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Abstract
Graph theory provides a language for studying the structure of relations, and it is often used to study interactions over time 
too. However, it poorly captures the intrinsically temporal and structural nature of interactions, which calls for a dedicated 
formalism. In this paper, we generalize graph concepts to cope with both aspects in a consistent way. We start with elementary 
concepts like density, clusters, or paths, and derive from them more advanced concepts like cliques, degrees, clustering coef-
ficients, or connected components. We obtain a language to directly deal with interactions over time, similar to the language 
provided by graphs to deal with relations. This formalism is self-consistent: usual relations between different concepts are 
preserved. It is also consistent with graph theory: graph concepts are special cases of the ones we introduce. This makes it 
easy to generalize higher level objects such as quotient graphs, line graphs, k-cores, and centralities. This paper also considers 
discrete versus continuous time assumptions, instantaneous links, and extensions to more complex cases.

Keywords  Stream graphs · Link streams · Temporal networks · Time-varying graphs · Dynamic graphs · Dynamic 
networks · Longitudinal networks · Interactions · Time · Graphs · Networks

1  Introduction

Friendship, dependencies, similarities, or connections are 
typical examples of relations modeled by graphs or net-
works, i.e., sets of nodes and links: nodes represent indi-
viduals and two individuals are linked together if they are 
friends; nodes represent companies and they are linked 
together if they signed contracts with each other; nodes 
represent documents like web pages or articles, and they 
are linked together if they are similar; nodes represent com-
puter devices and they are linked together if there is a wire 
between them; etc.

For decades, graph theory, social network analysis, and 
network science have developed a wide set of tools for the 
study of such graphs. In particular, they developed a lan-
guage for describing networks, with elementary yet power-
ful concepts such as node degree (their number of links), 
paths (sequences of links going from one node to another 
one), density (the fraction of pairs of nodes actually linked 

together), or cliques (sets of nodes all pairwise linked 
together). This language forms the basis of network studies, 
and there is a global consensus on a wide set of concepts 
that are used in the field; with few variations, all courses and 
reference books on graphs and networks start with them, see, 
for instance, Berge (1962), Bondy (1976), Wasserman and 
Faust (1994), West (2000), David and Jon (2010), Newman 
(2010), Diestel (2012), Barabási and Pósfai (2016), Scott 
(2017). Then, more advanced and specific concepts are 
defined on this common ground.

Contacts, shopping, travels, or traffic are typical exam-
ples of interactions that take place over time, i.e., streams of 
nodes and links active during specific periods of time: nodes 
are individuals linked together whenever they call each 
other; nodes are clients and products linked together when a 
client buys a product; nodes are places linked together when 
someone moves from one place to another; nodes are inter-
net devices linked together when they exchange data; etc.

Such sequences of interactions play a key role in many 
areas, and they have been studied for a long time, see related 
work in Sect. 21. Although many variations exist, the most 
common approach is to model them by sequences of graphs 
(each graph then aggregates the interactions that occurred 
during a period of time), by labeled graphs (each link being 
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labeled with its presence times), or other augmented graphs. 
This makes it possible to use graph theory to study these 
sequences of graphs, labeled graphs, and other variants. 
Other works deal directly with higher level methods for stud-
ying graphs, like stochastic block models, for instance, and 
extend them to cope with the dynamics. Finally, a few works 
define specific properties combining temporal and structural 
information, such as centrality measures, for instance.

In this paper, we propose a different approach: we develop a 
formalism to directly cope with interactions over time, in a way 
similar to what graph theory does for relations. This means 
that we do not transform interactions into graphs, but rather 
transform graph theory into a theory of interactions over time. 
We model them as link streams and stream graphs (depending 
on whether the dynamics is on links only, or on both nodes 
and links), so named to emphasize their streaming nature and 
the fact that they are not graphs or networks. Then, we start 
with the most elementary graph concepts and we define their 
equivalent for stream graphs and link streams. Finally, we elab-
orate on these basic concepts to extend more complex graph 
concepts. With the aim to make our formalism as intuitive as 
possible, we put much effort in proposing simple definitions, 
explaining them with different points of view (especially com-
binatorial and probabilistic ones), and to provide illustrations 
and detailed examples of all key concepts we introduce.

In addition to these subjective features, we also put much 
emphasis on two more objective features to ensure the rele-
vance of our definitions. First, we want our formalism to be a 
generalization of graph theory in a very precise sense: when 
the stream has no dynamics, it is equivalent to a classical 
graph and its properties should be the same as those of this 
graph (see the end of Sect. 3). Second, we want the relations 
that exist between various graph properties (between density 
and degree, for instance) to still hold for stream properties. 
Similarly, if a graph concept is derived from another one 
(like clustering coefficient from density, for instance), we 
want the corresponding stream concept to be derived from 
the corresponding other stream concept. These features 
ensure both the self-consistency of our formalism and its 
consistency with graph theory.

After Sect. 2 that introduces a few notations needed in 
the whole paper, we present our framework from Sect. 3 to 
Sect. 17. Each of these sections is devoted to a key concept of 
graph theory that we redefine in the stream context. Therefore, 
they all have the same structure: first, we recall the relevant 
graph concepts and their key properties in italics; then, we 
introduce equivalent concepts for stream graphs with detailed 
examples and discuss their properties; we introduce additional 
related concepts specific to stream graphs; we discuss the case 
of link streams, i.e., when there is no dynamics on nodes; 
and we show that the newly introduced stream concepts are 
equivalent to the graph ones, whenever this makes sense. 
After these core sections, we show how our framework may 

be used under either discrete and continuous modeling of time 
in Sect. 18; we show how it generalizes Δ-analysis and may be 
used with instantaneous links in Sect. 19; we show how it may 
be extended to bipartite streams and other particular cases in 
Sect. 20; and we present related work in Sect. 21. We discuss 
our contributions and future work in Sect. 22.

2 � Preliminaries on set products and sizes

In this paper, we rely on a few notations that we introduce 
below.

Given two finite sets X and Y, one may consider the 
ordered pairs (x, y) with x ∈ X and y ∈ Y . Then, (x, y) ≠ (y, x) 
and (x, x) exists if x ∈ X and x ∈ Y  . One may also consider 
unordered pairs xy with x ∈ X and y ∈ Y  , with x ≠ y . Then, 
xy = yx and xx do not exist. The set of ordered pairs, called 
cartesian product of X and Y, is denoted by X × Y . One often 
uses this notation for the set of unordered pairs too. In this 
paper, however, we use both notions intensively and need to 
make a clear distinction between them. We, therefore, denote 
the set of unordered pairs of distinct elements by X ⊗ Y .

Throughout this paper, we deal with set sizes, denoted 
by |X| for a given set X, but the meaning of this notation 
depends on the type of X. If X is an interval [�,�] of ℝ , 
then |X| = � − � . If it is an interval [�,�] of ℕ , then 
|X| = � − � + 1 . If X is the union of disjoint intervals of ℝ , 
then |X| is the sum of these intervals’ sizes. The same holds if 
it is the union of disjoint intervals of ℕ . If X is the product of 
sets of these types, then its size is the product of their sizes. 
Notice that, if X contains just one element then depending 
on the context it may be seen as a (degenerate) interval of ℝ 
or ℕ , thus having size 0 or 1, respectively. For instance, the 
union of the intervals [1, 2] and [3, 3] of ℝ has size 1, while 
the union of the same intervals of ℕ has size 3.

Notice that |X × Y| = |X| ⋅ |Y| , and therefore, |X × X| = n2 
if |X| = n . This is different from |X ⊗ Y| = |(X⧵Y) × Y|+
|(Y⧵X) × X| − |(X⧵Y) × (Y⧵X)| + |X∩Y|2−|X∩Y|

2
 , leading to 

|X ⊗ X| = n⋅(n−1)

2
 if |X| = n , and |X ⊗ Y| = |X| ⋅ |Y| if X and 

Y are disjoint.

3 � Stream graphs and link streams

A (simple undirected1) graph G = (V ,E) is defined by a 
finite set of nodes V and a set of links E ⊆ V ⊗ V  . Then, 
uv ∈ E means that u and v are linked together in G.

1  Unless explicitly specified, we always consider simple and undi-
rected graphs and stream graphs; we discuss more general cases in 
Sect. 20.
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Graphs model relations between nodes. For instance, 
nodes may represent individuals and links may represent 
friendship relations. Nodes may represent computers and 
links may represent physical connections between them. 
Examples are countless, making graphs the key formalism 
for studying network structures.

We define a (simple undirected  2 ) stream graph 
S = (T ,V ,W,E) by a finite set of nodes V, a measurable set 
of time instants T, a set of temporal nodes W ⊆ T × V  , and 
a set of links E ⊆ T × V ⊗ V  , such that (t, uv) ∈ E implies 
(t, u) ∈ W  and (t, v) ∈ W  . Then, (t, v) ∈ W  means that node 
v is present at time t in S, and (t, uv) ∈ E means that nodes u 
and v are linked together at time t in S.

The set of time instants T may be continuous or discrete, 
which has little influence on the following, as we explain in 
Sect. 18. Until then, all the examples we give assume that T 
is an interval of ℝ+.

We define vt = 1 if (t, v) ∈ W  and vt = 0 otherwise, as 
well as uvt = 1 if (t, uv) ∈ E and uvt = 0 otherwise. When 
vt = 1 we say that node v is involved in S at time t or that 
v is present at time t, and when uvt = 1 we say that nodes 
u and v are linked together at time t, or that link uv is pre-
sent at time t. We denote by T

v
 the set of time instants at 

which v is present, by T
uv

 the set of time instants at which 
uv is present, by V

t
 the set of nodes present at time t, and 

by E
t
 the set of links present at time t: T

v
= {t, vt = 1} , 

T
uv
= {t, uvt = 1} , V

t
= {v, vt = 1} , and E

t
= {uv, uvt = 1} . 

Notice that T
uv
⊆ T

u
∩ T

v
.

If all nodes are present all the time, i.e., T
v
= T  for all v 

or, equivalently, V
t
= V  for all t, then we say that S is a link 

stream and we denote it by L = (T ,V ,E) (with W = T × V  
implicitly). Indeed, there is no dynamics on nodes in this 
case, and S is fully defined by this triplet. Link streams play 
an important role in many situations, and therefore, we pay 
special attention to this case in all this paper.

We illustrate these definitions in Fig. 1 with drawings 
designed as follows. We display node names on a vertical 
axis on the left of the figure and time on a horizontal axis 
at the bottom of the figure. Each node presence times are 

represented by a horizontal dotted line in front of its name, 
whenever the node is present. Each link presence times are 
represented by a horizontal solid line parallel to the two dot-
ted lines of involved nodes and a vertical solid line joining 
these two dotted lines (marked with bullets) when the two 
nodes start interacting. In Fig. 1, for instance, in S (left-
most example), the node a arrives at time 0 and stays until 
time 10, and therefore, [0, 10] × {a} ⊆ W  , i.e., T

a
= [0, 10] . 

This is represented by a dotted line from time 0 to 10 in 
front of a in the drawing. Likewise, b arrives at time 0, 
then leaves at time 4, joins again at time 5, and stays until 
time 10, and therefore, ([0, 4] ∪ [5, 10]) × {b} ⊆ W  , i.e., 
T
b
= [0, 4] ∪ [5, 10] . This is represented by a dotted line from 

time 0 to 4 and another one from time 5 to 10 in front of b. 
These two nodes interact from time 1 to time 3 and from 
time 7 to time 8, and therefore, ([1, 3] ∪ [7, 8]) × {ab} ⊆ E , 
i.e., T

ab
= [1, 3] ∪ [7, 8] . This is represented by a solid line at 

time 1 between the dotted lines of a and b, with a horizontal 
line starting from its middle until time 3, and another such 
solid line at time 7 with a horizontal line until time 8.

Given a stream graph S = (T ,V ,W,E) , we define 
G

t
= (V

t
,E

t
) , the graph induced by S at time t. In 

Fig. 1, for instance, we obtain for S at time 2 the graph 
G2 = ({a, b, d}, {ab, bd}).

We also define G(S) = ({v,T
v
≠ �}, {uv,T

uv
≠ �}) =

(
⋃

t∈T Vt
,
⋃

t∈T Et
) the graph induced by S: its nodes are 

those present in S and they are linked together in G(S) if 
there exists a time instant in T such that they are linked 
together in S. In other words, it is the graph, where there is 
a link between two nodes if they interacted at least once. In 
Fig. 1, for instance, G(S) = ({a, b, c, d}, {ab, ac, bc, bd}) and 
G(L) = ({a, b, c, d}, {ab, ac, bc, bd, cd}) . One may, in addi-
tion, associate with each node v or link uv a weight captur-
ing a quantity of interest, like, for instance, their presence 
duration |T

v
| and |T

uv
|.

Stream graphs model interactions between nodes over 
time, as well as the dynamics of nodes themselves. For 
instance, nodes may represent individuals present in a given 
building and links may represent contacts between them. 

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 1   Simple examples of stream graphs and link streams. Left: a 
stream graph S = (T ,V ,W,E) with T = [0, 10] ⊆ ℝ , V = {a, b, c, d} , 
W = [0, 10] × {a} ∪ ([0, 4] ∪ [5, 10]) × {b} ∪ [4, 9] × {c} ∪ [1, 3] × {d}   , 
and E = ([1, 3] ∪ [7, 8]) × {ab} ∪ [4.5, 7.5] × {ac} ∪ [6, 9] × {bc}∪
[2, 3] × {bd} . In other words, T

a
= [0, 10] , T

b
= [0, 4] ∪ [5, 10] , T

c
= 

[4, 9] , T
d
= [1, 3] , T

ab
= [1, 3] ∪ [7, 8] , T

ac
= [4.5, 7.5] , T

bc
= [6, 9] , 

T
bd

= [2, 3] , and T
ad

= T
cd

= � . Right: a link stream L = (T ,V ,E) with 
T = [0, 10] ⊆ ℝ , V = {a, b, c, d} , and E = ([0, 4] ∪ [6, 9]) × {ab}∪

[2, 5] × {ac} ∪ [1, 8] × {bc} ∪ [7, 10] × {bd} ∪ [6, 9] × {cd} . In other 
words, T

a
= T

b
= T

c
= T

d
= T and T

ab
= [0, 4] ∪ [6, 9] , T

ac
= [2, 5] , 

T
bc
= [1, 8] , T

bd
= [7, 10] and T

cd
= [6, 9]
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Nodes may represent online computers and links may repre-
sent data exchanges between them. Examples are countless, 
and we aim at making stream graphs the key formalism for 
studying jointly the dynamics and structure of interactions.

Since in a stream graph S = (T ,V ,W,E) nodes are not 
present all the time in general, W may differ significantly 
from T × V  . To capture this, we define the coverage of S as 
follows:

For instance, in Fig. 1, the stream graph S has coverage 
cov (S) =

26

40
= 0.65.

Notice that cov (S) = 1 if and only if all nodes are present 
all the time, and therefore, it is equivalent to saying that S 
is a link stream.

If in addition for all u and v in V, T
uv
∈ {�, T} , i.e., all 

existing links are present all the time, then there is no sig-
nificant distinction between S and G(S), and we say that S 
is a graph-equivalent stream. This gives a formal ground to 
our wanted feature that stream graphs generalize graphs: we 
extend graph concepts to stream graphs in a way, such that if 
a stream graph S has a given stream graph property and hap-
pens to be a graph-equivalent stream, then its induced graph 
G(S) has the corresponding graph property. In the following, 
we systematically check that this feature holds.

4 � Size, duration, uniformity, 
and compactness

The number of nodes of a graph G = (V ,E) is denoted by 
n = |V| and its number of links by m = |E|.

Given a stream graph S = (T ,V ,W,E) , we now define its 
number of nodes and links, as well as its duration. First 
notice that, unlike in graphs, some nodes may be present for 
much longer than others. To capture this, we define the con-
tribution of node v as nv =

|T
v
|

|T|  , which may be seen as the 
notion of coverage restricted to a node v. We then define the 
number of nodes in S as follows:

Then, each node contributes to the total number of nodes 
proportionally to its involvement in S: v in V accounts for 1 
node only if it is present in S all the time.

We define similarly the contribution of a pair of nodes uv 
as muv =

|T
uv
|

|T|  and the number of links in S:

cov (S) =
|W|

|T × V|
.

n =
∑

v∈V

nv =
|W|
|T|

.

m =
∑

uv∈V⊗V

muv =
|E|
|T|

.

Like nodes, each link then contributes to m proportionally 
to its presence in S: uv in V ⊗ V  accounts for 1 link only if 
it is present in S all the time.

Finally, we define the node and link contributions of a 
time instant t as kt =

|V
t
|

|V|  and lt =
|E

t
|

|V⊗V| , leading to the fol-

lowing definition of the node duration k in S and the link 
duration l in S:

Like the number of nodes n and the number of links m, the 
node duration k may be seen as a duration of S, where each 
time contributes proportionally to the number of nodes pre-
sent at this time, and the link duration l as a duration of S, 
where each time contributes proportionally to the number of 
links present at this time.

Notice that n is the expected value of |V
t
| when one takes 

a random time t in T. Likewise, m, k, and l are the expected 
value of |E

t
| , |T

v
| , and |T

uv
| when one takes a random time 

t in T, a random node v in V or a random pair of nodes in 
V ⊗ V  , respectively.

