  , such that for all (t, v) in Ck ,
dt(v) ≥ k in the sub-stream S(Ck) of S induced by Ck , see
Fig. 12 for an illustration.

This cluster is unique for a given k, and Ck+1 ⊆ Ck for
all k. The k-core may be computed by iteratively removing
from S all elements of W of instantaneous degree lower than
k. The 0-core of S is W, and the k-core contains all compact
cliques of S involving k + 1 nodes. We define the core num-
ber of (t, v) in W as the largest k, such that (t, v) ∈ Ck , and
the k-shell of S as Ck⧵Ck+1.

Notice that, for all t, the set of nodes v, such that
(t, v) ∈ Ck is exactly k-core of Gt . As a consequence, the
k-core of a graph-equivalent stream is T times the k-core of
the corresponding graph.

14 � Paths and distances

In a graph G = (V ,E) , a path P from u ∈ V to v ∈ V is a
sequence (u0, v0) , (u1, v1) , … , (uk, vk) of elements of V × V  ,
such that u0 = u , vk = v , and for all i, ui = vi−1 and uivi ∈ E .
The path P involves u, v, and vi for all i ∈ [1, k − 1] , and the
integer k + 1 is the length of P. If there exists a path from
u to v in G, then v is reachable from u, which is denoted by
u— v . Reachability is symmetric ( u— v implies v— u )
and transitive ( u— v and v— w implies u— w).

A subpath Q of P is a subsequence (ui, vi) , (ui+1, vi+1) , … ,
(uj, vj) of the sequence defining P, with j ≥ i . Then, Q is a
path from ui to vj.

The path P is a cycle if k > 0 and u = v . In other
words, it is a non-empty path from v to itself. If P has
no subpath that is a cycle, then P is a simple path. If P
is a cycle and has no subpath other than P itself that is a
cycle, then P is a simple cycle. If there exists no simple
cycle in G, then G is acyclic. If Q is a subpath of P and
is a cycle from ui to vj (hence, vi−1 = ui = vj = uj+1 ), then
P� = (u0, v0),… , (ui−1, vi−1), (uj+1, vj+1),… , (uk, vk) also is a
path from u to v. If one iteratively removes the cycles of P in
this way, one eventually obtains a simple path from u to v.

The path P is a shortest path from u to v if there is no
path in G of length lower than k. Then, k is called the dis-
tance between u and v and it is denoted by �(u, v) . If there
is no path between u and v, then their distance is infinite.
The diameter of G is the largest finite distance between two
nodes in V.

In a stream graph S = (T ,V ,W,E) , a path P from
(�, u) ∈ W to (�, v) ∈ W is a sequence (t0, u0, v0) , (t1, u1, v1) ,
… , (tk, uk, vk) of elements of T × V × V  , such that u0 = u ,
vk = v , t0 ≥ � , tk ≤ � , for all i, ti ≤ ti+1 , vi = ui+1 , and
(ti, uivi) ∈ E , [𝛼, t0] × {u} ⊆ W  , [tk,𝜔] × {v} ⊆ W  , and for
all i, [ti, ti+1] × {vi} ⊆ W .

We say that P involves (t0, u) , (tk, v) , and (t, vi) for all
i ∈ [1, k − 1] and t ∈ [ti, ti+1] . We say that path P starts at t0 ,
arrives at tk , has length k + 1 and duration tk − t0 , see Fig. 13
for an illustration.

If there exists a path from (�, u) to (�, v) in S, we say
that (�, v) is reachable from (�, u) , which we denote by
(�, u) ⤏ (�, v) . Notice that reachability is not symmetric: if
(�, u) ⤏ (�, v) , then in general, (�, v) ⤏̸ (�, u) (in particular,
this is always true if � ≠ � ). We say that v is reachable from
u if there exists � and � , such that (�, u) ⤏ (�, v) , which
we also denote by u ⤏ v . Reachability is not symmetric in
this case either: in Fig. 13, for instance, d ⤏ c (through P1 )
but c ⤏̸ d . Furthermore, unlike in graphs, reachability is
not transitive: in Fig. 13, for instance, c ⤏ a and a ⤏ d but
c ⤏̸ d . We discuss reachability in more details and we give
more complex examples in Sect. 15.

a
b
c
d

0 2 4 6 8 time

A
B
C

0 2 4 6 8 time

Fig. 10   Example of quotient stream induced by a family of clus-
ters. Left: a stream graph and a family F = (A,B,C) of clusters with
A = [0, 3] × {a} ∪ [7, 10] × {b} (in red), B = [2, 6] × {b} ∪ [8, 10] × {d}
(in blue), and C = [3, 8] × {c} ∪ [0, 5] × {d} (in green). Right: the

induced quotient stream. For instance, there is a link between A and C
from time 7 to time 8, because there is a link between b and c at these
times, and b is in A and c is on C at these times

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 13 of 29  61

A subpath Q of path P is a subsequence (ti, ui, vi) ,
(ti+1, ui+1, vi+1) , … , (tj, uj, vj) of the sequence defining P, with
j ≥ i . Then, Q is a path from (ti, ui) to (tj, vj) . In Fig. 13,
for instance, Q1 = (5, a, c) , Q2 = (3, b, a), (7.5, a, b) and
Q3 = (5, a, c), (6.5, c, b), (7.5, b, a) are subpaths of P1 , P2 ,
and P3 , respectively.

The path P is a cycle if u = v and [𝛼,𝜔] × {v} ⊆ W  . In
other words, it is a path from v at time � to itself at time � ,
such that v is present at all times from � to � . This means
that there is a path of length and duration 0 (i.e., the empty
sequence) from (�, v) to (�, v) in S, which makes stream
cycles similar to graph cycles: they are non-empty paths
equivalent to the empty path. For instance, Q3 defined above
is a cycle, but Q2 is not, since b is not present from time 3
to time 7.5.

If P has no subpath that is a cycle, then we say that P is a
simple path. If P is a cycle and has no subpath other than P
itself that is a cycle, then P is a simple cycle. If there exists
no simple cycle in S then S is acyclic.

If Q is a subpath of P and is a cycle from (ti, ui)
to (tj, vj) (hence, tj ≥ ti  , vi−1 = ui = vj = uj+1 , and
[ti−1, tj+1] × {ui} ⊆ W  ), then P� = (t

0
, u

0
, v

0
),… , (t

i−1, ui−1,

vi−1), (tj+1, uj+1, vj+1),… , (tk, uk, vk) also is a path from (�, u)
to (�, v) . If one iteratively removes the cycles of P in this
way, one eventually obtains a simple path from (�, u) to
(�, v) . In Fig. 13, for instance, P1 and P2 are simple paths,
but P3 is not. Instead, the path (2, b, a) obtained by removing
Q3 from P3 is simple path.

Paths in stream graphs are quite different from paths in
graphs. First, as already said, their temporal nature makes
them not symmetric: the existence of a path from u to v does

not imply the existence of a path from v to u. In addition,
paths in stream graphs have a length like in graphs but also
a duration. This leads to the following set of definitions that
capture different notions for the cost of reaching a node from
another one.

We say that P is a shortest path from (�, u) to (�, v) if
it has minimal length, and we call this length the distance
from (�, u) to (�, v) , denoted by �((�, u), (�, v)) . The distance
�(u, v) from u to v is the minimal such distance for all � and
� in T, and a shortest path from u to v is a path from u to v
with length �(u, v) . For instance, in Fig. 13, the path P1 is a
shortest path from (1, d) to (9, c), but P2 is not. It is impos-
sible to reach c from d with a shorter path; therefore, P1 also
is a shortest path from d to c and �(d, c) = 3.

We say that P is a fastest path from (�, u) to (�, v) if it
has minimal duration, and we call this duration the latency
from (�, u) to (�, v) , denoted by �((�, u), (�, v)) . The latency
�(u, v) from u to v is the minimal such latency for all � and �
in T, and a fastest path from u to v is a path from u to v with
duration �(u, v) . For instance, in Fig. 13, the path P1 is not a
fastest path from (1, d) to (9, c), since it has duration 3 and
there is another path from (1, d) to (9, c) having duration 1.5,
namely, (3, d, b), (3, b, a), (4.5, a, c). This is a fastest path
from (1, d) to (9, c) as no faster path exists. Since there is no
other path from d to c with lower duration, it also is a fastest
path from d to c and �(d, c) = 1.5.

We denote by �(u, (t, v)) the time to reach (t, v) from u
at time � as follows: �(u, (t, v)) = � − � , where � ≤ t is
the minimal value, such that there is a path from (�, u) to
(�, v) in S and [𝜔, t] ⊆ Tv . We call such a path a foremost
path from (�, u) to (t, v). For instance, in Fig. 13, the times

a
b
c

0 2 4 6 8 time

ab
bc
ac

0 2 4 6 8 time

Fig. 11   Stream graph and its line stream. For instance, the node ab is
present in the line stream from time 1 to time 6, because a and b are
linked together from time 1 to time 6 in the original stream. There is

a link between nodes ab and bc in the line stream at time 4, because
{a, b} ∩ {b, c} = {b} ≠ � and (4, ab) and (4, bc) are both present in
the original stream

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 12   Link stream L, its k- shells and its 2- core. Each color cor-
responds to a k-shell of L: its 0-shell in blue, its 1-shell in green, and
its 2-shell in red. In this example, the 2-shell also is the 2-core of L.
For instance, (2, a) is not in the 2-core, since d2(a) = 1 in L. As a

consequence, although d2(c) = 2 in L, since (2, c) is linked to (2, a), it
cannot have instantaneous degree 2 in the 2-core, and therefore, (2, c)
is not in the 2-core either

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 14 of 29

to reach (5, a), (3, b), (10, b), and (5, c) from (1, d) are
1, 1, 5, and 3.5, respectively. The corresponding foremost
paths are F5,a = (2, d, b), (2, b, a) , F3,b = (2, d, b) , F10,b in
{(x, d, b), (y, b, a), (z, a, c), (6, c, b), x ∈ [2, 3], y ∈ [x, 3], z ∈,

[4.5, 6]} , and F5,c in {(x, d, b), (y, b, a), (4.5, a, c), x ∈ [2, 3],

y ∈ [x, 3]}.
In summary, the shortest paths are optimal regarding the

number of hops, the fastest paths are optimal regarding the
duration between starting and arrival times, and the foremost
paths are optimal regarding arrival time. This captures the
following intuition: if someone (at a given date) wants to go
to another city by train (and arrive before a given date), this
person may want to minimize the number of train changes
(shortest path), the total time he or she spends traveling (fast-
est path), or the time at which he or she will arrive at the
destination (foremost path).

If there is no path from (�, u) to (�, v) , then we assert
that �((�, u), (�, v)) , �((�, u), (�, v)) , and �(u, (�, v)) are infi-
nite. We, respectively, define the diameter, the lapse, and
the flood time of S as the largest finite distance, the largest
finite latency, and the largest finite time needed to reach an
element of W from an element of W.

One may combine the notions above by considering,
for instance, fastest shortest paths (the ones of minimum
duration among those of minimal length) or shortest fastest
paths (the ones of minimal length among those of minimal
duration). For instance, in Fig. 13, the unique fastest short-
est path from (1, d) to (9, c) is (3, d, b), (3, b, a), (4.5, a, c
). The fastest shortest paths from (0, a) to (9, c) are (x, a, c)
for x in [4.5, 7.5]. The fastest shortest paths from (7.6, a) to
(9, c) are (x, a, b), (x, b, c) for x in [7.6, 8]. The fastest short-
est paths from (0, b) to (6, b) are (3, b, a), (x, a, c), (6, c, b)
for x in [4.5, 6]. We discuss shortest fastest paths in more
details and consider more complex examples in Sect. 17 for
betweenness definitions.

Many extensions of the concept of path in streams make
sense and have been considered in the literature (see Sect. 21
for references). We present two of the most common ones
below.

First, one may capture the fact that transmission through
a link has a cost, leading to the following notion: for
a given � , a � -path P from (�, u) ∈ W to (�, v) ∈ W is a

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 13   Paths in a stream graph. Left: a path P1 from (1, d) to (9, c):
P1 = (2, d, b), (3, b, a), (5, a, c) . This path has length 3 and duration 3.
Center: another path P2 from (1, d) to (9, c): P

2
= (2, d, b), (3, b, a),

(7.5, a, b), (8, b, c) . This path has length 4 and duration 6. Right: a path
P3 from (0, b) to (8, a): P3 = (2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a) .
This path has length 4 and duration 5.5

sequence (t0, u0, v0) , (t1, u1, v1) , … , (tk, uk, vk) of elements
of T × V × V  , such that u0 = u , vk = v , t0 ≥ � , tk ≤ � − � ,
for all i, ti ≥ ti−1 + � , ui = vi−1 , [ti, ti + 𝛾] × {uivi} ⊆ E , and
[ti, ti+1] × {vi} ⊆ W  . The paths discussed, since the begin-
ning of this section is equivalent to �-paths with � = 0 , and
concepts like reachability, cycles, distances, latencies, and
others may easily be extended to this more general case.
Notice also that � may be a function of the links, involved
nodes, time, and other complex features, thus capturing the
fact that different links may induce different delays, that
delay may vary over time, etc.

