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Abstract
In the past decade, graph-based structures have penetrated nearly every aspect of our lives. The detection of anomalies in 
these networks has become increasingly important, such as in exposing infected endpoints in computer networks or identify-
ing socialbots. In this study, we present a novel unsupervised two-layered meta-classifier that can detect irregular vertices in 
complex networks solely by utilizing topology-based features. Following the reasoning that a vertex with many improbable 
links has a higher likelihood of being anomalous, we applied our method on 10 networks of various scales, from a network of 
several dozen students to online networks with millions of vertices. In every scenario, we succeeded in identifying anomalous 
vertices with lower false positive rates and higher AUCs compared to other prevalent methods. Moreover, we demonstrated 
that the presented algorithm is generic, and efficient both in revealing fake users and in disclosing the influential people in 
social networks.

1  Introduction

Complex networks are defined as systems in nature and soci-
ety whose structure is irregular, complex, and dynamically 
evolving in time with thousands, millions, or even billions of 
vertices and edges (Albert and Barabási 2002; Boccaletti et al. 
2006). These systems can be found in every part of our daily 
life (Strogatz 2001; Fire and Guestrin 2016), such as electri-
cal power grids, metabolic networks, food webs, the Internet, 
and co-authorship networks (Strogatz 2001; Newman 2003). 
Analyzing the unique structures of these networks can be very 
useful in a variety of research domains. For example, an anal-
ysis of network structures can reveal how a computer virus 
will propagate most quickly in a computer network (Balthrop 

et al. 2004), or which vertex malfunction in a power grid will 
affect more houses (Wang and Chen 2003).

Many studies have shown that vertices which deviate 
from normal behavior may hide important insights (Bolton 
and Hand 2002; Noble and Cook 2003; Akoglu et al. 2010; 
Papadimitriou et al. 2010; Fire et al. 2012). For instance, 
Bolton and Hand (2002) showed that in e-commerce fraud-
sters behave differently from the expected norm. Fire et al. 
(2012) observed that fake profiles and bots in social net-
works have a higher probability of being connected to a 
greater number of communities than benign users. Hooi 
et al. (2016) noted that fraudsters tend to create unusually 
large and dense regions in the adjacency matrix of the graph. 
Noble and Cook (2003) showed that a graph-based technique 
is applicable for network intrusion detection.

Over the years, studies have offered diverse solutions for 
anomaly and outlier detection in graph-based structures (Ako-
glu et al. 2015). These studies have utilized various graph fea-
tures, such as vertices, dyads, triads, and communities, to detect 
the fake profiles’ behavioral patterns. For example, in the case 
of a social graph, anomalous vertices can represent malicious 
or fake profiles. Because illegitimate profiles do not represent 
a real person and they do not have real friends and connections 
in the social network, the structure of their connections can 
indicate whether the vertices are malicious or benign.

In this study, we introduce a novel generic unsupervised 
learning algorithm for the detection of anomalous vertices, 
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utilizing a graph’s topology (see Fig. 1). The algorithm con-
sists of two main iterations. In the first iteration, we create a 
link prediction classifier which is based only on the graph’s 
topology. This classifier is able to predict the probability 
of an edge existing in the network with high accuracy (see 
Sect. 3.2). In the second iteration, we generate a new set of 
meta-features based on the features created by the link predic-
tion classifier (see Sect. 3.3). Then, we utilize these meta-fea-
tures and construct an anomaly detection classifier. Intuitively, 
the algorithm is based on the assumption that a vertex that has 
many edges with low probabilities of existing (improbable 
edges) has a higher likelihood of being anomalous.

We evaluated our anomaly detection algorithm on three 
types of complex networks: fully simulated networks, real-
world networks with simulated anomalous vertices, and real-
world networks with labeled anomalous vertices. Our study 
results indicate that the proposed algorithm can successfully 
detect malicious users in complex networks in general, and 
more specifically, in online social networks. Moreover, we 
showed that this algorithm may be applicable as a generic 
anomaly detection algorithm in additional domains. The 
principal contributions of this study are as follows:

1.	 We successfully incorporate a link prediction technique 
into an anomaly detection model, which requires almost 
no prior knowledge of the graph (see Sect. 3.2.2).

2.	 We propose seven new features which are found to be 
good predictors for anomaly detection (see Sect. 3.3).

3.	 We conduct an extensive experimental evaluation of the 
proposed methods on three types of data: three fully syn-
thetic datasets, five semi-synthetic datasets, and two real 
datasets (see Sect. 5).

4.	 The results demonstrate that our algorithm can detect 
anomalies in networks of different types and sizes and 

that it also performs better than other methods we tested. 
In addition, the proposed method performs well with 
incomplete data in contrast to methods that utilize fea-
tures such as community structure (see Sect. 6).

5.	 This study is reproducible; we published all of its code 
and data online, including the real-world datasets con-
taining labeled fake profiles. This can be used as an open 
framework to help future vertex anomaly detection algo-
rithms compare their results (see Sect. 9).

The remainder of this paper is organized as follows. In Sect. 2, 
we present an overview of relevant studies. In Sect. 3, we 
describe how we constructed our algorithm. We introduce the 
datasets we have utilized to evaluate the method in Sect. 4. 
Section 5 provides a description of the experiments we pre-
formed to evaluate the presented method. In Sect. 6, we present 
our results. Section 7 contains a discussion about the results 
obtained, and lastly, in Sect. 8, we present our conclusions.

2 � Literature overview

The detection of anomalies is an extremely useful ability 
in many domains because irregularities can be discovered 
without any prior knowledge or help of an expert. Detecting 
aberrations is very common and crucial in the cyber-security 
field. For instance, Hofmeyr et al. (1998) used an anomaly 
detection method in order to spot intrusions in UNIX sys-
tems. Another example is the work of Fawcett and Provost 
(1997), who developed a fraud detection method by profiling 
users’ behavior and detecting deviations. Anomaly detection 
is widely used in diverse fields such as the medical area, 
sensor networks. (Chandola et al. 2009).