The following relation also hold: cov (S) =
|W|

|T×V| =
n

|V| =
k

|T| , 

n ⋅ |T| = k ⋅ |V| = |W| , and m ⋅ |T| = l ⋅ |V ⊗ V| = |E|.
For the examples in Fig. 1, we obtain for S the following val-

ues: n =
|T

a
|

10
+

|T
b
|

10
+

|T
c
|

10
+

|T
d
|

10
= 1 + 0.9 + 0.5 + 0.2 = 2.6 

nodes ,  m =
|T

ab
|

10
+

|T
ac
|

10
+

|T
bc
|

10
+

|T
bd
|

10
= 0.3 + 0.3 + 0.3+

0.1 = 1 link, k = 26

4
= 6.5 time units, and l = 10

6
= 1.66... 

time units. For L, we obtain n = 4 nodes, m = 0.7 + 0.3+

0.7 + 0.3 + 0.3 = 2.3 links, k = 10 time units and l = 23

6
=

3.833... time units.
In a link stream L = (T ,V ,E) , by definition T

v
= T  for all 

v in V, and therefore, nv = 1 and n = |V| . Likewise, for all t, 
V
t
= V  , and therefore, kt = 1 and k = |T| . In a graph-equiv-

alent stream, in addition T
uv
∈ {�, T} for all uv in V ⊗ V  and 

E
t
 is the same for all t. Then, the number of nodes and links 

in the stream are equal to the number of nodes and links in 
the corresponding graph.

Notice now that, in a given stream graph, for two nodes 
u and v, such that |T

u
| = |T

v
| both T

u
= T

v
 or T

u
∩ T

v
= � are 

possible, as well as all intermediary situations. This has a 
crucial influence on the possible existence of links between u 
and v, and so on the structure of S. To capture this, we define 
the uniformity of S as follows:

If S has uniformity 1, then we say that it is uniform: for all 
u and v in V, T

u
= T

v
 , i.e., all nodes are present at the same 

times.

k = ∫t∈T

ktdt =
|W|
|V|

and l = ∫t∈T

ltdt =
|E|

|V ⊗ V|
.

⋓(S) =

∑
uv∈V⊗V �Tu ∩ T

v
�

∑
uv∈V⊗V �Tu ∪ T

v
�
.
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We also define for any pair of nodes u and v in V the uni-
formity ⋓(u, v) = |T

u
∩T

v
|

|T
u
∪T

v
| . It measures the overlap between the 

presence times of u and v, thus their ability to be linked 
together.

Given a stream graph S = (T ,V ,W,E) , we define 
S� = (T �,V �,W,E) such that T � = [min{t,∃(t, v) ∈ W}, max

{t,∃(t, v) ∈ W}] and V � = {v,∃(t, v) ∈ W} . We then define 
the compactness of S as follows:

If S has a compactness of 1, then we say that it is compact: 
for all v in V, T

v
= [b, e] ⊆ T  , i.e., the presence times of all 

nodes is the same interval of T.
For the examples in Fig. 1, S has uniformity 

 and compactness c(S) = cov(S) =
26

40
 , since on this particular 

case, T � = T  and V � = V  , and therefore, S� = S.
If S is a link stream, then its uniformity and compactness 

are necessarily equal to 1, like L in Fig. 1.

5 � Density

The density of graph G = (V ,E) is the probability when one 
takes a random element uv in V ⊗ V  that there is a link 
between u and v in E: �(G) = 2m

n(n−1)
 . If n ∈ {0, 1} then �(G) 

is defined to be 0.
We define the density of stream graph S = (T ,V ,W,E) as 

the probability when one takes a random element (t, uv) of 
T × V ⊗ V such that (t, u) and (t, v) are in W, that (t, uv) is in E:

If 
∑

uv∈V⊗V �Tu ∩ T
v
� = ∫

t∈T
�V

t
⊗ V

t
�dt = 0 then we define 

�(S) to be 0.
In other words, the density is the probability when one 

takes a random time and two random nodes such that a link 
may exist between them at this time that the link indeed 
exists. It is the fraction of possible links that do exist.

Notice that 
∑

uv∈V⊗V �Tuv� = ∫
t∈T

�E
t
�dt = �E� . In addi-

tion, 
∑

uv∈V⊗V �Tu ∩ T
v
� = ∫

t∈T
�V

t
⊗ V

t
�dt is related to the 

c(S) =
|W|

|T � × V �|
= cov (S�).

⋓(S) =
|T

a
∩ T

b
| + |T

a
∩ T

c
| + |T

a
∩ T

d
| + |T

b
∩ T

c
| + |T

b
∩ T

d
| + |T

c
∩ T

d
|

|T
a
∪ T

b
| + |T

a
∪ T

c
| + |T

a
∪ T

d
| + |T

b
∪ T

c
| + |T

b
∪ T

d
| + |T

c
∪ T

d
|

=
(4 + 5) + 5 + 2 + 4 + 2 + 0

10 + 10 + 10 + 10 + (4 + 4) + (2 + 5)
=

22

55
= 0.4

𝛿(S) =

∑
uv∈V⊗V �Tuv�∑

uv∈V⊗V �Tu ∩ T
v
�
=

∫
t∈T

�E
t
�dt

∫
t∈T

�Vt ⊗ Vt�dt

a
b
c

0 1 time

a
b
c

0 1 time

Fig. 2   Two stream graphs with n = 2 nodes, m = 1 link, but with dif-
ferent densities: Left: � = 0.75 . Right: � = 1

uniformity ⋓(S) of S, but it cannot be directly derived from 
|T|, |V|, |W|, and |E|.

For S defined in Fig. 1 (left), 
∑

uv∈V⊗V
�T

uv
� = �T

ab
�+

|T
ac
| + |T

bc
| + |T

bd
| = 3 + 3 + 3 + 1 = 10,  

∑
uv∈V⊗V

�T
u
∩

T
v
| = |T

a
∩ T

b
| + |T

a
∩ T

c
| + |T

a
∩ T

d
| + |T

b
∩ T

c
| + |T

b
∩

T
d
| + |T

c
∩ T

d
| = 9 + 5 + 2 + 4 + 2 + 0 = 22 , and we obtain  

�(S) =
10

22
∼ 0.45 . For L defined in this figure (right), 

∑
uv∈V⊗V �Tuv� = 7 + 3 + 7 + 3 + 3 = 23 , 

∑
uv∈V⊗V

�T
u
∩ T

v
�

= |V ⊗ V| ⋅ |T| = 60 and we obtain �(L) = 23

60
∼ 0.38.

Notice that there is in general no relation between the 
density � , the number of nodes n and the number of links m 
in a stream graph, see Fig. 2.

However, the classical graph relation � =
2m

n(n−1)
 holds  

for a link stream L = (T ,V ,E) . Indeed, we then have 
T
u
= T

v
= |T| for all u and v, and n = |V| , which leads to

In addition, �(L) is equal to the average density of Gt : 

, since, in L, Vt = V  for all t.
Finally, if we consider a graph-equivalent stream, then its 

density is equal to the density of the corresponding graph.
In addition to the global concept of density introduced 

above, we define the density of a pair of nodes uv in V ⊗ V  , 
the density of a node v in V, and the density at a time instant 
t in T, respectively, as follows:

𝛿(L) =

∑
uv∈V⊗V �Tuv�∑
uv∈V⊗V �T�

=
2 ⋅

∑
uv∈V⊗V �Tuv�

n ⋅ (n − 1) ⋅ �T�
=

2 ⋅ m

n ⋅ (n − 1)
.

1

|T| �t

𝛿(G
t
)dt =

1

|T| �t

|E
t
|

|V
t
⊗ V

t
|
dt =

1

|T| ⋅ |V ⊗ V| �t

|E
t
|dt

=
∫
t
|E

t
|dt

∫
t
|V

t
⊗ V

t
|dt

= 𝛿(L)
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If |T
u
∩ T

v
| = 0 , 

∑
u∈V ,u≠v �Tu ∩ T

v
� = 0 or |V

t
⊗ V

t
| = 0 , 

respectively, then we define �(uv) , �(v) and �(t) to be 0.
The density of uv is the probability that there is a link 

between u and v whenever this is possible, i.e., when they 
are both present. The density of v is the probability that a 
link between v and any other node exists whenever this is 
possible, and the density of t is equal to �(Gt) , the density of 
the graph Gt , i.e., the probability that a link exists between 
any two nodes present at time t.

For S defined in Fig. 1 (left), for instance, we obtain 
�(ab) =

|T
ab
|

|T
a
∩T

b
| =

3

9
=

1

3
 and �(bd) = |T

bd
|

|T
b
∩T

d
| =

1

2
= 0.5 . We 

also obtain �(d) = |T
da
|+|T

db
|+|T

dc
|

|T
d
∩T

a
|+|T

d
∩T

b
|+|T

d
∩T

c
| =

0+1+0

2+2+0
= 0.25 and 

𝛿(2) =
|E

2
|

|V
2
⊗V

2
| =

2

3⋅2∕2
=

2

3
.

Notice that uvt is strongly related to the concept of  
density: it is the probability that u and v are linked 
together at time t, which is equal to 1 or 0 depending  
on whether (t,  uv) is in E or not. We then have 
�(uv) =

∫
t∈T

uvtdt

∫
t∈T

ut⋅vtdt
 , �(v) =

∑
u∈V ∫

t∈T
uvtdt∑

u∈V ∫
t∈T

ut⋅vtdt
 , and 𝛿(t) =

∑
uv∈V⊗V uvt∑
uv∈V⊗V ut⋅vt

 . 

Likewise, 𝛿(S) =
∑

uv∈V⊗V ∫
t∈T

uvtdt∑
uv∈V⊗V ∫

t∈T
ut⋅vtdt

.

In a link stream L = (T ,V ,E) , T
v
= T  for all v and V

t
= V  

for all t, and therefore, �(uv) = |T
uv
|

|T| = muv , 𝛿(t) =
|E

t
|

|V⊗V| = lt , 

and as shown above, �(L) is equal to the average of �(t) . In a 
graph-equivalent stream, �(uv) ∈ {0, 1} , and �(t) is equal to 
the density of the induced graph.

The density �(v) of node v is strongly related to its degree, 
that we introduce in Sect. 8.

6 � Sub‑streams and clusters

A graph G� = (V �,E�) is a sub-graph of G = (V ,E) if V ′ ⊆ V  
and E′ ⊆ E . This is denoted by G′ ⊆ G.

𝛿(uv) =
�T

uv
�

�T
u
∩ T

v
�
, 𝛿(v) =

∑
u∈V ,u≠v �Tuv�∑

u∈V ,u≠v �Tu ∩ T
v
�

and

𝛿(t) =
�E

t
�

�V
t
⊗ V

t
�
.

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 3   Example of cluster with its induced sub-stream. Left: the clus-
ter, displayed in blue, is C = ([1, 4] ∪ [5, 8]) × {a} ∪ [5, 9] × {b}
∪[3, 8] × {c} . Right: the sub-stream induced by C is S(C) = ([0, 10],

{a, b, c, d},C,E(C)) with E(C) = [6, 8] × {ab} ∪ [3, 4] × {ac} ∪ [5, 8]
×{bc}

Given two graphs G = (V ,E) and G� = (V �,E�) , their 
intersection is the graph G ∩ G� = (V ∩ V �,E ∩ E�) . It is their 
largest (with respect to inclusion) common sub-graph. Their 
union is G ∪ G� = (V ∪ V �,E ∪ E�) ; it is the smallest graph 
having both G and G′ for sub-graphs.

A cluster C of G = (V ,E) is a subset of V. The set of links 
between nodes in C is E(C) = {uv ∈ E, u ∈ C and v ∈ C} , 
and G(C) = (C,E(C)) denotes the sub-graph of G induced 
by C.

Given a cluster C, the properties of its induced sub-graph 
are said to be the properties of C; for instance, �(C) denotes 
�(G(C)).

We say that a stream S� = (T �,V �,W �,E�) is a sub-stream 
of S = (T ,V ,W,E) if T ′ ⊆ T  , V ′ ⊆ V  , W ′ ⊆ W  , and E′ ⊆ E . 
We denote this by S′ ⊆ S.

Given two stream graphs S = (T ,V ,W,E) and 
S� = (T �,V �,W �,E�) , their intersection is the stream graph 
S ∩ S� = (T ∩ T �,V ∩ V �,W ∩W �,E ∩ E�) . It is their largest 
(with respect to inclusion) common sub-stream. Their union 
is S ∪ S� = (T ∪ T �,V ∪ V �,W ∪W �,E ∪ E�) ; it is the small-
est stream graph having both S and S′ for sub-streams.

We define a cluster C of S = (T ,V ,W,E) as a subset of 
W. We define the set of links between nodes involved in 
C as E(C) = {(t, uv) ∈ E, (t, u) ∈ C and (t, v) ∈ C} , and we 
denote by S(C) = (T ,V ,C,E(C)) the sub-stream of S induced 
by C, see Fig. 3.

Given a cluster C, we say that the properties of its induced 
sub-stream are the properties of C; for instance, we denote 
�(S(C)) by �(C) . For any v in V, we also denote by TC

v
 the 

set of times at which v is in C, and for any u and v in V, we 
denote by TC

uv
 the set of time instants at which u and v are in 

C and are linked together. For any t in T, we denote by VC
t

 
the set of nodes present at time t in C and by EC

t
 the set of 

links between nodes in C at time t.
In Fig. 3, for instance, TC

a
= [1, 4] ∪ [5, 8] , TC

b
= [5, 9] , 

TC
c
= [3, 8] and TC

d
= � ; TC

ab
= [6, 8] , TC

ac
= [3, 4] ∪ {5} , and 

TC
bc
= [5, 8] ; VC

7
= {a, b, c} and EC

7
= {ab, bc}.

Notice that the sub-streams of S induced by its clusters are 
defined over the same set of nodes V and the same time space 
T as S. We, therefore, define the sub-stream of S induced by a 
subset V ′ of V as the sub-stream induced by the node cluster 
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(T × V �) ∩W  , i.e., (T ,V �, (T × V �) ∩W, (T × V � ⊗ V �) ∩ E) 
of S. Likewise, we define the sub-stream of S induced by a 
subset T ′ of T as the sub-stream induced by (T � × V) ∩W  , 
i.e., (T �,V , (T � × V) ∩W, (T � × V ⊗ V) ∩ E) of S.

For the example in Fig. 3, for instance, the sub-stream 
induced by {a, b, c} and [6,  9] is ([6, 9], {a, b, c}, [6, 9]×
{a, b, c},E�) with E� = [6, 9] × {ab} ∪ [6, 8] × {bc}.

7 � Cliques

A clique of graph G is a cluster C of G of density 1. In other 
words, all pairs of nodes involved in C are linked together 
in G. A clique C is maximal if there is no other clique C′ 
such that C ⊂ C′.

We define a clique of stream graph S as a cluster C of S 
of density 1. In other words, all pairs of nodes involved in C 
are linked in S whenever both are involved in C. A clique C 
is maximal if there is no other clique C′ , such that C ⊂ C′.

We say that a clique is compact (resp. uniform) if its 
induced sub-stream is compact (resp. uniform). It is then fully 
defined by a set of nodes and a time interval (resp. a time set) 
meaning that all pairs of nodes are linked together at all these 
times.

For instance, in Fig. 4, the cluster [0, 1] × {a, b} is a com-
pact clique. However, it is not maximal, as it is included 
in [0, 4] × {a, b} , which is a maximal compact clique. 
This clique intersects another maximal compact clique, 
[2, 4] × {a, b, c} . There is a unique other maximal com-
pact clique involving three nodes, [8, 9] × {b, c, d} . The 

maximal compact clique [0, 4] × {a, b} is not a maximal 
clique, because it is, for instance, included in the clique 
[0, 4] × {a, b} ∪ [6, 9] × {c, d} (which is not compact). This 
clique is not maximal either, as it is, for instance, included 
in the clique [0, 4] × {a, b} ∪ [6, 9] × {c, d} ∪ [5, 6] × {d}.

A clique in S does not in general induce a clique in G(S): 
for instance, [0, 1] × {a, b} ∪ [8, 9] × {c, d} is a clique for the 
example in Fig. 4, but {a, b, c, d} is not a clique in its induced 
graph. Instead, for any [b, e] ⊆ T  and X ⊆ V  , if [b, e] × X is 
a compact clique in S, then X necessarily is a clique in G(S). 
However, if [b, e] × X is maximal in S, then X is not necessar-
ily maximal in G(S), see, for instance, [0, 4] × {a, b} in Fig. 4 
( {a, b} is a clique in G(S), but it is included in its other clique 
{a, b, c} ). Conversely, if a cluster X of G(S) is a clique, then, 
in general, there is no [b, e], such that [b, e] × X is a compact 
clique in S, see Viard et al. (2016) for a more detailed dis-
cussion and practical evidence of the differences between 
maximal cliques in streams and their induced graphs. Finally, 
if one considers a graph-equivalent stream, then its maximal 
cliques are necessarily compact, and they correspond exactly 
to the maximal cliques of its induced graph.

8 � Neighborhood and degree

In the graph G = (V ,E) , the neighborhood N(v) of v ∈ V  is 
the cluster N(v) = {u, uv ∈ E} , and the degree d(v) of v is the 
number of nodes in this cluster, which is equal to the number 
of links involving v. We then have 

∑
v∈V d(v) = 2 ⋅ m.

The average degree in G is d(G) = 1

n
⋅
∑

v∈V d(v) , and 
the following relation between density and average degree 
holds: �(G) = d(G)

n−1
.