Another natural generalization consists in capturing the
fact that nodes cannot forward information without delay.
One then needs to add the constraint ti+1 ≥ ti + � � to the
previous definition, where � ′ captures the delay induced by
node forwarding. Similarly, one may want to impose non-
null delays on links and/or nodes but without bounds on
these delays. The condition above then becomes ti+1 > ti.

If P = (t0, u0, v0),… , (tk, uk, vk) is a path of length
k in S, then (u0, v0),… , (uk, vk) is a path of length k in
the induced graph G(S). If it is a cycle in S, it is also a
cycle in G(S). However, the converse claims are false:
paths in G(S) do not correspond to paths in S, and in par-
ticular, a node may be reachable from another node in
G(S) but not in S. Notice also that the distance between
two nodes in G(S) is bounded by the size of V, whereas
it is unbounded in S. For instance, if T = [0, x] for a
given integer x, V = {a, b} , T

a
=
⋃

i=0,1,…[2i, 2i + 1] ,
T
b
=
⋃

i=0,1,…[2i + 1, 2i + 2] , and T
ab

= {i, i = 1,…} , then
the path (0, a, b), (1, b, a), (2, a, b),… of length x is a shortest
path from (0, a) to (x, a) or (x, b).

In a link stream L = (T ,V ,E) , since nodes are always pre-
sent, the definition of path is much simpler: a path P from
(�, u) ∈ T × V to (�, v) ∈ T × V is a sequence (t0, u0, v0) ,
(t1, u1, v1) , … , (tk, uk, vk) of elements of T × V × V  , such
that u0 = u , vk = v , t0 ≥ � , tk ≤ � , ti ≥ ti−1 , ui = vi−1 , and
(ti, uivi) ∈ E . In this case, as with graphs, the distance is
bounded by the size of V. In addition, if (�, u) ⤏ (�, v) , then
for all �′ ≤ � and �′ ≥ � , (��, u) ⤏ (��, v) . However, the
existence of a path between two given nodes in G(L) still
does not imply in general the existence of a path between
them in L. For instance, if T = [0, 1] , V = {a, b, c, d} , and

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 15 of 29  61

E = {(0, ab), (0, cd), (1, bc)} , then there is a path between a
and d in G(L) but not in L.

In a graph-equivalent stream, there is a path from a node
to another one in the stream if and only if there is a path
between them in the corresponding graph, and the shortest
paths have the same length. As a consequence, the distance
between two nodes is the same in the stream and its cor-
responding graph, and a path is a cycle in the stream if and
only if the corresponding path is a cycle in the graph.

15 � Connectedness and connected
components

A graph G = (V ,E) is connected if for all u and v in V, there
is a path between u and v in G. A cluster C is connected if
G(C) is connected, and it is a maximal connected cluster if
it is included in no other connected cluster. These clusters
are called the connected components of G, and they form
a partition2 of V. The reachability graph of G is the graph
R = (V ,E�) , where uv ∈ E� if u— v in G. The connected
components of G are exactly but the cliques of R.

Given a stream graph S = (T ,V ,W,E) , we say that
(�, v) is weakly reachable from (�, u) , which we denote by
(�, u) - - - (�, v) , if there is a sequence (t0, u0, v0) , (t1, u1, v1) ,
… , (tk, uk, vk) of elements of T × V × V  , such that u0 = u ,
vk = v , for all i, vi = ui+1 , and (ti, uivi) ∈ E , [𝛼, t0] × {u} ⊆ W ,
[tk,𝜔] × {v} ⊆ W  , and for all i, [ti, ti+1] × {vi} ⊆ W  . This
sequence is similar to a path from (�, u) to (�, v) , except for
time constraints: we do not necessarily have t0 ≥ � , ti+1 ≥ ti ,
nor � ≥ tk . As a consequence, weak reachability is symmet-
ric: if (�, u) - - - (�, v) then (�, v) - - - (�, u) . In Fig. 14, for

a
b
c
d
e
f
g

0 2 4 6 8 time

Fig. 14   Weakly connected components of a stream graph. This
stream graph has four weakly connected components, each displayed
with a different color: [5, 7] × {a, b} in blue, ([0, 3] ∪ [8, 10]) × {b}∪
[0, 10] × {c} ∪ [3, 7] × {d} in pink, ([0, 2] ∪ [8, 10]) × {d} ∪ [0, 10]×
{e} ∪ [0, 4] × {f , g} in green, and [7, 10] × {f } ∪ [5, 10] × {g} in
orange

instance, we have (9, d) - - - (3, g) through the sequence (8,
d, e), (3, e, f), (1, f, g).

We say that S is weakly connected if for all (�, u) and
(�, v) in W, (�, u) - - - (�, v) . We say that a cluster C ⊆ W is
weakly connected if its induced sub-stream S(C) is weakly
connected. It is a weakly connected component of S if it is
a maximal weakly connected cluster of S. Intuitively, this
corresponds to the disconnected parts of a drawing of S, see
Fig. 14 for an illustration.

We say that S = (T ,V ,W,E) is strongly connected if for
all (�, u) and (�, v) in W with � ≤ � , there is a path from
(�, u) to (�, v) in S. We say that a cluster C is strongly con-
nected if S(C) is strongly connected. We say that C is a maxi-
mal strongly connected cluster if it is included in no other
strongly connected cluster, see Fig. 15 for an illustration.
The examples in this figure show that the maximal con-
nected clusters of S do not in general lead to a partition of W.

If S is strongly connected then there is a path between
u and v in Gt for all (t, u) and (t, v) in W, i.e., Gt is a
connected graph for all t. However, Gt may be con-
nected for all t, even though S is not strongly connected.
This happens, for instance, if T = [0, 3] , V = {a, b} ,
W = [0, 1] × {a} ∪ [2, 3] × {b} and E = �.

If S is compact, though it is strongly connected if and
only if Gt is connected for all t in T. Indeed, as already said,
if S is strongly connected, then Gt necessarily is connected.
Conversely, if Gt is connected for all t in T, then S neces-
sarily is strongly connected: assume that there exist (�, v)
and (�, u) in W with � ≥ � such that (�, v) ⤏̸ (�, u) ; since
S is compact, (�, v) ⤏ (�, v) , and therefore, this implies
that (�, v) ⤏̸ (�, u) , which contradicts the fact that G� is
connected.

A cluster C is a maximal strongly connected compact
cluster if it is compact, strongly connected, and included in
no other strongly connected compact cluster. For instance,
the link stream of Fig. 15 (left) has three maximal strongly
connected compact clusters, namely [0, 10] × {a, b, c} ,
[0, 10] × {d, e} , and [5, 10] × {a, b, c, d, e} . These clusters
overlap, and therefore, maximal strongly connected compact
clusters do not result in partition of W.

If C = TC × VC is a maximal strongly connected com-
pact cluster, then even though VC necessarily is a connected
cluster of Gt , it is not in general a connected component of
Gt . In Fig. 15 (left), for instance, {a, b, c} is not a connected
component of G6 (it is included in the connected component
{a, b, c, d, e} of G6 ), although [0, 10] × {a, b, c} is a maximal
strongly connected compact cluster.

This leads to the following definition of strongly con-
nected components of S: a strongly connected component
C of S is a maximal compact cluster C = TC × VC , such
that VC is a connected component of Gt for all t in TC . This
implies that C is a (not necessarily maximal) strongly con-
nected compact cluster. For instance, the maximal strongly

2  A partition of a set X into k parts is a family (P
1
,P

2
,… ,Pk) of k

subsets of X, such that ∪iPi = X and Pi ∩ Pj = � for all i ≠ j.

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 16 of 29

connected compact cluster [0, 10] × {a, b, c} of the link
stream of Fig. 15 (left) is not a connected component,
because {a, b, c} is not a connected component of G6 . We
display in Fig. 16 the connected components of our two
examples.

The set of all strongly connected components of S is a
partition of W. Indeed, each (t, v) in W clearly is in a con-
nected component of S. Conversely, if (t, v) is in two distinct
connected components C = TC × VC and D = TD × VD of S,
then it means that VC and VD are two connected components
of Gt to which v belongs, which implies that VC = VD . But
then, (TC ∪ TD) × VC also is a strongly connected compo-
nent, which contradicts the hypothesis.

Notice that the maximal clusters of S, such that for all t,
the set of nodes involved in them at time t is a connected
component of Gt (but are not necessarily compact) and do
not lead to a partition of W. For instance, the two maximal
strongly connected clusters of the link stream of Fig. 15
(left) both have these properties, but they overlap.

Given a stream graph S = (T ,V ,W,E) , we define its
reachability stream graph R = (T ,V ,W,E�) , where E′ is the
set of all (t, uv) in T × V ⊗ V , such that v— u in Gt . In other
words, there is a link between u and v at time t in R if there
is a path in S from u to v at time t. The strongly connected
compact clusters of S are exactly the compact cliques of R.

In a link stream L = (T ,V ,E) , the weakly connected com-
ponents of L are exactly the compact clusters C = T × VC ,
such that VC is a connected component of G(L). However,
strong connectivity in link stream has only a few additional
properties compared to strong connectivity in stream graphs
in general, as illustrated in the figures of this section (the
leftmost example is a link stream). Just notice that for all v in
V, for all � and � in T with � ≥ � , (�, v) ⤏ (�, v) (thanks to
an empty path). As a consequence, for all (�, u) and (�, v) in
T × V  , if (�, u) ⤏ (�, v) , then for all �′ ≤ � , (��, u) ⤏ (�, v)
and for all �′ ≥ � , (�, u) ⤏ (��, v).

a
b
c
d
e

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 15   Strongly connected clusters in a link stream (left) and a
stream graph (right). Left: this link stream is not strongly connected,
since (0, a) ⤏̸ (0, d) , for instance. It has only two maximal strongly
connected clusters, namely [0, 10] × {a, b, c} ∪ [5, 10] × {d, e} (in
blue) and [0, 10] × {d, e} ∪ [5, 10] × {a, b, c} (in pink), which over-
lap. It also contains an infinity of strongly connected clusters which
are not maximal and may have an intricate structure, like, for instance
[0, 4] × {a, b, c} ∪ [4, 5] × {c} ∪ [5, 9] × {a, b} ∪ [9, 9.5] × {c} ∪ [9,
10] × {d} . Right: this stream graph is not strongly connected,
since (0, a) ⤏̸ (1, d) , for instance. The cluster [2, 3] × {a, b, d}
is strongly connected but not maximal as it is included in
[2, 3] × {a, b, d} ∪ [1, 2] × {a, b} , which is strongly connected too.

This cluster is not a maximal strongly connected cluster either, as
it is included in [2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 1] × {a}
and [2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 1] × {b} which
are both strongly connected. Notice, however, that the
union of these two clusters is not strongly connected, as
(0, a) ⤏̸ (0, b) , for instance. They are not maximal either,
but they are included (among others), respectively, in
[2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 10] × {a} ∪ [7, 8] × {a, b, c}
(in blue) and [2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 4] × {b} (in pink)
which both are maximal strongly connected clusters of this stream
graph

a
b
c
d
e

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 16   Connected components in a link stream (left) and a stream
graph (right). We indicate each component C = TC × VC with a
rectangle. Left: in this link stream, the connected components are
[0, 5[×{a, b, c} , [0, 5[×{d, e} , and [5, 10] × {a, b, c, d, e} . Right: in this

stream graph, the connected components are [0, 1[×{a} , [0, 1[×{b} ,
[1, 2[×{a, b} , [1, 2[×{d} , [2, 3] × {a, b, d} ,]3, 4] × {b} ,]3, 4.5[×{a} ,
[4, 4.5[×{c} , [4.5, 6[×{a, c} , [5, 6[×{b} , [6, 8] × {a, b, c} ,]8, 10] × {a} ,
]8, 9] × {b, c} , and]9, 10] × {b}

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 17 of 29  61

In a graph-equivalent stream, the strongly connected com-
ponents are equivalent to the connected component of the
corresponding graph.