Fig. 1   Algorithm overview. a The link prediction classifier is trained 
to calculate the probability that an edge does not exist in the graph. 
For example, the classifier can predict that the probability of an edge 
between the two green vertices not existing is 94%. b We utilize the 

link prediction classifier to predict the probability of each edge not 
existing. c We calculate for each vertex the average probability that 
the vertex edges do not exist. d Vertices that have the highest average 
probability (the red vertices) are inspected (color figure online)
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The analysis of graphical data has grown in popularity 
(Eberle and Holder 2007) over the past two decades, and this 
has been accompanied by increasing amounts of research 
on anomaly detection in complex networks. However, many 
insights remain to be discovered, particularly in the structure-
based method subgenre of anomaly detection. One of the first 
studies that combined complex networks and anomaly detection 
was conducted by Noble and Cook (2003). Noble and Cook 
proposed two methods for detecting anomalies in graphs. The 
first method was based on the concept that substructures reoc-
cur in graphs, which means anomalies are substructures that 
occur infrequently. Noble and Cook’s second method was to 
divide the graph into subgraphs and rank them by an anomaly 
measure, which they defined for each subgraph.

Sun et al. (2005) proposed a method for detecting abnormal 
vertices in bipartite graphs. They calculated normality scores 
(based on the neighborhood relevance score), where vertices 
with a lower normality score had a higher likelihood of being 
anomalous. Eberle and Holder (2007) proposed detecting 
fraud by discovering modifications, insertions, and deletions 
in graphs. Unlike Noble and Cook, Eberle and Holder looked 
for substructures that, while similar to normative substruc-
tures, are still different. The idea behind this approach is that 
fraudsters may try to masquerade as legitimate entities, which 
makes them look very similar to legitimate users.

Papadimitriou et al. (2010) presented a method that can 
identify anomalies in a web graph that may occur as a result 
of malfunctions. They proposed identifying outliers by 
comparing the similarity scores of two consecutive graphs 
against some threshold. Akoglu et al. (2010) proposed a 
feature-based method to spot strange vertices in weighted 
graphs. In order to detect anomalies, they defined a score 
that measures “distance to fitting line” that uses several 
features that they proposed. They considered vertices with 
the highest scores as outliers. Fire et al. (2012) proposed 
Stranger, a method for detecting fake profiles in online social 
networks based on anomalies in a fake user’s social struc-
ture. They trained their classifier by simulating a fake profile 
that randomly sends friendship requests to other users in the 
network. Recently, Hooi et al. (2016) presented FRAUDAR, 
a method for detecting “camouflaged” malicious accounts. 
FRAUDAR utilizes density-based metrics in order to detect 
malicious accounts in bipartite networks.

In this work, we rely on a link prediction algorithm which 
is central to our anomaly detection method. Link prediction 
is defined as the discovery of hidden or future links in a 
given social network. The link prediction problem was first 
introduced by Liben-Nowell and Kleinberg (2007) when 
they studied co-authorship networks and tried to predict 
future collaborations between researchers. They proved that 
future links can be predicted with reasonable accuracy from 
network topology alone.

In 2011, there was a surge in publications on link pre-
diction due to the Kaggle IJCNN 2011 Social Network 
Challenge.1 The challenge was to predict edges in an online 
social network that was provided by Kaggle. Cukierski 
et al. (2011) proposed a method that is based on supervised 
machine learning and uses 94 different features. They dis-
covered that a Random Forest classifier performed best out 
of all of the supervised machine learning methods evaluated. 
In addition, they found that EdgeRank (rooted PageRank) 
(Brin and Page 2012) was the highest scoring feature out of 
the 94 features used.

Fire et al. (2011) analyzed which topological features are 
more computationally efficient. They tested a total of 53 dif-
ferent features that were divided into five subsets, using ten 
different datasets of online social networks. They discovered 
that a smaller subset of features can be used to obtain results 
with relatively high AUCs (Fire et al. 2011). Later, Fire et al. 
demonstrated that in many cases the benefits of using a large 
number of features is insignificant, and that by only using 
computationally efficient features, it is possible to get highly 
accurate classifications (Fire et al. 2013).

3 � Methods

In this study, we utilize graph topology to develop a novel 
generic method for identifying anomalous vertices in com-
plex networks. The primary advantage of using graph struc-
ture is that topology-based methods are generic and can be 
utilized on most graph-based data.

Studies conducted in the past several years indicate that 
many malicious users present different behavioral patterns 
than benign users (Boshmaf et al. 2011; Cao et al. 2012; 
Fire et al. 2012; Ferrara et al. 2016). Boshmaf et al. (2011) 
described how fake profiles connect randomly to other users 
in order to establish an influential position or fame. String-
hini et al. (2010) noticed that many spammers on Facebook 
choose to connect to other users according to their victims’ 
names. Moreover, Fire et al. (2012) described how fake pro-
files will likely connect to many communities. For example, 
with fake profiles there is increased likelihood that neigh-
bors will not have any mutual characteristics (e.g., the same 
workplace, language). Ferrara et al. (2016) noted that social 
bots on Twitter tend to grow their social circles following 
random accounts.

