
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2018) 8:27
https://doi.org/10.1007/s13278-018-0503-4

ORIGINAL ARTICLE

Generic anomalous vertices detection utilizing a link prediction
algorithm

Dima Kagan1  · Yuval Elovichi1 · Michael Fire2

Received: 1 November 2017 / Revised: 18 February 2018 / Accepted: 21 March 2018 / Published online: 5 April 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract
In the past decade, graph-based structures have penetrated nearly every aspect of our lives. The detection of anomalies in
these networks has become increasingly important, such as in exposing infected endpoints in computer networks or identify-
ing socialbots. In this study, we present a novel unsupervised two-layered meta-classifier that can detect irregular vertices in
complex networks solely by utilizing topology-based features. Following the reasoning that a vertex with many improbable
links has a higher likelihood of being anomalous, we applied our method on 10 networks of various scales, from a network of
several dozen students to online networks with millions of vertices. In every scenario, we succeeded in identifying anomalous
vertices with lower false positive rates and higher AUCs compared to other prevalent methods. Moreover, we demonstrated
that the presented algorithm is generic, and efficient both in revealing fake users and in disclosing the influential people in
social networks.

1  Introduction

Complex networks are defined as systems in nature and soci-
ety whose structure is irregular, complex, and dynamically
evolving in time with thousands, millions, or even billions of
vertices and edges (Albert and Barabási 2002; Boccaletti et al.
2006). These systems can be found in every part of our daily
life (Strogatz 2001; Fire and Guestrin 2016), such as electri-
cal power grids, metabolic networks, food webs, the Internet,
and co-authorship networks (Strogatz 2001; Newman 2003).
Analyzing the unique structures of these networks can be very
useful in a variety of research domains. For example, an anal-
ysis of network structures can reveal how a computer virus
will propagate most quickly in a computer network (Balthrop

et al. 2004), or which vertex malfunction in a power grid will
affect more houses (Wang and Chen 2003).

Many studies have shown that vertices which deviate
from normal behavior may hide important insights (Bolton
and Hand 2002; Noble and Cook 2003; Akoglu et al. 2010;
Papadimitriou et al. 2010; Fire et al. 2012). For instance,
Bolton and Hand (2002) showed that in e-commerce fraud-
sters behave differently from the expected norm. Fire et al.
(2012) observed that fake profiles and bots in social net-
works have a higher probability of being connected to a
greater number of communities than benign users. Hooi
et al. (2016) noted that fraudsters tend to create unusually
large and dense regions in the adjacency matrix of the graph.
Noble and Cook (2003) showed that a graph-based technique
is applicable for network intrusion detection.

Over the years, studies have offered diverse solutions for
anomaly and outlier detection in graph-based structures (Ako-
glu et al. 2015). These studies have utilized various graph fea-
tures, such as vertices, dyads, triads, and communities, to detect
the fake profiles’ behavioral patterns. For example, in the case
of a social graph, anomalous vertices can represent malicious
or fake profiles. Because illegitimate profiles do not represent
a real person and they do not have real friends and connections
in the social network, the structure of their connections can
indicate whether the vertices are malicious or benign.

In this study, we introduce a novel generic unsupervised
learning algorithm for the detection of anomalous vertices,

Electronic supplementary material  The online version of this
article (https​://doi.org/10.1007/s1327​8-018-0503-4) contains
supplementary material, which is available to authorized users.

 *	 Dima Kagan
	 kagandi@post.bgu.ac.il

	 Yuval Elovichi
	 elovici@post.bgu.ac.il

	 Michael Fire
	 fire@cs.washington.edu

1	 Ben-Gurion University of the Negev, Beersheba, Israel
2	 University of Washington, Seattle, USA

http://orcid.org/0000-0002-8216-8776
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-018-0503-4&domain=pdf
https://doi.org/10.1007/s13278-018-0503-4

	 Social Network Analysis and Mining (2018) 8:27

1 3

27  Page 2 of 13

utilizing a graph’s topology (see Fig. 1). The algorithm con-
sists of two main iterations. In the first iteration, we create a
link prediction classifier which is based only on the graph’s
topology. This classifier is able to predict the probability
of an edge existing in the network with high accuracy (see
Sect. 3.2). In the second iteration, we generate a new set of
meta-features based on the features created by the link predic-
tion classifier (see Sect. 3.3). Then, we utilize these meta-fea-
tures and construct an anomaly detection classifier. Intuitively,
the algorithm is based on the assumption that a vertex that has
many edges with low probabilities of existing (improbable
edges) has a higher likelihood of being anomalous.

We evaluated our anomaly detection algorithm on three
types of complex networks: fully simulated networks, real-
world networks with simulated anomalous vertices, and real-
world networks with labeled anomalous vertices. Our study
results indicate that the proposed algorithm can successfully
detect malicious users in complex networks in general, and
more specifically, in online social networks. Moreover, we
showed that this algorithm may be applicable as a generic
anomaly detection algorithm in additional domains. The
principal contributions of this study are as follows:

1.	 We successfully incorporate a link prediction technique
into an anomaly detection model, which requires almost
no prior knowledge of the graph (see Sect. 3.2.2).

2.	 We propose seven new features which are found to be
good predictors for anomaly detection (see Sect. 3.3).

3.	 We conduct an extensive experimental evaluation of the
proposed methods on three types of data: three fully syn-
thetic datasets, five semi-synthetic datasets, and two real
datasets (see Sect. 5).

4.	 The results demonstrate that our algorithm can detect
anomalies in networks of different types and sizes and

that it also performs better than other methods we tested.
In addition, the proposed method performs well with
incomplete data in contrast to methods that utilize fea-
tures such as community structure (see Sect. 6).

5.	 This study is reproducible; we published all of its code
and data online, including the real-world datasets con-
taining labeled fake profiles. This can be used as an open
framework to help future vertex anomaly detection algo-
rithms compare their results (see Sect. 9).

The remainder of this paper is organized as follows. In Sect. 2,
we present an overview of relevant studies. In Sect. 3, we
describe how we constructed our algorithm. We introduce the
datasets we have utilized to evaluate the method in Sect. 4.
Section 5 provides a description of the experiments we pre-
formed to evaluate the presented method. In Sect. 6, we present
our results. Section 7 contains a discussion about the results
obtained, and lastly, in Sect. 8, we present our conclusions.

2 � Literature overview

The detection of anomalies is an extremely useful ability
in many domains because irregularities can be discovered
without any prior knowledge or help of an expert. Detecting
aberrations is very common and crucial in the cyber-security
field. For instance, Hofmeyr et al. (1998) used an anomaly
detection method in order to spot intrusions in UNIX sys-
tems. Another example is the work of Fawcett and Provost
(1997), who developed a fraud detection method by profiling
users’ behavior and detecting deviations. Anomaly detection
is widely used in diverse fields such as the medical area,
sensor networks. (Chandola et al. 2009).