16 � Trees and cascades

A graph G = (V ,E) is a tree of root r, with r ∈ V  , if for all v
in V, there is a unique simple path from r to v in G. Then, G
is connected and acyclic, and any connected acyclic graph
(with a distinguished node r) is a tree (of root r). This also
implies that for all v ≠ r in V, there is a unique u ≠ v , such
that u is the last node before v on the simple path from r to
v, called the predecessor of v and denoted by p(v). In addi-
tion, the predecessor of the root is the root itself: p(r) = r.

Given a graph G = (V ,E) , a sub-graph G� = (V �,E�) of G
is a shortest path tree of root r if it is a tree of root r and for
all v in V ′ , the simple path from r to v in G′ is a shortest path
from r to v in G. A cascade is a maximal shortest path tree.

We say that a stream graph S = (T ,V ,W,E) is a tree of
root r, with r ∈ W , if for all (t, v) in W, there is a unique sim-
ple path from r to (t, v) in S. Then, S necessarily is weakly
connected and acyclic, but the converse is not true. Notice
also that a tree is not strongly connected in general, see
Fig. 17 for an illustration.

If S = (T ,V ,W,E) is a tree of root r, then for all (t, v) ≠ r
in W either there is a unique last (t�, u) with u ≠ v before
(t, v) involved in the simple path from r to (t, v), and we call
it the predecessor of v at time t, or the simple path from r to
(t, v) is the empty sequence, and we say that the predecessor
of v at time t is r. We denote the predecessor by p(t, v). In
Fig. 17, for instance, p(5, c) = (4.5, a) , p(6, b) = (6, c) , and
p(1, b) = (0, b) = r in S1 and p(9, c) = (7, b) in S2.

If S is a tree of root r and � is the first time at which
any node is involved in S, i.e., � = min{t, (t, v) ∈ W} ,
then necessarily r is in ({�} × V) ∩W  . In other words, the
root of S necessarily is one of the very first node occur-
rences in S. Moreover, it also is a tree of root r′ for all r′ in
({�} × V) ∩W  . In Fig. 17 (right), for instance, S2 also is a
tree of root (2, a) and a tree of root (2, d).

Given a stream graph S = (T ,V ,W,E) , we say that a sub-
stream S� = (T ,V ,W �,E�) of S is a shortest path tree of root
r if it is a tree of root r and for all (t, v) in W ′ , the simple
path from r to (t, v) in S′ is a shortest path from r to (t, v) in
S. We define similarly fastest path trees and foremost-path
trees. In Fig. 17, for instance, S1 is a foremost-path tree of S.

For a given r in W, we denote by R(r) the cluster of all
elements of W reachable from r, and we call it the reach-
able cluster of r. We say that the sub-stream S′ is a cascade
of root r if it is a maximal foremost-path tree, in the sense
that it is included in no other foremost-path tree with the
same root.

If S is a graph-equivalent stream and S′ ⊆ S is a tree of
root r = (t, v) , then its induced graph G(S�) is a tree of root v.
If S′ is a shortest path tree of S, then G(S�) is a shortest path
tree of G(S). The same holds for cascades.

17 � Closeness and betweenness centralities

In a graph G = (V ,E) , the closeness of a node v measures its
proximity to other nodes: (v) = ∑

u≠v 1

�(v,u)
 . The between-

ness of v measures how frequently v is involved in shortest
paths in G: (v) = ∑

u∈V ,w∈V
�(u,w,v)

�(u,w)
 , where �(u,w,v)

�(u,w)
 is the frac-

tion of all the shortest paths from u to w that involve v if
there is a path from u to w, 0 otherwise. In other words, the
betweenness of v in V is the number of pairs of elements u
and w of V, each counted with a weight equal to the fraction
of shortest path between them that involve v. The between-
ness of any cluster X ⊆ V is (X) = ∑

u∈V ,w∈V
�(u,w,X)

�(u,w)
 , where

�(u,w,X)

�(u,w)
 is the fraction of all the shortest paths from u to w that

involve an element of X, if u— w , 0 otherwise. Notice that
(v) = ({v}).

In the stream graph S = (T ,V ,W,E) , we define a general
concept of closeness of a node v at a time instant t, with
(t, v) ∈ W  , as follows:

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 17   Examples of trees. We consider a stream graph
S = (T ,V ,W,E) and display two of its sub-streams that are trees.
Left: the tree S1 = (T ,V ,W1,E1) (in blue) of root (0, b) (in pink), with
W1 = [1, 4.5] × {a} ∪ ([0, 2] ∪ {6}) × {b} ∪ [4.5, 6] × {c} ∪ {(2, d)}
and E1 = {(1, ab), (2, bd), (4.5, ac), (6, bc)} . Right: the tree S

2
= (T ,V ,

W
2
,E

2
) (in blue) of root (2, b) (in pink), with W

2
= ([2, 6] ∪ [8, 9])×

W
2
= ([2, 6] ∪ [8, 9]) × {a} ∪ ([6, 7] ∪ [8, 10]) ×{b} ∪ ([5, 6] ∪ [7, 9])

×{c} ∪ [2, 3] × {d} and E
2
= {(2, ab), (2, bd), (5, ac), (6, bc),

(7, bc), (8, bc), (8, ab)}

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 18 of 29

where ct(v, (s, u)) represents the cost to reach (s, u) from v
at time t.

The cost ct(v, (s, u)) may be captured in various ways,
the most basic being the time to reach (s, u) from v at time
t: ct(v, (s, u)) = t(v, (s, u)) . Notice, however, that we must
have ct(v, (s, u)) ≠ 0 for all (s, u) ≠ (t, v) . To ensure this,
one may, for instance, define ct(v, (s, u)) as the length of a
non-empty shortest foremost path from (t, v) to (s, u), i.e.,
�((t, v), (t + t(v, (s, u)), u)) if it is different from 0. One may
also combine both approaches by assuming that traversing
a link has a cost � , leading to the following cost function:
ct(v, (s, u)) = t(v, (s, u)) + � ⋅ �((t, v), (t + t(v, (s, u)), u)).

We now define the betweenness of a node v ∈ V at a time
instant t ∈ T  , with (t, v) ∈ W  , as follows:

where �((i,u),(j,w),(t,v))
�((i,u),(j,w))

 is the fraction of all shortest fastest paths

from u at time i to w at time j that involve v at time t if there
is a path from (i, u) to (j, w), 0 otherwise. In other words, the
betweenness of (t, v) in W is the number of pairs of elements
(i, u) and (j, w) of W, each counted with a weight equal to
the fraction of shortest fastest paths between them that
involve (t, v).

We extend the definition to any cluster X ⊆ W as follows:

where �((i,u),(j,w),X)
�((i,u),(j,w))

 is the fraction of all shortest fastest paths

from (i, u) to (j, v) that involve at least an element of X if
(i, u) ⤏ (j,w) , 0 otherwise. Then, (t, v) = ({(t, v)}) . We
also use this approach to define the betweenness of node v
as (v) = (Tv × {v}) , and the one of time t as
(t) = ({t} × Vt).

Instead of shortest fastest paths, one may consider the
fraction of fastest shortest paths, of shortest paths, of fastest
simple paths, or other classes of paths. However, consider-
ing shortest fastest paths has the advantage of putting more
emphasis on time than distance, and to avoid considering
as equivalent fastest paths with very different lengths (in
particular the non-simple ones).

In a graph-equivalent stream, the betweenness of any
node v is equal to |T|

2

2
 times its betweenness in the corre-

sponding graph. Indeed, for any (i, u) and (j, w) with j ≥ i ,
the fraction of paths involving T × {v} in a graph-equivalent

t(v) =
∑

u∈V
� s ∈ T

(s, u) ≠ (t, v)

1

ct(v, (s, u))
ds,

(t, v) = ∑

u∈V ,w∈V
�i∈Tu,j∈Tw

�((i, u), (j,w), (t, v))

�((i, u), (j,w))
di dj,

(X) = ∑

u∈V ,w∈V
�i∈Tu,j∈Tw

�((i, u), (j,w),X)

�((i, u), (j,w))
di dj,

stream is the fraction of paths between u and w in the cor-
responding graph that involve v.

The rest of this section is devoted to detailed examples of
betweenness centralities in various link streams, representa-
tive of what happens in stream graphs in general, to illustrate
this concept in concrete situations.

Let us consider, for instance, the case of L1 defined in
Fig. 18 (left), and let us compute the betweenness (t, v) of
(t, v) for all t. To do so, we consider successively all possible
pairs of nodes.

Let us begin with u and w. There is a path from (i, u) to
(j, w) only for i in [0, 2] and j in [2, 4]. Then, there is a unique
shortest fastest path, and it is (2, u, v), (2, v, w). It involves v at
time 2 and only at this time. Therefore, for all i ∈ [0, 2] and
j ∈ [2, 4] , the value of �((i,u),(j,w),(t,v))

�((i,u),(j,w))
 is 1 if t = 2 , and 0 other-

wise. These values are the same for paths from w to u.
For all times i and j, all shortest fastest paths from (i, u) to

(j , v), if any, are of the form (k , u , v) for
k ∈ [max(1, i), min(2, j)] . For i < j , there is an infinity of such
paths and at most one involves (t, v), leading to
�((i,u),(j,v),(t,v))

�((i,u),(j,v))
= 0 . If i = j , then there is a unique shortest fastest

path, and it involves (t, v) only when i = j = t . Therefore,
�((i,u),(j,v),(t,v))

�((i,u),(j,v))
 is different from 0 only for i = j = t , while

i ∈ [0, 2] and j ∈ [max(1, i), 4] , and therefore, the contribution
to (t, v) of paths from u to v is 0. The same reasoning holds
for paths from v to u, from w to v, and from v to w.

Finally, shortest fastest paths from v to v are empty
sequences, and therefore, they do not involve (t, v) for any t.

This leads to (2, v) = 2 ⋅ ∫ 2

0
∫ 4

2
1djdi = 8 and for all

t ≠ 2 , (t, v) = 0.
Let us now consider the case of L2 , defined in Fig. 18

(center), and let us first focus on the paths from u to w. For
any i, if j < 3 , then (i, u) ⤏̸ (j,w) . For i ∈ [0, 2] and
j ∈ [3, 10] , the unique shortest fastest path from (i, u) to
(j, w) is (2, u, v), (3, v, w), in blue in the figure. For i ∈]2, 10]
and j ∈ [0, 8[ , (i, u) ⤏̸ (j,w) . For i ∈]2, 6] and j ∈ [8, 10] , the
unique shortest fastest path from (i, u) to (j, w) is
(6, u, v), (8, v, w), in green in the figure. Finally, for i ∈]6, 10]
and any j, (i, u) ⤏̸ (j,w) . Therefore, �((i,u),(j,w),(t,v))

�((i,u),(j,w))
 is different

from 0 only when t ∈ [2, 3] , i ∈ [0, 2] , j ∈ [3, 10] and when
t ∈ [6, 8] , i ∈]2, 6] , j ∈ [8, 10] . It is then equal to 1.

Regarding paths from (i, w) to (j, u), the unique shortest
fastest path is (4, w, v), (5, v, u) and it exists for i ∈ [0, 4] and
j ∈ [5, 10] . It involves (t, v) when t ∈ [4, 5] , leading to
�((i,w),(j,u),(t,v))

�((i,w),(j,u))
= 1 for t ∈ [4, 5] , i ∈ [0, 4] , j ∈ [5, 10] , and 0

otherwise.
Like for L1 , the contr ibution of other pairs

of nodes to (t, v) is 0, and therefore, we finally
o b t a i n (t, v) = ∫ 2

0
∫ 10

3
1dj di = 14 f o r t ∈ [2, 3] ,

(t, v) = ∫ 6

2
∫ 10

8
1dj di = 8 f o r t ∈ [6, 8]   ,

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 19 of 29  61

(t, v) = ∫ 4

0
∫ 10

5
1dj di = 20 for t ∈ [4, 5] , and (t, v) = 0

otherwise.
In the case of L3 defined in Fig. 18 (right), first notice that

all shortest fastest paths from (i, u) to (j, w) and from (i, w)
to (j, u), if any, are of the form (k, u, v), (k, v, w) or
(k, w, v), (k, v, u), respectively, with k ∈ [2, 3] , k ≥ i and
k ≤ j . Therefore, (t, v) = 0 if t ∉ [2, 3] . Moreover,
�((i,u),(j,w),(t,v))

�((i,u),(j,w))
=

�((i,w),(j,u),(t,v))

�((i,w),(j,u))
.