Motivated by the difference between the observed behav-
ioral patterns of fake profiles and benign users, we devel-
oped a method to generate examples for our link classifier. 
We generated positive examples by randomly selecting non-
existing edges and negative examples by selecting existing 

1  https​://www.kaggl​e.com/c/socia​lNetw​ork.

https://www.kaggle.com/c/socialNetwork
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ones. Then, for each of these edges, we extracted features 
that were based on the network’s topology (see Sect. 3.2), 
and we used the feature set to train a link prediction clas-
sifier (see Fig. 1). Next, we aggregated the results from the 
link classifier for each vertex and created an additional set of 
features (see Sect. 3.3). We then extracted the second set of 
features and used them to build a meta-classifier that identi-
fies anomalous vertices in the graph.

3.1 � Problem definition

Generally, an anomaly or outlier defined as “an observation 
that differs so much from other observations as to arouse 
suspicion that it was generated by a different mechanism” 
(Akoglu et al. 2015). Moreover, Noble and Cook (2003) 
stated in their work, “it remains difficult to give a general, 
formal definition of what an anomaly is,” and they consid-
ered an anomaly as “a surprising or unusual occurrence.” 
The definition of anomaly is very general and there are many 
domain-specific definitions. In this study, we see anoma-
lous vertices simply as vertices which deviate from the 
normal behavior. More specifically, we see an anomalous 
vertex as a vertex with edges that deviate from the normal 
behavior. Formally, we define the problem, given a graph 
G = <V ,E> , a vertex v ∈ V  will be flagged as an anomaly/
outlier if score(v) > threshold.

3.2 � Constructing a link prediction classifier

As described in Sect. 2, in the last decade, researchers have 
proposed various methods for predicting links in graphs 
(Al Hasan et al. 2006; Liben-Nowell and Kleinberg 2007; 
Cukierski et al. 2011; Brin and Page 2012; Fire et al. 2013). 
Moreover, researchers have demonstrated that link predic-
tion classifiers can predict links with a high level of preci-
sion on a wide range of complex networks (Fire et al. 2013). 
In this study, we constructed a topology-based link predic-
tion classifier based on the works of Cukierski et al. (2011) 
and Fire et al. (2013). We extracted 19 different features,2 16 
of which are used for directed graphs (all of the edge-based 
features except for Transitive Friends and Adamic-Adar 
Index are used for both directed and undirected graphs) and 
eight are used for undirected graphs. Prior to describing how 
the features were used, we provide the following definitions. 
Let G ∶= (V ,E) be a graph where V is a set of the graph’s 
vertices and E is the set of the graph’s edges. Let v ∈ V ; then 
� (v) is defined as the neighborhood of vertex v, while �in(v) , 

�out(v) , and �bi(v) are defined as the inbound, outbound, and 
bidirectional set of neighbors, respectively.

3.2.1 � Feature extraction

–	 Total Friends is the number of distinct friends between 
two vertices v and u. 

–	 Common Friends represents the number of common 
friends between two vertices v and u. 

 For a directed graph, we define three variations of Com-
mon Friends:

	   CommonFriendsin(v, u) ∶= |�in(v) ∩ �in(u)|, 
CommonFriendsout(v, u) ∶= |�out(v) ∩ �out(u)|, and

	   CommonFriendsbi(v, u) ∶= |�bi(v) ∩ �bi(u)|.
–	 Jaccard’s Coefficient measures similarity between two 

groups of items (Cukierski et al. 2011; Fire et al. 2013; 
Liben-Nowell and Kleinberg 2007). 

–	 Preferential Attachment Score is based on the idea that 
the rich get richer in social networks (Liben-Nowell and 
Kleinberg 2007). 

–	 Transitive Friends for vertices v and u in a directed graph 
G calculates the number of transitive friends of v and u. 

–	 Opposite Direction Friends for a directed graph G indi-
cates whether reciprocal connections exist between ver-
tices v and u. 

–	 Adamic-Adar Index is a similarity measure for undirected 
graphs which measures how strongly two vertices are 
related (Liben-Nowell and Kleinberg 2007) . 

The kNN weight3 features are general neighborhood and 
similarity-based features (Cukierski et al. 2011). They are 
based on the principle that as the number of friends goes 
up, the value of each individual friend decreases.

Total Friends(v, u) ∶= |� (v) ∪ � (u)|

CommonFriends(v, u) ∶= |� (v) ∩ � (u)|

Jaccards Coefficient(v, u) ∶=
|� (v) ∩ � (u)|
|� (v) ∪ � (u)|

Preferential Attachment(v, u) ∶= |� (v)| ⋅ |� (u)|

Transitive Friends(v, u) ∶= |�out(v)| ∩ |�in(u)|

Opposite Direction Friends(v, u) ∶=

{
1, if (u, v) ∈ E

0, otherwise

Adamic-Adar Index ∶=
∑

w∈� (u)∩� (v)

1

log |� (w)|

2  In a large dataset, computing dozens of features can last several 
hours or even several days; to avoid extremely long computations we 
used only computationally efficient features (Fire et al. 2013).

3  This not the standard kNN acronym, but a set of weight functions 
defined by Cukierski et al. (2011).
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–	 Directed kNN Weights are defined by two notations. Let 
v, u ∈ V  ,  where  v  edges’  we igh t  w i l l  be 
win(v) ∶=

1√
1+��in(v)�

 and wout(v) ∶=
1√

1+��out(v)�
 , inbound 

and outbound, respectively. The weight of the connec-
tion between v and u can be measured using eight com-
binations of these weights:

	   (a) kNNW1(v, u) ∶= win(v) + win(u) ; (b) kNNW2(v, u) ∶

= w
in
(v) + w

out
(u) ; (c) kNNW3(v, u) ∶= wout(v) + win(u) ; 

(d) kNNW4(v, u) ∶= wout(v) + wout(u) ; (e) kNNW5(v, u) ∶

= w
in
(v) ⋅ w

in
(u) ;  (f) kNNW6(v, u) ∶= win(v) ⋅ wout(u) ; 

( g )  kNNW7(v, u) ∶= wout(v) ⋅ win(u)  ;  a n d  ( h ) 
kNNW8(v, u) ∶= wout(v) ⋅ wout(u).