Fig. 1   Algorithm overview. a The link prediction classifier is trained
to calculate the probability that an edge does not exist in the graph.
For example, the classifier can predict that the probability of an edge
between the two green vertices not existing is 94%. b We utilize the

link prediction classifier to predict the probability of each edge not
existing. c We calculate for each vertex the average probability that
the vertex edges do not exist. d Vertices that have the highest average
probability (the red vertices) are inspected (color figure online)

Social Network Analysis and Mining (2018) 8:27	

1 3

Page 3 of 13  27

The analysis of graphical data has grown in popularity
(Eberle and Holder 2007) over the past two decades, and this
has been accompanied by increasing amounts of research
on anomaly detection in complex networks. However, many
insights remain to be discovered, particularly in the structure-
based method subgenre of anomaly detection. One of the first
studies that combined complex networks and anomaly detection
was conducted by Noble and Cook (2003). Noble and Cook
proposed two methods for detecting anomalies in graphs. The
first method was based on the concept that substructures reoc-
cur in graphs, which means anomalies are substructures that
occur infrequently. Noble and Cook’s second method was to
divide the graph into subgraphs and rank them by an anomaly
measure, which they defined for each subgraph.

Sun et al. (2005) proposed a method for detecting abnormal
vertices in bipartite graphs. They calculated normality scores
(based on the neighborhood relevance score), where vertices
with a lower normality score had a higher likelihood of being
anomalous. Eberle and Holder (2007) proposed detecting
fraud by discovering modifications, insertions, and deletions
in graphs. Unlike Noble and Cook, Eberle and Holder looked
for substructures that, while similar to normative substruc-
tures, are still different. The idea behind this approach is that
fraudsters may try to masquerade as legitimate entities, which
makes them look very similar to legitimate users.

Papadimitriou et al. (2010) presented a method that can
identify anomalies in a web graph that may occur as a result
of malfunctions. They proposed identifying outliers by
comparing the similarity scores of two consecutive graphs
against some threshold. Akoglu et al. (2010) proposed a
feature-based method to spot strange vertices in weighted
graphs. In order to detect anomalies, they defined a score
that measures “distance to fitting line” that uses several
features that they proposed. They considered vertices with
the highest scores as outliers. Fire et al. (2012) proposed
Stranger, a method for detecting fake profiles in online social
networks based on anomalies in a fake user’s social struc-
ture. They trained their classifier by simulating a fake profile
that randomly sends friendship requests to other users in the
network. Recently, Hooi et al. (2016) presented FRAUDAR,
a method for detecting “camouflaged” malicious accounts.
FRAUDAR utilizes density-based metrics in order to detect
malicious accounts in bipartite networks.

In this work, we rely on a link prediction algorithm which
is central to our anomaly detection method. Link prediction
is defined as the discovery of hidden or future links in a
given social network. The link prediction problem was first
introduced by Liben-Nowell and Kleinberg (2007) when
they studied co-authorship networks and tried to predict
future collaborations between researchers. They proved that
future links can be predicted with reasonable accuracy from
network topology alone.

In 2011, there was a surge in publications on link pre-
diction due to the Kaggle IJCNN 2011 Social Network
Challenge.1 The challenge was to predict edges in an online
social network that was provided by Kaggle. Cukierski
et al. (2011) proposed a method that is based on supervised
machine learning and uses 94 different features. They dis-
covered that a Random Forest classifier performed best out
of all of the supervised machine learning methods evaluated.
In addition, they found that EdgeRank (rooted PageRank)
(Brin and Page 2012) was the highest scoring feature out of
the 94 features used.

Fire et al. (2011) analyzed which topological features are
more computationally efficient. They tested a total of 53 dif-
ferent features that were divided into five subsets, using ten
different datasets of online social networks. They discovered
that a smaller subset of features can be used to obtain results
with relatively high AUCs (Fire et al. 2011). Later, Fire et al.
demonstrated that in many cases the benefits of using a large
number of features is insignificant, and that by only using
computationally efficient features, it is possible to get highly
accurate classifications (Fire et al. 2013).

3 � Methods

In this study, we utilize graph topology to develop a novel
generic method for identifying anomalous vertices in com-
plex networks. The primary advantage of using graph struc-
ture is that topology-based methods are generic and can be
utilized on most graph-based data.

Studies conducted in the past several years indicate that
many malicious users present different behavioral patterns
than benign users (Boshmaf et al. 2011; Cao et al. 2012;
Fire et al. 2012; Ferrara et al. 2016). Boshmaf et al. (2011)
described how fake profiles connect randomly to other users
in order to establish an influential position or fame. String-
hini et al. (2010) noticed that many spammers on Facebook
choose to connect to other users according to their victims’
names. Moreover, Fire et al. (2012) described how fake pro-
files will likely connect to many communities. For example,
with fake profiles there is increased likelihood that neigh-
bors will not have any mutual characteristics (e.g., the same
workplace, language). Ferrara et al. (2016) noted that social
bots on Twitter tend to grow their social circles following
random accounts.

Motivated by the difference between the observed behav-
ioral patterns of fake profiles and benign users, we devel-
oped a method to generate examples for our link classifier.
We generated positive examples by randomly selecting non-
existing edges and negative examples by selecting existing

1  https​://www.kaggl​e.com/c/socia​lNetw​ork.

https://www.kaggle.com/c/socialNetwork

	 Social Network Analysis and Mining (2018) 8:27

1 3

27  Page 4 of 13

ones. Then, for each of these edges, we extracted features
that were based on the network’s topology (see Sect. 3.2),
and we used the feature set to train a link prediction clas-
sifier (see Fig. 1). Next, we aggregated the results from the
link classifier for each vertex and created an additional set of
features (see Sect. 3.3). We then extracted the second set of
features and used them to build a meta-classifier that identi-
fies anomalous vertices in the graph.

3.1 � Problem definition

Generally, an anomaly or outlier defined as “an observation
that differs so much from other observations as to arouse
suspicion that it was generated by a different mechanism”
(Akoglu et al. 2015). Moreover, Noble and Cook (2003)
stated in their work, “it remains difficult to give a general,
formal definition of what an anomaly is,” and they consid-
ered an anomaly as “a surprising or unusual occurrence.”
The definition of anomaly is very general and there are many
domain-specific definitions. In this study, we see anoma-
lous vertices simply as vertices which deviate from the
normal behavior. More specifically, we see an anomalous
vertex as a vertex with edges that deviate from the normal
behavior. Formally, we define the problem, given a graph
G = <V ,E> , a vertex v ∈ V will be flagged as an anomaly/
outlier if score(v) > threshold.