If t ∈ [2, 3] , in the same way as for paths from u to v in L1 ,
we are in one of two cases: either there is an infinity of short-
est fastest paths from (i, u) to (j, w) and at most one of them
involves (t, v), or the fraction of values of i and j, such that
�((i,u),(j,w),(t,v))

�((i,u),(j,w))
≠ 0 is 0.

Since, like in the previous cases, the contribution of other
pairs of nodes is 0, and therefore, we obtain (t, v) = 0 in
L3 for all (t, v).

However, let us consider the cluster X = [2, 3] × {v} .
Then, �((i,u),(j,w),X)

�((i,u),(j,w))
=

�((i,w),(j,u),X)

�((i,w),(j,u))
 is equal to 1 for i ∈ [0, 2] and

j ∈ [2, 5] , for i ∈ [2, 3] and j ∈ [i, 5] , and it is equal to 0 in
all other cases. Moreover, �((i,u),(j,w),X)

�((i,u),(j,w))
=

�((i,w),(j,u),X)

�((i,w),(j,u))
 is equal

to 1 for i ∈ [2, 3] and j ∈ [i, 5] , to 0.5 for i ∈ [0, 1] and
j ∈ [3, 5] , to j−2

j−1
 for i ∈ [0, 1] and j ∈ [2, 3] , to j−2

j−i
 for

i ∈ [1, 2] and j ∈ [2, 3] , to 1

3−i
 for i ∈ [1, 2] and j ∈ [3, 5] , and

it is equal to 0 in all other cases. Likewise,
�((i,w),(j,v),X)

�((i,w),(j,v))
=

�((i,v),(j,w),X)

�((i,v),(j,w))
 is equal to 1 for j ∈ [2, 3] and

i ∈ [0, j] , to 0.5 for i ∈ [0, 2] and j ∈ [4, 5] , to 1

j−2
 for i ∈ [0, 2]

and j ∈ [3, 4] , to 3−i
j−i

 for i ∈ [2, 3] and j ∈ [3, 4] , to 3−i
4−i

 for

i ∈ [2, 3] and j ∈ [4, 5] , and it is equal to 0 in all other cases.
We, therefore, obtain

.

(X) = 2 ⋅

(

�
2

0
�

5

2

1dj di + �
3

2
�

5

i

1dj di

)

+ 2 ⋅

(

�
3

2
�

5

i

1dj di + �
1

0
�

5

3

0.5dj di + �
1

0
�

3

2

j − 2

j − 1
dj di

+�
2

1
�

3

2

j − 2

j − i
dj di + �

2

1
�

5

3

1

3 − i
dj di

)

+ 2 ⋅

(

�
3

2
�

j

0

1di dj + �
2

0
�

5

4

0.5dj di

+ �
2

0
�

4

3

1

j − 2
dj di + �

3

2
�

4

3

3 − i

j − i
dj di

+�
3

2
�

5

4

3 − i

4 − i
dj di

)
= 17 + (2 ln(2) + 10) + (2 ln(2) + 10) ∼ 39.77

Now, let us consider L4 defined in Fig. 19 (left). We com-
pute the contribution of u and w to the betweenness of
(3.5, v), displayed in red in the figure, i.e., �((i,u),(j,w),(3.5,v))

�((i,u),(j,w))
 for

all i and j. There is a shortest fastest path from (i, u) to (j, w)
only for i ∈ [0, 1] and j ∈ [6, 8] , and it is always of the form
(1, u, x), (k, x, v), (l, v, y), (6, y, w) with k ∈ [2, 4] , l ∈ [3, 5] ,
and l ≥ k . Among them, the ones involving (3.5, v) are
exactly those such that k ∈ [2, 3.5] and l ∈ [3.5, 5] . This leads
to the fraction |[2,3.5]×[3.5,5]|

|[2,3]×[3,5]|+ 1

2
|[3,4]|2+|[3,4]×[4,5]|

∼ 0.64.

Let us finally consider L5 defined in Fig. 19 (right). We
compute the contribution of u and w to the betweenness of
(t, v), for a t in [b, c], like the one displayed in red in the
figure. There are two families of shortest fastest paths from
u to w in this link stream: (2, u, x), (k, x, v), (l, v, y), (7, y, w)
with k ∈ [a, b] and l ∈ [c, d] , that we call the blue family; and
(10, u, x), (m, x, v), (n, v, y), (15, y, w) with m ∈ [e, f] and
n ∈ [g, h] , that we call the green family. Notice that (t, v), for
a t in [b, c], is involved in all blue paths and in no green path.
For i ∈ [0, 2] and j ∈ [7, 15[the shortest fastest paths from
(i, u) to (j, w) are the blue ones (they all involve (t, v)); for
i ∈ [0, 2] and j ∈ [15, 17] they are both the blue and green
ones (a fraction (b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)
 of them involve (t, v));

for i ∈]2, 10] and j ∈ [15, 17] , they are the green ones (none
of them involve (t, v)); and for all other values i and j, there
is no path from (i, u) to (j, w). This leads to
∫ 2

0
∫ 15

7
1djdi + ∫ 2

0
∫ 17

15

(b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)

djdi = 16 + 4 ⋅
(b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)
.

In the computations above, we, however, assumed that
a ≠ b , c ≠ d , e ≠ f  , and g ≠ h when we wrote that the

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 20 of 29

fraction of blue paths in the set of all green and blue paths
is (b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)
 . If a = b or c = d , but e ≠ f and g ≠ h

this still holds, as there are infinitely less blue paths than
green ones; the fraction of blue paths is 0. If a = b and e = f  ,
but c ≠ d and g ≠ h , however, the fraction above is unde-
fined and the fraction of blue paths becomes (d−c)

(d−c)+(h−g)
 .

Going further, if a = b , c = d , e = f  , and g = h , then there
is exactly one blue path and one green path, leading to a
fraction of blue paths of 1

2
.

18 � Discrete versus continuous time

All our examples and illustrations until now assumed that the set
of time instants used in the definitions of stream graphs is an inter-
val [�,�] of ℝ , thus bounded, infinite and continuous. When we
defined stream graphs in Sect. 3, we, however, claimed that our
formalism is much more general, and may be used with different
kinds of time modeling: bounded or unbounded, finite or infinite,
continuous or discrete, and all combinations.

Even with these various types of time sets, the formalism
we developed in this paper applies directly (one just has to
switch from integrals to sums in the case of discrete time).
We illustrate this in this section by considering the situation,
where the set of time instants is an interval of ℕ instead of
ℝ , thus bounded, finite and discrete, see Fig. 20 for an illus-
tration. We discuss more complex cases by the end of this
section.

Let us consider S = (T ,V ,W,E) with T = [𝛼,𝜔] ⊆ ℕ . The
definitions of cov (S) =

|W|
|T×V| , nv =

|T
v
|

|T|  , n =
|W|
|T|  , muv =

|T
uv
|

|T|  ,

m =
|E|
|T| , kt =

|V
t
|

|V|  , k =
|W|
|V|  , lt =

|E
t
|

|V⊗V| , l =
|E|

|V⊗V| , and

⋓(S) =
∑

uv∈V⊗V �T
u
∩T

v
�

∑
uv∈V⊗V �T

u
∪T

v
� are directly applicable. For the example

in Fig. 20, we obtain, for instance, cov (S) =
37

14⋅4
∼ 0.66 ,

na = 1 , nd =
3

14
∼ 0.21 , n =

37

14
∼ 2.6 , k0 = 0.25 , k1 = 0.75

and l10 =
2

6
∼ 0.33.

The definition of density also holds (the node-based defi-
nition is identical and in the time-based definition the inte-
gral just needs to be replaced by a sum):
𝛿(S) =

∑
uv∈V⊗V �T

uv
�

∑
uv∈V⊗V �T

u
∩T

v
� =

∑
t∈T �Et

�
∑

t∈T �Vt⊗Vt�
 . In our example in Fig. 20,

�(S) =
0+1+2+2+1+0+1+1+2+3+2+1+1+0

0+3+3+3+1+3+1+3+3+3+3+3+3+1
= 0.5.

Going further, the definitions of sub-streams and clusters
also apply. For instance, C = {(1, a), (1, b), (2, a), (2, b), (2, d)}
is a cluster of S defined in Fig. 20, and it induces the sub-
stream S� = (T ,V ,C,E�) with E� = {(1, ab), (2, ab), (2, bd)}.

As a consequence, the concepts of cliques, neighbor-
hoods, degrees, and clustering coefficients, which depend
only on the concepts above (cluster, density, and number of
nodes), are also directly applicable to this case. For instance,

{9} × {a, b, c} is a maximal compact clique of S defined in
Fig. 20, as well as {1, 2, 3, 4} × {a, b} , the neighborhood of
d is {(2, b), (3, b)} , and therefore, d has degree 2

14
∼ 0.14.

The quotient stream and the line stream of a discrete stream
graph are also discrete stream graphs, with unchanged defini-
tions. Likewise, the definition of k-cores is unchanged.

Paths in S are now discrete objects, but this does not call
for new definitions. For instance, in Fig. 20, (7, a, c), (8, c, b)
is a path from (0, a) to (9, b). It involves exactly (7, a), (7, c),
(8, c), and (8, b). It has length 2 and duration 1. It is not a
shortest path from (0, a) to (9, b), since path (9, a, b) is
shorter. It is not a fastest path either, because path (9, a, b) is
faster. However, the path (8, a, c), (8, c, b) has length 2 and
duration 0; therefore, it is a fastest path from (0, a) to (9, b)
but not a shortest one.

Likewise, the definitions of connected clusters and com-
ponents, as well as those of trees and cascades, that rely only
on the concept of paths, directly translate to the discrete
case. The concepts of closeness and betweenness also do,
but the betweenness relies now on a counting of discrete sets
of (discrete) paths. Replacing the integral in its definition by
a sum, it becomes

where �((i, u), (j,w)) is now the (finite) number of shortest
fastest paths from (i, u) to (j, w), and �((i, u), (j,w), (t, v)) is
the number of these path that involve v at time t. Therefore,
as before, �((i,u),(j,w),(t,v))

�((i,u),(j,w))
 is the fraction of all shortest fastest

paths from (i, u) to (j, w) that involve (t, v).
In the case of Fig. 20, for instance, �((0, a), (3, d)) =

|{((2, a, b), (2, b, d)), ((3, a, b), (3, b, d))}| = 2 paths. One of
them involves (2, b), and so �((0,a),(3,d),(2,b))

�((0,a),(3,d))
= 0.5.

Finally, we have shown that considering a bounded dis-
crete time interval does not call for new definitions and any
change in our formalism: it directly applies to this case in a
way very similar to the bounded continuous time case. This
also holds for more complex time sets, including unbounded
ones (then, a node v has to be present a finite fraction of this
infinite time set to satisfy nv ≠ 0 ) and/or discontinuous ones
(T may, for instance, be a collection of intervals of ℝ or ℕ ,
or even parts of ℚ ). As such cases have limited practical and
theoretical interest, we do not give more details here.

19 � Δ‑analysis and instantaneous links

In some situations, directly studying the stream graph
induced by a dataset makes little sense. If one considers
phone calls or sexual contacts, for instance, nodes generally

(t, v) = ∑

(i,u)∈W,(j,w)∈W

�((i, u), (j,w), (t, v))

�((i, u), (j,w))
,

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 21 of 29  61

have only zero or one link at a time, leading to an instanta-
neous degree of 0 or 1. In the case of instant messaging or
sensor-based measurements of proximity between individu-
als, links are instantaneous, leading to a density equal to 0.

In such cases and in many others, one is generally inter-
ested in the fact that nodes interact regularly, typically at
least once every Δ units of time, for a given Δ . For instance,
two individuals call each other at least once a day, two sen-
sors detect each other at least once every ten seconds, etc.

Then, the usual approach consists in using this value of
Δ as a parameter to define notions to describe the data, an
approach that we call Δ analysis. For instance, one defines
nΔ and mΔ as the expected number of nodes and links,
respectively, present in a randomly chosen time interval of
duration Δ in T. One defines the Δ-degree dΔ(v) of a node
v as its expected number of neighbors during a randomly
chosen time interval of duration Δ in T. The Δ-density is
defined as follows3. Assume that one takes a random time
interval of duration Δ and two nodes involved in S at some
time during this interval, i.e., a random triplet (I, u, v) with
I = [t −

Δ

2
, t +

Δ

2
] ⊆ T  , u, and v in V, such that Tu ∩ I and

Tv ∩ I are non-empty. The Δ-density of S is the probability
that these two nodes are linked together during this interval,
i.e., that Tuv ∩ I is non-empty.