In a stream graph S = (T ,V ,W,E) , we define the neigh-
borhood of a node v as the following cluster:

and the degree d(v) of v as the number of nodes in this 
cluster. As with graphs, this is equal to the number of links 
involving v:

N(v) = {(t, u), (t, uv) ∈ E}

d(v) =
|N(v)|
|T|

=
∑

u∈V

|T
uv
|

|T|
=
∑

u∈V

muv.

a
b
c
d

0 2 4 6 8 time

Fig. 4   Examples of maximal compact cliques. We display the two maxi-
mal compact cliques involving three nodes of the link stream L of Fig. 1 
(right): [2, 4] × {a, b, c} and [7, 8] × {b, c, d} . Its other maximal compact 
cliques are [0, 4] × {a, b} , [6, 9] × {a, b} , [2, 5] × {a, c} , [1, 8] × {b, c} , 
[7, 10] × {b, d} , [6, 9] × {c, d} (involving two nodes each)

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 5   Two examples of neighborhoods and degrees of nodes. We dis-
play in black the links involving the node under concern, and in grey 
the other links. Left: N(a) = ([1, 3] ∪ [7, 8]) × {b} ∪ [4.5, 7.5] × {c} is 

in blue, leading to d(a) = 3

10
+

3

10
= 0.6 . Right: N(c) = [2, 5] × {a}∪

[1, 8] × {b} ∪ [6, 9] × {d} is in blue, leading to d(c) = 13

10
= 1.3
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With this definition, each node u contributes to the degree of 
v proportionally to the duration of its links with v, see Fig. 5 
for an illustration.

As with graphs, the sum of the degree of all nodes in S is 
equal to twice the number of links in S: 

∑
v∈V d(v) =

∑
v∈V∑

u∈V

�T
uv
�

�T� = 2 ⋅ m.

We now define the average node degree of S as follows:

In this definition, the contribution of each node v to the aver-
age node degree of S is weighted by its presence duration 
|T

v
|.
As a consequence, there is no direct relation between the 

average node degree and the total number of links of S, as 
illustrated in Fig. 6. Likewise, the usual relation between 
average node degree and density does not hold in general.

Instead, in a link stream L = (T ,V ,E) , we have nv = 1  
for all v, and therefore, the following relation holds: 
d(L) =

1

n
⋅
∑

v∈V d(v) =
2⋅m

n
 . We have seen in Sect.  5 that 

�(L) =
2⋅m

n⋅(n−1)
 ; therefore, the relation �(L) = d(L)

n−1
 also holds. 

Going further, we have �(v) =
∑

u∈V ,u≠v �Tuv�∑
u∈V ,u≠v �T�

=
�N(v)�

(�V�−1)⋅�T� =
d(v)

n−1
.

Finally, if we consider a graph-equivalent stream, then the 
degree of any of its nodes is equal to the degree of this node 
in the corresponding graph, and the average node degree is 
preserved.

The definitions above generalize graph concepts to stream 
graphs. However, the temporal features of stream graphs 
make it natural to consider other generalizations that we 
now introduce.

Given a stream graph S = (T ,V ,W,E) , we define 
the instantaneous neighborhood of a node v at time t as 
Nt(v) = {u, (t, uv) ∈ E} , and the instantaneous degree of  v 
at time t as the number of nodes in Nt(v) . If v is not involved 
in S at time t, then Nt(v) = � and dt(v) = 0 . If v is involved 
in S at time t, then Nt(v) and dt(v) are nothing, but the neigh-
borhood and the degree of v in the graph Gt induced by S 
at time t.

d(V) =
1

n
⋅
∑

v∈V

nv ⋅ d(v) =
∑

v∈V

|T
v
|

|W|
⋅ d(v).

The degree of v is exactly the average instantaneous 
degree of v at time t for all t in T: d(v) = ∫

t

dt(v)

|T| dt . It is also 

natural to consider the average only for t in T
v
 , which is  

the expected instantaneous degree of v when it is involved 
in S; we call it the expected degree of v and denote it by 
d̂(v) = ∫

t

dt(v)

|T
v
| dt.

We also consider these two ways to average instantaneous 
degrees over nodes; either over all nodes in V, leading to ∑

v

dt(v)

�V�  which we call the degree at t and denote by d(t), by 

analogy with d(v) = ∫
t

dt(v)

|T| dt ; or over nodes in Vt only, lead-

ing to d̂(t) =
∑

v
1

�Vt�
dt(v) , the expected degree at time t, 

which is exactly the average degree of Gt.
Let us now consider ways to average d(v) and d(t) over 

S as a whole.
The weighted average of d(v), 

∑
v∈V

�T
v
�

�W�d(v) =
1

n

∑
v∈V

n
v
⋅ d(v) , is the average node degree of S, denoted by d(V) 

and introduced above. Similarly, we introduce the weighted 
average of d(t), ∫

t

|V
t
|

|W|d(t)dt =
1

k
∫
t
kt ⋅ d(t)dt , which we call 

the average time degree of S and denote by d(T). Notice that, 
in general, d(V) ≠ d(T) , as illustrated in Fig. 7.

For averages over all V and T, we obtain a unique quan-
tity: 

∑
v

1

�V�d(v) =
2�E�
�T×V� =

∫
t

1

�T�d(t)dt , which is the average 

instantaneous degree of v at time t for a random (t, v) in 
T × V  ; we call it the degree of S and denote it by d(S).

Finally, it is also natural to consider the average instanta-
neous degree for (t, v) in W only: 

∑
v
∫
t
d
t
(v)dt

�W� =
∫
t

∑
v
d
t
(v)dt

�W� =

2|E|
|W| =

2m

n
 . We call it the average expected degree of S and 

denote it by d̂(S).
In a link stream, we have d(v) = d̂(v) , d(t) = d̂(t) , and 

d(V) = d(T) = d(S) = d̂(S) . In a graph-equivalent stream, 
we have in addition d(t) = d(V) , and, as already said, d(V) 
is the average degree in the corresponding graph and d(v) is 
the degree of v in this graph.

9 � Clustering coefficient and transitivity ratio

In the graph G = (V ,E) , the clustering coefficient of a given 
node v is the density of its neighborhood: cc(v) = �(N(v)) . In 
other words, cc(v) is the probability that two randomly cho-
sen neighbors of v are linked together in G. By definition of 
the density, if d(v) < 2 then cc(v) = 0 . The clustering coef-
ficient of G as a whole is the average clustering coefficient 
of all its nodes: cc(G) = 1

n
⋅
∑

v∈V cc(v) . It is the probability 
when one takes a random node v that this node has more 
than one neighbor and that two of its neighbors chosen at 
random are linked together.

a
b
c

0 1 2 time

a
b
c

0 1 2 time

Fig. 6   These two stream graphs have density 1 (all possible links exist), 
2 nodes, and 1 link. However, the leftmost one has average node degree 
d(V) =

|Ta|
|W| d(a) +

|Tb|
|W| d(b) +

|Tc|
|W| d(c) =

2

8
0.5 +

4

8
1 +

2

8
0.5 = 0.75 and 

the rightmost one has average node degree 1
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and (t, vw) ∈ E . We denote by ∨ the set of all connected 
triplets of S. If in addition, there is a link between u and w at 
time t, i.e., (t, uw) ∈ E , then we say that (t, (u, v, w)) is a 
triangle and we denote the set of all triangles of S by ▿ . We 
define the transitivity ratio tr(S) of S as the probability, when 
one takes a random connected triplet, that it is a triangle: 
tr(S) =

|▿|
|∨|.

In Fig. 8, for instance, the set ∨ of all connected triplets 
contains [2, 4] × {(b, a, c), (c, a, b)} , because for all t in [2, 4], 
the links (t, ba) = (t, ab) and (t, ac) = (t, ca) are in E. The set 
▿ of all triangles also contains [2, 4] × {(b, a, c), (c, a, b)} , 
since for all t in [2, 4], the link (t, bc) = (t, cb) also is in E. 
This leads to 

 and 

. We thus obtain tr(S) = 2⋅6+1⋅6

2⋅2+(3+2)⋅2+1⋅2+2⋅2+3⋅2+2⋅2+2⋅2
=

9

17
∼0.52

.
In a link stream L = (T ,V ,E) , nv = 1 for all v, and there-

fore, cc(V) = 1

n

∑
v cc(v) . In a graph-equivalent stream, cc(v) 

in the stream is equal to cc(v) in the corresponding graph G, 
and cc(V) is equal to cc(G). Likewise, the transitivity ratio 
of a graph-equivalent stream is equal to the one of its cor-
responding graph.

Like with degrees in Sect. 8, the temporal features of 
stream graphs make it natural to consider other generaliza-
tions of clustering coefficient that we now introduce.

Given a stream graph S = (T ,V ,W,E) , we define the 
instantaneous clustering coefficient of v at time t as 
cct(v) =

∑
uw vut⋅vwt⋅uwt∑

uw vut⋅vwt

 . If v is not involved in S at time t, then 

cct(v) = 0 . If v is involved in S at time t, then cct(v) is exactly 
the clustering coefficient of v in Gt.

Like for degrees, it is natural to consider the following 
ways to average the instantaneous clustering coefficient: 
∫
t

cct(v)

|T
v
| dt , ∫t cct(v)

|T| dt , 
∑

v

cct(v)

�Vt�
= cc(Gt) , and 

∑
v

cct(v)

�V� .

Notice that cc(v) ≠ ∫
t

cct(v)

|T| dt , but cc(v) is related to cct(v) 

by: cc(v) =
∑

uw
�T

vu
∩T

vw
∩T

uw
�

∑
uw

�Tvu∩Tvw�
=

∑
uw

∫
t
vut ⋅vwt ⋅uwtdt∑

uw
∫
t
vut ⋅vwtdt

=
∫
t
cct(v)

∑
uw

vut ⋅vwtdt

∫
t

∑
uw

vut ⋅vwtdt
 . 

It is then natural to define cc(t) as such: cc(t) =∑
v
cc

t
(v)

∑
uw

vu
t
⋅vw

t∑
v

∑
uw

vu
t
⋅vw

t

 , which is exactly tr(Gt).

∨ = [2, 4] × {(b, a, c), (c, a, b)} ∪ ([1, 4] ∪ [6, 8]) × {(a, b, c), (c, b, a)} ∪ [7, 8] × {(c, b, d), (d, b, c)} ∪ [7, 9]

× {(a, b, d), (d, b, a)} ∪ [2, 5] × {(a, c, b), (b, c, a)} ∪ [6, 8] × {(b, c, d), (d, c, b)} ∪ [7, 9] × {(b, d, c), (c, d, b)}

▿ = [2, 4] × {(b, a, c), (c, a, b), (a, b, c), (c, b, a),

(a, c, b), (b, c, a)} ∪ [7, 8]

× {(c, b, d), (d, b, c), (b, c, d), (d, c, b), (b, d, c), (c, d, b)}

a
b
c

0 2 4 6 8 time

Fig. 7   Simple stream graph S = (T ,V ,W,E) such that d(V) ≠ d(T) . 
Indeed, we compute d(V) with n = 2.5 , na = nb = 1 , nc = 0.5 , 
d(a) = 0.5 , d(b) = 1 , and d(c) = 0.5 , leading to d(V) = 1

n

∑
v∈V nv⋅

d(v) =
1

2.5
(1 ⋅ 0.5 + 1 ⋅ 1 + 0.5 ⋅ 0.5) = 0.7, and we compute d(T) with 

k =
25

3
 , kt = 1 for t ∈ [0, 5] , kt =

2

3
 for t ∈]5, 10] , and d(t) = 2

3
 for all 

t, leading to d(T) = 1

k
∫
t
k
t
⋅ d(t)dt =

3

25
(∫ 5

0
1 ⋅

2

3
dt + ∫ 10

5

2

3
⋅
2

3
dt) =

3

25
(5 ⋅

2

3
+ 5 ⋅

4

9
dt) =

3

25
⋅
50

9
=

2

3

In G, the triplet (u, v, w) in V × V × V  with u ≠ v ≠ w is 
a connected triplet if there is both a link between u and v 
and between v and w, i.e., uv ∈ E and vw ∈ E . The set of 
all connected triplets of G is denoted by ∨ . If in addition, 
there is a link between u and w, i.e., uw ∈ E , then (u, v, w) 
is a triangle and the set of all triangles of G is denoted by 
▿ . The transitivity ratio of G is the probability, when one 
takes a random connected triplet, that it is a triangle: 
tr(G) =

|▿|
|∨|.

In a stream graph S = (T ,V ,W,E) , we define the clus-
tering coefficient of a given node v as the density of its 
neighborhood:

In other words, cc(v) is the probability when one takes two 
random neighbors u and w of v at time t, i.e., a random 
(t, uw) in T × V ⊗ V  , such that (t, vu) and (t, vw) are in E, 
that u is linked to w in S at time t, i.e., that (t, uw) is in E. By 
definition of density, if there is no such triplet then cc(v) = 0 , 
see Fig. 8 for an illustration.

We define the node clustering coefficient of S as the aver-
age clustering coefficient of all its nodes, weighted by their 
presence in S:

In S, we say that (t,  (u,  v,  w)) in T × (V × V × V) with 
u ≠ v ≠ w is a connected triplet if at time t there is both a 
link between u and v and between v and w, i.e., (t, uv) ∈ E 

cc(v) = 𝛿(N(v)) =

∑
uw∈V⊗V �Tvu ∩ T

vw
∩ T

uw
�

∑
uw∈V⊗V �Tvu ∩ T

vw
�

.

cc(V) =
1

n
⋅
∑

v∈V

nv ⋅ cc(v) =
∑

v∈V

|T
v
|

|W|
⋅ cc(v).
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One may then consider the following ways to average cc(v) 
and cc(t): 

∑
v

1

�V�cc(v) , ∫t 1

|T|cc(t)dt , cc(V) =
∑

v

�T
v
�

�W�cc(v) , 

cc(T) = ∫
t

|V
t
|

|W|cc(t)dt , and cc(S) = ∫
t

1

�T�
∑

v

cc
t
(v)

�V� dt =
∑

v

1

�V�

∫
t

cc
t
(v)

�T� dt =
1

�T×V�
∑

v
∫
t
cc

t
(v)dt , thus introducing the time 

clustering coefficient of S, cc(T), and the clustering coefficient 
of S, cc(S), by extending the definition of cc(V), like we did 
for d(T) and d(S) from d(V) in Sect. 8.

Finally, notice that cc(t), cc(v), and tr(S) may be obtained 
from the definition of cct(v) =

∑
uw vut⋅vwt⋅uwt∑

uw vut⋅vwt

 as follows: 
∑

v

∑
uw vut⋅vwt⋅uwt∑

v

∑
uw vut⋅vwt

= cc(t)  ;  ∫
t

∑
uw vut⋅vwt⋅uwtdt

∫
t

∑
uw vut⋅vwtdt

= cc(v)  ;  a n d 
∫
t

∑
v

∑
uw vut⋅vwt⋅uwtdt

∫
t

∑
v

∑
uw vut⋅vwtdt

= tr(S).

10 � Neighborhoods and degrees 
in and of clusters

Given a graph G = (V ,E) and a cluster C of G, the inter-
nal neighborhood of v in C is N

C
(v) = N(v) ∩ C = {u ∈ C,

uv ∈ E} a n d  i t s  ex t e r n a l  n e i g h b o r h o o d  i s 
NC(v) = N(v)⧵C = {u ∉ C, uv ∈ E} . The internal and 
external degrees of v in C, denoted, respectively, by dC(v) 
and dC(v) , are the number of nodes in NC(v) and NC(v) . The 
internal neighborhood and the internal degree of v in C are 
also its neighborhood and degree in G(C).

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 8   Example of clustering coefficient. Left: we display in black the 
links involving node c in S, in grey the other links, and in blue the 
neighborhood of c, like in Fig.  5. Right: the sub-stream induced by 

N(c). The clustering coefficient of c in S, cc(c), is the density of this 
sub-stream, S(N(C)). Here, we obtain cc(c) = �(S(N(C))) =

3

5
= 0.6

a
b
c

0 2 4 6 8 time

Fig. 9   Example of cluster (in blue) with its neighborhood (in red).  
C = ([1, 3] ∪ [6, 10]) × {b} ∪ [7, 9] × {a} . We then have N

C
(a) = [7, 9]× 

{b} , NC(a) = � , NC(b) = [7, 9] × {a} , N
C
(b) = ([1, 2] ∪ [9, 10]) × {a}∪ 

[2, 3] × {c} , NC(c) = NC(c) = � , and N(C) = ([1, 2] ∪ [7, 10])×
{a} ∪ [7, 9] × {b} ∪ [2, 3] × {c} . The intersection of N(C) with C 
appears as overlaps between blue and red areas, leading to d(C) =
|[7,9]×{b}∪[7,9]×{a}|

10
= 0.4 and d(C) = |([1,2]∪[9,10])×{a}∪[2,3]×{c}|

10
= 0.3

The average degree in C, denoted by dC(C) or simply 
dC , is the average degree of G(C); it is equal to the average 
internal degree of nodes in C.

The neighborhood N(C)  of  a cluster  C  is 
N(C) = ∪v∈CN(v) . Notice that N(C) may intersect C, but 
it is not included in C in general. The numbers of nodes 
in N(C) ∩ C and N(C)⧵C are often called the internal and 
external degrees of C, respectively, denoted by d(C) and 
d(C).

Given a stream graph S = (T ,V ,W,E) and a cluster C of 
S, we define the internal neighborhood of v involved in C 
as NC(v) = ∪(t,v)∈C{(t, u) ∈ C, (t, uv) ∈ E} and the external 
neighborhood of v as NC(v) = ∪(t,v)∈C{(t, u) ∉ C, (t, uv) ∈ E} . 
Notice that, unlike for graphs, NC(v) ≠ N(v) ∩ C and 
NC(v) ≠ N(v)⧵C , and therefore, NC(v) ∪ NC(v) ≠ N(v) in 
general. Indeed, we take into account the neighbors of v 
only when v is involved in C, see Fig. 9 for an illustration.

We define the internal and external degree of v involved 
in C, denoted, respectively, by dC(v) and dC(v) , as the num-
ber of nodes in NC(v) and NC(v) . The internal neighborhood 
and the internal degree of v are its neighborhood and degree 
in S(C).

We define the average node degree in C, denoted by dC , 
as the average node degree of S(C); it is the average internal 
degree of nodes involved in C, weighted by their presence 
in C: dC =

∑
v

�TC
v
�

�C� dC(v).

