
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2018) 8:17
https://doi.org/10.1007/s13278-018-0491-4

ORIGINAL ARTICLE

Reducing large graphs to small supergraphs: a unified approach

Yike Liu1 · Tara Safavi1 · Neil Shah2 · Danai Koutra1

Received: 16 May 2017 / Revised: 6 January 2018 / Accepted: 14 February 2018 / Published online: 10 March 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract
Summarizing a large graph with a much smaller graph is critical for applications like speeding up intensive graph algorithms
and interactive visualization. In this paper, we propose CONditional Diversified Network Summarization (CondenSe), a
Minimum Description Length-based method that summarizes a given graph with approximate “supergraphs” conditioned on
a set of diverse, predefined structural patterns. CondenSe features a unified pattern discovery module and a set of effective
summary assembly methods, including a powerful parallel approach, k-Step, that creates high-quality summaries not biased
toward specific graph structures. By leveraging CondenSe ’s ability to efficiently handle overlapping structures, we contrib-
ute a novel evaluation of seven existing clustering techniques by going beyond classic cluster quality measures. Extensive
empirical evaluation on real networks in terms of compression, runtime, and summary quality shows that CondenSe finds
30–50% more compact summaries than baselines, with up to 75–90% fewer structures and equally good node coverage.

1 Introduction

In an era of continuous generation of large amounts of data,
summarization techniques are becoming increasingly crucial
to help abstract away noise, uncover patterns, and inform
human decision processes. Here we focus on the summariza-
tion of graphs, which are powerful structures that capture a
number of phenomena, from communication between people
(Leskovec et al. 2005; Backstrom et al. 2006; Koutra et al.
2013) to links between webpages (Kleinberg et al. 1999),
to interactions between neurons in our brains (OCP 2014;
Safavi et al. 2017). In general, graph summarization or
coarsening approaches (Liu et al. 2016) seek to find a con-
cise representation of the input graph that reveals patterns in
the original data, while usually preserving specific network
properties. As graph summaries are application-dependent,
they can be defined with respect to various aspects: they can

preserve specific structural patterns, focus on some entities
in the network, preserve the answers to a specific set of que-
ries, or maintain the distributions of some graph properties.
Graph summarization leads to the reduction of data volume,
speedup of graph algorithms, improved storage and query
time, and interactive visualization. Its major challenges are
in effectively handling the volume and complexity of data,
defining the interestingness of patterns, evaluating the pro-
posed summarization techniques, and capturing network
structural changes over time. The graph mining community
has mainly studied summarization techniques for the struc-
ture of static, plain graphs (Chierichetti et al. 2009; Navlakha
et al. 2008) and to a smaller extent, methods for attributed or
dynamic networks (Shah et al. 2015).

Our method, CondenSe or CONditional Diversified Net-
work Summarization, summarizes the structure of a given
large-scale network by selecting a small set of its most
informative structural patterns. Inspired by recent work
(Navlakha et al. 2008; Koutra et al. 2014), we formulate
graph summarization as an information-theoretic optimiza-
tion problem in search of local structures that collectively
minimize the description of the graph. CondenSe is a uni-
fied, edge-overlap-aware graph summarization method that
summarizes a given graph with approximate “supergraphs”
conditioned on diverse, predefined structural patterns. An
example is shown in Fig. 1, where the (super)nodes in
Fig. 1b correspond to sets of nodes in the original graph.
Specifically, the predefined patterns include structures that
have well-understood graph-theoretical properties and are

 * Yike Liu
 yikeliu@umich.edu

 Tara Safavi
 tsafavi@umich.edu

 Neil Shah
 neilshah@cs.cmu.edu

 Danai Koutra
 dkoutra@umich.edu

1 University of Michigan, Ann Arbor, USA
2 Carnegie Mellon University, Pittsburgh, USA

http://orcid.org/0000-0003-0117-1656
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-018-0491-4&domain=pdf

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 2 of 18

found in many real-world graphs (Kleinberg et al. 1999;
Araujo et al. 2014; Faloutsos et al. 1999; Prakash et al.
2010): cliques, stars, bipartite cores, chains, and patterns
with skewed degree distribution.