The formalism we developed in this paper provides
a more general way to deal with such cases that we now
present.

Given a stream graph S = (T ,V ,W,E) with T = [�,�]
and a value Δ ≤ � − � , we define SΔ = (TΔ,V ,WΔ,EΔ)
as the stream graph, such that TΔ = [� +

Δ

2
,� −

Δ

2
] ,

WΔ = (TΔ × V) ∩
⋃

(t,v)∈W [t −
Δ

2
, t +

Δ

2
] ×{v} = {(t�, v),

t
� ∈ TΔ,∃(t, v) ∈ W s.t. |t� − t| ≤ Δ

2
} a n d

EΔ = (TΔ × V⊗ V) ∩
⋃

(t,uv)∈E[t −
Δ

2
, t +

Δ

2
] × {uv}

= {(t�, uv), t� ∈ TΔ,∃(t, uv) ∈ E s.t. |t� − t| ≤ Δ

2
} , see Fig. 21

for an illustration.
In other words, a node is present at time t′ in SΔ when-

ever it is present in S at a time t in [t� − Δ

2
, t� +

Δ

2
] , i.e.,

TΔv = TΔ ∩ {t�,∃t ∈ Tv, |t� − t| ≤ Δ

2
} . Likewise, any two

nodes are linked together at time t′ in SΔ whenever they
are linked together in S at a time t in [t� − Δ

2
, t� +

Δ

2
] , i.e.,

TΔuv = TΔ ∩ {t�,∃t ∈ Tuv, |t� − t| ≤ Δ

2
}.

We now show that the properties of SΔ actually are equiv-
alent to the Δ-properties of S, and therefore, one may con-
duct Δ analysis of S by transforming it into SΔ first, and then
using the formalism of this paper.

u
v
w

0 1 2 time

u
v
w

0 2 4 6 8 time

u
v
w

0 1 2 3 time

Fig. 18   Basic examples for betweenness centrality compu-
tations in link streams. Left: L1 = (T ,V ,E) with T = [0, 4] ,
V = {u, v,w} , and E = [1, 2] × {uv} ∪ [2, 3] × {vw} . We dis-
play in blue the unique shortest fastest path from u to w.
Center: L2 = (T ,V ,E) with T = [0, 10] , V = {u, v,w} , and
E = ([1, 2] ∪ [5, 6]) × {uv} ∪ ([3, 4] ∪ [8, 9]) × {vw} . We display in

blue and in green the two shortest fastest paths from u to w (for dif-
ferent starting and arrival times), and in red the unique shortest fastest
path from w to u. Right: L3 = (T ,V ,E) with T = [0, 6] , V = {u, v,w} ,
and E = [1, 3] × {uv} ∪ [2, 4] × {vw} . We display in blue an instance
of shortest fastest path between u and w 

u
x
v
y
w

0 2 4 6 time

u
x
v
y
w

2 7 10 15a b c d e f g h time

Fig. 19   More examples for betweenness centrality computations in
link streams. Left: L4 = (T ,V ,E) with T = [0, 8] , V = {u, x, v, y,w} ,
and E = [0, 1] × {ux} ∪ [2, 4] × {xv} ∪ [3, 5] × {vy} ∪ [6, 7] × {yw} .
We display in blue an instance of shortest fastest path from u to w
and in red the element (3.5, v). Right: L5 = (T ,V ,E) with T = [0, 17] ,
V = {u, x, v, y,w} , and E = ([1, 2] ∪ [9, 10]) × {ux} ∪ ([a, b] ∪ [e, f])
×{xv} ∪ ([c, d] ∪ [g, h]) × {vy} ∪ ([7, 8] ∪ [15, 16]) × {yw} , for given

values of a, b, c, d, e, f, g, and h, such that 2 < a ≤ b < c ≤ d < 7
and 10 < e ≤ f < g ≤ h < 15 . The shortest fastest paths from u to w
all belong to two families: (2, u, x), (k, x, v), (l, v, y), (7, y, w) with
k ∈ [a, b] and l ∈ [c, d] (an instance is displayed in blue); and (10, u
, x), (m, x, v), (n, v, y), (15, y, w) with m ∈ [e, f] and n ∈ [g, h] (in
green). We display in red an element (t, v) with t ∈ [b, c]

3  This is a generalization to stream graphs of the Δ-density intro-
duced in Viard and Latapy (2014) for link streams.

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 22 of 29

Let us define instantaneous versions of the Δ-properties
of S cited above: for all t in [� +

Δ

2
,� −

Δ

2
] , nΔt is the num-

ber of distinct nodes present at some time in [t − Δ

2
, t +

Δ

2
] :

nΔt = |{v ∈ V ,∃t�, |t� − t| ≤ Δ

2
and (t�, v) ∈ W}| . We define

mΔt similarly, and dΔt(v) as the number of distinct nodes
linked to v at some time in [t − Δ

2
, t +

Δ

2
].

F i r s t no t i ce t ha t nΔt i n S i s equa l t o
|Vt| i n SΔ  . Indeed , |Vt| i n SΔ i s equa l to
|{v ∈ V ,∃t� ∈ T , (t�, v) ∈ W and |t� − t| ≤ Δ

2
}| = nΔt . Like-

wise, mΔt in S equals |Et| in SΔ , and dΔt(v) in S equals dt(v)
in SΔ.

Notice now that nΔ =
1

|TΔ|
⋅ ∫

t∈TΔ
nΔtdt in S. Therefore, it

is equal to 1

|TΔ|
⋅ ∫

t∈TΔ
|Vt|dt in SΔ , which is exactly n in SΔ .

Similar reasoning lead to the facts that mΔ in S is equal to m
in SΔ , and that dΔ(v) in S is equal to d(v) in SΔ for all v.

Going further, we have �Δ(S) = �(SΔ) . Indeed, �(SΔ) is the
probability that a random (t, u, v) with t ∈ TΔ , (t, u) ∈ WΔ
and (t, v) ∈ WΔ satisfies (t, uv) ∈ EΔ , and �Δ(S) is the
probability that a random (I, u, v) with I an interval of T
of duration Δ , u ∈ V and v ∈ V  , such that Tu ∩ I ≠ � and
Tv ∩ I ≠ � satisfies Tuv ∩ I ≠ � . A triplet (t, u, v) satisfies
the first set of constraints if and only if the triplet (I, u, v)
with I = [t −

Δ

2
, t +

Δ

2
] fits the second set of constraints. In

addition, it satisfies (t, uv) ∈ EΔ if and only if (I, u, v) satis-
fies Tuv ∩ I ≠ � . Therefore, the two probabilities are equal.

Finally, our approach makes it easy to conduct the Δ
analysis of a stream graph S: it is equivalent to analyzing
the stream graph SΔ with the general methods developed
here, which go much further than the previously considered
Δ properties.

This approach has another strength: one may use variable
values of Δ , which may be a function of time, depend on the
involved nodes or links, or any other property. One may, for
instance, consider that two colleagues are in contact when-
ever they meet each other at least once a week, but for holi-
days, they remain in contact if they meet in the week before
holidays and in the week after. It is easy to capture such
modeling choice within our framework: they only change
the way one builds SΔ from S, and the analysis of SΔ remains
unchanged. Defining properties that would directly take into
account such variations of Δ would be much more complex.

20 � Bipartite streams and other
generalizations

An important strength of the graph formalism is that it may
easily be extended to encompass richer, more complex cases.
For instance, one may consider directed links by defin-
ing directed graphs G = (V ,E) with E ⊆ V × V instead of
E ⊂ V ⊗ V  . One may allow loops ( vv ∈ E is possible), and/
or consider multigraphs (E is a multiset; thus, several links

between the two same nodes are possible). Going further,
one may capture link strength or cost using weighted graphs,
in which a weight is associated to each element of E and/or
V. One may combine these extensions by considering, for
instance, directed weighted multigraphs.

Dealing with such graph generalizations calls for an
update of classical graph concepts. For instance, the density
of directed graphs must take into account the fact that the
number of possible links changed; it also leads to notions of
in- and out-degrees (the number of links towards and from
a given node); etc. Some properties are non-trivial to extend
(like, for instance, the density for weighted graphs) but most
just need to be patched, thus giving a great expressivity and
wide areas of applications to graphs.

Bipartite graphs are a particularly pervasive graph exten-
sion, and this section details this case as an illustration: we
show how a few key extensions of graph concepts to the
bipartite case Latapy et al. (2008) lead to similar extensions
for bipartite stream graphs.

A bipartite graph G = (⊤,⊥,E) is defined by a set of
top nodes ⊤ , a set of bottom nodes ⊥ , and a set of links
E ⊆ ⊤ × ⊥ : links may exist only between top and bottom
nodes. This models data like client–product relations or affil-
iation networks: the considered nodes belong to two different
sets and links may exist only between nodes in one set and
nodes in the other set.

In G, n⊤ = |⊤| and n⊥ = |⊥| denote the number of top and
bottom nodes. The definition of the number of links m is the
same as in classical graphs. The (bipartite) density of G is
then 𝛿(G) = m

n⊤⋅n⊥
 : it is the probability when one takes two

nodes that may be linked together that they indeed are. Node
neighborhoods and degrees are defined like in a classical
(non-bipartite) graph. The average top and bottom degrees
d⊤ and d⊥ of G are the average degrees of top and bottom
nodes, respectively.

The top and bottom projections G⊤ = (⊤,E⊤) and
G⊥ = (⊥,E⊥) of G are defined by E⊤ = ∪v∈⊥N(v)⊗ N(v) and
E⊥ = ∪v∈⊤N(v)⊗ N(v) , respectively. In other words, in G⊤ ,
two (top) nodes are linked together if they have (at least) a
(bottom) neighbor in common in G, and G⊥ is defined sym-
metrically. If v ∈ ⊤ (resp. v ∈ ⊥ ) then N(v) always is a (not
necessarily maximal) clique in G⊥ (resp. G⊤).

Given a top node v ∈ ⊤ (the case of bottom nodes is
symmetrical), let us denote by G⧵v the (bipartite) graph
obtained by removing node v and all its links from G:
G⧵v = (⊤⧵{v},⊥,E⧵({v} × ⊥)) . The redundancy rc(v) of
v ∈ ⊤ is the density of the sub-graph of (G⧵v)⊥ induced by
its neighborhood N(v) in G. In other words, it is the fraction
of its pairs of neighbors that have (at least) another neighbor
in common.

We define a bipartite stream graph S = (T ,⊤,⊥,W,E)
from a set of top nodes ⊤ , a set of bottom nodes ⊥ , a time

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 23 of 29  61

span T, and two sets W ⊆ T × (⊤ ∪ ⊥) and E ⊆ T × ⊤ × ⊥ ,
such that (t, u, v) ∈ E implies (t, u) ∈ W and (t, v) ∈ W  , see
Fig. 22 (left) for an illustration.

In S, we extend n =
|W|
|T| into n⊤ =

|W∩(T×⊤)|
|T| and

n⊥ =
|W∩(T×⊥)|

|T|  , the numbers of top and bottom nodes,

respectively. We extend k = |W|
|V| into k⊤ =

|W∩(T×⊤)|
|⊤| and

k⊤ =
|W∩(T×⊤)|

|⊥| similarly, and we define m and l like for clas-

sical (non-bipartite) stream graphs.
We def ine the (bipar t i te) density of S as

𝛿(S) =
∑

u∈⊤,v∈⊥ �Tuv�∑
u∈⊤,v∈⊥ �Tu∩Tv�

 : it is the probability when one takes two

nodes when they may be linked together that they indeed are.
We define node neighborhoods and degrees like in a classi-
cal (non-bipartite) graph. We define the average top and bot-
tom degrees d⊤ and d⊥ of S as the average degrees of top and
bottom nodes, respectively, weighted by their presence time
in the stream.

We def ine the top and bottom projections
S⊤ = (T ,⊤,W⊤,E⊤) a n d S⊥ = (T ,⊥,W⊥,E⊥)
o f S b y W⊤ = W ∩ (T × ⊤), W⊥ = W ∩ (T × ⊥),
E⊤ = ∪(t,v)∈W⊥

{(t, uw) s.t. (t, u, v) ∈ E and (t,w, v) ∈ E}
and E⊥ = ∪(t,v)∈W⊤

{(t, uw) s.t. (t, v, u) ∈ E and (t, v,w) ∈ E} ,
respectively. In other words, in S⊤ two (top) nodes are linked
together at a given time instant if they have (at least) a (bot-
tom) neighbor in common in S at this time, and S⊥ is defined
symmetrically, see Fig. 22 for an illustration. Notice that, if
v ∈ ⊤ (resp. v ∈ ⊥ ), then N(v) always is a (not necessarily
maximal) clique in S⊥ (resp. S⊥).