We define the neighborhood N(C) of cluster C as 
N(C) = ∪(t,v)∈C{(t, u), (t, uv) ∈ E} , see Fig. 9. Notice that 
N(C) may intersect C, but it is not necessarily included in 
C. We call the numbers of nodes in N(C) ∩ C and N(C)⧵C 
the internal and external degrees of C, respectively, denoted 
by d(C) and d(C).

In a graph-equivalent stream, any compact cluster 
C = TC × VC induces the cluster VC in the corresponding 
graph, and the internal (resp. external) neighborhood of any 
node involved in C is equal to TC times its internal (resp. 
external) neighborhood in VC . Likewise, the neighborhood 
of C in the stream is equal to TC times the neighborhood of 
VC in the graph.
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11 � Relations between clusters and quotient 
stream

Let us consider a family F = (C1,C2,… ,Ck) of k clusters 
of G = (V ,E) . The quotient graph induced by F is the graph 
Q = ({1, 2,… , k},E�) , where ij is in E′ if i ≠ j and there is a 
u in Ci and a v in Cj , such that uv is in E.

Intuitively, the quotient graph captures relations between 
clusters: its nodes are the clusters of the original graph, and 
there is a link between two clusters if they contain nodes that 
are linked together in the original graph.

Notice that, if F = ({v})v∈V , then Q is equivalent to G.
The intra-cluster density �(F) of F is the probability  

when one takes a random pair of distinct nodes in a same 
cluster of F that there is a link between them in G: 
𝛿(F) =

∑
i �(Ci⊗Ci)∩E�∑

i �Ci⊗Ci�
. The inter-cluster density �(F) of F is the 

probability, when one takes a random pair of distinct nodes 
in two different clusters of F, that there is a link between 

them in G: 𝛿(F) =
∑

i≠j �(Ci⊗Cj)∩E�∑
i≠j �Ci⊗Cj�

.

The density �(C) of C is equal to the intra-cluster density 
of the family composed of C alone or the inter-cluster den-
sity of the family (C, C). The external density of C, denoted 
by �(C) , is defined as the inter-cluster density of the family 
(C,V⧵C) . It is the probability when one takes a random node 
u in C and a random node v outside C that there is a link 
between them in G.

Given a family F = (C1,C2,… ,Ck) of k clusters of 
S = (T ,V ,W,E) , we define the quotient stream induced by 
F as the stream graph Q = (T , {1, 2,… , k},W �,E�) , where 
(t, i) is in W ′ when there is a v, such that (t, v) is in Ci , and 
(t, ij) is in E′ when i ≠ j and there is a (t, u) in Ci and (t, v) 
in Cj , such that (t, uv) is in E, see Fig. 10 for an illustration.

Intuitively, the quotient stream captures relations between 
clusters: its nodes are the clusters of the original stream, and 
there is a link between two clusters at a given time instant 
if they contain nodes that are linked together in the original 
stream at this time instant. In Fig. 10, for instance, there is a 
link between clusters A and B from time 9 to time 10 in the 
quotient stream, because during this time interval, a node of 
A and a node of B (b and d, respectively) are linked together 
in the original stream.

Notice that if F = (T
v
× {v})v∈V , then Q is equivalent to S.

The intra-cluster density �(F) of F is the probability, 
when one takes a random element (t, uv) of T × V ⊗ V , such 
that (t, u) and (t, v) are in a same cluster of F, that there is a 
link (t, uv) in S:

�(F) =

∑
i

∑
u≠v �T

Ci

u ∩ T
Ci

v ∩ T
uv
�

∑
i

∑
u≠v �T

Ci

u ∩ T
Ci

v �
.

The inter-cluster density �(F) of F is the probability, when 
one takes a random element (t, uv) of T × V ⊗ V  , such that 
(t, u) and (t, v) are in different clusters of F, that there is a 
link (t, uv) in S:

As with graphs, the density �(C) of C is equal to the intra-
cluster density of the family composed of C alone, or the 
inter-cluster density of the family (C, C). We define the 
external density of C, denoted by �(C) , as the inter-cluster 
density of the family (C,W⧵C) . It is the probability when 
one takes a random (t, u) in C and a random (t, v) in W but 
outside C that there is a link (t, uv) between them in S.

12 � Line streams

The line graph Ĝ of G = (V ,E) is the graph Ĝ = (E, Ê) , 
where each node is a link of G and two nodes are linked 
together if they have an extremity in common: if A = uv 
and B = xy are two elements of E, then AB is in Ê if 
{u, v} ∩ {x, y} ≠ � . In general, ̂̂G ≠ G.

The set of links in G involving a given node v corresponds 
to a cluster in Ĝ and this cluster has density 1. If, instead, we 
consider a set C of independent links (i.e., if uv and xy are in 
C, then {u, v} ∩ {x, y} = � ), then the corresponding cluster in 
Ĝ has density 0. Finally, if we consider a clique of G of more 
than three nodes, then the cluster of Ĝ corresponding to the 
links of this clique has density lower than 1, and it tends to 
0 when the size of the clique grows.

We define the line stream Ŝ of S = (T ,V ,W,E) as the 
stream graph ̂S = (T , V̂ , Ŵ, Ê) . The set ̂V = {uv,∃(t, uv) ∈ E} 
is the set of links in G(S). The set Ŵ  is such that each node 
A = uv is present in Ŝ during the times at which the link uv 
is present in S, leading to Ŵ = E . Finally, for all A = uv and 
B = xy in V̂  , there is a link (t, AB) in Ê if {u, v} ∩ {x, y} ≠ � 
and {(t, uv), (t, xy)} ⊆ E . In other words, A and B are linked 
together at time t if they have an extremity in common and 
are both present at time t, see Fig. 11 for an illustration. As 
with graphs, in general, ̂̂S ≠ S.

The set of links in S involving a given node v corresponds 
to a cluster in Ŝ , and this cluster has density 1. If, instead, 
we consider a set C of independent links (i.e., if (t, uv) and 
(s, xy) are in C, then {u, v} ∩ {x, y} = � or t ≠ s ), then the 
corresponding cluster in Ŝ has density 0. As with graphs, 
the density of a cluster of Ŝ corresponding to the links of a 
clique of S tends to 0.

For all t, the graph induced by Ŝ at time t is the line 
graph of Gt . As a consequence, the line stream of a graph-
equivalent stream is a graph-equivalent stream too, and its 

�(F) =

∑
i≠j

∑
u≠v �T

Ci

u ∩ T
Cj

v ∩ T
uv
�

∑
i≠j

∑
u≠v �T

Ci

u ∩ T
Cj

v �
.



	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 12 of 29

corresponding graph is the line graph of the graph corre-
sponding to the initial stream.

13 � k‑cores

The k-core of the graph G = (V ,E) is its largest cluster 
Ck ⊆ V  , such that for all v in Ck , d(v) ≥ k in the sub-graph 
G(Ck) of G induced by Ck . This cluster is unique for a given 
k and Ck+1 ⊆ Ck for all k. The k-core may be computed by 
iteratively removing from G all elements of V of degree 
lower than k. The 0-core of G is V, and the k-core contains 
all cliques of size k + 1 of G. The core number of v in V is 
the largest k, such that v ∈ Ck . The k-shell of G is Ck⧵Ck+1.

We define the k-core of the stream graph S = (T ,V ,W,E) 
as its largest cluster Ck ⊆ W  , such that for all (t, v) in Ck , 
dt(v) ≥ k in the sub-stream S(Ck) of S induced by Ck , see 
Fig. 12 for an illustration.

This cluster is unique for a given k, and Ck+1 ⊆ Ck for 
all k. The k-core may be computed by iteratively removing 
from S all elements of W of instantaneous degree lower than 
k. The 0-core of S is W, and the k-core contains all compact 
cliques of S involving k + 1 nodes. We define the core num-
ber of (t, v) in W as the largest k, such that (t, v) ∈ Ck , and 
the k-shell of S as Ck⧵Ck+1.

Notice that, for all t, the set of nodes v, such that 
(t, v) ∈ Ck is exactly k-core of Gt . As a consequence, the 
k-core of a graph-equivalent stream is T times the k-core of 
the corresponding graph.

14 � Paths and distances

In a graph G = (V ,E) , a path P from u ∈ V  to v ∈ V  is a 
sequence (u0, v0) , (u1, v1) , … , (uk, vk) of elements of V × V  , 
such that u0 = u , vk = v , and for all i, ui = vi−1 and uivi ∈ E . 
The path P involves u, v, and vi for all i ∈ [1, k − 1] , and the 
integer k + 1 is the length of P. If there exists a path from 
u to v in G, then v is reachable from u, which is denoted by 
u— v . Reachability is symmetric ( u— v implies v— u ) 
and transitive ( u— v and v— w implies u— w).

A subpath Q of P is a subsequence (ui, vi) , (ui+1, vi+1) , … , 
(uj, vj) of the sequence defining P, with j ≥ i . Then, Q is a 
path from ui to vj.

The path P is a cycle if k > 0 and u = v . In other 
words, it is a non-empty path from v to itself. If P has 
no subpath that is a cycle, then P is a simple path. If P 
is a cycle and has no subpath other than P itself that is a 
cycle, then P is a simple cycle. If there exists no simple 
cycle in G, then G is acyclic. If Q is a subpath of P and 
is a cycle from ui to vj (hence, vi−1 = ui = vj = uj+1 ), then 
P� = (u0, v0),… , (ui−1, vi−1), (uj+1, vj+1),… , (uk, vk) also is a 
path from u to v. If one iteratively removes the cycles of P in 
this way, one eventually obtains a simple path from u to v.

The path P is a shortest path from u to v if there is no 
path in G of length lower than k. Then, k is called the dis-
tance between u and v and it is denoted by �(u, v) . If there 
is no path between u and v, then their distance is infinite. 
The diameter of G is the largest finite distance between two 
nodes in V.

In a stream graph S = (T ,V ,W,E) , a path P from 
(�, u) ∈ W to (�, v) ∈ W is a sequence (t0, u0, v0) , (t1, u1, v1) , 
… , (tk, uk, vk) of elements of T × V × V  , such that u0 = u , 
vk = v , t0 ≥ � , tk ≤ � , for all i, ti ≤ ti+1 , vi = ui+1 , and 
(ti, uivi) ∈ E , [𝛼, t0] × {u} ⊆ W  , [tk,𝜔] × {v} ⊆ W  , and for 
all i, [ti, ti+1] × {vi} ⊆ W .

We say that P involves (t0, u) , (tk, v) , and (t, vi) for all 
i ∈ [1, k − 1] and t ∈ [ti, ti+1] . We say that path P starts at t0 , 
arrives at tk , has length k + 1 and duration tk − t0 , see Fig. 13 
for an illustration.

If there exists a path from (�, u) to (�, v) in S, we say 
that (�, v) is reachable from (�, u) , which we denote by 
(�, u) ⤏ (�, v) . Notice that reachability is not symmetric: if 
(�, u) ⤏ (�, v) , then in general, (�, v) ⤏̸ (�, u) (in particular, 
this is always true if � ≠ � ). We say that v is reachable from 
u if there exists � and � , such that (�, u) ⤏ (�, v) , which 
we also denote by u ⤏ v . Reachability is not symmetric in 
this case either: in Fig. 13, for instance, d ⤏ c (through P1 ) 
but c ⤏̸ d . Furthermore, unlike in graphs, reachability is 
not transitive: in Fig. 13, for instance, c ⤏ a and a ⤏ d but 
c ⤏̸ d . We discuss reachability in more details and we give 
more complex examples in Sect. 15.

a
b
c
d

0 2 4 6 8 time

A
B
C

0 2 4 6 8 time

Fig. 10   Example of quotient stream induced by a family of clus-
ters. Left: a stream graph and a family F = (A,B,C) of clusters with 
A = [0, 3] × {a} ∪ [7, 10] × {b} (in red), B = [2, 6] × {b} ∪ [8, 10] × {d} 
(in blue), and C = [3, 8] × {c} ∪ [0, 5] × {d} (in green). Right: the 

induced quotient stream. For instance, there is a link between A and C 
from time 7 to time 8, because there is a link between b and c at these 
times, and b is in A and c is on C at these times



Social Network Analysis and Mining (2018) 8:61	

1 3

Page 13 of 29  61

A subpath Q of path P is a subsequence (ti, ui, vi) , 
(ti+1, ui+1, vi+1) , … , (tj, uj, vj) of the sequence defining P, with 
j ≥ i . Then, Q is a path from (ti, ui) to (tj, vj) . In Fig. 13, 
for instance, Q1 = (5, a, c) , Q2 = (3, b, a), (7.5, a, b) and 
Q3 = (5, a, c), (6.5, c, b), (7.5, b, a) are subpaths of P1 , P2 , 
and P3 , respectively.

The path P is a cycle if u = v and [𝛼,𝜔] × {v} ⊆ W  . In 
other words, it is a path from v at time � to itself at time � , 
such that v is present at all times from � to � . This means 
that there is a path of length and duration 0 (i.e., the empty 
sequence) from (�, v) to (�, v) in S, which makes stream 
cycles similar to graph cycles: they are non-empty paths 
equivalent to the empty path. For instance, Q3 defined above 
is a cycle, but Q2 is not, since b is not present from time 3 
to time 7.5.

If P has no subpath that is a cycle, then we say that P is a 
simple path. If P is a cycle and has no subpath other than P 
itself that is a cycle, then P is a simple cycle. If there exists 
no simple cycle in S then S is acyclic.

If Q is a subpath of P and is a cycle from (ti, ui) 
to (tj, vj) (hence,  tj ≥ ti  ,  vi−1 = ui = vj = uj+1 ,  and 
[ti−1, tj+1] × {ui} ⊆ W  ), then P� = (t

0
, u

0
, v

0
),… , (t

i−1, ui−1,

vi−1), (tj+1, uj+1, vj+1),… , (tk, uk, vk) also is a path from (�, u) 
to (�, v) . If one iteratively removes the cycles of P in this 
way, one eventually obtains a simple path from (�, u) to 
(�, v) . In Fig. 13, for instance, P1 and P2 are simple paths, 
but P3 is not. Instead, the path (2, b, a) obtained by removing 
Q3 from P3 is simple path.

Paths in stream graphs are quite different from paths in 
graphs. First, as already said, their temporal nature makes 
them not symmetric: the existence of a path from u to v does 

not imply the existence of a path from v to u. In addition, 
paths in stream graphs have a length like in graphs but also 
a duration. This leads to the following set of definitions that 
capture different notions for the cost of reaching a node from 
another one.

We say that P is a shortest path from (�, u) to (�, v) if 
it has minimal length, and we call this length the distance 
from (�, u) to (�, v) , denoted by �((�, u), (�, v)) . The distance 
�(u, v) from u to v is the minimal such distance for all � and 
� in T, and a shortest path from u to v is a path from u to v 
with length �(u, v) . For instance, in Fig. 13, the path P1 is a 
shortest path from (1, d) to (9, c), but P2 is not. It is impos-
sible to reach c from d with a shorter path; therefore, P1 also 
is a shortest path from d to c and �(d, c) = 3.

We say that P is a fastest path from (�, u) to (�, v) if it 
has minimal duration, and we call this duration the latency 
from (�, u) to (�, v) , denoted by �((�, u), (�, v)) . The latency 
�(u, v) from u to v is the minimal such latency for all � and � 
in T, and a fastest path from u to v is a path from u to v with 
duration �(u, v) . For instance, in Fig. 13, the path P1 is not a 
fastest path from (1, d) to (9, c), since it has duration 3 and 
there is another path from (1, d) to (9, c) having duration 1.5, 
namely, (3, d, b), (3, b, a), (4.5, a, c). This is a fastest path 
from (1, d) to (9, c) as no faster path exists. Since there is no 
other path from d to c with lower duration, it also is a fastest 
path from d to c and �(d, c) = 1.5.

We denote by �(u, (t, v)) the time to reach (t, v) from u 
at time � as follows: �(u, (t, v)) = � − � , where � ≤ t is 
the minimal value, such that there is a path from (�, u) to 
(�, v) in S and [𝜔, t] ⊆ Tv . We call such a path a foremost 
path from (�, u) to (t, v). For instance, in Fig. 13, the times 
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Fig. 11   Stream graph and its line stream. For instance, the node ab is 
present in the line stream from time 1 to time 6, because a and b are 
linked together from time 1 to time 6 in the original stream. There is 

a link between nodes ab and bc in the line stream at time 4, because 
{a, b} ∩ {b, c} = {b} ≠ � and (4, ab) and (4, bc) are both present in 
the original stream
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Fig. 12   Link stream L, its k- shells and its 2- core. Each color cor-
responds to a k-shell of L: its 0-shell in blue, its 1-shell in green, and 
its 2-shell in red. In this example, the 2-shell also is the 2-core of L. 
For instance, (2,  a) is not in the 2-core, since d2(a) = 1 in L. As a 

consequence, although d2(c) = 2 in L, since (2, c) is linked to (2, a), it 
cannot have instantaneous degree 2 in the 2-core, and therefore, (2, c) 
is not in the 2-core either
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to reach (5, a), (3, b), (10, b), and (5, c) from (1, d) are 
1, 1, 5, and 3.5, respectively. The corresponding foremost 
paths are F5,a = (2, d, b), (2, b, a) , F3,b = (2, d, b) , F10,b in 
{(x, d, b), (y, b, a), (z, a, c), (6, c, b), x ∈ [2, 3], y ∈ [x, 3], z ∈,

[4.5, 6]} , and F5,c in {(x, d, b), (y, b, a), (4.5, a, c), x ∈ [2, 3],

y ∈ [x, 3]}.
In summary, the shortest paths are optimal regarding the 

number of hops, the fastest paths are optimal regarding the 
duration between starting and arrival times, and the foremost 
paths are optimal regarding arrival time. This captures the 
following intuition: if someone (at a given date) wants to go 
to another city by train (and arrive before a given date), this 
person may want to minimize the number of train changes 
(shortest path), the total time he or she spends traveling (fast-
est path), or the time at which he or she will arrive at the 
destination (foremost path).