Our work effectively addresses three main shortcomings
of prior summarization work (Koutra et al. 2014; Koutra and
Faloutsos 2017), namely: (1) its heavy dependence on the
structural pattern discovery method and intrinsic tendency,
or bias, to select star-like structures in the final summary; (2)
its inability to handle edge-overlapping patterns in the sum-
mary; and (3) its dependence on the order in which candidate
structures are considered for the final summary. Our proposed
unified approach effectively handles these issues and results
in robust, compact summaries with 5–10× fewer structural
patterns (or supernodes) and up to 50% better compression.

CondenSe consists of three modules that address the
aforementioned shortcomings. (1) A unified structural pat-
tern discovery module leverages the strengths of various
popular graph clustering methods (e.g., Louvain Blondel
et al. 2008, MetiS Karypis and Kumar 1999) to address
the biases toward specific structures per clustering method;
(2) A Minimum Description Length-based (MDL) formula-
tion with a penalty term effectively minimizes redundancy in
edge coverage by the structural patterns included in the sum-
mary. This term is paramount when the candidate structural
patterns have significant edge overlap, such as in the case
of our unified structure discovery module; (3) An iterative,
multi-threaded, and divide-and-conquer-based summary
assembly module further reduces structure selection bias
during the summary creation process by being independent
of the order in which the candidate structural patterns are
considered. This parallel module is up to 53× faster than its
serial counterpart on a 6-core machine.

Our contributions in this paper are as follows:

• Approach We introduce CondenSe, an effective unified,
edge-overlap-aware graph summarization approach. Con-
denSe includes a powerful parallel summary assembly
module, k-Step, that creates compact and easy-to-under-
stand graph summaries with high node coverage and low
redundancy.

• Novel metric We propose a way to leverage CondenSe
as a proxy to compare graph clustering methods with
respect to their summarization performance on large,
real-world graphs. Our work complements the usual
evaluation metrics in the related literature (e.g., modu-
larity, conductance).

• Experiments We present a thorough empirical analysis
on real networks to evaluate the summary quality and
runtime, and study the properties of seven clustering
methods.

For reproducibility, the code is available online at https ://
githu b.com/yikel iu/ConDe NSe. Next, we present the related
work and necessary background.

2 Related work and background

Our work is related to (1) graph summarization methods,
(2) compression and specifically MDL, (3) graph clustering,
and (4) graph sampling. We briefly review each of these
topics next.

Graph summarization Most research efforts in graph sum-
marization (Liu et al. 2016) focus on plain graphs and can be
broadly classified as group-based (LeFevre and Terzi 2010;
Raghavan and Garcia-Molina 2003), compression-based
(Chierichetti et al. 2009; Navlakha et al. 2008; Goonetilleke

Fig. 1 CondenSe generates
simpler and more compact
supergraphs than baselines.
Yellow, red, and green nodes
for stars, cliques, and bipartite
cores, respectively (color figure
online)

https://github.com/yikeliu/ConDeNSe
https://github.com/yikeliu/ConDeNSe

Social Network Analysis and Mining (2018) 8:17

1 3

Page 3 of 18 17

et al. 2017), simplification-based, influence-based, and
pattern-based (Cook and Holder 1994). Dynamic graph
summarization has been studied to a much smaller extent
(Shah et al. 2015; Jin and Koutra 2017). Beyond the classic
definition of graph summarization, there are also approaches
that summarize networks in terms of structural proper-
ties (e.g., degree, PageRank) by automatically leveraging
domain knowledge (Jin and Koutra 2017; Jin et al. 2017).
Most related to our work are the ideas of node grouping and
graph compression. Built on these ideas, two representative
methods, MdL-SuMMarization (Navlakha et al. 2008) and
voG (Koutra et al. 2014), are MDL-based summarization
methods that compress the graphs by finding near-structures
[e.g., (near-) cliques, (near-) bipartite cores]. MdL-SuMMa-
rization, which iteratively combines neighbors into super-
nodes as long as it helps with minimizing the compression
cost, includes mostly cliques and cores in the summaries,
and has high runtime complexity.

On the other hand, voG finds structures by employing
SLaShBurn (Kang and Faloutsos 2011) (explained below)
and hence is particularly biased toward selecting star struc-
tures. Moreover, it creates summaries (i.e., lists of structures)
using a greedy heuristic on a pre-ordered set of structures
(cf. Sect. 4.3). Unlike these methods, CondenSe performs
ensemble pattern discovery and handles edge-overlapping
structures. Furthermore, its summary assembly is robust to
the ordering of structures.