Given a top node v ∈ ⊤ (the case of bottom nodes is
symmetrical), let us denote by S⧵v the (bipartite) stream
graph obtained by removing node v and all its links from
S: S⧵v = (T ,⊤⧵{v},⊥,W⧵(T × {v}),E⧵(T × {v} × ⊥)) . The
redundancy rc(v) of v ∈ ⊤ is the density of the sub-stream
of (S⧵v)⊥ induced by its neighborhood N(v) in S. In other
words, it is the fraction of its pairs of neighbors and time
instants that have (at least) another neighbor in common at
this time.

If S is a graph-equivalent bipartite stream, then its cor-
responding graph also is bipartite. Moreover, the projections
of S are also graph-equivalent streams, and their correspond-
ing graphs are the projections of the graph corresponding to
S. In addition, the bipartite properties of S are equivalent to
the bipartite properties of its corresponding bipartite graph.

21 � Related work

Studying interactions over time is crucial in a wide vari-
ety of contexts, leading to a huge number of papers dealing
with various cases of interest. We cite, for instance, studies
of phone calls (Kovanen et al. 2013; Blondel et al. 2015),

contacts between individuals (Barrat and Cattuto 2013;
Martinet et al. 2014), cattle exchanges (Dutta et al. 2014;
Payen et al. 2017), messaging (Gomes et al. 2009; Gau-
mont et al. 2016b), or internet traffic (Harshaw et al. 2016),
(Viard and Latapy 2014), but we could cite hundreds more.
In each practical context, researchers and engineers face the
challenge of analyzing the jointly temporal and structural
nature of interactions, and they develop ad-hoc methods and
tools to do so. Several surveys of these works are available
from various perspectives (Masuda and Lambiotte 2016;
Sizemore and Bassett 2017; Thompson et al. 2017; Snijders
et al. 2010; Holme 2015; George and Kim 2013; Holme and
Saramäki 2012; Doreian and Stokman 1997).

The most classical approach consists in splitting time
into slices and then building a graph, often called snapshot,
for each time slice: its nodes and links represent the inter-
actions that occurred during this time slice. One obtains a
sequence of snapshots (one for each slice), and may study
the time evolution of their properties, see, for instance,
Sikdar et al. (2015), Leskovec et al. (2007), Santoro et al.
(2011), Gulyás et al. (2013), Blonder et al. (2012), Uddin
et al. (2013), among many others. In Batagelj and Praprotnik
(2016), the authors even design a general framework to com-
bine and aggregate wide classes of temporal properties, thus
providing a unified approach for snapshot sequence studies.
However, these approaches need time slices large enough to
ensure that each snapshot captures significant information.
However, large slices lead to losses of temporal informa-
tion, since all interactions within a same slice are merged. In
addition, several or even varying slice durations may be rel-
evant. As a consequence, choosing appropriate time slices is
a research topic in itself (Léo et al. 2015; Ribeiro et al. 2013;
Krings et al. 2012; Scholtes et al. 2016; Caceres and Berger-
Wolf 2013). More importantly, key concepts like paths make
little sense in this framework: paths within a slice do not
respect the dynamics of interactions, and paths over several
time slices are difficult to handle Léo et al. (2015).

To avoid these issues, several authors propose to encode
the full information into various kinds of augmented graphs.

a
b
c
d

0 2 4 6 8 10 time

Fig. 20   Example S = (T ,V ,W,E) of stream graph with discrete
time. It is defined by T = [0, 13] ⊆ ℕ , i.e., T = {0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13} , V = {a, b, c, d} , T

a
= T  , T

b
= {1, 2, 3, 4, 5, 7, 8,

9, 10, 11, 12, 13} , T
c
= [5, 12] = {5, 6, 7, 8, 9, 10, 11, 12} , T

d
= [1, 3]

= {1, 2, 3} , T
ab

= [1, 4] ∪ [9, 10] = {1, 2, 3, 4, 9, 10} , T
ac
= [6, 9]

= {6, 7, 8, 9} , T
bc
= [8, 12] = {8, 9, 10, 11, 12} , T

bd
= [2, 3] = {2, 3} ,

and T
ad

= T
cd

= �

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 24 of 29

In Casteigts et al. (2012), Batagelj and Praprotnik (2016),
Santoro et al. (2011), for instance, authors consider the
graph of all nodes and links occurring within the data (i.e.,
the graph induced by the stream), and label each node and
link with its presence times. In Wehmuth et al. (2015),
Kostakos (2009), Michail (2015); Takaguchi et al. (2016),
the authors duplicate each node into as many copies as its
number of occurrences (they assume discrete time steps);
then, an interaction between two nodes at a given time is
encoded by a link between the copies of these nodes at this
time, and each copy of a node is connected to its copy at
the next time step. In Whitbeck et al. (2012), Nicosia et al.
(2012) and others, the authors build reachability graphs: two
nodes are linked together if they can reach each other in the
stream. Other works transform the stream into multi-layer
or multi-aspect graphs (Wehmuth et al. 2015, 2016; Kivelä
et al. 2014). With such encodings, some key properties of
the stream are equivalent to properties of the obtained graph,
and therefore, studying this graph sheds light on the original
data.

All these approaches have a clear advantage: once the
data are transformed into one or several graphs, it is possi-
ble to use graph tools and concepts to study the interactions
under concern. In the same spirit, various powerful methods
for graph studies are extended to cope with the dynamics.
This leads, for instance, to algebraic approaches for temporal
network analysis (Batagelj and Praprotnik 2016; Praprot-
nik and Batagelj 2016), dynamic stochastic block models
(Xu and Hero 2013; Matias and Miele 2016; Corneli et al.
2015, 2016), dynamic Markovian models (Stadtfeld and
Block 2017; Stadtfeld et al. 2017; Snijders 2001; Snijders
et al. 2010), signals on temporal networks (Hamon et al.
2015), adjacency tensors (Sun et al. 2006; Gauvin et al.
2014), temporal networks studies with walks (Starnini et al.
2012; Rocha and Masuda 2014; Saramäki and Holme 2015),
dynamic graphlets (Hulovatyy et al. 2016; Harshaw et al.
2016) and temporal motif counting approaches (Kovanen
et al. 2011; Paranjape et al. 2017). Clearly, these works
extend higher level methods to the temporal setting, whereas
we focus here on the most basic graph concepts, in the hope
that they will form a unifying ground to such works.

Similar to what we do here, several works emphasize
the importance of the streaming nature of interactions over
time, then called contact sequences, temporal networks, or
relational event sequences, see, for instance, Holme (2015),
Holme and Saramäki (2012), Nicosia et al. (2013), Batagelj
and Praprotnik (2016), Masuda and Lambiotte (2016), Butts
(2008), Stadtfeld and Block (2017). Complementary to the
approaches outlined above that extend methods, these works
extend various graph concepts to deal with time.

In particular, path-related concepts received much atten-
tion because of their importance for spreading phenomena

and communication networks, see, for instance, Holme
(2015), Whitbeck et al. (2012), Tang et al. (2010), Payen
et al. (2017). Interestingly, although paths defined in these
papers are similar to those we consider here, most derived
concepts remain node-oriented. For instance, most authors
define the centrality of a given node and connected com-
ponents as sets of nodes (without time information) (Bat-
agelj and Praprotnik 2016; Nicosia et al. 2013; Santoro et al.
2011; Whitbeck et al. 2012; Nicosia et al. 2012; Tang et al.
2010). In Chinelate et al. (2015), the authors introduce a
centrality for time instants. Since the centrality of nodes may
greatly change over time Magnien and Tarissan (2015), it
is important to define centralities of each node at each time
instant. Some authors did so for various kinds of centralities
(Taylor et al. 2017; Flores and Romance 2017; Takaguchi
et al. 2016; Tang et al. 2010; Sizemore and Bassett 2017),
but, up to our knowledge, we are the first ones to consider
paths from all nodes at all time instants to all other nodes at
all other time instants, although a similar approach is pro-
posed in Kivelä et al. (2017) for studying percolation. This
approach has the advantage of fully capturing the dynamics
of the data, in particular the fact that nodes are not always
present.

Some works go beyond path-related notions and study
dynamics of node and link presence, link repetitions, instan-
taneous degree, and triadic closure (Zignani et al. 2014;
Hernández-Orallo et al. 2016; Stadtfeld and Block 2017;
Conan et al. 2007; Tang et al. 2010; Perry and Wolfe 2013;
Leskovec et al. 2008; Newman 2001; Uddin et al. 2016; Bat-
agelj and Praprotnik 2016). However, up to our knowledge,
there exists no previous generalization of density, neighbor-
hood, or clustering coefficient that avoids time slicing. Inter-
estingly, a notion of degree very close to the one we propose
here was introduced in the context of medical studies (Uddin
et al. 2014). A notion close to average degree is introduced
in Rozenshtein et al. (2017) for dense dynamic sub-graphs
searching. We also studied preliminary notions of density,
cliques, quotient streams, and dense sub-streams in our own
previous work (Viard et al. 2016; Gaumont et al. 2016a, b;
Viard et al. 2015; Viard and Latapy 2014).

Finally, although there is a very rich body of works on
temporal networks, dynamic graphs, longitudinal networks,
time-varying graphs, relational event models, etc, none of
these works aims at extending the basic graph theoretic lan-
guage to the situation, where time and structure are equally
important, like we try to do here. By defining such a basic
language for streams, we expect to give a more formal, uni-
fied, and rigorous ground to the variety of works dealing
with interactions over time.

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 25 of 29  61

22 � Conclusion

In this paper, we introduce a formalism to deal directly
with the intrinsically temporal and structural nature of
interactions over time. We first define elementary con-
cepts like numbers of nodes and links, density, clusters,
and paths (Sects. 3–6 and Sect. 14). From them, we derive
more advanced concepts like cliques, neighborhoods,
degrees, clustering coefficients, and connected components
(Sects. 7–10 and Sect. 15), and we show how to go fur-
ther by introducing quotient streams, line streams, k-cores
and centralities (Sects. 11–13 and Sect. 17). Our formal-
ism is able to cope with both discrete and continuous time
(Sect. 18), with both instantaneous links and links with dura-
tions (Sect. 19), and we also consider the case, where nodes
have no dynamic, that we call link streams. Last but not
least, our formalism may be extended to incorporate vari-
ous features of the data, and we illustrate this with bipartite
streams in Sect. 20.

The strength of our approach is to rely on very basic (but
non-trivial) innovations like non-integer numbers of nodes
and links, symmetric roles for time instants and nodes, a
simple and intuitive concept of density, an elementary
definition of clusters, and paths that connect a node at a
given time to a node at a given time. These basic concepts
make it easy to define more advanced objects: neighbor-
hoods are clusters, degrees are fractional numbers of nodes
in the neighborhoods, clustering coefficients are densities
of neighborhoods, betweenness centralities are fractions of
paths from any node at any time to any node at any time, etc.
We demonstrate the strength of this approach by extending
more advanced graph concepts such as quotient graph, trees,
line graph, and k-cores, among others. Their definitions are
mere retranscriptions of classical graph definitions into our
formalism for stream graphs and link streams, and one may
easily extend many other notions in this way.

In addition to this self-consistency, our formalism is con-
sistent with graph theory in a very strong and precise way:
if one considers a stream graph with no dynamics (nodes

are present all the time, and two nodes are either linked all
the time or not at all), then the stream graph is equivalent
to a graph and its stream properties are equivalent to the
properties of the corresponding graph. As a consequence,
our formalism is a generalization of graph theory, which
provides a solid ground for generalizing other graph notions.

With our formalism, one is equipped with a wide set of
concepts for describing data modeled as a stream graph or a
link stream. It is natural to start with the description of how
elementary metrics like kt (the fraction of nodes present at
time t) evolve over time, and of distributions of values of
nv (the fraction of time at which v is present) for all nodes.
One may then study the instantaneous degree distribution,
the degree distribution of nodes, and the time evolution of
the time degree. More advanced metrics and properties, such
as connectedness, clustering coefficient or centralities, give
finer insight on the data. Finally, just like graph concepts do
for relations, our formalism provides a language for describ-
ing interactions over time in an intuitive way, both at global
and more local levels. Importantly, it does not require to
choose a specific time scale for conducting such studies.