If there is no path from (�, u) to (�, v) , then we assert 
that �((�, u), (�, v)) , �((�, u), (�, v)) , and �(u, (�, v)) are infi-
nite. We, respectively, define the diameter, the lapse, and 
the flood time of S as the largest finite distance, the largest 
finite latency, and the largest finite time needed to reach an 
element of W from an element of W.

One may combine the notions above by considering, 
for instance, fastest shortest paths (the ones of minimum 
duration among those of minimal length) or shortest fastest 
paths (the ones of minimal length among those of minimal 
duration). For instance, in Fig. 13, the unique fastest short-
est path from (1, d) to (9, c) is (3, d, b), (3, b, a), (4.5, a, c
). The fastest shortest paths from (0, a) to (9, c) are (x, a, c) 
for x in [4.5, 7.5]. The fastest shortest paths from (7.6, a) to 
(9, c) are (x, a, b), (x, b, c) for x in [7.6, 8]. The fastest short-
est paths from (0, b) to (6, b) are (3, b, a), (x, a, c), (6, c, b) 
for x in [4.5, 6]. We discuss shortest fastest paths in more 
details and consider more complex examples in Sect. 17 for 
betweenness definitions.

Many extensions of the concept of path in streams make 
sense and have been considered in the literature (see Sect. 21 
for references). We present two of the most common ones 
below.

First, one may capture the fact that transmission through 
a link has a cost, leading to the following notion: for 
a given � , a � -path P from (�, u) ∈ W  to (�, v) ∈ W  is a 
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Fig. 13   Paths in a stream graph. Left: a path P1 from (1, d) to (9, c): 
P1 = (2, d, b), (3, b, a), (5, a, c) . This path has length 3 and duration 3. 
Center: another path P2 from (1,  d) to (9,  c): P

2
= (2, d, b), (3, b, a),

(7.5, a, b), (8, b, c) . This path has length 4 and duration 6. Right: a path 
P3 from (0,  b) to (8,  a): P3 = (2, b, a), (5, a, c), (6.5, c, b), (7.5, b, a) . 
This path has length 4 and duration 5.5

sequence (t0, u0, v0) , (t1, u1, v1) , … , (tk, uk, vk) of elements 
of T × V × V  , such that u0 = u , vk = v , t0 ≥ � , tk ≤ � − � , 
for all i, ti ≥ ti−1 + � , ui = vi−1 , [ti, ti + 𝛾] × {uivi} ⊆ E , and 
[ti, ti+1] × {vi} ⊆ W  . The paths discussed, since the begin-
ning of this section is equivalent to �-paths with � = 0 , and 
concepts like reachability, cycles, distances, latencies, and 
others may easily be extended to this more general case. 
Notice also that � may be a function of the links, involved 
nodes, time, and other complex features, thus capturing the 
fact that different links may induce different delays, that 
delay may vary over time, etc.

Another natural generalization consists in capturing the 
fact that nodes cannot forward information without delay. 
One then needs to add the constraint ti+1 ≥ ti + � � to the 
previous definition, where � ′ captures the delay induced by 
node forwarding. Similarly, one may want to impose non-
null delays on links and/or nodes but without bounds on 
these delays. The condition above then becomes ti+1 > ti.

If P = (t0, u0, v0),… , (tk, uk, vk) is a path of length 
k in S, then (u0, v0),… , (uk, vk) is a path of length k in 
the induced graph G(S). If it is a cycle in S, it is also a 
cycle in G(S). However, the converse claims are false: 
paths in G(S) do not correspond to paths in S, and in par-
ticular, a node may be reachable from another node in 
G(S) but not in S. Notice also that the distance between 
two nodes in G(S) is bounded by the size of V, whereas 
it is unbounded in S. For instance, if T = [0, x] for a 
given integer x, V = {a, b} , T

a
=
⋃

i=0,1,…[2i, 2i + 1] , 
T
b
=
⋃

i=0,1,…[2i + 1, 2i + 2] , and T
ab

= {i, i = 1,…} , then 
the path (0, a, b), (1, b, a), (2, a, b),… of length x is a shortest 
path from (0, a) to (x, a) or (x, b).

In a link stream L = (T ,V ,E) , since nodes are always pre-
sent, the definition of path is much simpler: a path P from 
(�, u) ∈ T × V  to (�, v) ∈ T × V  is a sequence (t0, u0, v0) , 
(t1, u1, v1) , … , (tk, uk, vk) of elements of T × V × V  , such 
that u0 = u , vk = v , t0 ≥ � , tk ≤ � , ti ≥ ti−1 , ui = vi−1 , and 
(ti, uivi) ∈ E . In this case, as with graphs, the distance is 
bounded by the size of V. In addition, if (�, u) ⤏ (�, v) , then 
for all �′ ≤ � and �′ ≥ � , (��, u) ⤏ (��, v) . However, the 
existence of a path between two given nodes in G(L) still 
does not imply in general the existence of a path between 
them in L. For instance, if T = [0, 1] , V = {a, b, c, d} , and 
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E = {(0, ab), (0, cd), (1, bc)} , then there is a path between a 
and d in G(L) but not in L.

In a graph-equivalent stream, there is a path from a node 
to another one in the stream if and only if there is a path 
between them in the corresponding graph, and the shortest 
paths have the same length. As a consequence, the distance 
between two nodes is the same in the stream and its cor-
responding graph, and a path is a cycle in the stream if and 
only if the corresponding path is a cycle in the graph.

15 � Connectedness and connected 
components

A graph G = (V ,E) is connected if for all u and v in V, there 
is a path between u and v in G. A cluster C is connected if 
G(C) is connected, and it is a maximal connected cluster if 
it is included in no other connected cluster. These clusters 
are called the connected components of G, and they form 
a partition2 of V. The reachability graph of G is the graph 
R = (V ,E�) , where uv ∈ E� if u— v in G. The connected 
components of G are exactly but the cliques of R.

Given a stream graph S = (T ,V ,W,E) , we say that 
(�, v) is weakly reachable from (�, u) , which we denote by 
(�, u) - - - (�, v) , if there is a sequence (t0, u0, v0) , (t1, u1, v1) , 
… , (tk, uk, vk) of elements of T × V × V  , such that u0 = u , 
vk = v , for all i, vi = ui+1 , and (ti, uivi) ∈ E , [𝛼, t0] × {u} ⊆ W , 
[tk,𝜔] × {v} ⊆ W  , and for all i, [ti, ti+1] × {vi} ⊆ W  . This 
sequence is similar to a path from (�, u) to (�, v) , except for 
time constraints: we do not necessarily have t0 ≥ � , ti+1 ≥ ti , 
nor � ≥ tk . As a consequence, weak reachability is symmet-
ric: if (�, u) - - - (�, v) then (�, v) - - - (�, u) . In Fig. 14, for 
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Fig. 14   Weakly connected components of a stream graph. This 
stream graph has four weakly connected components, each displayed 
with a different color: [5, 7] × {a, b} in blue, ([0, 3] ∪ [8, 10]) × {b}∪
[0, 10] × {c} ∪ [3, 7] × {d} in pink, ([0, 2] ∪ [8, 10]) × {d} ∪ [0, 10]×
{e} ∪ [0, 4] × {f , g} in green, and [7, 10] × {f } ∪ [5, 10] × {g} in 
orange

instance, we have (9, d) - - - (3, g) through the sequence (8, 
d, e), (3, e, f), (1, f, g).

We say that S is weakly connected if for all (�, u) and 
(�, v) in W, (�, u) - - - (�, v) . We say that a cluster C ⊆ W is 
weakly connected if its induced sub-stream S(C) is weakly 
connected. It is a weakly connected component of S if it is 
a maximal weakly connected cluster of S. Intuitively, this 
corresponds to the disconnected parts of a drawing of S, see 
Fig. 14 for an illustration.

We say that S = (T ,V ,W,E) is strongly connected if for 
all (�, u) and (�, v) in W with � ≤ � , there is a path from 
(�, u) to (�, v) in S. We say that a cluster C is strongly con-
nected if S(C) is strongly connected. We say that C is a maxi-
mal strongly connected cluster if it is included in no other 
strongly connected cluster, see Fig. 15 for an illustration. 
The examples in this figure show that the maximal con-
nected clusters of S do not in general lead to a partition of W.

If S is strongly connected then there is a path between 
u and v in Gt for all (t,  u) and (t,  v) in W, i.e., Gt is a 
connected graph for all t. However, Gt may be con-
nected for all t, even though S is not strongly connected. 
This happens, for instance, if T = [0, 3] , V = {a, b} , 
W = [0, 1] × {a} ∪ [2, 3] × {b} and E = �.

If S is compact, though it is strongly connected if and 
only if Gt is connected for all t in T. Indeed, as already said, 
if S is strongly connected, then Gt necessarily is connected. 
Conversely, if Gt is connected for all t in T, then S neces-
sarily is strongly connected: assume that there exist (�, v) 
and (�, u) in W with � ≥ � such that (�, v) ⤏̸ (�, u) ; since 
S is compact, (�, v) ⤏ (�, v) , and therefore, this implies 
that (�, v) ⤏̸ (�, u) , which contradicts the fact that G� is 
connected.

A cluster C is a maximal strongly connected compact 
cluster if it is compact, strongly connected, and included in 
no other strongly connected compact cluster. For instance, 
the link stream of Fig. 15 (left) has three maximal strongly 
connected compact clusters, namely [0, 10] × {a, b, c} , 
[0, 10] × {d, e} , and [5, 10] × {a, b, c, d, e} . These clusters 
overlap, and therefore, maximal strongly connected compact 
clusters do not result in partition of W.

If C = TC × VC is a maximal strongly connected com-
pact cluster, then even though VC necessarily is a connected 
cluster of Gt , it is not in general a connected component of 
Gt . In Fig. 15 (left), for instance, {a, b, c} is not a connected 
component of G6 (it is included in the connected component 
{a, b, c, d, e} of G6 ), although [0, 10] × {a, b, c} is a maximal 
strongly connected compact cluster.

This leads to the following definition of strongly con-
nected components of S: a strongly connected component 
C of S is a maximal compact cluster C = TC × VC , such 
that VC is a connected component of Gt for all t in TC . This 
implies that C is a (not necessarily maximal) strongly con-
nected compact cluster. For instance, the maximal strongly 

2  A partition of a set X into k parts is a family (P
1
,P

2
,… ,Pk) of k 

subsets of X, such that ∪iPi = X and Pi ∩ Pj = � for all i ≠ j.
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connected compact cluster [0, 10] × {a, b, c} of the link 
stream of Fig.  15 (left) is not a connected component, 
because {a, b, c} is not a connected component of G6 . We 
display in Fig. 16 the connected components of our two 
examples.

The set of all strongly connected components of S is a 
partition of W. Indeed, each (t, v) in W clearly is in a con-
nected component of S. Conversely, if (t, v) is in two distinct 
connected components C = TC × VC and D = TD × VD of S, 
then it means that VC and VD are two connected components 
of Gt to which v belongs, which implies that VC = VD . But 
then, (TC ∪ TD) × VC also is a strongly connected compo-
nent, which contradicts the hypothesis.

Notice that the maximal clusters of S, such that for all t, 
the set of nodes involved in them at time t is a connected 
component of Gt (but are not necessarily compact) and do 
not lead to a partition of W. For instance, the two maximal 
strongly connected clusters of the link stream of Fig. 15 
(left) both have these properties, but they overlap.

Given a stream graph S = (T ,V ,W,E) , we define its 
reachability stream graph R = (T ,V ,W,E�) , where E′ is the 
set of all (t, uv) in T × V ⊗ V , such that v— u in Gt . In other 
words, there is a link between u and v at time t in R if there 
is a path in S from u to v at time t. The strongly connected 
compact clusters of S are exactly the compact cliques of R.

In a link stream L = (T ,V ,E) , the weakly connected com-
ponents of L are exactly the compact clusters C = T × VC , 
such that VC is a connected component of G(L). However, 
strong connectivity in link stream has only a few additional 
properties compared to strong connectivity in stream graphs 
in general, as illustrated in the figures of this section (the 
leftmost example is a link stream). Just notice that for all v in 
V, for all � and � in T with � ≥ � , (�, v) ⤏ (�, v) (thanks to 
an empty path). As a consequence, for all (�, u) and (�, v) in 
T × V  , if (�, u) ⤏ (�, v) , then for all �′ ≤ � , (��, u) ⤏ (�, v) 
and for all �′ ≥ � , (�, u) ⤏ (��, v).
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Fig. 15   Strongly connected clusters in a link stream (left) and a 
stream graph (right). Left: this link stream is not strongly connected, 
since (0, a) ⤏̸ (0, d) , for instance. It has only two maximal strongly 
connected clusters, namely [0, 10] × {a, b, c} ∪ [5, 10] × {d, e} (in 
blue) and [0, 10] × {d, e} ∪ [5, 10] × {a, b, c} (in pink), which over-
lap. It also contains an infinity of strongly connected clusters which 
are not maximal and may have an intricate structure, like, for instance 
[0, 4] × {a, b, c} ∪ [4, 5] × {c} ∪ [5, 9] × {a, b} ∪ [9, 9.5] × {c} ∪ [9,
10] × {d} . Right: this stream graph is not strongly connected, 
since (0, a) ⤏̸ (1, d) , for instance. The cluster [2, 3] × {a, b, d} 
is strongly connected but not maximal as it is included in 
[2, 3] × {a, b, d} ∪ [1, 2] × {a, b} , which is strongly connected too. 

This cluster is not a maximal strongly connected cluster either, as 
it is included in [2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 1] × {a} 
and [2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 1] × {b} which 
are both strongly connected. Notice, however, that the 
union of these two clusters is not strongly connected, as 
(0, a) ⤏̸ (0, b) , for instance. They are not maximal either, 
but they are included (among others), respectively, in 
[2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 10] × {a} ∪ [7, 8] × {a, b, c} 
(in blue) and [2, 3] × {a, b, d} ∪ [1, 2] × {a, b} ∪ [0, 4] × {b} (in pink) 
which both are maximal strongly connected clusters of this stream 
graph
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Fig. 16   Connected components in a link stream (left) and a stream 
graph (right). We indicate each component C = TC × VC with a 
rectangle. Left: in this link stream, the connected components are 
[0, 5[×{a, b, c} , [0, 5[×{d, e} , and [5, 10] × {a, b, c, d, e} . Right: in this 

stream graph, the connected components are [0, 1[×{a} , [0, 1[×{b} , 
[1, 2[×{a, b} , [1, 2[×{d} , [2, 3] × {a, b, d} , ]3, 4] × {b} , ]3, 4.5[×{a} , 
[4, 4.5[×{c} , [4.5, 6[×{a, c} , [5, 6[×{b} , [6, 8] × {a, b, c} , ]8, 10] × {a} , 
]8, 9] × {b, c} , and ]9, 10] × {b}
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In a graph-equivalent stream, the strongly connected com-
ponents are equivalent to the connected component of the 
corresponding graph.

16 � Trees and cascades

A graph G = (V ,E) is a tree of root r, with r ∈ V  , if for all v 
in V, there is a unique simple path from r to v in G. Then, G 
is connected and acyclic, and any connected acyclic graph 
(with a distinguished node r) is a tree (of root r). This also 
implies that for all v ≠ r in V, there is a unique u ≠ v , such 
that u is the last node before v on the simple path from r to 
v, called the predecessor of v and denoted by p(v). In addi-
tion, the predecessor of the root is the root itself: p(r) = r.

Given a graph G = (V ,E) , a sub-graph G� = (V �,E�) of G 
is a shortest path tree of root r if it is a tree of root r and for 
all v in V ′ , the simple path from r to v in G′ is a shortest path 
from r to v in G. A cascade is a maximal shortest path tree.

We say that a stream graph S = (T ,V ,W,E) is a tree of 
root r, with r ∈ W , if for all (t, v) in W, there is a unique sim-
ple path from r to (t, v) in S. Then, S necessarily is weakly 
connected and acyclic, but the converse is not true. Notice 
also that a tree is not strongly connected in general, see 
Fig. 17 for an illustration.

If S = (T ,V ,W,E) is a tree of root r, then for all (t, v) ≠ r 
in W either there is a unique last (t�, u) with u ≠ v before 
(t, v) involved in the simple path from r to (t, v), and we call 
it the predecessor of v at time t, or the simple path from r to 
(t, v) is the empty sequence, and we say that the predecessor 
of v at time t is r. We denote the predecessor by p(t, v). In 
Fig. 17, for instance, p(5, c) = (4.5, a) , p(6, b) = (6, c) , and 
p(1, b) = (0, b) = r in S1 and p(9, c) = (7, b) in S2.

If S is a tree of root r and � is the first time at which 
any node is involved in S, i.e., � = min{t, (t, v) ∈ W} , 
then necessarily r is in ({�} × V) ∩W  . In other words, the 
root of S necessarily is one of the very first node occur-
rences in S. Moreover, it also is a tree of root r′ for all r′ in 
({�} × V) ∩W  . In Fig. 17 (right), for instance, S2 also is a 
tree of root (2, a) and a tree of root (2, d).

Given a stream graph S = (T ,V ,W,E) , we say that a sub-
stream S� = (T ,V ,W �,E�) of S is a shortest path tree of root 
r if it is a tree of root r and for all (t, v) in W ′ , the simple 
path from r to (t, v) in S′ is a shortest path from r to (t, v) in 
S. We define similarly fastest path trees and foremost-path 
trees. In Fig. 17, for instance, S1 is a foremost-path tree of S.

For a given r in W, we denote by R(r) the cluster of all 
elements of W reachable from r, and we call it the reach-
able cluster of r. We say that the sub-stream S′ is a cascade 
of root r if it is a maximal foremost-path tree, in the sense 
that it is included in no other foremost-path tree with the 
same root.