MDL in graph mining Many data mining problems are related
to summarization and pattern discovery, and, thus, to Kol-
mogorov complexity (Faloutsos and Megalooikonomou
2007), which can be practically implemented by the MDL
principle (Rissanen 1983). Applications include clustering
(Cilibrasi and Vitányi 2005), community detection (Chakra-
barti et al. 2004), pattern discovery in static and dynamic
networks (Koutra et al. 2014; Shah et al. 2015), and more.

Graph clustering Graph clustering and community detec-
tion are of great interest to many domains, including social,
biological, and web sciences (Girvan and Newman 2002;
Backstrom et al. 2008; Fortunato 2010). Here, we leverage
several graph clustering methods to obtain diversified graph
summaries, since each method is biased toward certain types
of structures, such as cliques and bipartite cores (Blondel
et al. 2008; Karypis and Kumar 1999; Yang and Leskovec
2013) or stars (Kang and Faloutsos 2011). Unlike the exist-
ing literature (Leskovec et al. 2010) where clustering meth-
ods are compared with respect to classic quality measures,
we also propose to use CondenSe as a vessel to evaluate the
methods’ summarization power. We leverage seven decom-
position methods, compared quantitatively in Table 1:

• SLaShBurn Kang and Faloutsos (2011) is a node reorder-
ing algorithm initially developed for graph compression.
It performs two steps iteratively: (1) It removes high-
centrality nodes from the graph; (2) It reorders nodes
such that high-degree nodes are assigned the lowest IDs
and nodes from disconnected components get the high-
est IDs. The process is repeated on the giant connected
component. We use SLaShBurn by identifying structures
from the egonet of each high-centrality node, and the
disconnected components, as subgraphs.

• Louvain Blondel et al. (2008) is a modularity-based par-
titioning method for detecting hierarchical community
structure. Like SLaShBurn, Louvain is iterative: (1) Each
node is placed in its own community. Then, the neigh-
bors j of each node i are considered, and i is moved to j’s
community if the move produces the maximum modu-
larity gain. The process is applied repeatedly until no
further gain is possible. (2) A new graph is built whose
supernodes represent communities, and superedges are
weighted by the sum of weights of links between the two
communities. The algorithm typically converges in a few
passes.

Table 1 Qualitative comparison of the graph clustering techniques included in CondenSe
SLASHBURN [21] LOUVAIN [7] SPECTRAL [19] METIS [22] HYCOM [4] BIGCLAM [39] KCBC [29]

Overlapping
Clusters
Cliques Many Many Many Many Some Many Many
Stars Many Some Some Some Many Some Some
Bipartite Cores Some Few Many Some Some Few Few
Chains Few Few Few Few Few Few Few
Hyperbolic

Few Few Few Few Many Few Few
Structures

Complexity
O(t(m+

O(n logn) O(n3) O(m · k) O(k(m+ h log h2
O(d · n · t) O(t(m+ n))+n logn)) +hmh))

Summarization
Excellent Very Good Good Good Poor Good Poor

Power

Symbols: n = number of nodes, m = number of edges, k = number of clusters/partitions, t = number of iterations, d = average degree, h(mh) =
number of nodes (edges) in hyperbolic structure

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 4 of 18

• SpeCtraL clustering refers to a class of algorithms that
rely on eigen-decomposition to identify community
structure. We use one such spectral clustering algorithm
(Hespanha 2004), which partitions a graph by perform-
ing k-means clustering on the top-k eigenvectors of the
input graph. The idea behind this clustering is that nodes
with similar connectivity have similar eigen-scores in the
top-k vectors and form clusters.

• MetiS Karypis and Kumar (1999) is a cut-based k-way
multilevel graph partitioning scheme based on multilevel
recursive bisection (MLRB). Until the graph size is sub-
stantially reduced, it first coarsens the input graph by
grouping nodes into supernodes iteratively such that the
edge-cut is preserved. Next, the coarsened graph is par-
titioned using MLRB, and the partitioning is projected
onto the original input graph G through backtracking.
The method produces k roughly equally sized partitions.

• hyCoM Araujo et al. (2014) is a parameter-free algo-
rithm that detects communities with hyperbolic struc-
ture. It approximates the optimal solution by iteratively
detecting important communities. The key idea is to find
in each step a single community that minimizes an MDL-
based objective function given the previously detected
communities. The iterative procedure consists of three
steps: community candidates, community construction,
and matrix deflation.