3.2 � Constructing a link prediction classifier

As described in Sect. 2, in the last decade, researchers have
proposed various methods for predicting links in graphs
(Al Hasan et al. 2006; Liben-Nowell and Kleinberg 2007;
Cukierski et al. 2011; Brin and Page 2012; Fire et al. 2013).
Moreover, researchers have demonstrated that link predic-
tion classifiers can predict links with a high level of preci-
sion on a wide range of complex networks (Fire et al. 2013).
In this study, we constructed a topology-based link predic-
tion classifier based on the works of Cukierski et al. (2011)
and Fire et al. (2013). We extracted 19 different features,2 16
of which are used for directed graphs (all of the edge-based
features except for Transitive Friends and Adamic-Adar
Index are used for both directed and undirected graphs) and
eight are used for undirected graphs. Prior to describing how
the features were used, we provide the following definitions.
Let G ∶= (V ,E) be a graph where V is a set of the graph’s
vertices and E is the set of the graph’s edges. Let v ∈ V ; then
� (v) is defined as the neighborhood of vertex v, while �in(v) ,

�out(v) , and �bi(v) are defined as the inbound, outbound, and
bidirectional set of neighbors, respectively.

3.2.1 � Feature extraction

–	 Total Friends is the number of distinct friends between
two vertices v and u.

–	 Common Friends represents the number of common
friends between two vertices v and u.

 For a directed graph, we define three variations of Com-
mon Friends:

	  CommonFriendsin(v, u) ∶= |�in(v) ∩ �in(u)|,
CommonFriendsout(v, u) ∶= |�out(v) ∩ �out(u)|, and

	  CommonFriendsbi(v, u) ∶= |�bi(v) ∩ �bi(u)|.
–	 Jaccard’s Coefficient measures similarity between two

groups of items (Cukierski et al. 2011; Fire et al. 2013;
Liben-Nowell and Kleinberg 2007).

–	 Preferential Attachment Score is based on the idea that
the rich get richer in social networks (Liben-Nowell and
Kleinberg 2007).

–	 Transitive Friends for vertices v and u in a directed graph
G calculates the number of transitive friends of v and u.

–	 Opposite Direction Friends for a directed graph G indi-
cates whether reciprocal connections exist between ver-
tices v and u.

–	 Adamic-Adar Index is a similarity measure for undirected
graphs which measures how strongly two vertices are
related (Liben-Nowell and Kleinberg 2007) .

The kNN weight3 features are general neighborhood and
similarity-based features (Cukierski et al. 2011). They are
based on the principle that as the number of friends goes
up, the value of each individual friend decreases.

Total Friends(v, u) ∶= |� (v) ∪ � (u)|

CommonFriends(v, u) ∶= |� (v) ∩ � (u)|

Jaccards Coefficient(v, u) ∶=
|� (v) ∩ � (u)|
|� (v) ∪ � (u)|

Preferential Attachment(v, u) ∶= |� (v)| ⋅ |� (u)|

Transitive Friends(v, u) ∶= |�out(v)| ∩ |�in(u)|

Opposite Direction Friends(v, u) ∶=

{
1, if (u, v) ∈ E

0, otherwise

Adamic-Adar Index ∶=
∑

w∈� (u)∩� (v)

1

log |� (w)|

2  In a large dataset, computing dozens of features can last several
hours or even several days; to avoid extremely long computations we
used only computationally efficient features (Fire et al. 2013).

3  This not the standard kNN acronym, but a set of weight functions
defined by Cukierski et al. (2011).

Social Network Analysis and Mining (2018) 8:27	

1 3

Page 5 of 13  27

–	 Directed kNN Weights are defined by two notations. Let
v, u ∈ V  , where v edges’ we igh t w i l l be
win(v) ∶=

1√
1+��in(v)�

 and wout(v) ∶=
1√

1+��out(v)�
 , inbound

and outbound, respectively. The weight of the connec-
tion between v and u can be measured using eight com-
binations of these weights:

	  (a) kNNW1(v, u) ∶= win(v) + win(u) ; (b) kNNW2(v, u) ∶

= w
in
(v) + w

out
(u) ; (c) kNNW3(v, u) ∶= wout(v) + win(u) ;

(d) kNNW4(v, u) ∶= wout(v) + wout(u) ; (e) kNNW5(v, u) ∶

= w
in
(v) ⋅ w

in
(u) ; (f) kNNW6(v, u) ∶= win(v) ⋅ wout(u) ;

(g) kNNW7(v, u) ∶= wout(v) ⋅ win(u)  ; a n d (h)
kNNW8(v, u) ∶= wout(v) ⋅ wout(u).

–	 Undirected kNN Weights are defined similarly, but only
for the neighbors. Let v, u ∈ V  , where the weight of v
edges will be w(v) ∶= 1√

1+�� (v)�
 and the weight of the

connection between v and u will be measured by two
combinations: (a) kNNW9(v, u) ∶= w(v) + w(u) and (b)
kNNW10(v, u) ∶= w(v) ⋅ w(u).

3.2.2 � Classifier construction

Similar to Fire et al. (2013), we trained the link classifier
on the same number of negative and positive examples,
which were existing edges and non-existing edges, respec-
tively. The negative examples represent real users and were
selected randomly (degree distribution) from all of the
existing edges in the graph. The positive examples were
selected as non-existing edges between two random verti-
ces which were sampled uniformly to represent the edges
of a malicious user a in social network. After obtaining
a set of positive (non-existing edges) and negative (ran-
dom edges) examples, for each entry, we extracted all of
the features described in Sect. 3.2.1. Finally, we used the
Random Forest algorithm to construct the link prediction
algorithm for our training sets. We chose the Random
Forest algorithm because previous link prediction studies
(Cukierski et al. 2011; Fire et al. 2013) demonstrated that,
in most cases, it performs better than other classification
algorithms at predicting links. Our link classifier relies on
the fact that most of the vertices in online social networks
are real, and malicious users tend to connect to other pro-
files randomly (Boshmaf et al. 2011; Cao et al. 2012; Fire
et al. 2012).

input : Graph G, Number of vertices to sample N , Node label Label, Minimal
number of friends MinFriends

output: Edges of Selected Vertices

1 SelectedEdges ← Set();
2 while N > 0 do
3 RandomVertex ← SampleNodes(G,1);
4 if RandomVertex = Label and |Γ (RandomVertex)| > MinFriends then
5 TempEdges ← Set();
6 foreach Node u in Γ (RandomVertex) do
7 if |Γ (u)| > MinFriends then
8 TempEdges ← TempEdges + (RandomVertex, u);
9 end

10 end
11 if |TempEdges| > MinFriends then
12 SelectedEdges ← SelectedEdges + TempEdges;
13 N ← N− 1;
14 end
15 end
16 end
17 return SelectedEdges;

Algorithm 1: Sampling vertices from a graph.

	 Social Network Analysis and Mining (2018) 8:27

1 3

27  Page 6 of 13

3.3 � Detecting anomalous vertices

After constructing a link prediction classifier for each graph,
we utilized the classifier to build an unsupervised anomaly
detection algorithm. We used the trained classifier to cal-
culate (for all the edges of the inspected vertices) the clas-
sifier’s confidence that an edge does not exist. Using this
metric, we calculated seven features that we used to identify
anomalies.