–	 Undirected kNN Weights are defined similarly, but only 
for the neighbors. Let v, u ∈ V  , where the weight of v 
edges will be w(v) ∶= 1√

1+�� (v)�
 and the weight of the 

connection between v and u will be measured by two 
combinations: (a) kNNW9(v, u) ∶= w(v) + w(u) and (b) 
kNNW10(v, u) ∶= w(v) ⋅ w(u).

3.2.2 � Classifier construction

Similar to Fire et al. (2013), we trained the link classifier 
on the same number of negative and positive examples, 
which were existing edges and non-existing edges, respec-
tively. The negative examples represent real users and were 
selected randomly (degree distribution) from all of the 
existing edges in the graph. The positive examples were 
selected as non-existing edges between two random verti-
ces which were sampled uniformly to represent the edges 
of a malicious user a in social network. After obtaining 
a set of positive (non-existing edges) and negative (ran-
dom edges) examples, for each entry, we extracted all of 
the features described in Sect. 3.2.1. Finally, we used the 
Random Forest algorithm to construct the link prediction 
algorithm for our training sets. We chose the Random 
Forest algorithm because previous link prediction studies 
(Cukierski et al. 2011; Fire et al. 2013) demonstrated that, 
in most cases, it performs better than other classification 
algorithms at predicting links. Our link classifier relies on 
the fact that most of the vertices in online social networks 
are real, and malicious users tend to connect to other pro-
files randomly (Boshmaf et al. 2011; Cao et al. 2012; Fire 
et al. 2012).

input : Graph G, Number of vertices to sample N , Node label Label, Minimal
number of friends MinFriends

output: Edges of Selected Vertices

1 SelectedEdges ← Set();
2 while N > 0 do
3 RandomVertex ← SampleNodes(G,1);
4 if RandomVertex = Label and |Γ (RandomVertex)| > MinFriends then
5 TempEdges ← Set();
6 foreach Node u in Γ (RandomVertex) do
7 if |Γ (u)| > MinFriends then
8 TempEdges ← TempEdges + (RandomVertex, u);
9 end

10 end
11 if |TempEdges| > MinFriends then
12 SelectedEdges ← SelectedEdges + TempEdges;
13 N ← N− 1;
14 end
15 end
16 end
17 return SelectedEdges;

Algorithm 1: Sampling vertices from a graph.
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3.3 � Detecting anomalous vertices

After constructing a link prediction classifier for each graph, 
we utilized the classifier to build an unsupervised anomaly 
detection algorithm. We used the trained classifier to cal-
culate (for all the edges of the inspected vertices) the clas-
sifier’s confidence that an edge does not exist. Using this 
metric, we calculated seven features that we used to identify 
anomalies.

3.3.1 � Anomaly detection features

The intuition behind the anomaly detection features is that 
these features are fast to compute and easy to understand. 
Intuitively, the Abnormality Vertex Probability feature 
reflects the problem definition (see Sect. 3.1). The other 
features are designed to help in detecting special cases. 
For instance, STDV-based features can indicate vertices 
that drastically change their behavior; in the cyber-security 
domain, they can help detect compromised vertices in the 
network.

To create meta-features, we define the probability of an 
edge not existing as p(v, u), where v, u ∈ V  and (v, u) ∈ E . 
We also define EP(v) ∶= {p(v, u)|u ∈ � (v)} , which is the list 
of all the probabilities of v edges.

1.	 Abnormality Vertex Probability is defined as the prob-
ability of a vertex v to be anomalous, which is equal to 
the average probability of its edges not existing. This 
corresponds with our definition of anomaly which was 
previously described. 

2.	 Edges Probability STDV is the standard deviation of a 
set of vertex v edges’ probability of not existing. If we 
focus on online entities, a high standard deviation can 
indicate that at some point the vertex was compromised. 

3.	 Edges Probability Median is the median of a set of ver-
tex v edges’ probability of not existing. The advantage of 
median over mean is that it is not as sensitive to unusu-
ally large or small values. 

4.	 Edge Count is the number of edges that vertex v has. 
An extremely low value may indicate that the results for 
vertex v are statistically insignificant. 

P(v) ∶=
1

|� (v)|
∑

u∈� (v)

p(v, u)

Edges Probability STDV(v) ∶= �(EP(V))

Edges ProbabilityMedian(v) ∶= median(EP(V))

EdgeCount(v) ∶= |� (v)|

5.	 Sum Edge Label is the number of vertex v edges that 
were labeled as anomalous; in other words, this is the 
number of edges v with a p higher than a defined thresh-
old, which in this work was set to 0.8. The goal of this 
feature is to detect cases where vertices have many 
anomalous edges, most of which are only slightly above 
the threshold, resulting in a relatively low P. 

 where we define the function EdgeLabel(v, u) as: 

6.	 Mean Predicted Link Label is the percent of v edges that 
are labeled as anomalous. 

7.	 Predicted Label STDV is the standard deviation of the 
classification of v edges. 

We used the described features in two ways. The first usage 
scenario was with data that did not have any labels. In this 
case, we ranked all of the vertices by the different features 
and manually examined the top and bottom vertices, which 
had the highest and lowest likelihood of being anomalous. 
The second scenario was when the data were labeled or par-
tially labeled. In such cases, we performed additional clas-
sification using the Random Forest algorithm on the data and 
created a meta-classifier.