• BiGCLaM Yang and Leskovec (2013) is a scalable over-
lapping community detection method. It is built on the
observation that overlaps between communities are
densely connected. By explicitly modeling the affili-
ation strength of each node-community pair, the latter
is assigned a nonnegative latent factor which represents
the degree of membership to the community. Next, the
probability of an edge is modeled as a function of the
shared community affiliations. The identification of net-
work communities is done by fitting BiGCLaM to a given
undirected network G.

• kCBC Liu et al. (2015) is inspired by the k-cores algo-
rithm Giatsidis et al. (2011), which unveils densely con-
nected structures. A k-core is a maximal subgraph for
which each node is connected to at least k other nodes.
kCBC iteratively removes k-cores starting by setting
k equal to the maximum core number (the max value
k for which the node is present in the resulting sub-
graph) across all nodes. Each connected component in
the induced subgraphs is identified as a cluster, and is
removed from the original graph. The process is repeated
on the remaining graph.

Other clustering methods that we considered (e.g., Weighted
Stochastic Block Model or WSBM) are not included in Con-
denSe due to lack of scalability. For instance, WSBM took
more than a week to finish on our smallest dataset.

Graph sampling Sampling graph nodes and/or edges may
be considered an alternative method of graph compression,
and as such these techniques relate to graph summarization
(Hübler et al. 2008; Batson et al. 2013). Graph sampling
techniques have been extensively studied and reviewed
(Mathioudakis et al. 2011; Ahmed et al. 2013; Hasan et al.
2016). Node sampling methods include sampling according
to degree, PageRank score, or substructures like spanning
trees. Edge sampling techniques include uniform sampling
and sampling according to edge weights or effective resist-
ance (Spielman and Srivastava 2011) to maintain node
reachability (Aho et al. 1972) or the graph spectrum up to
some multiplicative error. Graph sampling can also be used
to approximate queries with theoretical guarantees.

That said, the fundamental goals of graph sampling and
summarization differ. Sampling focuses on obtaining sparse
subgraphs that maintain properties of the original input
graph, like degree distribution, size distribution of connected
components, diameter, or community structure (Maiya and
Berger-Wolf 2010). Unlike graph summarization, sampling
is less concerned with identifying succinct patterns or struc-
tures that represent the input graph and assist user under-
standing. Although sampling has been shown to support
visualization (Rafiei and Curial 2005), these methods usu-
ally operate on individual nodes/edges instead of collective
patterns. Furthermore, the results of graph sampling algo-
rithms may require additional processing for interpretability.

3 ConDenSe: proposed model

We formulate the graph summarization problem as a graph
compression problem. Let G(,) be a graph with n = ||
nodes and m = || edges, without self-loops. The Minimum
Description Length (MDL) problem, which is a practical
version of Kolmogorov Complexity (Faloutsos and Mega-
looikonomou 2007), aims to find the best model M in a given
family of models for some observed data such that it
minimizes L(M) + L(|M) , where L(M) is the description
length of M in bits and L(|M) is the description length of
which is encoded by the chosen model M. Table 2 provides
the definitions of the recurrent symbols used in this section.

We consider summaries in the model family , which
consists of all possible permutations of subsets of structural
patterns in Ω . One option is to populate Ω with the frequent
patterns that occur in the input graph (in a data-driven man-
ner), but frequent subgraph mining is NP-complete and
does not scale well. Moreover, even efficient approximate
approaches are not applicable to unlabeled graphs and can
only handle small graphs with a few tens or hundreds of
nodes. To circumvent this problem, we choose set Ω with
five patterns that are common in real-world static graphs

Social Network Analysis and Mining (2018) 8:17

1 3

Page 5 of 18 17

(Kleinberg et al. 1999; Araujo et al. 2014), correspond to
interesting real behaviors, and can (approximately) describe
a wide range of structural patterns: stars (st), full cliques
(fc), bipartite cores (bc), chains (ch), and hyperbolic struc-
tures with skewed degree distribution (hs). Under the MDL
principle, any approximate structures (e.g., near-cliques)
can be easily encoded as their corresponding exact struc-
tures (e.g., fc) with some errors. Since many communities
have hyperbolic structure (Araujo et al. 2014) and it cannot
be expressed as a simple composition of the other struc-
tural patterns in Ω , we consider it separately. Motivated by
real-world discoveries, we focus on structures that are com-
monly found in networks, but our framework is not restricted
to them; it can be readily extended to other, application-
dependent types of structures as well.