3.3.1 � Anomaly detection features

The intuition behind the anomaly detection features is that
these features are fast to compute and easy to understand.
Intuitively, the Abnormality Vertex Probability feature
reflects the problem definition (see Sect. 3.1). The other
features are designed to help in detecting special cases.
For instance, STDV-based features can indicate vertices
that drastically change their behavior; in the cyber-security
domain, they can help detect compromised vertices in the
network.

To create meta-features, we define the probability of an
edge not existing as p(v, u), where v, u ∈ V and (v, u) ∈ E .
We also define EP(v) ∶= {p(v, u)|u ∈ � (v)} , which is the list
of all the probabilities of v edges.

1.	 Abnormality Vertex Probability is defined as the prob-
ability of a vertex v to be anomalous, which is equal to
the average probability of its edges not existing. This
corresponds with our definition of anomaly which was
previously described.

2.	 Edges Probability STDV is the standard deviation of a
set of vertex v edges’ probability of not existing. If we
focus on online entities, a high standard deviation can
indicate that at some point the vertex was compromised.

3.	 Edges Probability Median is the median of a set of ver-
tex v edges’ probability of not existing. The advantage of
median over mean is that it is not as sensitive to unusu-
ally large or small values.

4.	 Edge Count is the number of edges that vertex v has.
An extremely low value may indicate that the results for
vertex v are statistically insignificant.

P(v) ∶=
1

|� (v)|
∑

u∈� (v)

p(v, u)

Edges Probability STDV(v) ∶= �(EP(V))

Edges ProbabilityMedian(v) ∶= median(EP(V))

EdgeCount(v) ∶= |� (v)|

5.	 Sum Edge Label is the number of vertex v edges that
were labeled as anomalous; in other words, this is the
number of edges v with a p higher than a defined thresh-
old, which in this work was set to 0.8. The goal of this
feature is to detect cases where vertices have many
anomalous edges, most of which are only slightly above
the threshold, resulting in a relatively low P.

 where we define the function EdgeLabel(v, u) as:

6.	 Mean Predicted Link Label is the percent of v edges that
are labeled as anomalous.

7.	 Predicted Label STDV is the standard deviation of the
classification of v edges.

We used the described features in two ways. The first usage
scenario was with data that did not have any labels. In this
case, we ranked all of the vertices by the different features
and manually examined the top and bottom vertices, which
had the highest and lowest likelihood of being anomalous.
The second scenario was when the data were labeled or par-
tially labeled. In such cases, we performed additional clas-
sification using the Random Forest algorithm on the data and
created a meta-classifier.

3.3.2 � Test set generation

First, we created the test set by sampling the edges of ran-
dom vertices from the graph. The sampling process works as
described in Algorithm 1: The algorithm starts by uniformly
selecting one random vertex, RandomVertex (line 3). Next,
we check if it has more neighbors than the minimal amount
required (MinFriends). In addition, for labeled graphs we
also check if RandomVertex has the desired label, in order
to ensure that the test set has positive examples (line 4).
Then, we select all of the RandomVertex neighbors that
also have more than MinFriends neighbors. This constraint
is used to ensure that the neighbors of RandomVertex also
were crawled and that the link features to be extracted are
meaningful (lines 6–9). If RandomVertex has more than
MinFriends neighbors that have more than MinFriends

SumEdge Label(v) ∶=
∑

u∈� (v)

EdgeLabel(v, u)

Edge Label(v, u) ∶=

{
0, if p(v, u) < threshold

1, otherwise

MeanPredicted Link Label(v) ∶

=
1

|� (v)|
∑

u∈� (v)

Edge Label(v, u)

Predicted Label STDV(v) ∶

= �({Edge Label(v, u)|u ∈ � (v), u, v ∈ V})

Social Network Analysis and Mining (2018) 8:27	

1 3

Page 7 of 13  27

socioeconomically deprived. This is probably the first-ever
collected social network dataset (Heidler et al. 2014).7

Dblp8 is the online reference for bibliographic informa-
tion on major computer science publications. We used the
Dblp dataset to build a co-authorship graph.9

Flixster10 is a social movie site which allows users to
share movie reviews and discover new movies. We collected
the data using a dedicated crawler in 2012.

Twitter11 is an undirected online social network where
people publish short messages and updates. Currently, Twit-
ter has 310 million monthly active users.12 According to
recent reports, Twitter has a bot infestation problem (Vaas
2014; Hernandez 2015). We used a dedicated API crawler
to obtain our dataset in 2014.13

Yelp14 is a web platform to help people find local busi-
nesses. In addition, Yelp provides various social capabili-
ties. In 2016, Yelp published a dataset containing a social
network of its users.15

5 � Experimental evaluation

We evaluated our algorithm on ten networks that we cat-
egorized into three types of datasets (fully synthetic dataset,
real-world dataset with injected anomalies, and real-world
dataset with labeled anomalies). In addition, due to hard-
ware limitations, for each dataset, we sampled a test set that
contained 900 random existing vertices and 100 anomalous
vertices. The test set maintained the same 1:10 ratio between
anomalous and normal vertices. To reduce the variance of
the results, we ran the algorithm 10 times on each dataset.
The more evaluations we performed, the smaller the vari-
ance in the results. We evaluated the algorithm on the aver-
age result of these experiments. To measure the algorithm’s
performance, we used tenfold cross-validation to measure
the TPR, FPR, precision, and AUC for all of the evalua-
tions. In addition, we measured the algorithm’s precision
at k (precision@k) for k ∶= 10, 100, 200, and 500. Finally,
we compared our method’s performance to the Stranger
algorithm (Fire et al. 2012) in detecting anomalies. The

4  https​://www.acade​mia.edu.
5  https​://www.arxiv​.com.
6  https​://snap.stanf​ord.edu/data/cit-HepPh​.html.

7  https​://githu​b.com/gephi​/gephi​/wiki/Datas​ets.
8  https​://www.dblp.com.
9  http://dblp.uni-trier​.de/xml/dblp.xml.gz.
10  https​://www.flixs​ter.com.
11  https​://www.twitt​er.com.
12  https​://about​.twitt​er.com/compa​ny.
13  We limited the crawler to crawling a maximum of 1000 friends
and followers for every profile (see Sect. 9). This limitation is due
to the fact that Twitter accounts can have an unlimited number of
friends and followers, which in some cases can reach several million.
14  https​://www.yelp.com.
15  https​://www.yelp.com/datas​et_chall​enge.

neighbors, then the selected edges are added to the test set
(lines 11–14).