If S is a graph-equivalent stream and S′ ⊆ S is a tree of 
root r = (t, v) , then its induced graph G(S�) is a tree of root v. 
If S′ is a shortest path tree of S, then G(S�) is a shortest path 
tree of G(S). The same holds for cascades.

17 � Closeness and betweenness centralities

In a graph G = (V ,E) , the closeness of a node v measures its 
proximity to other nodes: (v) = ∑

u≠v 1

�(v,u)
 . The between-

ness of v measures how frequently v is involved in shortest 
paths in G: (v) = ∑

u∈V ,w∈V
�(u,w,v)

�(u,w)
 , where �(u,w,v)

�(u,w)
 is the frac-

tion of all the shortest paths from u to w that involve v if 
there is a path from u to w, 0 otherwise. In other words, the 
betweenness of v in V is the number of pairs of elements u 
and w of V, each counted with a weight equal to the fraction 
of shortest path between them that involve v. The between-
ness of any cluster X ⊆ V is (X) = ∑

u∈V ,w∈V
�(u,w,X)

�(u,w)
 , where 

�(u,w,X)

�(u,w)
 is the fraction of all the shortest paths from u to w that 

involve an element of X, if u— w , 0 otherwise. Notice that 
(v) = ({v}).

In the stream graph S = (T ,V ,W,E) , we define a general 
concept of closeness of a node v at a time instant t, with 
(t, v) ∈ W  , as follows:

a
b
c
d

0 2 4 6 8 time

a
b
c
d

0 2 4 6 8 time

Fig. 17   Examples of trees. We consider a stream graph 
S = (T ,V ,W,E) and display two of its sub-streams that are trees. 
Left: the tree S1 = (T ,V ,W1,E1) (in blue) of root (0, b) (in pink), with 
W1 = [1, 4.5] × {a} ∪ ([0, 2] ∪ {6}) × {b} ∪ [4.5, 6] × {c} ∪ {(2, d)} 
and E1 = {(1, ab), (2, bd), (4.5, ac), (6, bc)} . Right: the tree S

2
= (T ,V , 

W
2
,E

2
) (in blue) of root (2, b) (in pink), with W

2
= ([2, 6] ∪ [8, 9])×

W
2
= ([2, 6] ∪ [8, 9]) × {a} ∪ ([6, 7] ∪ [8, 10]) ×{b} ∪ ([5, 6] ∪ [7, 9])

×{c} ∪ [2, 3] × {d} and E
2
= {(2, ab), (2, bd), (5, ac), (6, bc),

(7, bc), (8, bc), (8, ab)}
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where ct(v, (s, u)) represents the cost to reach (s, u) from v 
at time t.

The cost ct(v, (s, u)) may be captured in various ways, 
the most basic being the time to reach (s, u) from v at time 
t: ct(v, (s, u)) = t(v, (s, u)) . Notice, however, that we must 
have ct(v, (s, u)) ≠ 0 for all (s, u) ≠ (t, v) . To ensure this, 
one may, for instance, define ct(v, (s, u)) as the length of a 
non-empty shortest foremost path from (t, v) to (s, u), i.e., 
�((t, v), (t + t(v, (s, u)), u)) if it is different from 0. One may 
also combine both approaches by assuming that traversing 
a link has a cost � , leading to the following cost function: 
ct(v, (s, u)) = t(v, (s, u)) + � ⋅ �((t, v), (t + t(v, (s, u)), u)).

We now define the betweenness of a node v ∈ V  at a time 
instant t ∈ T  , with (t, v) ∈ W  , as follows:

where �((i,u),(j,w),(t,v))
�((i,u),(j,w))

 is the fraction of all shortest fastest paths 

from u at time i to w at time j that involve v at time t if there 
is a path from (i, u) to (j, w), 0 otherwise. In other words, the 
betweenness of (t, v) in W is the number of pairs of elements 
(i, u) and (j, w) of W, each counted with a weight equal to 
the fraction of shortest fastest paths between them that 
involve (t, v).

We extend the definition to any cluster X ⊆ W as follows:

where �((i,u),(j,w),X)
�((i,u),(j,w))

 is the fraction of all shortest fastest paths 

from (i, u) to (j, v) that involve at least an element of X if 
(i, u) ⤏ (j,w) , 0 otherwise. Then, (t, v) = ({(t, v)}) . We 
also use this approach to define the betweenness of node v 
as (v) = (Tv × {v}) ,  and the one of time t as 
(t) = ({t} × Vt).

Instead of shortest fastest paths, one may consider the 
fraction of fastest shortest paths, of shortest paths, of fastest 
simple paths, or other classes of paths. However, consider-
ing shortest fastest paths has the advantage of putting more 
emphasis on time than distance, and to avoid considering 
as equivalent fastest paths with very different lengths (in 
particular the non-simple ones).

In a graph-equivalent stream, the betweenness of any 
node v is equal to |T|

2

2
 times its betweenness in the corre-

sponding graph. Indeed, for any (i, u) and (j, w) with j ≥ i , 
the fraction of paths involving T × {v} in a graph-equivalent 

t(v) =
∑

u∈V
� s ∈ T

(s, u) ≠ (t, v)

1

ct(v, (s, u))
ds,

(t, v) = ∑

u∈V ,w∈V
�i∈Tu,j∈Tw

�((i, u), (j,w), (t, v))

�((i, u), (j,w))
di dj,

(X) = ∑

u∈V ,w∈V
�i∈Tu,j∈Tw

�((i, u), (j,w),X)

�((i, u), (j,w))
di dj,

stream is the fraction of paths between u and w in the cor-
responding graph that involve v.

The rest of this section is devoted to detailed examples of 
betweenness centralities in various link streams, representa-
tive of what happens in stream graphs in general, to illustrate 
this concept in concrete situations.

Let us consider, for instance, the case of L1 defined in 
Fig. 18 (left), and let us compute the betweenness (t, v) of 
(t, v) for all t. To do so, we consider successively all possible 
pairs of nodes.

Let us begin with u and w. There is a path from (i, u) to 
(j, w) only for i in [0, 2] and j in [2, 4]. Then, there is a unique 
shortest fastest path, and it is (2, u, v), (2, v, w). It involves v at 
time 2 and only at this time. Therefore, for all i ∈ [0, 2] and 
j ∈ [2, 4] , the value of �((i,u),(j,w),(t,v))

�((i,u),(j,w))
 is 1 if t = 2 , and 0 other-

wise. These values are the same for paths from w to u.
For all times i and j, all shortest fastest paths from (i, u) to 

(j ,   v), if any, are of the form (k ,   u ,   v) for 
k ∈ [max(1, i), min(2, j)] . For i < j , there is an infinity of such 
paths and at most one involves (t,  v), leading to 
�((i,u),(j,v),(t,v))

�((i,u),(j,v))
= 0 . If i = j , then there is a unique shortest fastest 

path, and it involves (t, v) only when i = j = t . Therefore, 
�((i,u),(j,v),(t,v))

�((i,u),(j,v))
 is different from 0 only for i = j = t , while 

i ∈ [0, 2] and j ∈ [max(1, i), 4] , and therefore, the contribution 
to (t, v) of paths from u to v is 0. The same reasoning holds 
for paths from v to u, from w to v, and from v to w.

Finally, shortest fastest paths from v to v are empty 
sequences, and therefore, they do not involve (t, v) for any t.

This leads to (2, v) = 2 ⋅ ∫ 2

0
∫ 4

2
1djdi = 8 and for all 

t ≠ 2 , (t, v) = 0.
Let us now consider the case of L2 , defined in Fig. 18 

(center), and let us first focus on the paths from u to w. For 
any i, if j < 3 , then (i, u) ⤏̸ (j,w) . For i ∈ [0, 2] and 
j ∈ [3, 10] , the unique shortest fastest path from (i, u) to 
(j, w) is (2, u, v), (3, v, w), in blue in the figure. For i ∈]2, 10] 
and j ∈ [0, 8[ , (i, u) ⤏̸ (j,w) . For i ∈]2, 6] and j ∈ [8, 10] , the 
unique shortest fastest path from (i,  u) to (j,  w) is 
(6, u, v), (8, v, w), in green in the figure. Finally, for i ∈]6, 10] 
and any j, (i, u) ⤏̸ (j,w) . Therefore, �((i,u),(j,w),(t,v))

�((i,u),(j,w))
 is different 

from 0 only when t ∈ [2, 3] , i ∈ [0, 2] , j ∈ [3, 10] and when 
t ∈ [6, 8] , i ∈]2, 6] , j ∈ [8, 10] . It is then equal to 1.

Regarding paths from (i, w) to (j, u), the unique shortest 
fastest path is (4, w, v), (5, v, u) and it exists for i ∈ [0, 4] and 
j ∈ [5, 10] . It involves (t,  v) when t ∈ [4, 5] , leading to 
�((i,w),(j,u),(t,v))

�((i,w),(j,u))
= 1 for t ∈ [4, 5] , i ∈ [0, 4] , j ∈ [5, 10] , and 0 

otherwise.
Like for L1 ,  the contr ibution of other pairs 

of nodes to (t, v) is 0, and therefore, we finally 
o b t a i n  (t, v) = ∫ 2

0
∫ 10

3
1dj di = 14  f o r  t ∈ [2, 3] , 

(t, v) = ∫ 6

2
∫ 10

8
1dj di = 8  f o r  t ∈ [6, 8]   , 
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(t, v) = ∫ 4

0
∫ 10

5
1dj di = 20 for t ∈ [4, 5] , and (t, v) = 0 

otherwise.
In the case of L3 defined in Fig. 18 (right), first notice that 

all shortest fastest paths from (i, u) to (j, w) and from (i, w) 
to (j,  u), if any, are of the form (k,  u,  v),  (k,  v,  w) or 
(k, w, v), (k, v, u), respectively, with k ∈ [2, 3] , k ≥ i and 
k ≤ j . Therefore, (t, v) = 0 if t ∉ [2, 3] . Moreover, 
�((i,u),(j,w),(t,v))

�((i,u),(j,w))
=

�((i,w),(j,u),(t,v))

�((i,w),(j,u))
.

If t ∈ [2, 3] , in the same way as for paths from u to v in L1 , 
we are in one of two cases: either there is an infinity of short-
est fastest paths from (i, u) to (j, w) and at most one of them 
involves (t, v), or the fraction of values of i and j, such that 
�((i,u),(j,w),(t,v))

�((i,u),(j,w))
≠ 0 is 0.

Since, like in the previous cases, the contribution of other 
pairs of nodes is 0, and therefore, we obtain (t, v) = 0 in 
L3 for all (t, v).

However, let us consider the cluster X = [2, 3] × {v} . 
Then, �((i,u),(j,w),X)

�((i,u),(j,w))
=

�((i,w),(j,u),X)

�((i,w),(j,u))
 is equal to 1 for i ∈ [0, 2] and 

j ∈ [2, 5] , for i ∈ [2, 3] and j ∈ [i, 5] , and it is equal to 0 in 
all other cases. Moreover, �((i,u),(j,w),X)

�((i,u),(j,w))
=

�((i,w),(j,u),X)

�((i,w),(j,u))
 is equal 

to 1 for i ∈ [2, 3] and j ∈ [i, 5] , to 0.5 for i ∈ [0, 1] and 
j ∈ [3, 5] , to j−2

j−1
 for i ∈ [0, 1] and j ∈ [2, 3] , to j−2

j−i
 for 

i ∈ [1, 2] and j ∈ [2, 3] , to 1

3−i
 for i ∈ [1, 2] and j ∈ [3, 5] , and 

it is equal to 0 in all other cases. Likewise, 
�((i,w),(j,v),X)

�((i,w),(j,v))
=

�((i,v),(j,w),X)

�((i,v),(j,w))
 is equal to 1 for j ∈ [2, 3] and 

i ∈ [0, j] , to 0.5 for i ∈ [0, 2] and j ∈ [4, 5] , to 1

j−2
 for i ∈ [0, 2] 

and j ∈ [3, 4] , to 3−i
j−i

 for i ∈ [2, 3] and j ∈ [3, 4] , to 3−i
4−i

 for 

i ∈ [2, 3] and j ∈ [4, 5] , and it is equal to 0 in all other cases.
We, therefore, obtain 

.

(X) = 2 ⋅

(

�
2

0
�

5

2

1dj di + �
3

2
�

5

i

1dj di

)

+ 2 ⋅

(

�
3

2
�

5

i

1dj di + �
1

0
�

5

3

0.5dj di + �
1

0
�

3

2

j − 2

j − 1
dj di

+�
2

1
�

3

2

j − 2

j − i
dj di + �

2

1
�

5

3

1

3 − i
dj di

)

+ 2 ⋅

(

�
3

2
�

j

0

1di dj + �
2

0
�

5

4

0.5dj di

+ �
2

0
�

4

3

1

j − 2
dj di + �

3

2
�

4

3

3 − i

j − i
dj di

+�
3

2
�

5

4

3 − i

4 − i
dj di

)
= 17 + (2 ln(2) + 10) + (2 ln(2) + 10) ∼ 39.77

Now, let us consider L4 defined in Fig. 19 (left). We com-
pute the contribution of u and w to the betweenness of 
(3.5, v), displayed in red in the figure, i.e., �((i,u),(j,w),(3.5,v))

�((i,u),(j,w))
 for 

all i and j. There is a shortest fastest path from (i, u) to (j, w) 
only for i ∈ [0, 1] and j ∈ [6, 8] , and it is always of the form 
(1, u, x), (k, x, v), (l, v, y), (6, y, w) with k ∈ [2, 4] , l ∈ [3, 5] , 
and l ≥ k . Among them, the ones involving (3.5, v) are 
exactly those such that k ∈ [2, 3.5] and l ∈ [3.5, 5] . This leads 
to the fraction |[2,3.5]×[3.5,5]|

|[2,3]×[3,5]|+ 1

2
|[3,4]|2+|[3,4]×[4,5]|

∼ 0.64.

Let us finally consider L5 defined in Fig. 19 (right). We 
compute the contribution of u and w to the betweenness of 
(t, v), for a t in [b, c], like the one displayed in red in the 
figure. There are two families of shortest fastest paths from 
u to w in this link stream: (2, u, x), (k, x, v), (l, v, y), (7, y, w) 
with k ∈ [a, b] and l ∈ [c, d] , that we call the blue family; and 
(10, u, x), (m, x, v), (n, v, y), (15, y, w) with m ∈ [e, f ] and 
n ∈ [g, h] , that we call the green family. Notice that (t, v), for 
a t in [b, c], is involved in all blue paths and in no green path. 
For i ∈ [0, 2] and j ∈ [7, 15[ the shortest fastest paths from 
(i, u) to (j, w) are the blue ones (they all involve (t, v)); for 
i ∈ [0, 2] and j ∈ [15, 17] they are both the blue and green 
ones (a fraction (b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)
 of them involve (t, v)); 

for i ∈]2, 10] and j ∈ [15, 17] , they are the green ones (none 
of them involve (t, v)); and for all other values i and j, there 
is no path from (i,  u) to (j,  w). This leads to 
∫ 2

0
∫ 15

7
1djdi + ∫ 2

0
∫ 17

15

(b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)

djdi = 16 + 4 ⋅
(b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)
.

In the computations above, we, however, assumed that 
a ≠ b , c ≠ d , e ≠ f  , and g ≠ h when we wrote that the 



	 Social Network Analysis and Mining (2018) 8:61

1 3

61  Page 20 of 29

fraction of blue paths in the set of all green and blue paths 
is (b−a)⋅(d−c)

(b−a)⋅(d−c)+(f−e)⋅(h−g)
 . If a = b or c = d , but e ≠ f  and g ≠ h 

this still holds, as there are infinitely less blue paths than 
green ones; the fraction of blue paths is 0. If a = b and e = f  , 
but c ≠ d and g ≠ h , however, the fraction above is unde-
fined and the fraction of blue paths becomes (d−c)

(d−c)+(h−g)
 . 

Going further, if a = b , c = d , e = f  , and g = h , then there 
is exactly one blue path and one green path, leading to a 
fraction of blue paths of 1

2
.

18 � Discrete versus continuous time

All our examples and illustrations until now assumed that the set 
of time instants used in the definitions of stream graphs is an inter-
val [�,�] of ℝ , thus bounded, infinite and continuous. When we 
defined stream graphs in Sect. 3, we, however, claimed that our 
formalism is much more general, and may be used with different 
kinds of time modeling: bounded or unbounded, finite or infinite, 
continuous or discrete, and all combinations.

Even with these various types of time sets, the formalism 
we developed in this paper applies directly (one just has to 
switch from integrals to sums in the case of discrete time). 
We illustrate this in this section by considering the situation, 
where the set of time instants is an interval of ℕ instead of 
ℝ , thus bounded, finite and discrete, see Fig. 20 for an illus-
tration. We discuss more complex cases by the end of this 
section.

Let us consider S = (T ,V ,W,E) with T = [𝛼,𝜔] ⊆ ℕ . The 
definitions of cov (S) =

|W|
|T×V| , nv =

|T
v
|

|T|  , n =
|W|
|T|  , muv =

|T
uv
|

|T|  , 

m =
|E|
|T| , kt =

|V
t
|

|V|  , k =
|W|
|V|  , lt =

|E
t
|

|V⊗V| , l =
|E|

|V⊗V| , and 

⋓(S) =
∑

uv∈V⊗V �T
u
∩T

v
�

∑
uv∈V⊗V �T

u
∪T

v
� are directly applicable. For the example 

in Fig. 20, we obtain, for instance, cov (S) =
37

14⋅4
∼ 0.66 , 

na = 1 , nd =
3

14
∼ 0.21 , n =

37

14
∼ 2.6 , k0 = 0.25 , k1 = 0.75 

and l10 =
2

6
∼ 0.33.