3.3.2 � Test set generation

First, we created the test set by sampling the edges of ran-
dom vertices from the graph. The sampling process works as 
described in Algorithm 1: The algorithm starts by uniformly 
selecting one random vertex, RandomVertex (line 3). Next, 
we check if it has more neighbors than the minimal amount 
required (MinFriends). In addition, for labeled graphs we 
also check if RandomVertex has the desired label, in order 
to ensure that the test set has positive examples (line 4). 
Then, we select all of the RandomVertex neighbors that 
also have more than MinFriends neighbors. This constraint 
is used to ensure that the neighbors of RandomVertex also 
were crawled and that the link features to be extracted are 
meaningful (lines 6–9). If RandomVertex has more than 
MinFriends neighbors that have more than MinFriends 

SumEdge Label(v) ∶=
∑

u∈� (v)

EdgeLabel(v, u)

Edge Label(v, u) ∶=

{
0, if p(v, u) < threshold

1, otherwise

MeanPredicted Link Label(v) ∶

=
1

|� (v)|
∑

u∈� (v)

Edge Label(v, u)

Predicted Label STDV(v) ∶

= �({Edge Label(v, u)|u ∈ � (v), u, v ∈ V})
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socioeconomically deprived. This is probably the first-ever 
collected social network dataset (Heidler et al. 2014).7

Dblp8 is the online reference for bibliographic informa-
tion on major computer science publications. We used the 
Dblp dataset to build a co-authorship graph.9

Flixster10 is a social movie site which allows users to 
share movie reviews and discover new movies. We collected 
the data using a dedicated crawler in 2012.

Twitter11 is an undirected online social network where 
people publish short messages and updates. Currently, Twit-
ter has 310 million monthly active users.12 According to 
recent reports, Twitter has a bot infestation problem (Vaas 
2014; Hernandez 2015). We used a dedicated API crawler 
to obtain our dataset in 2014.13

Yelp14 is a web platform to help people find local busi-
nesses. In addition, Yelp provides various social capabili-
ties. In 2016, Yelp published a dataset containing a social 
network of its users.15

5 � Experimental evaluation

We evaluated our algorithm on ten networks that we cat-
egorized into three types of datasets (fully synthetic dataset, 
real-world dataset with injected anomalies, and real-world 
dataset with labeled anomalies). In addition, due to hard-
ware limitations, for each dataset, we sampled a test set that 
contained 900 random existing vertices and 100 anomalous 
vertices. The test set maintained the same 1:10 ratio between 
anomalous and normal vertices. To reduce the variance of 
the results, we ran the algorithm 10 times on each dataset. 
The more evaluations we performed, the smaller the vari-
ance in the results. We evaluated the algorithm on the aver-
age result of these experiments. To measure the algorithm’s 
performance, we used tenfold cross-validation to measure 
the TPR, FPR, precision, and AUC for all of the evalua-
tions. In addition, we measured the algorithm’s precision 
at k (precision@k) for k ∶= 10, 100, 200, and 500. Finally, 
we compared our method’s performance to the Stranger 
algorithm (Fire et al. 2012) in detecting anomalies. The 

4  https​://www.acade​mia.edu.
5  https​://www.arxiv​.com.
6  https​://snap.stanf​ord.edu/data/cit-HepPh​.html.

7  https​://githu​b.com/gephi​/gephi​/wiki/Datas​ets.
8  https​://www.dblp.com.
9  http://dblp.uni-trier​.de/xml/dblp.xml.gz.
10  https​://www.flixs​ter.com.
11  https​://www.twitt​er.com.
12  https​://about​.twitt​er.com/compa​ny.
13  We limited the crawler to crawling a maximum of 1000 friends 
and followers for every profile (see Sect.  9). This limitation is due 
to the fact that Twitter accounts can have an unlimited number of 
friends and followers, which in some cases can reach several million.
14  https​://www.yelp.com.
15  https​://www.yelp.com/datas​et_chall​enge.

neighbors, then the selected edges are added to the test set 
(lines 11–14).

The goal of these steps was to select only edges between 
vertices which were likely fully crawled and had neighbors 
in the graph (i.e., have more than MinFriends neighbors, 
which we set at three because it is the minimal number 
of vertices where we have a majority of edges of one of 
the class). Vertices that have a small number of neighbors 
are less relevant, since there is not enough information to 
determine their behavior (Fire et al. 2012). The algorithm 
continued to run until it added N vertices to the test set. In 
our experiments, we executed Algorithm 1 twice for each 
network, the first time to extract positive samples and the 
second time to extract negative samples. In both cases, we 
set MinFriends to three.

3.3.3 � Training set generation

Later, we sampled the link prediction classifier training set 
that was described in Sect. 3.2. The edge sampling for the 
link classifier worked as follows: Let test-vertices be a set of 
all of the vertices that were selected by Algorithm 1, and if 
(v, u) ∈ E is an edge, then (v, u) can be part of the link clas-
sifier training set, if and only if u, v ∉ test-vertices.

4 � Social network datasets

Academia.edu4 is a social platform for academics to share 
and follow research. We crawled Academia.edu graph dur-
ing 2011.

ArXiv5 is an ePrint service used in fields such as physics 
and computer science. We used the ArXiv HEP-PH (high 
energy physics phenomenology) citation graph that was 
released as part of the 2003 KDD Cup.6

Boys’ Friendship (Class of 1880/81) is a dataset which 
contains the friendship network of a German school class 
from 1880–81 that was assembled by the class’s primary 
school teacher, Johannes Delitsch. The dataset itself was 
generated by observing students, interviewing pupils and 
parents, and analyzing school essays (Heidler et al. 2014). 
Delitsch found that there were 12 outliers out of 53 stu-
dents, which Heidler et al. defined as students who did not 
fit perfectly into their predicted position within the network 
structure. The data contain three types of outliers: “repeat-
ers,” who were four students who often led the games; 
“sweets giver,” a student who bought his peers’ friend-
ship with candies; and a specific group of seven students 
who were psychologically or physically handicapped, or 

https://www.academia.edu
https://www.arxiv.com
https://snap.stanford.edu/data/cit-HepPh.html
https://github.com/gephi/gephi/wiki/Datasets
https://www.dblp.com
http://dblp.uni-trier.de/xml/dblp.xml.gz
https://www.flixster.com
https://www.twitter.com
https://about.twitter.com/company
https://www.yelp.com
https://www.yelp.com/dataset_challenge
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Stranger algorithm is trained on simulated fake users who 
are inserted into the social networks by using random friend-
ship requests. This process is very similar to the way we 
generated our test set for the fully and semi-simulated net-
works. Due to this similarity, we only evaluated the Stranger 
algorithm on real-world networks.