The goal of these steps was to select only edges between
vertices which were likely fully crawled and had neighbors
in the graph (i.e., have more than MinFriends neighbors,
which we set at three because it is the minimal number
of vertices where we have a majority of edges of one of
the class). Vertices that have a small number of neighbors
are less relevant, since there is not enough information to
determine their behavior (Fire et al. 2012). The algorithm
continued to run until it added N vertices to the test set. In
our experiments, we executed Algorithm 1 twice for each
network, the first time to extract positive samples and the
second time to extract negative samples. In both cases, we
set MinFriends to three.

3.3.3 � Training set generation

Later, we sampled the link prediction classifier training set
that was described in Sect. 3.2. The edge sampling for the
link classifier worked as follows: Let test-vertices be a set of
all of the vertices that were selected by Algorithm 1, and if
(v, u) ∈ E is an edge, then (v, u) can be part of the link clas-
sifier training set, if and only if u, v ∉ test-vertices.

4 � Social network datasets

Academia.edu4 is a social platform for academics to share
and follow research. We crawled Academia.edu graph dur-
ing 2011.

ArXiv5 is an ePrint service used in fields such as physics
and computer science. We used the ArXiv HEP-PH (high
energy physics phenomenology) citation graph that was
released as part of the 2003 KDD Cup.6

Boys’ Friendship (Class of 1880/81) is a dataset which
contains the friendship network of a German school class
from 1880–81 that was assembled by the class’s primary
school teacher, Johannes Delitsch. The dataset itself was
generated by observing students, interviewing pupils and
parents, and analyzing school essays (Heidler et al. 2014).
Delitsch found that there were 12 outliers out of 53 stu-
dents, which Heidler et al. defined as students who did not
fit perfectly into their predicted position within the network
structure. The data contain three types of outliers: “repeat-
ers,” who were four students who often led the games;
“sweets giver,” a student who bought his peers’ friend-
ship with candies; and a specific group of seven students
who were psychologically or physically handicapped, or

https://www.academia.edu
https://www.arxiv.com
https://snap.stanford.edu/data/cit-HepPh.html
https://github.com/gephi/gephi/wiki/Datasets
https://www.dblp.com
http://dblp.uni-trier.de/xml/dblp.xml.gz
https://www.flixster.com
https://www.twitter.com
https://about.twitter.com/company
https://www.yelp.com
https://www.yelp.com/dataset_challenge

	 Social Network Analysis and Mining (2018) 8:27

1 3

27  Page 8 of 13

Stranger algorithm is trained on simulated fake users who
are inserted into the social networks by using random friend-
ship requests. This process is very similar to the way we
generated our test set for the fully and semi-simulated net-
works. Due to this similarity, we only evaluated the Stranger
algorithm on real-world networks.

5.1 � Simulation of anomalous vertices

Currently, there is a very limited number of publicly avail-
able datasets with known anomalies, and manual labeling is
a challenging task (Akoglu et al. 2015). To deal with these
issues and evaluate the proposed anomaly detection algorithm
on various types of networks, we used simulated anomalous
vertices (see Algorithm 2) for different scenarios. Similar to
previous studies (Boshmaf et al. 2011; Cao et al. 2012; Fire
et al. 2012), we generated anomalous vertices by randomly
connecting them to other vertices in the network as follows.
First, we inserted a new simulated vertex into the graph (line
2). Next, we generated NeighborsNumber, the number of
edges to be created for the simulated vertex (line 3). Then, we
sampled random NeighborsNumber vertices from the graph
(line 4). Afterward, we connected the newly inserted vertex
to the sampled random vertices (lines 5–7). The number of
anomalous vertices in each graph was set to 10%, which rep-
resents an estimation of the percentage of fake vertices in an
average social network (Facebook 2015; Vaas 2014).

5.2 � Fully simulated network evaluation

To generate fully simulated complex networks, we used the
Barabási–Albert model (BA model) (Barabási and Albert
1999), which is a minimal model that can generate scale-
free networks. We believe it should give a good indication
of the performance of the method on various types of com-
plex networks. The generated networks were constructed
according to the number of vertices and the average number
of edges of a real-world network to make them as close as
possible to actual networks. First, we generated BA net-
works that were 90% of the size of the real networks that are
described in Sect. 4. Generating complex networks using the
BA model requires two parameters: the number of vertices
to be generated and the number of edges to be created for
each vertex. We used the number of vertices and the aver-
age number of edges of the ArXiv, Dblp, and Yelp datasets
(see Table 1) to generate the simulated networks. Afterward,
we inserted anomalous vertices for the remaining 10% (see
Algorithm 2).

Table 1   Social network datasets

Network Directed Vertices Links Date Labels

Academia Yes 200,169 1,389,063 2011 No
ArXiv No 34,546 421,578 2003 No
Class Yes 53 179 1881 Yes
Dblp No 1,665,850 13,504,952 2016 No
Flixster No 672,827 1,099,003 2012 No
Twitter Yes 5,384,160 16,011,443 2012 Yes
Yelp No 249,443 3,563,818 2016 No

Table 2   Machine learning results using fully simulated networks and
semi-simulated networks with simulated anomalous nodes

Network AUC​ TPR FPR Precision

Simulation ArXiv 0.991 0.889 0.011 0.904
Dblp 0.997 0.935 0.006 0.993
Yelp 0.993 0.917 0.007 0.937

Semi-simulated Academia 0.999 0.998 2.51 × 10−4 0.997
Arxiv 0.997 0.953 0.004 0.965
Dblp 0.997 0.940 0.005 0.995
Flixster 0.992 0.908 0.010 0.990
Yelp 0.996 0.941 0.005 0.958

input : Graph G, having simulated vertex number N
output: Graph G with N simulated vertices

1 for i ← 1 to N do
2 SimulatedVerticesNumber ← AddVertex(G,i,Fake);
3 NeighborsNumber ← Random(G.DegreeDistribution));
4 RandomVertices ← SampleVertices(G,NeighborsNumber);
5 foreach Vertex u in RandomVertices do
6 AddEdge(v,u);
7 end
8 end

Algorithm 2: Adding anomalous vertices to a graph.

Social Network Analysis and Mining (2018) 8:27	

1 3

Page 9 of 13  27

5.3 � Semi‑simulated network evaluation

The second dataset type was a semi-simulated network,
which is a real-world network with injected simulated
anomalous vertices (see Algorithm 2). The evaluation was
conducted on the datasets of ArXiv, Dblp, Flixster, and Yelp
(see Table 1) with inserted anomalies.

5.4 � Real‑world network evaluation

The third dataset type we tested our method on was a real-
world network with labeled anomalous vertices. We evalu-
ated the graphs of the Boys’ Friendship (referred to as Class)
and Twitter datasets (see Table 1). The Twitter data, by
default, did not have any labels. To create labels that can be
considered ground truth, we crawled all of the profiles (with-
out the edges) in the Twitter dataset, approximately 1 year
after the initial crawling took place. Similar to Thomas et al.
(2011), we considered all of the accounts that Twitter opera-
tors decided to block as a ground truth. When Twitter labels
an account as malicious, it is suspended, and an appropriate
message is presented. Twitter defines a suspended account
as one that violated Twitter’s terms of service;16 the most
common reasons for suspension are spam, the account being
hacked or compromised, and abusive tweets or behavior.17
As a result, we labeled all of the accounts which were sus-
pended as malicious, and we considered them to be anoma-
lous vertices in the graph. In addition, we filtered all of the
verified accounts from the dataset. A verified account is an
account of public interest, primarily those of celebrities,
politicians, etc.17 These were filtered because most of their

connections do not represent regular users, and many times
they are managed by some kind of third party (Plante 2014).