Formally, we tackle the following problem:

Problem 1 Given a graph G with adjacency matrix � and
structural pattern types Ω , we seek to find the model M that
minimizes the encoding length of the graph and the redun-
dancy in edge coverage:

where � is � ’s approximation induced by M, � = �⊕ �
is the error matrix to correct for edges that were errone-
ously described by M, ⊕ is exclusive OR, and � is the edge-
overlap matrix to penalize edges covered by many patterns.

Model M induces a supergraph with each s ∈ M as an
(approximate) supernode, and weighted superedges between

(1)L(G,M) = L(M) + L(�) + L(�)

them. Before we further formalize the task of encoding the
model, the error matrix, and the edge-overlap penalty matrix,
we provide a visual illustration of our MDL objective.

An illustrative example Figure 2 shows the original adja-
cency matrix � of an input graph, which is encoded as (1)
� (the matrix that is induced by the model M), and (2) the
error matrix E (which captures additional/missing edges that
are not properly described in M). In this example, there are
6 structures in the model (from the top left corner to the
bottom right corner: a star, a large clique, a small clique, a
bipartite core, a chain, and a hyperbolic structure), where
the cliques and the bipartite core have overlapping nodes
and edges.

3.1 Encoding the model

To fully describe a model M ∈ for the input graph G, we
encode it as L(M):

where in the first two terms we encode the number of struc-
tural patterns in M using Rissanen’s optimal encoding for
integers (Rissanen 1983) and the number of patterns per
type in Ω , respectively. Then, for each structure s ∈ M , we
encode its type x(s) using optimal prefix codes (Cover and

(2)
L(M) = L

ℕ
(|M| + 1) + log2

(
|M| + |Ω| − 1

|Ω| − 1

)

+
∑

s∈M

(
− log Pr(x(s) ∣ M) + L(s)

)

Table 2 Major symbols and
definitions

Notation Description

G(,) , � Graph, and its adjacency matrix
 , n = || Node-set and number of nodes of G, resp.
 , m = || Edge-set and number of edges of G, resp.
k # of clusters or communities or patterns
t # of iterations
h,mh Size of hyperbolic community, and # of edges in it, resp.
d Average degree of nodes in G
hslash # of hub nodes to slash per iteration in SLaShBurn

fc, bc, st, ch, hs Full clique, bipartite core, star, chain, hyperbolic structure, resp.
|fc|, |bc|, |st|, |ch|, |hs| Number of nodes in the corresponding structure
Ω Predefined set of structural pattern types
M A model or summary for G
s Structure in M
|S|, |s| Cardinality of set S and number of nodes in s, resp.
||s||, ||s||′ # existing and nonexisting edges of � that s describes
� error matrix, � = �⊕ � , where ⊕ is exclusive OR
� Edge-overlap penalty matrix
L(G, M) # of bits to describe model M, and G using M
L(M), L(O), L(s) # of bits to describe M, the edge overlap O, and structure s

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 6 of 18

Thomas 2012), and its connectivity L(s). Next, we introduce
the MDL encoding per type of structure in Ω.

• Stars A star consists of a “hub” node connected to two or
more “spoke” nodes. We encode it as:

 where we encode in order the number of spokes, the hub
ID (we identify it out of n nodes using an index over the
combinatorial number system), and the spoke IDs.

• Cliques A clique is a densely connected set of nodes
with:

 where we encode its number of nodes followed by their
IDs.

• Bipartite cores A bipartite core consists of two nonempty
sets of nodes, L and R, which have edges only between
them, and L ∩ R = � . Stars are a special case of bipartite
cores with |L| = 1 . The encoding cost is given as:

 where we encode the number of nodes in L and R fol-
lowed by the node IDs in each set.

• Chains A chain is a series of nodes that are linked con-
secutively—e.g., node-set {a, b, c, d} in which a is con-
nected to b, b is connected to c, and c is connected to d.
Its encoding cost, L(ch), is:

(3)L(st) = L
ℕ
(|st| − 1) + log2 n + log2

(
n − 1

|st| − 1

)

(4)L(fc) = L
ℕ
(|fc|) + log2

(
n

|fc|

)

(5)

L(bc) = L
ℕ
(|L|) + L

ℕ
(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
,

(6)L(ch) = L
ℕ
(|ch| − 1) +

|ch|∑

i=1

log2(n − i + 1)

 where we encode its number of nodes, followed by their
node IDs in order of connection.