5.1 � Simulation of anomalous vertices

Currently, there is a very limited number of publicly avail-
able datasets with known anomalies, and manual labeling is 
a challenging task (Akoglu et al. 2015). To deal with these 
issues and evaluate the proposed anomaly detection algorithm 
on various types of networks, we used simulated anomalous 
vertices (see Algorithm 2) for different scenarios. Similar to 
previous studies (Boshmaf et al. 2011; Cao et al. 2012; Fire 
et al. 2012), we generated anomalous vertices by randomly 
connecting them to other vertices in the network as follows. 
First, we inserted a new simulated vertex into the graph (line 
2). Next, we generated NeighborsNumber, the number of 
edges to be created for the simulated vertex (line 3). Then, we 
sampled random NeighborsNumber vertices from the graph 
(line 4). Afterward, we connected the newly inserted vertex 
to the sampled random vertices (lines 5–7). The number of 
anomalous vertices in each graph was set to 10%, which rep-
resents an estimation of the percentage of fake vertices in an 
average social network (Facebook 2015; Vaas 2014).

5.2 � Fully simulated network evaluation

To generate fully simulated complex networks, we used the 
Barabási–Albert model (BA model) (Barabási and Albert 
1999), which is a minimal model that can generate scale-
free networks. We believe it should give a good indication 
of the performance of the method on various types of com-
plex networks. The generated networks were constructed 
according to the number of vertices and the average number 
of edges of a real-world network to make them as close as 
possible to actual networks. First, we generated BA net-
works that were 90% of the size of the real networks that are 
described in Sect. 4. Generating complex networks using the 
BA model requires two parameters: the number of vertices 
to be generated and the number of edges to be created for 
each vertex. We used the number of vertices and the aver-
age number of edges of the ArXiv, Dblp, and Yelp datasets 
(see Table 1) to generate the simulated networks. Afterward, 
we inserted anomalous vertices for the remaining 10% (see 
Algorithm 2).

Table 1   Social network datasets

Network Directed Vertices Links Date Labels

Academia Yes 200,169 1,389,063 2011 No
ArXiv No 34,546 421,578 2003 No
Class Yes 53 179 1881 Yes
Dblp No 1,665,850 13,504,952 2016 No
Flixster No 672,827 1,099,003 2012 No
Twitter Yes 5,384,160 16,011,443 2012 Yes
Yelp No 249,443 3,563,818 2016 No

Table 2   Machine learning results using fully simulated networks and 
semi-simulated networks with simulated anomalous nodes

Network AUC​ TPR FPR Precision

Simulation ArXiv 0.991 0.889 0.011 0.904
Dblp 0.997 0.935 0.006 0.993
Yelp 0.993 0.917 0.007 0.937

Semi-simulated Academia 0.999 0.998 2.51 × 10−4 0.997
Arxiv 0.997 0.953 0.004 0.965
Dblp 0.997 0.940 0.005 0.995
Flixster 0.992 0.908 0.010 0.990
Yelp 0.996 0.941 0.005 0.958

input : Graph G, having simulated vertex number N
output: Graph G with N simulated vertices

1 for i ← 1 to N do
2 SimulatedVerticesNumber ← AddVertex(G,i,Fake);
3 NeighborsNumber ← Random(G.DegreeDistribution));
4 RandomVertices ← SampleVertices(G,NeighborsNumber);
5 foreach Vertex u in RandomVertices do
6 AddEdge(v,u);
7 end
8 end

Algorithm 2: Adding anomalous vertices to a graph.
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5.3 � Semi‑simulated network evaluation

The second dataset type was a semi-simulated network, 
which is a real-world network with injected simulated 
anomalous vertices (see Algorithm 2). The evaluation was 
conducted on the datasets of ArXiv, Dblp, Flixster, and Yelp 
(see Table 1) with inserted anomalies.

5.4 � Real‑world network evaluation

The third dataset type we tested our method on was a real-
world network with labeled anomalous vertices. We evalu-
ated the graphs of the Boys’ Friendship (referred to as Class) 
and Twitter datasets (see Table 1). The Twitter data, by 
default, did not have any labels. To create labels that can be 
considered ground truth, we crawled all of the profiles (with-
out the edges) in the Twitter dataset, approximately 1 year 
after the initial crawling took place. Similar to Thomas et al. 
(2011), we considered all of the accounts that Twitter opera-
tors decided to block as a ground truth. When Twitter labels 
an account as malicious, it is suspended, and an appropriate 
message is presented. Twitter defines a suspended account 
as one that violated Twitter’s terms of service;16 the most 
common reasons for suspension are spam, the account being 
hacked or compromised, and abusive tweets or behavior.17 
As a result, we labeled all of the accounts which were sus-
pended as malicious, and we considered them to be anoma-
lous vertices in the graph. In addition, we filtered all of the 
verified accounts from the dataset. A verified account is an 
account of public interest, primarily those of celebrities, 
politicians, etc.17 These were filtered because most of their 

connections do not represent regular users, and many times 
they are managed by some kind of third party (Plante 2014).