Data that would benefit from such an approach are count-
less, but we believe that analysis of network traffic, mobility
traces, and financial transactions is among the most promis-
ing ones, and we are working on such applications. Indeed,
modeling such data with (directed, weighted) stream graphs
and link streams captures most of their features, and progress
in these fields is currently limited by the lack of appropri-
ate modeling. Some preliminary works show the interest
of stream graphs in the contexts of internet traffic analysis
Viard et al. (2018); Wilmet et al. (2018), contacts between
individuals Viard et al. (2015, 2016), and recommender
systems Viard and Fournier-S’niehotta (2018), but most
remains to be done in this direction.

To conduct such real-world applications, it is crucial to
design and implement convenient software able to efficiently
compute the properties of large stream graphs. Work in this
direction is in progress for the properties presented in this
paper. However, it must be clear that some concepts raise
serious algorithmic challenges. We worked, for instance,

a
b
c

0 2 4 6 8 time

∆ = 2

a
b
c

1 3 5 7 time

Fig. 21   Δ-analysis of a stream graph. We display a stream graph
S = (T ,V ,W,E) (left) and the stream graph SΔ = (TΔ,V ,WΔ,EΔ)
(right) derived from it with Δ = 2 . Here, T = [0, 10] , V = {a, b, c} ,
W = ([0, 4] ∪ [6, 10]) × {a} ∪ ([0, 2] ∪ {3} ∪ [4, 10]) × {b} ∪ [4, 8]×

{c} , and E = ({0, 2, 3, 6} ∪ [7, 8]) × {ab} ∪ [4, 8] × {bc} , leading
to TΔ = [1, 9] , WΔ = [1, 9] × {a, b} ∪ [3, 9] × {c} and EΔ = ([1, 4]
∪[5, 9]) × {ab} ∪ [3, 9] × {bc} . Notice that S contains instantaneous
links, like, for instance, (0, ab), and instantaneous nodes, like (3, b)

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 26 of 29

on clique and dense sub-stream computations (Viard et al.
2016; Gaumont et al. 2016b), and previous work exists on
various problems, see, for instance, Wehmuth et al. (2016),
Bui-Xuan et al. (2003), Casteigts et al. (2012, 2015), Bhadra
and Ferreira (2012), Huanhuan et al. (2014). In particular,
the authors of Casteigts et al. (2012) define a first complex-
ity hierarchy for stream graphs. Still, most remains to be
done in the design of efficient algorithms for stream graphs
and the understanding of their complexity. This may lead
to counter-intuitive results with important practical impact.
For instance, although stream graphs are richer than usual
graphs, because they include time information and their
number of links is unbounded (in graphs, it is bounded by
n⋅(n−1)

2
 ), computing their properties may be easier than com-

puting the ones of induced graphs. Indeed, computation
costs are often related to properties like maximum degree
or maximum clique size, which are in general smaller in
stream graphs than in their induced graphs. In addition, the
temporal nature of stream graphs makes it easier to distribute
storage and some computations by dividing the stream with
respect to time windows.

Another important direction is the design of models of
stream graphs and link streams, which play a crucial role for
simulations and proofs. In particular, an important approach
in graph studies consists in generating uniformly at random
graphs that have a prescribed set of properties. For instance,
the Erdös–Renyi model generates graphs with prescribed
size and density, while the configuration model generates
graphs with prescribed size and degree distribution. The
definitions we introduce in this paper (in particular for den-
sity and degree) open the way to the definition of models for
generating stream graphs with prescribed properties, and to a
more unified understanding of already existing models, like
the ones defined in Zhao et al. (2013), Laurent et al. (2015),
Butts (2008), Snijders (2001), Leskovec et al. (2008), Sni-
jders et al. (2010), Gulyás et al. (2013), Karsai et al. (2011),
for instance.

In this paper, we extended classical concepts of graph
theory to stream graphs, but it is clear that many other

concepts call for such generalizations. This includes, for
instance, random walks and key concepts derived from them,
like pagerank and eigenvector centralities, structural graph
concepts like modular decomposition or treewidth, as well
as more elaborate concepts like communities and modular-
ity. Some of these directions were already explored in part
(Starnini et al. 2012; Rocha and Masuda 2014; Saramäki
and Holme 2015; Gaumont et al. 2016a), and we believe
that stream graphs provide a promising framework to help
explore them further.

In this direction, one may notice that stream graphs are
not only generalizations of graphs. They actually lie at the
crossroad of two very rich and powerful scientific areas:
graph theory, as we have seen, and time series analysis.
Indeed, if a stream graph has no dynamics, then it is equiva-
lent to a graph; if it has no structure then it is equivalent to
a time series. As a consequence, we consider that a very
promising direction for future work is to generalize time
series concepts to stream graphs, in a way similar to what
we did with graph concepts in this paper.

Acknowledgements  This work is funded in part by the European
Commission H2020 FETPROACT 2016-2017 program under Grant
732942 (ODYCCEUS), by the ANR (French National Agency of
Research) under Grants ANR-15-CE38-0001 (AlgoDiv) and ANR-
13-CORD-0017-01 (CODDDE), by the French program “PIA -
Usages, services et contenus innovants” under Grant O18062-44430
(REQUEST), and by the Ile-de-France program FUI21 under Grant
16010629 (iTRAC). We warmly thank the many colleagues and friends
who read preliminary versions of this work and provided invaluable
feedback.

References

Barabási A-L, Pósfai M (2016) Network science. Cambridge University
Press, Cambridge

Barrat A, Cattuto C (2013) Temporal networks of face-to-face human
interactions. Springer, Berlin, Heidelberg, pp 191–216

Batagelj V, Praprotnik S (2016) An algebraic approach to temporal
network analysis based on temporal quantities. Social Netw Anal
Mining 6(1):28:1–28:22

a
u
b
v
c

0 2 4 6 8 time

a
u
b
v
c

0 2 4 6 8 time

Fig. 22   Left: a bipartite link stream L = (T ,⊤,⊥,E) with T = [0, 10] ,
⊤ = {u, v} , ⊥ = {a, b, c} , and E = ([0, 2] ∪ [3, 9]) × {(u, a)} ∪ ([4, 5]∪
[8, 10]) × {(u, b)} ∪ [1, 5] × {(u, c)} ∪ [2, 7] × {(v, b)} ∪ [0, 8] × {(v,

c)} . Right: its ⊥ projection L⊥ . For instance, a and c are linked
together from time 3 to 5, because they both have u in their neighbor-
hood for this time period in S 

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 27 of 29  61

Berge C (1962) The theory of graphs and its applications. Wiley, New
York

Bhadra S, Ferreira A (2012) Computing multicast trees in dynamic
networks and the complexity of connected components in evolv-
ing graphs. J Internet Serv Appl 3(3):269–275

Blondel VD, Decuyper A, Krings G (2015) A survey of results on
mobile phone datasets analysis. EPJ Data Sci 4(1):10

Blonder B, Wey TW, Dornhaus A, James R, Sih A (2012) Tem-
poral dynamics and network analysis. Methods Ecol Evol
3(6):958–972

Bondy JA (1976) Graph Theory Appl. Elsevier Science Ltd., Oxford
Bui-Xuan B-M, Ferreira A, Jarry A (2003) Computing shortest, fastest,

and foremost journeys in dynamic networks. Int J Found Comput
Sci 14(2):267–285

Butts CT (2008) A relational event framework for social action. Sociol
Methodol 38(1):155–200

Caceres RS, Berger-Wolf T (2013) Temporal scale of dynamic net-
works. Springer, Berlin, Heidelberg, pp 65–94

Casteigts A, Flocchini P, Mans B, Santoro N (2015) Shortest, fastest,
and foremost broadcast in dynamic networks. Int J Found Com-
put Sci 26(4):499–522

Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-
varying graphs and dynamic networks. IJPEDS 27(5):387–408

Chinelate CE, Borges VA, Klaus W, Artur Z, da Silva APC (2015)
Time centrality in dynamic complex networks. Adv Complex
Syst 18(7–8):1550023

Conan V, Leguay J, Friedman T (2007) Characterizing pairwise inter-
contact patterns in delay tolerant networks. In: Proceedings of the
1st international conference on autonomic computing and com-
munication systems, autonomics ’07, pages 19:1–19:9, ICST,
Brussels, Belgium, Belgium. ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering)

Corneli M, Latouche P, Rossi F (2016) Block modelling in dynamic
networks with non-homogeneous poisson processes and exact
icl. Social Netw Anal Mining 6(1):55

Corneli M, Latouche P, Rossi F (2015) Modelling time evolving
interactions in networks through a non stationary extension of
stochastic block models. In: ASONAM ’15 Proceedings of the
2015 IEEE/ACM international conference on advances in social
networks analysis and mining 2015, pp 1590–1591

David E, Jon K (2010) Networks, crowds, and markets: reasoning
about a highly connected world. Cambridge University Press,
New York

Diestel R (2012) Graph theory, 4th edn, volume 173 of Graduate texts
in mathematics. Springer, New York

Doreian P, Stokman F (1997) Evolution of social networks. The journal
of mathematical sociology, vol 1. Gordon and Breach Publishers,
Amsterdam

Dutta BL, Ezanno P, Vergu E (2014) Characteristics of the spatio-
temporal network of cattle movements in France over a 5-year
period. Prev Vet Med 117(1):79–94

Flores J, Romance M (2017) On eigenvector-like centralities for tem-
poral networks: discrete vs. continuous time scales. J Comput
Appl Math 330:1041–1051

Gaumont N, Magnien C, Latapy M (2016a) Finding remarkably dense
sequences of contacts in link streams. Social Netw Anal Mining
6(1):87:1–87:14

Gaumont N, Viard T, Fournier-S’niehotta R, Wang Q, Latapy M
(2016b) Analysis of the temporal and structural features of
threads in a mailing-list. Springer International Publishing,
Cham, pp 107–118

Gauvin L, Panisson A, Cattuto C (2014) Detecting the community
structure and activity patterns of temporal networks: a non-neg-
ative tensor factorization approach. PLOS One 9(1):1–13

George B, Kim S (2013) Spatio-temporal Networks: modeling and
algorithms. SpringerBriefs in Computer Science. Springer, New
York

Gomes LH, Almeida VAF, Almeida JM, Castro FDO, Bettencourt LA
(2009) Quantifying social and opportunistic behavior in email
networks. Adv Complex Syst 12(01):99–112

Gulyás L, Kampis G, Legendi RO (2013) Elementary models of
dynamic networks. Eur Phys J Spec Top 222(6):1311–1333

Hamon R, Borgnat P, Flandrin P, Robardet C (2015) Duality between
temporal networks and signals: Extraction of the temporal net-
work structures. CoRR. https​://arxiv​.org/abs/1505.03044​

Harshaw CR, Bridges RA, Iannacone MD, Reed JW, Goodall JR (2016)
Graphprints: towards a graph analytic method for network anom-
aly detection. In: Proceedings of the 11th annual cyber and infor-
mation security research conference, CISRC ’16, ACM, New
York, NY, USA, pp 15:1–15:4

Hernández-Orallo E, Cano JC, Calafate CT, Manzoni P (2016) New
approaches for characterizing inter-contact times in opportunistic
networks. Ad Hoc Netw 52:160–172 (Modeling and Perfor-
mance Evaluation of Wireless Ad Hoc Networks)

Holme P (2015) Modern temporal network theory: a colloquium. Eur
Phys J B 88(9):234

Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–
125 (Temporal Networks)

Huanhuan W, Cheng J, Huang S, Ke Y, Yi L, Yanyan X (2014) Path
problems in temporal graphs. Proc VLDB Endow 7(9):721–732

Hulovatyy Y, Chen H, Milenkovic T (2016) Exploring the structure
and function of temporal networks with dynamic graphlets. Bio-
informatics 32(15):2402

Karsai M, Kivelä M, Pan RK, Kaski K, Kertész J, Barabási A-L, Sara-
mäki J (2011) Small but slow world: How network topology and
burstiness slow down spreading. Phys Rev E 83:025102

Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter
MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

Kivelä M, Cambe J, Saramäki J, Karsai M (2018) Mapping temporal-
network percolation to weighted, static event graphs. Sci Rep
8:12357. https​://doi.org/10.1038/s4159​8-018-29577​-2

Kostakos V (2009) Temporal graphs. Physica A Stat Mech Appl
388(6):1007–1023

Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J (2011) Tempo-
ral motifs in time-dependent networks. J Stat Mech Theory Exp
2011(11):P11005

Kovanen L, Kaski K, Kertész J, Saramäki J (2013) Temporal motifs
reveal homophily, gender-specific patterns, and group talk
in call sequences. PNAS 110(45):18070–18075. https​://doi.
org/10.1073/pnas.13079​41110​