The definition of density also holds (the node-based defi-
nition is identical and in the time-based definition the inte-
gral  just  needs to  be replaced by a  sum): 
𝛿(S) =

∑
uv∈V⊗V �T

uv
�

∑
uv∈V⊗V �T

u
∩T

v
� =

∑
t∈T �Et

�
∑

t∈T �Vt⊗Vt�
 . In our example in Fig. 20, 

�(S) =
0+1+2+2+1+0+1+1+2+3+2+1+1+0

0+3+3+3+1+3+1+3+3+3+3+3+3+1
= 0.5.

Going further, the definitions of sub-streams and clusters 
also apply. For instance, C = {(1, a), (1, b), (2, a), (2, b), (2, d)} 
is a cluster of S defined in Fig. 20, and it induces the sub-
stream S� = (T ,V ,C,E�) with E� = {(1, ab), (2, ab), (2, bd)}.

As a consequence, the concepts of cliques, neighbor-
hoods, degrees, and clustering coefficients, which depend 
only on the concepts above (cluster, density, and number of 
nodes), are also directly applicable to this case. For instance, 

{9} × {a, b, c} is a maximal compact clique of S defined in 
Fig. 20, as well as {1, 2, 3, 4} × {a, b} , the neighborhood of 
d is {(2, b), (3, b)} , and therefore, d has degree 2

14
∼ 0.14.

The quotient stream and the line stream of a discrete stream 
graph are also discrete stream graphs, with unchanged defini-
tions. Likewise, the definition of k-cores is unchanged.

Paths in S are now discrete objects, but this does not call 
for new definitions. For instance, in Fig. 20, (7, a, c), (8, c, b) 
is a path from (0, a) to (9, b). It involves exactly (7, a), (7, c), 
(8, c), and (8, b). It has length 2 and duration 1. It is not a 
shortest path from (0, a) to (9, b), since path (9, a, b) is 
shorter. It is not a fastest path either, because path (9, a, b) is 
faster. However, the path (8, a, c), (8, c, b) has length 2 and 
duration 0; therefore, it is a fastest path from (0, a) to (9, b) 
but not a shortest one.

Likewise, the definitions of connected clusters and com-
ponents, as well as those of trees and cascades, that rely only 
on the concept of paths, directly translate to the discrete 
case. The concepts of closeness and betweenness also do, 
but the betweenness relies now on a counting of discrete sets 
of (discrete) paths. Replacing the integral in its definition by 
a sum, it becomes

where �((i, u), (j,w)) is now the (finite) number of shortest 
fastest paths from (i, u) to (j, w), and �((i, u), (j,w), (t, v)) is 
the number of these path that involve v at time t. Therefore, 
as before, �((i,u),(j,w),(t,v))

�((i,u),(j,w))
 is the fraction of all shortest fastest 

paths from (i, u) to (j, w) that involve (t, v).
In the case of Fig.  20, for instance, �((0, a), (3, d)) =

|{((2, a, b), (2, b, d)), ((3, a, b), (3, b, d))}| = 2 paths. One of 
them involves (2, b), and so �((0,a),(3,d),(2,b))

�((0,a),(3,d))
= 0.5.

Finally, we have shown that considering a bounded dis-
crete time interval does not call for new definitions and any 
change in our formalism: it directly applies to this case in a 
way very similar to the bounded continuous time case. This 
also holds for more complex time sets, including unbounded 
ones (then, a node v has to be present a finite fraction of this 
infinite time set to satisfy nv ≠ 0 ) and/or discontinuous ones 
(T may, for instance, be a collection of intervals of ℝ or ℕ , 
or even parts of ℚ ). As such cases have limited practical and 
theoretical interest, we do not give more details here.

19 � Δ‑analysis and instantaneous links

In some situations, directly studying the stream graph 
induced by a dataset makes little sense. If one considers 
phone calls or sexual contacts, for instance, nodes generally 

(t, v) = ∑

(i,u)∈W,(j,w)∈W

�((i, u), (j,w), (t, v))

�((i, u), (j,w))
,
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have only zero or one link at a time, leading to an instanta-
neous degree of 0 or 1. In the case of instant messaging or 
sensor-based measurements of proximity between individu-
als, links are instantaneous, leading to a density equal to 0.

In such cases and in many others, one is generally inter-
ested in the fact that nodes interact regularly, typically at 
least once every Δ units of time, for a given Δ . For instance, 
two individuals call each other at least once a day, two sen-
sors detect each other at least once every ten seconds, etc.

Then, the usual approach consists in using this value of 
Δ as a parameter to define notions to describe the data, an 
approach that we call Δ analysis. For instance, one defines 
nΔ and mΔ as the expected number of nodes and links, 
respectively, present in a randomly chosen time interval of 
duration Δ in T. One defines the Δ-degree dΔ(v) of a node 
v as its expected number of neighbors during a randomly 
chosen time interval of duration Δ in T. The Δ-density is 
defined as follows3. Assume that one takes a random time 
interval of duration Δ and two nodes involved in S at some 
time during this interval, i.e., a random triplet (I, u, v) with 
I = [t −

Δ

2
, t +

Δ

2
] ⊆ T  , u, and v in V, such that Tu ∩ I and 

Tv ∩ I are non-empty. The Δ-density of S is the probability 
that these two nodes are linked together during this interval, 
i.e., that Tuv ∩ I is non-empty.

The formalism we developed in this paper provides 
a more general way to deal with such cases that we now 
present.

Given a stream graph S = (T ,V ,W,E) with T = [�,�] 
and a value Δ ≤ � − � , we define SΔ = (TΔ,V ,WΔ,EΔ) 
as the stream graph, such that TΔ = [� +

Δ

2
,� −

Δ

2
] , 

WΔ = (TΔ × V) ∩
⋃

(t,v)∈W [t −
Δ

2
, t +

Δ

2
] ×{v} = {(t�, v),

t
� ∈ TΔ,∃(t, v) ∈ W s.t. |t� − t| ≤ Δ

2
}  a n d 

EΔ = (TΔ × V⊗ V) ∩
⋃

(t,uv)∈E[t −
Δ

2
, t +

Δ

2
] × {uv}

= {(t�, uv), t� ∈ TΔ,∃(t, uv) ∈ E s.t. |t� − t| ≤ Δ

2
} , see Fig. 21 

for an illustration.
In other words, a node is present at time t′ in SΔ when-

ever it is present in S at a time t in [t� − Δ

2
, t� +

Δ

2
] , i.e., 

TΔv = TΔ ∩ {t�,∃t ∈ Tv, |t� − t| ≤ Δ

2
} . Likewise, any two 

nodes are linked together at time t′ in SΔ whenever they 
are linked together in S at a time t in [t� − Δ

2
, t� +

Δ

2
] , i.e., 

TΔuv = TΔ ∩ {t�,∃t ∈ Tuv, |t� − t| ≤ Δ

2
}.

We now show that the properties of SΔ actually are equiv-
alent to the Δ-properties of S, and therefore, one may con-
duct Δ analysis of S by transforming it into SΔ first, and then 
using the formalism of this paper.

u
v
w

0 1 2 time

u
v
w

0 2 4 6 8 time

u
v
w

0 1 2 3 time

Fig. 18   Basic examples for betweenness centrality compu-
tations in link streams. Left: L1 = (T ,V ,E) with T = [0, 4] , 
V = {u, v,w} , and E = [1, 2] × {uv} ∪ [2, 3] × {vw} . We dis-
play in blue the unique shortest fastest path from u to w. 
Center: L2 = (T ,V ,E) with T = [0, 10] , V = {u, v,w} , and 
E = ([1, 2] ∪ [5, 6]) × {uv} ∪ ([3, 4] ∪ [8, 9]) × {vw} . We display in 

blue and in green the two shortest fastest paths from u to w (for dif-
ferent starting and arrival times), and in red the unique shortest fastest 
path from w to u. Right: L3 = (T ,V ,E) with T = [0, 6] , V = {u, v,w} , 
and E = [1, 3] × {uv} ∪ [2, 4] × {vw} . We display in blue an instance 
of shortest fastest path between u and w 

u
x
v
y
w

0 2 4 6 time

u
x
v
y
w

2 7 10 15a b c d e f g h time

Fig. 19   More examples for betweenness centrality computations in 
link streams. Left: L4 = (T ,V ,E) with T = [0, 8] , V = {u, x, v, y,w} , 
and E = [0, 1] × {ux} ∪ [2, 4] × {xv} ∪ [3, 5] × {vy} ∪ [6, 7] × {yw} . 
We display in blue an instance of shortest fastest path from u to w 
and in red the element (3.5, v). Right: L5 = (T ,V ,E) with T = [0, 17] , 
V = {u, x, v, y,w} , and E = ([1, 2] ∪ [9, 10]) × {ux} ∪ ([a, b] ∪ [e, f ])
×{xv} ∪ ([c, d] ∪ [g, h]) × {vy} ∪ ([7, 8] ∪ [15, 16]) × {yw} , for given 

values of a, b, c, d, e, f, g, and h, such that 2 < a ≤ b < c ≤ d < 7 
and 10 < e ≤ f < g ≤ h < 15 . The shortest fastest paths from u to w 
all belong to two families: (2, u, x),  (k, x, v),  (l, v, y),  (7, y, w) with 
k ∈ [a, b] and l ∈ [c, d] (an instance is displayed in blue); and (10, u
,  x),  (m,  x,  v),  (n,  v,  y),  (15,  y,  w) with m ∈ [e, f ] and n ∈ [g, h] (in 
green). We display in red an element (t, v) with t ∈ [b, c]

3  This is a generalization to stream graphs of the Δ-density intro-
duced in Viard and Latapy (2014) for link streams.
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Let us define instantaneous versions of the Δ-properties 
of S cited above: for all t in [� +

Δ

2
,� −

Δ

2
] , nΔt is the num-

ber of distinct nodes present at some time in [t − Δ

2
, t +

Δ

2
] : 

nΔt = |{v ∈ V ,∃t�, |t� − t| ≤ Δ

2
and (t�, v) ∈ W}| . We define 

mΔt similarly, and dΔt(v) as the number of distinct nodes 
linked to v at some time in [t − Δ

2
, t +

Δ

2
].

F i r s t  no t i ce  t ha t  nΔt  i n  S  i s  equa l  t o 
|Vt| i n  SΔ  .  Indeed ,  |Vt| i n  SΔ  i s  equa l  to 
|{v ∈ V ,∃t� ∈ T , (t�, v) ∈ W and |t� − t| ≤ Δ

2
}| = nΔt . Like-

wise, mΔt in S equals |Et| in SΔ , and dΔt(v) in S equals dt(v) 
in SΔ.

Notice now that nΔ =
1

|TΔ|
⋅ ∫

t∈TΔ
nΔtdt in S. Therefore, it 

is equal to 1

|TΔ|
⋅ ∫

t∈TΔ
|Vt|dt in SΔ , which is exactly n in SΔ . 

Similar reasoning lead to the facts that mΔ in S is equal to m 
in SΔ , and that dΔ(v) in S is equal to d(v) in SΔ for all v.

Going further, we have �Δ(S) = �(SΔ) . Indeed, �(SΔ) is the 
probability that a random (t, u, v) with t ∈ TΔ , (t, u) ∈ WΔ 
and (t, v) ∈ WΔ satisfies (t, uv) ∈ EΔ , and �Δ(S) is the 
probability that a random (I, u, v) with I an interval of T 
of duration Δ , u ∈ V  and v ∈ V  , such that Tu ∩ I ≠ � and 
Tv ∩ I ≠ � satisfies Tuv ∩ I ≠ � . A triplet (t, u, v) satisfies 
the first set of constraints if and only if the triplet (I, u, v) 
with I = [t −

Δ

2
, t +

Δ

2
] fits the second set of constraints. In 

addition, it satisfies (t, uv) ∈ EΔ if and only if (I, u, v) satis-
fies Tuv ∩ I ≠ � . Therefore, the two probabilities are equal.

Finally, our approach makes it easy to conduct the Δ 
analysis of a stream graph S: it is equivalent to analyzing 
the stream graph SΔ with the general methods developed 
here, which go much further than the previously considered 
Δ properties.

This approach has another strength: one may use variable 
values of Δ , which may be a function of time, depend on the 
involved nodes or links, or any other property. One may, for 
instance, consider that two colleagues are in contact when-
ever they meet each other at least once a week, but for holi-
days, they remain in contact if they meet in the week before 
holidays and in the week after. It is easy to capture such 
modeling choice within our framework: they only change 
the way one builds SΔ from S, and the analysis of SΔ remains 
unchanged. Defining properties that would directly take into 
account such variations of Δ would be much more complex.

20 � Bipartite streams and other 
generalizations

An important strength of the graph formalism is that it may 
easily be extended to encompass richer, more complex cases. 
For instance, one may consider directed links by defin-
ing directed graphs G = (V ,E) with E ⊆ V × V  instead of 
E ⊂ V ⊗ V  . One may allow loops ( vv ∈ E is possible), and/
or consider multigraphs (E is a multiset; thus, several links 

between the two same nodes are possible). Going further, 
one may capture link strength or cost using weighted graphs, 
in which a weight is associated to each element of E and/or 
V. One may combine these extensions by considering, for 
instance, directed weighted multigraphs.

Dealing with such graph generalizations calls for an 
update of classical graph concepts. For instance, the density 
of directed graphs must take into account the fact that the 
number of possible links changed; it also leads to notions of 
in- and out-degrees (the number of links towards and from 
a given node); etc. Some properties are non-trivial to extend 
(like, for instance, the density for weighted graphs) but most 
just need to be patched, thus giving a great expressivity and 
wide areas of applications to graphs.

Bipartite graphs are a particularly pervasive graph exten-
sion, and this section details this case as an illustration: we 
show how a few key extensions of graph concepts to the 
bipartite case Latapy et al. (2008) lead to similar extensions 
for bipartite stream graphs.

A bipartite graph G = (⊤,⊥,E) is defined by a set of 
top nodes ⊤ , a set of bottom nodes ⊥ , and a set of links 
E ⊆ ⊤ × ⊥ : links may exist only between top and bottom 
nodes. This models data like client–product relations or affil-
iation networks: the considered nodes belong to two different 
sets and links may exist only between nodes in one set and 
nodes in the other set.

In G, n⊤ = |⊤| and n⊥ = |⊥| denote the number of top and 
bottom nodes. The definition of the number of links m is the 
same as in classical graphs. The (bipartite) density of G is 
then 𝛿(G) = m

n⊤⋅n⊥
 : it is the probability when one takes two 

nodes that may be linked together that they indeed are. Node 
neighborhoods and degrees are defined like in a classical 
(non-bipartite) graph. The average top and bottom degrees 
d⊤ and d⊥ of G are the average degrees of top and bottom 
nodes, respectively.

The top and bottom projections G⊤ = (⊤,E⊤) and 
G⊥ = (⊥,E⊥) of G are defined by E⊤ = ∪v∈⊥N(v)⊗ N(v) and 
E⊥ = ∪v∈⊤N(v)⊗ N(v) , respectively. In other words, in G⊤ , 
two (top) nodes are linked together if they have (at least) a 
(bottom) neighbor in common in G, and G⊥ is defined sym-
metrically. If v ∈ ⊤ (resp. v ∈ ⊥ ) then N(v) always is a (not 
necessarily maximal) clique in G⊥ (resp. G⊤).

Given a top node v ∈ ⊤ (the case of bottom nodes is 
symmetrical), let us denote by G⧵v the (bipartite) graph 
obtained by removing node v and all its links from G: 
G⧵v = (⊤⧵{v},⊥,E⧵({v} × ⊥)) . The redundancy rc(v) of 
v ∈ ⊤ is the density of the sub-graph of (G⧵v)⊥ induced by 
its neighborhood N(v) in G. In other words, it is the fraction 
of its pairs of neighbors that have (at least) another neighbor 
in common.

We define a bipartite stream graph S = (T ,⊤,⊥,W,E) 
from a set of top nodes ⊤ , a set of bottom nodes ⊥ , a time 
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span T, and two sets W ⊆ T × (⊤ ∪ ⊥) and E ⊆ T × ⊤ × ⊥ , 
such that (t, u, v) ∈ E implies (t, u) ∈ W  and (t, v) ∈ W  , see 
Fig. 22 (left) for an illustration.

In S, we extend n =
|W|
|T|  into n⊤ =

|W∩(T×⊤)|
|T|  and 

n⊥ =
|W∩(T×⊥)|

|T|  , the numbers of top and bottom nodes, 

respectively. We extend k = |W|
|V|  into k⊤ =

|W∩(T×⊤)|
|⊤|  and 

k⊤ =
|W∩(T×⊤)|

|⊥|  similarly, and we define m and l like for clas-

sical (non-bipartite) stream graphs.
We def ine the (bipar t i te)  density of  S  as 

𝛿(S) =
∑

u∈⊤,v∈⊥ �Tuv�∑
u∈⊤,v∈⊥ �Tu∩Tv�

 : it is the probability when one takes two 

nodes when they may be linked together that they indeed are. 
We define node neighborhoods and degrees like in a classi-
cal (non-bipartite) graph. We define the average top and bot-
tom degrees d⊤ and d⊥ of S as the average degrees of top and 
bottom nodes, respectively, weighted by their presence time 
in the stream.