In the Class dataset, we observed that nearly all of the 
psychologically or physically handicapped students (all 
except one) did not have neighbors in the graph. This left us 
with three groups of outliers: the four “repeaters,” the single 
“sweets giver,” and two pupils who were socioeconomically 
deprived. Due to the small scale of the dataset, running the 
anomaly detection algorithm with a small number of repeti-
tions can result in high variance rates. Therefore, to reduce 
the variance we ran our method 100 times on the dataset and 
calculated the average of the features presented in Sect. 3.3. 
In addition, every execution we tested contained only 10 
vertices.

6 � Results

We evaluated our topology-based anomaly detection method 
on three scenarios. First, we evaluated the method on fully 
simulated networks with simulated anomalous vertices using 
a tenfold cross-validation. As can be seen in Table 2, for 
the three fully simulated networks, we obtained high AUCs 
and low FPRs. Second, we evaluated the proposed method 
on semi-simulated graphs, i.e., real-world networks with 
injected anomalous vertices. We can see that the algorithm 
generated especially good results, with an average AUC of 
0.99 and FPR of 0.021 (see Table 2). Third, we evaluated 

Fig. 2   The blue, green and 
orange lines represent Twitter 
precision at K of LPAD (link 
prediction anomaly), Stranger, 
and random algorithm, respec-
tively (color figure online)

Table 3   Comparison of the current method (LPAD) with Strangers 
(Fire et al. 2012) on the Class dataset (see Sect. 4)

Method AUC​ TPR FPR Precision

LPAD 0.91 0.889 0.15 0.964
Strangers 0.714 0.439 0.006 1

16  https​://suppo​rt.twitt​er.com/artic​les/18311​.
17  https​://suppo​rt.twitt​er.com/artic​les/15790​.

https://support.twitter.com/articles/18311
https://support.twitter.com/articles/15790
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our algorithm on labeled real-world data. The first real-world 
dataset was Twitter. The results showing the classifier pre-
cision at k average value are presented in Fig. 2. We can 
see that the precision at 10, 50, 100, 200, and 500 was 0.6, 
0.4, 0.35, 0.26, and 0.142, respectively. The second real-
world dataset was the Class network. We found that six out 
of the seven students (precision@7 = 0.875) with the lowest 
MeanPredictedLinkLabel were the ones that Heidler et al. 
(2014) referred to as the “repeaters” or the socioeconomi-
cally deprived and defined as outliers (see Fig. 3). Evalu-
ating the algorithm using tenfold cross-validation and the 
Random Forest algorithm, where the “repeaters” and socio-
economically deprived students were labeled as a positive 
class, resulted in an AUC of 0.931, TPR of 0.91, and FPR 
of 0.15. In addition, we discovered that our method detects 
anomalies much better than Strangers (Fire et al. 2012) in 
the Class dataset (see Table 3).

To determine which of the new features we proposed in 
Sect. 3.3 have more influence, we analyzed their importance 
using Weka’s information gain attribute selection algorithm. 
From the results in Tables 4 and 5, we can see that for both 
simulated and semi-simulated scenarios the most influential 
feature is AbnormalityVertexProbability.

7 � Discussion

Upon analyzing the results presented in Sect. 6, we can con-
clude that the proposed anomaly detection algorithm fits 
well in the network security domain. Our results demonstrate 
very low false positive rates, on average 0.006, in all of the 
tested scenarios. In the security domain, a false positive is 
one of the most important metrics; online operators try to 
avoid false positives to ensure that legitimate users are not 
blocked. Similarly, many social network operators prefer to 
sacrifice a true positive rather than have a relatively high 
false positive rate (Cao et al. 2012).

In the fully simulated network cases, we can see that the 
simulation results are correlated with the size of the net-
works. As can be seen in Tables 1 and 2, we obtained better 
results for the larger datasets. More specifically, the simu-
lated network that was based on Dblp characteristics was 
the largest and had the best TPR, while the ArXiv-based 
simulation was the smallest dataset and had the lowest TPR. 
From these results, we can clearly see that our algorithm can 
detect vertices which connect randomly to other vertices in 
the network, assuming the BA model generates networks 
that represent real-world networks.

In the Twitter case, we strongly believe there are substan-
tial numbers of malicious accounts that Twitter operators 
have not discovered (Hernandez 2015). These undiscovered 
malicious users translate into high false positives rates. By 

manually sampling the false positives, we discovered that 
many of these profiles are inactive, and their tweets look 
like generated commercial content, whereas other profiles 
largely retweeted content from other users. Because of the 
many unsuspended malicious accounts in Twitter (Hernan-
dez 2015), we believe our method would perform better on 
a fully labeled dataset. Yet even with these issues, we think 
Twitter is a good indicator of how well our method per-
forms on real-world data. According to the Twitter results 
(see Fig. 2), we were able to detect fake Twitter profiles with 
precision at 100 of 35%; this performance is considerably 
better than either Strangers or a random algorithm, which in 
this case resulted in approximately 8.0 and 6.4% precision, 
respectively. One of the reasons we believe our method‘s 
performance in this case is much better than Stranger’s is 
due to the data being incomplete. The Stranger algorithm is 
based mainly on community features, which are more sensi-
tive to incomplete data than edge-based features.

The Class network results confirmed the previous 
research (Heidler et al. 2014). The researchers described the 
“repeaters” as pupils who often led games and were strong, 
lively, and energetic, especially outside of the classroom. 
They also mentioned that socioeconomic status exhibited a 
strong influence on popularity. In their work, the research-
ers verified that the four “repeaters” and the “sweets giver” 
had a disproportionately high level of popularity. Our results 
show that the four “repeaters” had the strongest friendship 
ties of all the other pupils, which aligns with their findings. 
The “sweets giver,” who also had high popularity, was just 
ranked in the middle, which also is reasonable, since some 
boys who looked like his friends only wanted candies, not 
friendship. In the Class network, the algorithm shows very 
good results even considering that the network is com-
pletely not random. This result indicates that the algorithm 
can be effectively utilized on various types of network and 
problems.