In the Class dataset, we observed that nearly all of the
psychologically or physically handicapped students (all
except one) did not have neighbors in the graph. This left us
with three groups of outliers: the four “repeaters,” the single
“sweets giver,” and two pupils who were socioeconomically
deprived. Due to the small scale of the dataset, running the
anomaly detection algorithm with a small number of repeti-
tions can result in high variance rates. Therefore, to reduce
the variance we ran our method 100 times on the dataset and
calculated the average of the features presented in Sect. 3.3.
In addition, every execution we tested contained only 10
vertices.

6 � Results

We evaluated our topology-based anomaly detection method
on three scenarios. First, we evaluated the method on fully
simulated networks with simulated anomalous vertices using
a tenfold cross-validation. As can be seen in Table 2, for
the three fully simulated networks, we obtained high AUCs
and low FPRs. Second, we evaluated the proposed method
on semi-simulated graphs, i.e., real-world networks with
injected anomalous vertices. We can see that the algorithm
generated especially good results, with an average AUC of
0.99 and FPR of 0.021 (see Table 2). Third, we evaluated

Fig. 2   The blue, green and
orange lines represent Twitter
precision at K of LPAD (link
prediction anomaly), Stranger,
and random algorithm, respec-
tively (color figure online)

Table 3   Comparison of the current method (LPAD) with Strangers
(Fire et al. 2012) on the Class dataset (see Sect. 4)

Method AUC​ TPR FPR Precision

LPAD 0.91 0.889 0.15 0.964
Strangers 0.714 0.439 0.006 1

16  https​://suppo​rt.twitt​er.com/artic​les/18311​.
17  https​://suppo​rt.twitt​er.com/artic​les/15790​.

https://support.twitter.com/articles/18311
https://support.twitter.com/articles/15790

	 Social Network Analysis and Mining (2018) 8:27

1 3

27  Page 10 of 13

our algorithm on labeled real-world data. The first real-world
dataset was Twitter. The results showing the classifier pre-
cision at k average value are presented in Fig. 2. We can
see that the precision at 10, 50, 100, 200, and 500 was 0.6,
0.4, 0.35, 0.26, and 0.142, respectively. The second real-
world dataset was the Class network. We found that six out
of the seven students (precision@7 = 0.875) with the lowest
MeanPredictedLinkLabel were the ones that Heidler et al.
(2014) referred to as the “repeaters” or the socioeconomi-
cally deprived and defined as outliers (see Fig. 3). Evalu-
ating the algorithm using tenfold cross-validation and the
Random Forest algorithm, where the “repeaters” and socio-
economically deprived students were labeled as a positive
class, resulted in an AUC of 0.931, TPR of 0.91, and FPR
of 0.15. In addition, we discovered that our method detects
anomalies much better than Strangers (Fire et al. 2012) in
the Class dataset (see Table 3).

To determine which of the new features we proposed in
Sect. 3.3 have more influence, we analyzed their importance
using Weka’s information gain attribute selection algorithm.
From the results in Tables 4 and 5, we can see that for both
simulated and semi-simulated scenarios the most influential
feature is AbnormalityVertexProbability.

7 � Discussion

Upon analyzing the results presented in Sect. 6, we can con-
clude that the proposed anomaly detection algorithm fits
well in the network security domain. Our results demonstrate
very low false positive rates, on average 0.006, in all of the
tested scenarios. In the security domain, a false positive is
one of the most important metrics; online operators try to
avoid false positives to ensure that legitimate users are not
blocked. Similarly, many social network operators prefer to
sacrifice a true positive rather than have a relatively high
false positive rate (Cao et al. 2012).

In the fully simulated network cases, we can see that the
simulation results are correlated with the size of the net-
works. As can be seen in Tables 1 and 2, we obtained better
results for the larger datasets. More specifically, the simu-
lated network that was based on Dblp characteristics was
the largest and had the best TPR, while the ArXiv-based
simulation was the smallest dataset and had the lowest TPR.
From these results, we can clearly see that our algorithm can
detect vertices which connect randomly to other vertices in
the network, assuming the BA model generates networks
that represent real-world networks.

In the Twitter case, we strongly believe there are substan-
tial numbers of malicious accounts that Twitter operators
have not discovered (Hernandez 2015). These undiscovered
malicious users translate into high false positives rates. By

manually sampling the false positives, we discovered that
many of these profiles are inactive, and their tweets look
like generated commercial content, whereas other profiles
largely retweeted content from other users. Because of the
many unsuspended malicious accounts in Twitter (Hernan-
dez 2015), we believe our method would perform better on
a fully labeled dataset. Yet even with these issues, we think
Twitter is a good indicator of how well our method per-
forms on real-world data. According to the Twitter results
(see Fig. 2), we were able to detect fake Twitter profiles with
precision at 100 of 35%; this performance is considerably
better than either Strangers or a random algorithm, which in
this case resulted in approximately 8.0 and 6.4% precision,
respectively. One of the reasons we believe our method‘s
performance in this case is much better than Stranger’s is
due to the data being incomplete. The Stranger algorithm is
based mainly on community features, which are more sensi-
tive to incomplete data than edge-based features.

The Class network results confirmed the previous
research (Heidler et al. 2014). The researchers described the
“repeaters” as pupils who often led games and were strong,
lively, and energetic, especially outside of the classroom.
They also mentioned that socioeconomic status exhibited a
strong influence on popularity. In their work, the research-
ers verified that the four “repeaters” and the “sweets giver”
had a disproportionately high level of popularity. Our results
show that the four “repeaters” had the strongest friendship
ties of all the other pupils, which aligns with their findings.
The “sweets giver,” who also had high popularity, was just
ranked in the middle, which also is reasonable, since some
boys who looked like his friends only wanted candies, not
friendship. In the Class network, the algorithm shows very
good results even considering that the network is com-
pletely not random. This result indicates that the algorithm
can be effectively utilized on various types of network and
problems.

According to the overall results, we can clearly state that
our method can detect malicious profiles that act according
to a random strategy. We suspect, however, that the method
would be less effective on malicious users that have specific
targets and strategies; for instance, the bots we developed in
our previous research targeted employees at specific organi-
zations (Elyashar et al. 2014). We also found that it is more
challenging to detect malicious users on networks like Twit-
ter, where most of the users have some randomness in their
behavior. Such properties are more common in undirected
networks where a user can follow anyone, without the need
for the other side’s consent.