• Hyperbolic structures A hyperbolic structure or commu-
nity (Araujo et al. 2014) has skewed degree distribution
which often follows a power law with exponent between
− 0.6 and − 1.5. The encoding length of a hyperbolic
structure hs is given as:

 where we first encode the power-law exponent (using
Rissanen’s encoding (Rissanen 1983) for the integer
part, the number of decimal values, and the decimal
part), followed by the number of nodes and their IDs.
Then, we encode the number of edges in the structure
(=|�(hs)|), and use optimal prefix codes, l0, l1 , for the
missing (||hs||′) and present (||hs||) edges, respectively.
Specifically, l1 = − log((||hs||∕(||hs|| + ||hs||�)) , and l0
is defined similarly.

3.2 Encoding the errors

Given that M is a summary, and � is only an approxima-
tion of � , we also need to encode errors of the model. For
instance, a near-clique is represented as a full clique in the
model, and, thus, contributes some edges to the error matrix
(i.e., the missing edges from the real data). We encode the
error � = �⊕ � in two parts, �+ and �− , since they likely
follow different distributions (Koutra et al. 2014). The for-
mer encodes the edges induced by M which were not in the
original graph, and the latter the original edges that are miss-
ing in M:

(7)

L(hs) = k + L
ℕ
(|hs|) + log2

(
n

|hs|

)

+ log2(|�(hs)|) + ||hs||l1 + ||hs||�l0

(8)L(�+) = log2(|�+|) + ||�+||l1 + ||�+||�l0

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Fig. 2 Illustration of MDL encoding

Social Network Analysis and Mining (2018) 8:17

1 3

Page 7 of 18 17

where we encode the number of 1s in �+ (or �−), followed
by the actual 1s and 0s using optimal prefix codes (as
before).

3.3 Encoding the edge‑overlap penalty

Several of the graph decomposition methods that we con-
sider (e.g., SLaShBurn, kCBC in Table 1) generate edge-
overlapping patterns. The MDL model we have presented so
far naturally handles node overlaps—if two structures con-
sist of the same large set of nodes, only one of the them will
be chosen during the encoding cost minimization process,
because their combination would lead to higher encoding
cost. However, up to this point, the model considers a binary
state for each edge: that is, an edge is described by the model
M, or not described by it. This could lead to summaries with
high redundancy in edge coverage, as we show next with an
illustrative example.

To explicitly handle extensive edge overlaps in the graph
summaries (which can lead to low node/edge coverage),
we add a penalty term, L(�) , in the optimization function
in Eq. (1). We introduce the matrix � , which maintains
the number of times each edge is described by M, i.e., the
number of selected structures in which the edge occurs. We
encode the description length of � as:

where we first encode the number of distinct overlaps, and
then use the optimal prefix code to encode the number of
the present and missing entries in � . As before, l0 and l1 are
the lengths of the optimal prefix codes for the present and
missing entries, respectively. Finally, we encode the weights
in � using the optimal encoding for integers L

ℕ
 (Rissanen

1983). We denote with (�) the set of nonnegative entries
in matrix �.

(9)L(�−) = log2(|�−|) + ||�−||l1 + ||�−||�l0

(10)L(�) = log2(|�|) + ||�||l1 + ||�||�l0 +
∑

o∈(�)

L
ℕ
(|o|)

An illustrative example Let us assume that the output of an
edge-overlapping graph clustering method consists of three
full cliques: (1) full clique 1 with nodes 1–20; (2) full clique
2 with nodes 11–30; and (3) full clique 3 with nodes 21–40.
The encoding that does not account for overlaps (which
is based on the modeling described in Sects. 3.1 and 3.2)
includes all three structures in the summary, which clearly
yields both redundant nodes and edges. Despite the overlap,
the description length of the graph given the model above is
calculated as 441 bits, since edges that are covered multiple
times are not penalized. For reference, the graph needs 652
bits under the null (empty) model, where all the original
edges are captured in the error matrix � . Ideally, we want a
method that penalizes extensive overlaps and maximizes the
node/edge coverage.