According to the overall results, we can clearly state that 
our method can detect malicious profiles that act according 
to a random strategy. We suspect, however, that the method 
would be less effective on malicious users that have specific 
targets and strategies; for instance, the bots we developed in 
our previous research targeted employees at specific organi-
zations (Elyashar et al. 2014). We also found that it is more 
challenging to detect malicious users on networks like Twit-
ter, where most of the users have some randomness in their 
behavior. Such properties are more common in undirected 
networks where a user can follow anyone, without the need 
for the other side’s consent.

Our results also indicate that the proposed method can 
be utilized outside of the security domain. For instance, in 
a friendship graph, a vertex that has many edges with high 
probabilities of existing is a marker of a central person in 
the social group examined. Moreover, we believe that the 
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Table 4   InfoGain values for different features for semi-simulated networks (darker color represents higher InfoGain)

Abnormality
Vertex
Probability

Probability
Median

Sum
Link
Label

Mean Pre-
dicted Link
Label

Probability
STDV

Predicted
Label
STDV

Edge
Count

Academia 0.47 0.47 0.37 0.39 0.29 0.1 0
Arxiv 0.11 0.1 0.1 0.11 0.02 0.01 0.01
Dblp 0.34 0.23 0.33 0.32 0.23 0.15 0.04
Flixster 0.21 0.19 0.2 0.21 0.05 0.01 0.05
Yelp 0.18 0.14 0.27 0.17 0.25 0.06 0.06
Mean 0.34 0.31 0.33 0.32 0.2 0.05 0.03
STDV 0.18 0.19 0.15 0.16 0.12 0.05 0 .02

Table 5   InfoGain values for different features for fully simulated networks (darker color represents higher InfoGain)
Abnormality
Vertex
Probability

Probability
STDV

Probability
Median

Mean Pre-
dicted Link
Label

Sum Link
Label

Edge
Count

Predicted
Label
STDV

Arxiv 0.18 0.216 0.092 0 0 0.021 0
Dblp 0.165 0.082 0.146 0.148 0.124 0.036 0.072
Yelp 0.187 0.223 0.105 0 0 0.027 0
Mean 0.18 0.17 0.11 0.05 0.04 0.03 0.02
STDV 0.01 0.08 0.03 0.09 0.07 0.01 0.04

Fig. 3   The Class network, 
where the red vertices represent 
the anomalous vertices (the 
boys who are the most central 
individuals in the friendship 
network), and the red edges are 
the edges that have the lowest 
probabilities of being fake. The 
graph demonstrates that almost 
all the red edges connected to 
the red vertices (color figure 
online)
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presented method could be used to detect hijacked profiles, 
if the hijacker starts to connect randomly to other vertices 
in the network.

A possible attack that could be tried against our method is 
to create many fake accounts with a small number of neigh-
bors (also referred to as a Sybil attack18 (Douceur 2002). 
In such a case, our algorithm will skip these accounts since 
it will consider them as irrelevant. Regardless, such an 
attack is inefficient in many types of networks; for instance, 
in Facebook, friendship is a result of mutual agreement 
between two users. Facebook users mostly have access to 
their friends information; hence, a user with a small number 
of friends has almost no impact in the network. Moreover, 
vertices that have very small numbers of neighbors relative 
to other vertices in the network tend to look suspicious.

There is always a big concern with models that are using 
synthetic data, namely whether the data truly represent the 
real world. With synthetic data, there is always a risk of cre-
ating a “self-fulfilling prophecy.” We model the behavior of 
anomalies in this study based on observations made in previ-
ous studies (Stringhini et al. 2010; Boshmaf et al. 2011; Cao 
et al. 2012; Fire et al. 2012; Ferrara et al. 2016). In addition, 
there is already an example of a method (Fire et al. 2012) 
that is using a similar technique to generate training that is 
able to detect real-world malicious users in social networks. 
Moreover, we demonstrate how our method is able to detect 
real-world anomalies in Twitter and in the Class networks.

8 � Conclusions

The ability to detect anomalies has become increasingly 
important in understanding complex networks. We present 
a novel generic method for detecting anomalous vertices 
based on features extracted from the network topology. The 
proposed method combines cutting-edge techniques in link 
prediction, graph theory, and machine learning.

We evaluated our anomaly detection method on ten net-
works that can be categorized into three scenarios. Overall, 
the evaluation results demonstrate that our anomaly detec-
tion model performed well in terms of AUC measure. We 
demonstrated that in a real-life friendship graph, we can 
detect people who have the strongest friendship ties. Moreo-
ver, we showed that our algorithm can be utilized to detect 
malicious users on Twitter. We also showed that the pre-
sented method outperforms other anomaly detection meth-
ods. We believe that the presented method has considerable 
potential for a wide range of applications, particularly in the 
cyber-security domain.

As future for directions, we plan to investigate using 
the algorithm for other types of networks, such as bipartite 
and weighted graphs. In the near future, we are planning to 
investigate what happens to the network properties when 
random vertices and edges are attached. Furthermore, we 
intend to show that the method can be utilized for the detec-
tion of hijacked accounts in online networks. We also think 
it could be interesting to investigate what scale of a Sybil 
attack would need to be executed so that it is no longer pos-
sible to distinguish between fake and real vertices. Finally, 
we would like to test the usage of information theoretic 
measures in the future.

9 � Availability

This study is reproducible research. Therefore, the anony-
mous versions of the social network datasets and the study’s 
code, including implementation, are available on the pro-
ject’s website19 and repository.20
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