Our results also indicate that the proposed method can
be utilized outside of the security domain. For instance, in
a friendship graph, a vertex that has many edges with high
probabilities of existing is a marker of a central person in
the social group examined. Moreover, we believe that the

Social Network Analysis and Mining (2018) 8:27	

1 3

Page 11 of 13  27

Table 4   InfoGain values for different features for semi-simulated networks (darker color represents higher InfoGain)

Abnormality
Vertex
Probability

Probability
Median

Sum
Link
Label

Mean Pre-
dicted Link
Label

Probability
STDV

Predicted
Label
STDV

Edge
Count

Academia 0.47 0.47 0.37 0.39 0.29 0.1 0
Arxiv 0.11 0.1 0.1 0.11 0.02 0.01 0.01
Dblp 0.34 0.23 0.33 0.32 0.23 0.15 0.04
Flixster 0.21 0.19 0.2 0.21 0.05 0.01 0.05
Yelp 0.18 0.14 0.27 0.17 0.25 0.06 0.06
Mean 0.34 0.31 0.33 0.32 0.2 0.05 0.03
STDV 0.18 0.19 0.15 0.16 0.12 0.05 0 .02

Table 5   InfoGain values for different features for fully simulated networks (darker color represents higher InfoGain)
Abnormality
Vertex
Probability

Probability
STDV

Probability
Median

Mean Pre-
dicted Link
Label

Sum Link
Label

Edge
Count

Predicted
Label
STDV

Arxiv 0.18 0.216 0.092 0 0 0.021 0
Dblp 0.165 0.082 0.146 0.148 0.124 0.036 0.072
Yelp 0.187 0.223 0.105 0 0 0.027 0
Mean 0.18 0.17 0.11 0.05 0.04 0.03 0.02
STDV 0.01 0.08 0.03 0.09 0.07 0.01 0.04

Fig. 3   The Class network,
where the red vertices represent
the anomalous vertices (the
boys who are the most central
individuals in the friendship
network), and the red edges are
the edges that have the lowest
probabilities of being fake. The
graph demonstrates that almost
all the red edges connected to
the red vertices (color figure
online)

	 Social Network Analysis and Mining (2018) 8:27

1 3

27  Page 12 of 13

presented method could be used to detect hijacked profiles,
if the hijacker starts to connect randomly to other vertices
in the network.

A possible attack that could be tried against our method is
to create many fake accounts with a small number of neigh-
bors (also referred to as a Sybil attack18 (Douceur 2002).
In such a case, our algorithm will skip these accounts since
it will consider them as irrelevant. Regardless, such an
attack is inefficient in many types of networks; for instance,
in Facebook, friendship is a result of mutual agreement
between two users. Facebook users mostly have access to
their friends information; hence, a user with a small number
of friends has almost no impact in the network. Moreover,
vertices that have very small numbers of neighbors relative
to other vertices in the network tend to look suspicious.

There is always a big concern with models that are using
synthetic data, namely whether the data truly represent the
real world. With synthetic data, there is always a risk of cre-
ating a “self-fulfilling prophecy.” We model the behavior of
anomalies in this study based on observations made in previ-
ous studies (Stringhini et al. 2010; Boshmaf et al. 2011; Cao
et al. 2012; Fire et al. 2012; Ferrara et al. 2016). In addition,
there is already an example of a method (Fire et al. 2012)
that is using a similar technique to generate training that is
able to detect real-world malicious users in social networks.
Moreover, we demonstrate how our method is able to detect
real-world anomalies in Twitter and in the Class networks.

8 � Conclusions

The ability to detect anomalies has become increasingly
important in understanding complex networks. We present
a novel generic method for detecting anomalous vertices
based on features extracted from the network topology. The
proposed method combines cutting-edge techniques in link
prediction, graph theory, and machine learning.

We evaluated our anomaly detection method on ten net-
works that can be categorized into three scenarios. Overall,
the evaluation results demonstrate that our anomaly detec-
tion model performed well in terms of AUC measure. We
demonstrated that in a real-life friendship graph, we can
detect people who have the strongest friendship ties. Moreo-
ver, we showed that our algorithm can be utilized to detect
malicious users on Twitter. We also showed that the pre-
sented method outperforms other anomaly detection meth-
ods. We believe that the presented method has considerable
potential for a wide range of applications, particularly in the
cyber-security domain.

As future for directions, we plan to investigate using
the algorithm for other types of networks, such as bipartite
and weighted graphs. In the near future, we are planning to
investigate what happens to the network properties when
random vertices and edges are attached. Furthermore, we
intend to show that the method can be utilized for the detec-
tion of hijacked accounts in online networks. We also think
it could be interesting to investigate what scale of a Sybil
attack would need to be executed so that it is no longer pos-
sible to distinguish between fake and real vertices. Finally,
we would like to test the usage of information theoretic
measures in the future.

9 � Availability

This study is reproducible research. Therefore, the anony-
mous versions of the social network datasets and the study’s
code, including implementation, are available on the pro-
ject’s website19 and repository.20

Acknowledgements  We would like to thank Carol Teegarden and
Robin Levy-Stevenson for editing and proofreading this article to com-
pletion. We also thank the Washington Research Foundation Fund for
Innovation in Data-Intensive Discovery, and the Moore/Sloan Data Sci-
ence Environment Project at the University of Washington for support-
ing this study. Finally, we would like to thank the anonymous reviewers
for their helpful comments.

References

Akoglu L, McGlohon M, Faloutsos C (2010) Oddball: spotting anoma-
lies in weighted graphs. In: Zaki MJ, Yu JX, Ravindran B, Pudi
V (eds) Advances in Knowledge Discovery and Data Mining, vol
6119. Springer, Berlin, Heidelberg

Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection
and description: a survey. Data Min Knowl Discov 29(3):626–688

Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using
supervised learning. In: SDM’06: workshop on link analysis,
counter-terrorism and security

Albert R, Barabási AL (2002) Statistical mechanics of complex net-
works. Rev Mod Phys 74(1):47

Balthrop J, Forrest S, Newman ME, Williamson MM (2004) Tech-
nological networks and the spread of computer viruses. Science
304(5670):527–529

Barabási AL, Albert R (1999) Emergence of scaling in random net-
works. Science 286(5439):509–512

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Com-
plex networks: structure and dynamics. Phys Rep 424(4):175–308

Bolton RJ, Hand DJ (2002) Statistical fraud detection: a review. Stat
sci 17:235–249

Boshmaf Y, Muslukhov I, Beznosov K, Ripeanu M (2011) The
socialbot network: when bots socialize for fame and money. In:

19  http://data4​good.io/datas​et.html.
20  https​://githu​b.com/Kagan​di/anoma​lous-verti​ces-detec​tion.