Krings G, Karsai M, Bernhardsson S, Blondel VD, Saramäki J (2012)
Effects of time window size and placement on the structure of an
aggregated communication network. EPJ Data Sci 1(1):4

Latapy M, Magnien C, Del Vecchio N (2008) Basic notions for the
analysis of large two-mode networks. Soc Netw 30(1):31–48

Laurent G, Saramäki J, Karsai M (2015) From calls to communities: a
model for time-varying social networks. Eur Phys J B 88(11):301

Leskovec J, Kleinberg JM, Faloutsos C (2007) Graph evolution: den-
sification and shrinking diameters. TKDD 1(1):2

Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic
evolution of social networks. In: Ying L, Bing L, Sunita S (eds)
Proceedings of the 14th ACM SIGKDD international confer-
ence on knowledge discovery and data mining, ACM, Las Vegas,
Nevada, USA, Aug 24–27, pp 462–470

Léo Y, Crespelle C, Fleury E (2015) Non-altering time scales for aggre-
gation of dynamic networks into series of graphs. In Felipe Huici
and Giuseppe Bianchi, editors, Proceedings of the 11th ACM
conference on emerging networking experiments and technolo-
gies, CoNEXT 2015, ACM, Heidelberg, Germany, Dec 1–4,
2015, pp 29:1–29:7

https://arxiv.org/abs/1505.03044
https://doi.org/10.1038/s41598-018-29577-2
https://doi.org/10.1073/pnas.1307941110
https://doi.org/10.1073/pnas.1307941110

	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 28 of 29

Magnien C, Tarissan F (2015) Time evolution of the importance of
nodes in dynamic networks. In: ASONAM ’15 Proceedings of
the 2015 IEEE/ACM international conference on advances in
social networks analysis and mining 2015. ACM, New York,
pp 1200–1207

Martinet L, Crespelle C, Fleury E (2014) Dynamic contact network
analysis in hospital wards. Springer International Publishing,
Cham, pp 241–249

Masuda N, Lambiotte R (2016) A guide to temporal networks. Series
on complexity science, vol 4. World Scientific, UK

Matias C, Miele V (2017) Statistical clustering of temporal networks
through a dynamic stochastic block model. J R Stat Soc Ser B
79:1119–1141

Michail O (2015) An introduction to temporal graphs: an algorith-
mic perspective. Springer International Publishing, Cham, pp
308–343

Newman MEJ (2001) Clustering and preferential attachment in grow-
ing networks. Phys Rev E 64:025102

Newman M (2010) Networks: an introduction. Oxford University Press
Inc, New York

Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V (2012)
Components in time-varying graphs. Chaos: an Interdisciplinary.
J Nonlinear Sci 22(2):023101

Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G, Latora V (2013)
Graph metrics for temporal networks. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 15–40

Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal net-
works. In: de Rijke M, Shokouhi M, Tomkins A, Zhang M (eds)
Proceedings of the Tenth ACM international conference on web
search and data mining, WSDM 2017, Cambridge, United King-
dom, February 6–10, pp 601–610

Payen A, Tabourier L, Latapy M (2017) Impact of temporal fea-
tures of cattle exchanges on the size and speed of epidemic
outbreaks. In: Osvaldo G, Beniamino M, Sanjay M, Giuseppe
B, Carmelo Maria T, Ana Maria ACR, David T, Bernady OA,
Elena NS, Alfredo C (eds) Computational science and its appli-
cations—ICCSA 2017—17th International Conference, Trieste,
Italy, July 3-6, 2017, Proceedings, Part II, volume 10405 of Lec-
ture Notes in Computer Science. Springer, New York, pp 84–97

Pei J, Silvestri F, Tang J (eds) (2015) Proceedings of the 2015 IEEE/
ACM International Conference on Advances in Social Networks
Analysis and Mining, ASONAM 2015, ACM. Paris, France,
August 25–28, 2015

Perry PO, Wolfe PJ (2013) Point process modelling for directed inter-
action networks. J R Stat Soc Ser B (Statistical Methodology)
75(5):821–849

Praprotnik S, Batagelj V (2016) Semirings for temporal network analy-
sis. CoRR https​://arxiv​.org/abs/1603.08261​

Ribeiro B, Perra N, Baronchelli A (2013) Quantifying the effect of
temporal resolution on time-varying networks. Sci Rep 3:3006

Rocha LEC, Masuda N (2014) Random walk centrality for temporal
networks. N J Phys 16(6):063023

Rozenshtein P, Tatti N, Gionis A (2017) Finding dynamic dense sub-
graphs. ACM Trans Knowl Discov Data 11(3):271–2730

Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F
(2011) Time-varying graphs and social network analysis: Tem-
poral indicators and metrics. In: 3rd AISB social networks and
multiagent systems symposium (SNAMAS), pp 32–38

Saramäki J, Holme P (2015) Exploring temporal networks with greedy
walks. Eur Phys J B 88(12):334

Scholtes I, Wider N, Garas A (2016) Higher-order aggregate networks
in the analysis of temporal networks: path structures and centrali-
ties. Eur Phys J B 89(3):61

Scott J (2017) Social network analysis. SAGE Publications, Thousand
Oaks

Sikdar S, Ganguly N, Mukherjee A (2015) Time series analysis of
temporal networks. CoRR https​://arxiv​.org/abs/1512.01344​

Sizemore AE, Bassett DS (2018) Dynamic graph metrics: tutorial,
toolbox, and tale. NeuroImage 180:417–427

Snijders TAB (2001) The statistical evaluation of social network
dynamics. Sociol Methodol 31(1):361–395

Snijders TAB, van de Bunt GG, Steglich. CEG (2010) Introduction to
stochastic actor-based models for network dynamics. Soc Netw
32(1):44–60 (Dynamics of Social Networks)

Stadtfeld C, Block P (2017) Interactions, actors, and time: dynamic
network actor models for relational events. Sociol Sci 4:318–352

Stadtfeld C, Hollway J, Block P (2017) Dynamic network actor models:
investigating coordination ties through time. Sociol Methodol
47(1):1–40

Starnini M, Baronchelli A, Barrat A, Pastor-Satorras R (2012) Random
walks on temporal networks. Phys Rev E 85:056115

Sun J, Tao D, Faloutsos C (2006) Beyond streams and graphs: dynamic
tensor analysis. In: Tina ER, Lyle HU, Mark C, Dimitrios G (eds)
Proceedings of the Twelfth ACM SIGKDD international confer-
ence on knowledge discovery and data mining, ACM, Philadel-
phia, PA, USA, Aug 20–23, 2006, pp 374–383

Takaguchi T, Yano Y, Yoshida Y (2016) Coverage centralities for tem-
poral networks. Eur Phys J B 89(2):35

Tang J, Musolesi M, Mascolo C, Latora V (2010) Characterising tem-
poral distance and reachability in mobile and online social net-
works. SIGCOMM Comput Commun Rev 40(1):118–124

Tang J, Scellato S, Musolesi M, Mascolo C, Latora V (2010) Small-
world behavior in time-varying graphs. Phys Rev E 81:055101

Tang J, Musolesi M, Mascolo C, Latora V, Nicosia V (2010) Analysing
information flows and key mediators through temporal centrality
metrics. In: Proceedings of the 3rd workshop on social network
systems, SNS ’10, ACM. New York, NY, USA, pp 3:1–3:6

Taylor D, Myers SA, Clauset A, Porter MA, Mucha PJ (2017) Eigen-
vector-based centrality measures for temporal networks. Multi-
scale Model Simul 15(1):537–574

Thompson WH, Brantefors P, Fransson P (2017) From static to tempo-
ral network theory: applications to functional brain connectivity.
Netw Neurosci 1(2):69–99

Tiphaine V, Raphaël FS (2018) Movie rating prediction using content-
based and link stream features. CoRR, abs/1805.02893

Uddin S, Hossain L, Wigand RT (2014) New direction in degree cen-
trality measure: towards a time-variant approach. Int J Inform
Technol Decis Making 13(4):865

Uddin S, Khan A, Piraveenan M (2016) A set of measures to quan-
tify the dynamicity of longitudinal social networks. Complexity
21(6):309–320

Uddin MS, Mahendra P, Chung KSK, Hossain L (2013) Topological
analysis of longitudinal networks. In: 46th Hawaii International
Conference on System Sciences, HICSS 2013, Wailea, HI, USA,
7–10 January, 2013. pp 3931–3940

Viard T, Latapy M, Magnien C (2016) Computing maximal cliques in
link streams. Theor Comput Sci 609:245–252

Viard T, Fournier-S’niehotta R, Magnien C, Latapy M (2018) Discov-
ering patterns of interest in IP traffic using cliques in bipartite
link streams. In: Cornelius S, Coronges K, Gonçalves B, Sinatra
R, Vespignani A (eds) Complex networks IX. CompleNet 2018.
Springer proceedings in complexity. Springer, Cham

Viard T, Latapy M (2014) Identifying roles in an IP network with tem-
poral and structural density. In: 2014 Proceedings IEEE INFO-
COM Workshops, IEEE, Toronto, ON, Canada, April 27–May
2, 2014, pp 801–806

Viard T, Latapy M, Magnien Cl (2015) Revealing contact patterns
among high-school students using maximal cliques in link
streams. In: ASONAM ’15 Proceedings of the 2015 IEEE/ACM
international conference on advances in social networks analysis
and mining 2015. ACM, New York, pp 1517–1522

https://arxiv.org/abs/1603.08261
https://arxiv.org/abs/1512.01344

Social Network Analysis and Mining (2018) 8:61	

1 3

Page 29 of 29  61

Wasserman S, Faust K (1994) Social network analysis: Methods and
applications, vol 8. Cambridge University Press, Cambridge

Wehmuth K, Fleury É, Ziviani A (2016) Multiaspect graphs: algebraic
representation and algorithms. Algorithms 10(4):1

Wehmuth K, Fleury É, Ziviani A (2016) On multiaspect graphs. Theor
Comput Sci 651:50–61

Wehmuth K, Ziviani A, Fleury E (2015) A unifying model for repre-
senting time-varying graphs. In: 2015 IEEE international con-
ference on data science and advanced analytics, DSAA 2015,
Campus des Cordeliers, IEEE, Paris, France, October 19–21,
2015, pp 1–10

West DB (2000) Introduction to graph theory, 2nd edn. Prentice Hall,
Prentice

Whitbeck J, de Amorim MD, Conan V, Guillaume JL (2012) Temporal
reachability graphs. In: Özgür BA, Eylem E, Lili Q, Alex CS
(eds) The 18th annual international conference on mobile com-
puting and networking, Mobicom’12, ACM, Istanbul, Turkey,
Aug 22–26, 2012, pp 377–388

Wilmet A, Viard T, Latapy M, Lamarche-PR (2018) Degree-based
outliers detection within ip traffic modelled as a link stream. In:
Proceedings of the 2nd network traffic measurement and analysis
conference (TMA)

Xu KS, Hero AO (2013) Dynamic stochastic blockmodels: statistical
models for time-evolving networks. Springer, Berlin, Heidelberg,
pp 201–210

Zhao K, Karsai M, Bianconi G (2013) Models, entropy and informa-
tion of temporal social networks. Springer, Berlin, Heidelberg,
pp 95–117

Zignani M, Gaito S, Rossi GP, Zhao X, Zheng H, Zhao BY (2014)
Link and triadic closure delay: temporal metrics for social net-
work dynamics. In Eytan A, Paul R, Munmun De C, Bernie H,
Alice HH (eds) Proceedings of the eighth international confer-
ence on weblogs and social media, ICWSM 2014, The AAAI
Press, Ann Arbor, Michigan, USA, June 1–4, 2014

	Stream graphs and link streams for the modeling of interactions over time
	Abstract
	1 Introduction
	2 Preliminaries on set products and sizes
	3 Stream graphs and link streams
	4 Size, duration, uniformity, and compactness
	5 Density
	6 Sub-streams and clusters
	7 Cliques
	8 Neighborhood and degree
	9 Clustering coefficient and transitivity ratio
	10 Neighborhoods and degrees in and of clusters
	11 Relations between clusters and quotient stream
	12 Line streams
	13 k-cores
	14 Paths and distances
	15 Connectedness and connected components
	16 Trees and cascades
	17 Closeness and betweenness centralities
	18 Discrete versus continuous time
	19 -analysis and instantaneous links
	20 Bipartite streams and other generalizations
	21 Related work
	22 Conclusion
	Acknowledgements
	References