We def ine the top and bottom projections 
S⊤ = (T ,⊤,W⊤,E⊤)  a n d  S⊥ = (T ,⊥,W⊥,E⊥) 
o f  S  b y  W⊤ = W ∩ (T × ⊤),  W⊥ = W ∩ (T × ⊥), 
E⊤ = ∪(t,v)∈W⊥

{(t, uw) s.t. (t, u, v) ∈ E and (t,w, v) ∈ E} 
and E⊥ = ∪(t,v)∈W⊤

{(t, uw) s.t. (t, v, u) ∈ E and (t, v,w) ∈ E} , 
respectively. In other words, in S⊤ two (top) nodes are linked 
together at a given time instant if they have (at least) a (bot-
tom) neighbor in common in S at this time, and S⊥ is defined 
symmetrically, see Fig. 22 for an illustration. Notice that, if 
v ∈ ⊤ (resp. v ∈ ⊥ ), then N(v) always is a (not necessarily 
maximal) clique in S⊥ (resp. S⊥).

Given a top node v ∈ ⊤ (the case of bottom nodes is 
symmetrical), let us denote by S⧵v the (bipartite) stream 
graph obtained by removing node v and all its links from 
S: S⧵v = (T ,⊤⧵{v},⊥,W⧵(T × {v}),E⧵(T × {v} × ⊥)) . The 
redundancy rc(v) of v ∈ ⊤ is the density of the sub-stream 
of (S⧵v)⊥ induced by its neighborhood N(v) in S. In other 
words, it is the fraction of its pairs of neighbors and time 
instants that have (at least) another neighbor in common at 
this time.

If S is a graph-equivalent bipartite stream, then its cor-
responding graph also is bipartite. Moreover, the projections 
of S are also graph-equivalent streams, and their correspond-
ing graphs are the projections of the graph corresponding to 
S. In addition, the bipartite properties of S are equivalent to 
the bipartite properties of its corresponding bipartite graph.

21 � Related work

Studying interactions over time is crucial in a wide vari-
ety of contexts, leading to a huge number of papers dealing 
with various cases of interest. We cite, for instance, studies 
of phone calls (Kovanen et al. 2013; Blondel et al. 2015), 

contacts between individuals (Barrat and Cattuto 2013; 
Martinet et al. 2014), cattle exchanges (Dutta et al. 2014; 
Payen et al. 2017), messaging (Gomes et al. 2009; Gau-
mont et al. 2016b), or internet traffic (Harshaw et al. 2016), 
(Viard and Latapy 2014), but we could cite hundreds more. 
In each practical context, researchers and engineers face the 
challenge of analyzing the jointly temporal and structural 
nature of interactions, and they develop ad-hoc methods and 
tools to do so. Several surveys of these works are available 
from various perspectives (Masuda and Lambiotte 2016; 
Sizemore and Bassett 2017; Thompson et al. 2017; Snijders 
et al. 2010; Holme 2015; George and Kim 2013; Holme and 
Saramäki 2012; Doreian and Stokman 1997).

The most classical approach consists in splitting time 
into slices and then building a graph, often called snapshot, 
for each time slice: its nodes and links represent the inter-
actions that occurred during this time slice. One obtains a 
sequence of snapshots (one for each slice), and may study 
the time evolution of their properties, see, for instance, 
Sikdar et al. (2015), Leskovec et al. (2007), Santoro et al. 
(2011), Gulyás et al. (2013), Blonder et al. (2012), Uddin 
et al. (2013), among many others. In Batagelj and Praprotnik 
(2016), the authors even design a general framework to com-
bine and aggregate wide classes of temporal properties, thus 
providing a unified approach for snapshot sequence studies. 
However, these approaches need time slices large enough to 
ensure that each snapshot captures significant information. 
However, large slices lead to losses of temporal informa-
tion, since all interactions within a same slice are merged. In 
addition, several or even varying slice durations may be rel-
evant. As a consequence, choosing appropriate time slices is 
a research topic in itself (Léo et al. 2015; Ribeiro et al. 2013; 
Krings et al. 2012; Scholtes et al. 2016; Caceres and Berger-
Wolf 2013). More importantly, key concepts like paths make 
little sense in this framework: paths within a slice do not 
respect the dynamics of interactions, and paths over several 
time slices are difficult to handle Léo et al. (2015).

To avoid these issues, several authors propose to encode 
the full information into various kinds of augmented graphs. 

a
b
c
d

0 2 4 6 8 10 time

Fig. 20   Example S = (T ,V ,W,E) of stream graph with discrete 
time. It is defined by T = [0, 13] ⊆ ℕ , i.e., T = {0, 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13} , V = {a, b, c, d} , T

a
= T  , T

b
= {1, 2, 3, 4, 5, 7, 8,

9, 10, 11, 12, 13} , T
c
= [5, 12] = {5, 6, 7, 8, 9, 10, 11, 12} , T

d
= [1, 3]

= {1, 2, 3} , T
ab

= [1, 4] ∪ [9, 10] = {1, 2, 3, 4, 9, 10} , T
ac
= [6, 9]

= {6, 7, 8, 9} , T
bc
= [8, 12] = {8, 9, 10, 11, 12} , T

bd
= [2, 3] = {2, 3} , 

and T
ad

= T
cd

= �
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In Casteigts et al. (2012), Batagelj and Praprotnik (2016), 
Santoro et al. (2011), for instance, authors consider the 
graph of all nodes and links occurring within the data (i.e., 
the graph induced by the stream), and label each node and 
link with its presence times. In Wehmuth et al. (2015), 
Kostakos (2009), Michail (2015); Takaguchi et al. (2016), 
the authors duplicate each node into as many copies as its 
number of occurrences (they assume discrete time steps); 
then, an interaction between two nodes at a given time is 
encoded by a link between the copies of these nodes at this 
time, and each copy of a node is connected to its copy at 
the next time step. In Whitbeck et al. (2012), Nicosia et al. 
(2012) and others, the authors build reachability graphs: two 
nodes are linked together if they can reach each other in the 
stream. Other works transform the stream into multi-layer 
or multi-aspect graphs (Wehmuth et al. 2015, 2016; Kivelä 
et al. 2014). With such encodings, some key properties of 
the stream are equivalent to properties of the obtained graph, 
and therefore, studying this graph sheds light on the original 
data.

All these approaches have a clear advantage: once the 
data are transformed into one or several graphs, it is possi-
ble to use graph tools and concepts to study the interactions 
under concern. In the same spirit, various powerful methods 
for graph studies are extended to cope with the dynamics. 
This leads, for instance, to algebraic approaches for temporal 
network analysis (Batagelj and Praprotnik 2016; Praprot-
nik and Batagelj 2016), dynamic stochastic block models 
(Xu and Hero 2013; Matias and Miele 2016; Corneli et al. 
2015, 2016), dynamic Markovian models (Stadtfeld and 
Block 2017; Stadtfeld et al. 2017; Snijders 2001; Snijders 
et al. 2010), signals on temporal networks (Hamon et al. 
2015), adjacency tensors (Sun et al. 2006; Gauvin et al. 
2014), temporal networks studies with walks (Starnini et al. 
2012; Rocha and Masuda 2014; Saramäki and Holme 2015), 
dynamic graphlets (Hulovatyy et al. 2016; Harshaw et al. 
2016) and temporal motif counting approaches (Kovanen 
et al. 2011; Paranjape et al. 2017). Clearly, these works 
extend higher level methods to the temporal setting, whereas 
we focus here on the most basic graph concepts, in the hope 
that they will form a unifying ground to such works.

Similar to what we do here, several works emphasize 
the importance of the streaming nature of interactions over 
time, then called contact sequences, temporal networks, or 
relational event sequences, see, for instance, Holme (2015), 
Holme and Saramäki (2012), Nicosia et al. (2013), Batagelj 
and Praprotnik (2016), Masuda and Lambiotte (2016), Butts 
(2008), Stadtfeld and Block (2017). Complementary to the 
approaches outlined above that extend methods, these works 
extend various graph concepts to deal with time.

In particular, path-related concepts received much atten-
tion because of their importance for spreading phenomena 

and communication networks, see, for instance, Holme 
(2015), Whitbeck et al. (2012), Tang et al. (2010), Payen 
et al. (2017). Interestingly, although paths defined in these 
papers are similar to those we consider here, most derived 
concepts remain node-oriented. For instance, most authors 
define the centrality of a given node and connected com-
ponents as sets of nodes (without time information) (Bat-
agelj and Praprotnik 2016; Nicosia et al. 2013; Santoro et al. 
2011; Whitbeck et al. 2012; Nicosia et al. 2012; Tang et al. 
2010). In Chinelate et al. (2015), the authors introduce a 
centrality for time instants. Since the centrality of nodes may 
greatly change over time Magnien and Tarissan (2015), it 
is important to define centralities of each node at each time 
instant. Some authors did so for various kinds of centralities 
(Taylor et al. 2017; Flores and Romance 2017; Takaguchi 
et al. 2016; Tang et al. 2010; Sizemore and Bassett 2017), 
but, up to our knowledge, we are the first ones to consider 
paths from all nodes at all time instants to all other nodes at 
all other time instants, although a similar approach is pro-
posed in Kivelä et al. (2017) for studying percolation. This 
approach has the advantage of fully capturing the dynamics 
of the data, in particular the fact that nodes are not always 
present.

Some works go beyond path-related notions and study 
dynamics of node and link presence, link repetitions, instan-
taneous degree, and triadic closure (Zignani et al. 2014; 
Hernández-Orallo et al. 2016; Stadtfeld and Block 2017; 
Conan et al. 2007; Tang et al. 2010; Perry and Wolfe 2013; 
Leskovec et al. 2008; Newman 2001; Uddin et al. 2016; Bat-
agelj and Praprotnik 2016). However, up to our knowledge, 
there exists no previous generalization of density, neighbor-
hood, or clustering coefficient that avoids time slicing. Inter-
estingly, a notion of degree very close to the one we propose 
here was introduced in the context of medical studies (Uddin 
et al. 2014). A notion close to average degree is introduced 
in Rozenshtein et al. (2017) for dense dynamic sub-graphs 
searching. We also studied preliminary notions of density, 
cliques, quotient streams, and dense sub-streams in our own 
previous work (Viard et al. 2016; Gaumont et al. 2016a, b; 
Viard et al. 2015; Viard and Latapy 2014).

Finally, although there is a very rich body of works on 
temporal networks, dynamic graphs, longitudinal networks, 
time-varying graphs, relational event models, etc, none of 
these works aims at extending the basic graph theoretic lan-
guage to the situation, where time and structure are equally 
important, like we try to do here. By defining such a basic 
language for streams, we expect to give a more formal, uni-
fied, and rigorous ground to the variety of works dealing 
with interactions over time.
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22 � Conclusion

In this paper, we introduce a formalism to deal directly 
with the intrinsically temporal and structural nature of 
interactions over time. We first define elementary con-
cepts like numbers of nodes and links, density, clusters, 
and paths (Sects. 3–6 and Sect. 14). From them, we derive 
more advanced concepts like cliques, neighborhoods, 
degrees, clustering coefficients, and connected components 
(Sects. 7–10 and Sect. 15), and we show how to go fur-
ther by introducing quotient streams, line streams, k-cores 
and centralities (Sects. 11–13 and Sect. 17). Our formal-
ism is able to cope with both discrete and continuous time 
(Sect. 18), with both instantaneous links and links with dura-
tions (Sect. 19), and we also consider the case, where nodes 
have no dynamic, that we call link streams. Last but not 
least, our formalism may be extended to incorporate vari-
ous features of the data, and we illustrate this with bipartite 
streams in Sect. 20.

The strength of our approach is to rely on very basic (but 
non-trivial) innovations like non-integer numbers of nodes 
and links, symmetric roles for time instants and nodes, a 
simple and intuitive concept of density, an elementary 
definition of clusters, and paths that connect a node at a 
given time to a node at a given time. These basic concepts 
make it easy to define more advanced objects: neighbor-
hoods are clusters, degrees are fractional numbers of nodes 
in the neighborhoods, clustering coefficients are densities 
of neighborhoods, betweenness centralities are fractions of 
paths from any node at any time to any node at any time, etc. 
We demonstrate the strength of this approach by extending 
more advanced graph concepts such as quotient graph, trees, 
line graph, and k-cores, among others. Their definitions are 
mere retranscriptions of classical graph definitions into our 
formalism for stream graphs and link streams, and one may 
easily extend many other notions in this way.

In addition to this self-consistency, our formalism is con-
sistent with graph theory in a very strong and precise way: 
if one considers a stream graph with no dynamics (nodes 

are present all the time, and two nodes are either linked all 
the time or not at all), then the stream graph is equivalent 
to a graph and its stream properties are equivalent to the 
properties of the corresponding graph. As a consequence, 
our formalism is a generalization of graph theory, which 
provides a solid ground for generalizing other graph notions.

With our formalism, one is equipped with a wide set of 
concepts for describing data modeled as a stream graph or a 
link stream. It is natural to start with the description of how 
elementary metrics like kt (the fraction of nodes present at 
time t) evolve over time, and of distributions of values of 
nv (the fraction of time at which v is present) for all nodes. 
One may then study the instantaneous degree distribution, 
the degree distribution of nodes, and the time evolution of 
the time degree. More advanced metrics and properties, such 
as connectedness, clustering coefficient or centralities, give 
finer insight on the data. Finally, just like graph concepts do 
for relations, our formalism provides a language for describ-
ing interactions over time in an intuitive way, both at global 
and more local levels. Importantly, it does not require to 
choose a specific time scale for conducting such studies.

Data that would benefit from such an approach are count-
less, but we believe that analysis of network traffic, mobility 
traces, and financial transactions is among the most promis-
ing ones, and we are working on such applications. Indeed, 
modeling such data with (directed, weighted) stream graphs 
and link streams captures most of their features, and progress 
in these fields is currently limited by the lack of appropri-
ate modeling. Some preliminary works show the interest 
of stream graphs in the contexts of internet traffic analysis 
Viard et al. (2018); Wilmet et al. (2018), contacts between 
individuals Viard et al. (2015, 2016), and recommender 
systems Viard and Fournier-S’niehotta (2018), but most 
remains to be done in this direction.

To conduct such real-world applications, it is crucial to 
design and implement convenient software able to efficiently 
compute the properties of large stream graphs. Work in this 
direction is in progress for the properties presented in this 
paper. However, it must be clear that some concepts raise 
serious algorithmic challenges. We worked, for instance, 
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a
b
c

1 3 5 7 time

Fig. 21   Δ-analysis of a stream graph. We display a stream graph 
S = (T ,V ,W,E) (left) and the stream graph SΔ = (TΔ,V ,WΔ,EΔ) 
(right) derived from it with Δ = 2 . Here, T = [0, 10] , V = {a, b, c} , 
W = ([0, 4] ∪ [6, 10]) × {a} ∪ ([0, 2] ∪ {3} ∪ [4, 10]) × {b} ∪ [4, 8]×

{c} , and E = ({0, 2, 3, 6} ∪ [7, 8]) × {ab} ∪ [4, 8] × {bc} , leading 
to TΔ = [1, 9] , WΔ = [1, 9] × {a, b} ∪ [3, 9] × {c} and EΔ = ([1, 4]
∪[5, 9]) × {ab} ∪ [3, 9] × {bc} . Notice that S contains instantaneous 
links, like, for instance, (0, ab), and instantaneous nodes, like (3, b)
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on clique and dense sub-stream computations (Viard et al. 
2016; Gaumont et al. 2016b), and previous work exists on 
various problems, see, for instance, Wehmuth et al. (2016), 
Bui-Xuan et al. (2003), Casteigts et al. (2012, 2015), Bhadra 
and Ferreira (2012), Huanhuan et al. (2014). In particular, 
the authors of Casteigts et al. (2012) define a first complex-
ity hierarchy for stream graphs. Still, most remains to be 
done in the design of efficient algorithms for stream graphs 
and the understanding of their complexity. This may lead 
to counter-intuitive results with important practical impact. 
For instance, although stream graphs are richer than usual 
graphs, because they include time information and their 
number of links is unbounded (in graphs, it is bounded by 
n⋅(n−1)

2
 ), computing their properties may be easier than com-

puting the ones of induced graphs. Indeed, computation 
costs are often related to properties like maximum degree 
or maximum clique size, which are in general smaller in 
stream graphs than in their induced graphs. In addition, the 
temporal nature of stream graphs makes it easier to distribute 
storage and some computations by dividing the stream with 
respect to time windows.

Another important direction is the design of models of 
stream graphs and link streams, which play a crucial role for 
simulations and proofs. In particular, an important approach 
in graph studies consists in generating uniformly at random 
graphs that have a prescribed set of properties. For instance, 
the Erdös–Renyi model generates graphs with prescribed 
size and density, while the configuration model generates 
graphs with prescribed size and degree distribution. The 
definitions we introduce in this paper (in particular for den-
sity and degree) open the way to the definition of models for 
generating stream graphs with prescribed properties, and to a 
more unified understanding of already existing models, like 
the ones defined in Zhao et al. (2013), Laurent et al. (2015), 
Butts (2008), Snijders (2001), Leskovec et al. (2008), Sni-
jders et al. (2010), Gulyás et al. (2013), Karsai et al. (2011), 
for instance.

In this paper, we extended classical concepts of graph 
theory to stream graphs, but it is clear that many other 

concepts call for such generalizations. This includes, for 
instance, random walks and key concepts derived from them, 
like pagerank and eigenvector centralities, structural graph 
concepts like modular decomposition or treewidth, as well 
as more elaborate concepts like communities and modular-
ity. Some of these directions were already explored in part 
(Starnini et al. 2012; Rocha and Masuda 2014; Saramäki 
and Holme 2015; Gaumont et al. 2016a), and we believe 
that stream graphs provide a promising framework to help 
explore them further.

In this direction, one may notice that stream graphs are 
not only generalizations of graphs. They actually lie at the 
crossroad of two very rich and powerful scientific areas: 
graph theory, as we have seen, and time series analysis. 
Indeed, if a stream graph has no dynamics, then it is equiva-
lent to a graph; if it has no structure then it is equivalent to 
a time series. As a consequence, we consider that a very 
promising direction for future work is to generalize time 
series concepts to stream graphs, in a way similar to what 
we did with graph concepts in this paper.
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