18  A Sybil attack is when the adversary controls a substantial fraction
of the vertices in the system, which are then used to influence and
manipulate the system to achieve the end goals of the attacker.

http://data4good.io/dataset.html
https://github.com/Kagandi/anomalous-vertices-detection

Social Network Analysis and Mining (2018) 8:27	

1 3

Page 13 of 13  27

Proceedings of the 27th Annual Computer Security Applications
Conference. ACM, pp 93–102

Brin S, Page L (2012) Reprint of: the anatomy of a large-scale hyper-
textual web search engine. Comput Netw 56(18):3825–3833

Cao Q, Sirivianos M, Yang X, Pregueiro T (2012) Aiding the detection
of fake accounts in large scale social online services. In: Proceed-
ings of the 9th USENIX conference on networked systems design
and implementation. USENIX Association, p 15

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a sur-
vey. ACM Comput Surv (CSUR) 41(3):15

Cukierski W, Hamner B, Yang B (2011) Graph-based features for
supervised link prediction. In: The 2011 international joint con-
ference on neural networks (IJCNN). IEEE, pp 1237–1244

Douceur JR (2002) The Sybil attack. In: International workshop on
peer-to-peer systems. Springer, pp 251–260

Eberle W, Holder L (2007) Anomaly detection in data represented as
graphs. Intell Data Anal 11(6):663–689

Elyashar A, Fire M, Kagan D, Elovici Y (2014) Guided socialbots:
infiltrating the social networks of specific organizations’ employ-
ees. AI Commun 29(1):87–106

Facebook (2015) Facebooks annual report 2015. https​://s21.q4cdn​
.com/39968​0738/files​/doc_finan​cials​/annua​l_repor​ts/2015-Annua​
l-Repor​t.pdf. Accessed 16 Oct 2016

Fawcett T, Provost F (1997) Adaptive fraud detection. Data Min Knowl
Discov 1(3):291–316

Ferrara E, Varol O, Davis C, Menczer F, Flammini A (2016) The rise
of social bots. Commun ACM 59(7):96–104

Fire M, Guestrin C (2016) Analyzing complex network user arrival
patterns and their effect on network topologies. arXiv​:16030​7445

Fire M, Tenenboim L, Lesser O, Puzis R, Rokach L, Elovici Y (2011)
Link prediction in social networks using computationally efficient
topological features. In: 2011 IEEE third international conference
on privacy, security, risk and trust (PASSAT) and social comput-
ing (SocialCom). IEEE, pp 73–80

Fire M, Katz G, Elovici Y (2012) Strangers intrusion detection-detect-
ing spammers and fake profiles in social networks based on topol-
ogy anomalies. Hum J 1(1):26–39

Fire M, Tenenboim-Chekina L, Puzis R, Lesser O, Rokach L, Elovici
Y (2013) Computationally efficient link prediction in a variety of
social networks. ACM Trans Intell Syst Technol (TIST) 5(1):10

Heidler R, Gamper M, Herz A, Eßer F (2014) Relationship patterns in
the 19th century: the friendship network in a German boys’ school
class from 1880 to 1881 revisited. Soc Netw 37:1–13

Hernandez D (2015) Why can’t twitter kill its bots? http://fusio​n.net/
story​/19590​1/twitt​er-bots-spam-detec​tion/. Accessed 16 Oct 2016

Hofmeyr SA, Forrest S, Somayaji A (1998) Intrusion detection using
sequences of system calls. J Comput Secur 6(3):151–180

Hooi B, Song HA, Beutel A, Shah N, Shin K, Faloutsos C (2016)
Fraudar: bounding graph fraud in the face of camouflage. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, pp 895–904

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for
social networks. J Am Soc Inf Sci Technol 58(7):1019–1031

Newman ME (2003) The structure and function of complex networks.
SIAM Rev 45(2):167–256

Noble CC, Cook DJ (2003) Graph-based anomaly detection. In: Pro-
ceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, pp 631–636

Papadimitriou P, Dasdan A, Garcia-Molina H (2010) Web graph simi-
larity for anomaly detection. J Internet Serv Appl 1(1):19–30

Plante C (2014) That’s not a celebrity you’re following on twitter, it’s
an assistant. http://www.theve​rge.com/2014/9/8/61219​85/celeb​
rity-twitt​er-adam-levin​e. Accessed 16 Oct 2016

Stringhini G, Kruegel C, Vigna G (2010) Detecting spammers on social
networks. In: Proceedings of the 26th annual computer security
applications conference. ACM, pp 1–9

Strogatz SH (2001) Exploring complex networks. Nature
410(6825):268–276

Sun J, Qu H, Chakrabarti D, Faloutsos C (2005) Neighborhood for-
mation and anomaly detection in bipartite graphs. In: Fifth IEEE
international conference on data mining. IEEE, p 8

Thomas K, Grier C, Song D, Paxson V (2011) Suspended accounts
in retrospect: an analysis of Twitter spam. In: Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement con-
ference. ACM, pp 243–258

Vaas L (2014) Good bot, bad bot? 23 million Twitter accounts are auto-
mated. https​://naked​secur​ity.sopho​s.com/2014/08/14/good-bot-
bad-bot-23-milli​on-twitt​er-accou​nts-are-autom​ated/. Accessed
16 Oct 2016

Wang XF, Chen G (2003) Complex networks: small-world, scale-free
and beyond. IEEE Circuits Syst Mag 3(1):6–20

https://s21.q4cdn.com/399680738/files/doc_financials/annual_reports/2015-Annual-Report.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/annual_reports/2015-Annual-Report.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/annual_reports/2015-Annual-Report.pdf
http://arxiv.org/abs/160307445
http://fusion.net/story/195901/twitter-bots-spam-detection/
http://fusion.net/story/195901/twitter-bots-spam-detection/
http://www.theverge.com/2014/9/8/6121985/celebrity-twitter-adam-levine
http://www.theverge.com/2014/9/8/6121985/celebrity-twitter-adam-levine
https://nakedsecurity.sophos.com/2014/08/14/good-bot-bad-bot-23-million-twitter-accounts-are-automated/
https://nakedsecurity.sophos.com/2014/08/14/good-bot-bad-bot-23-million-twitter-accounts-are-automated/

	Generic anomalous vertices detection utilizing a link prediction algorithm
	Abstract
	1 Introduction
	2 Literature overview
	3 Methods
	3.1 Problem definition
	3.2 Constructing a link prediction classifier
	3.2.1 Feature extraction
	3.2.2 Classifier construction

	3.3 Detecting anomalous vertices
	3.3.1 Anomaly detection features
	3.3.2 Test set generation
	3.3.3 Training set generation

	4 Social network datasets
	5 Experimental evaluation
	5.1 Simulation of anomalous vertices
	5.2 Fully simulated network evaluation
	5.3 Semi-simulated network evaluation
	5.4 Real-world network evaluation

	6 Results
	7 Discussion
	8 Conclusions
	9 Availability
	Acknowledgements
	References