In the example that we described above, by leveraging
the full optimization function in Eq. (1), which includes the
edge-overlap penalty term, we obtain a summary with only
the first two cliques, as desired. The encoding of our pro-
posed method has a length of 518 bits, which is higher than
the number of bits of the non edge-overlap aware encoding
(441 bits). The reason is that in the former (edge-overlap-
aware) summary, some edges have remained unexplained
(edges from nodes 11–20 to nodes 21–40), and thus are
encoded as error. On the other hand, the latter summary
encodes all the nodes and edges (without errors), but
explains many edges twice (e.g., the nodes 11–20 and the
edges between them, the edges between nodes 11–20 and
21–30) without accounting for the redundancy-related bits
twice.

Our proposed edge-overlap-aware encoding can effec-
tively handle a family model that consists of subsets of
node- and edge-overlapping structural patterns, and can
choose a model M that describes the input graph well, and
also minimizes redundant modeling of nodes and edges.

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 8 of 18

4 ConDenSe: our proposed algorithm

biased toward identifying specific types of graph structures,
which are most often cliques and bipartite cores. Choosing a
decomposition method to generate patterns for the summary
depends on the domain, the expected patterns (e.g., mainly
clique- or star-like structures), and runtime constraints. To
mitigate biases introduced by individual clustering methods,
and to consider a diverse set of candidate patterns, we pro-
pose a unified approach that leverages seven existing clus-
tering methods: SLaShBurn, Louvain, SpeCtraL, MetiS,
hyCoM, BiGCLaM, and kCBC (Sect. 2). In Table 1, we pre-
sent the qualitative advantages, disadvantages, and biases
of the methods. Specifically, SLaShBurn tends to provide
excellent graph coverage and biased summaries in which
stars dominate. Conversely, most other approaches produce
primarily full cliques and stars, and some bipartite cores.
hyCoM finds mainly hyperbolic communities with skewed
degree distributions.

Our proposed unified approach (Algorithm 1, lines 2–4)
is expected to lead to summaries with a better balanced set of
structures (i.e., a good mix of exact and approximate cliques,
bipartite cores, stars, chains and hyperbolic structures), and
lower encoding cost than any standalone graph clustering
method. At the same time, it is expected to take longer to
generate all the patterns (although the clustering methods
can trivially run in parallel) and the search space for the
summary becomes larger, equal to the union of all the sub-
graphs that the clustering methods generate.

Based on the model from Sect. 3, we propose CondenSe, an
ensemble, edge-overlap-aware algorithm that summarizes
a graph with a compact supergraph consisting of a diverse
set of structural patterns (e.g., fc, hs). CondenSe consists of
four modules (Algorithm 1), described in detail next.

4.1 Module A: Unified pattern discovery module

As we mentioned earlier, in our formulation, we consider
summaries in the model family , which consists of all
possible permutations of subsets of structural patterns in
Ω (e.g., a summary with 10 full cliques, 3 bipartite cores,
5 stars and 9 hyperbolic structures). Toward this goal, the
first step is to discover subgraphs in the input graph. These
can then be used to build its summary. To find the “perfect”
graph summary, we would need to generate all possible (2n)
patterns for a given graph G, and then, from all possible
(22n) combinations of these patterns pick the set that mini-
mizes Eq. (1). This is intractable even for small graphs. For
example, for n = 100 nodes, there are more than 2nonillion (1
nonillion = 1030) possible summaries. We reduce the search
space by considering patterns that are found via graph clus-
tering methods, and are likely to fit the structural patterns
in Ω well.

The literature is rich in graph clustering methods (Blondel
et al. 2008; Karypis and Kumar 1999; Yang and Leskovec
2013; Kang and Faloutsos 2011). However, each approach is

Social Network Analysis and Mining (2018) 8:17

1 3

Page 9 of 18 17

In the experimental evaluation, we use CondenSe to
empirically compare the impact of these methods on the
summary quality and evaluate their summarization power.

4.2 Module B: Structural pattern identification
module

This module (Algorithm 1, lines 5–12) identifies and
assigns an identifier structural pattern in Ω to all the sub-
graphs found in module A. In other words, this module
seeks to characterize each cluster with its best suited pat-
tern in Ω = {fc, st, bc, ch, hs} . Let g be the induced graph
of a pattern generated in Step 1, and � be a pattern in
Ω . Following the reasoning in Sect. 3, we use MDL as a
selection criterion. To model g with � , we first model g
with its best representation as structure type � (explained
in detail next), r(g,�) , and define its encoding cost as
Lr(g,�(g,�) = L(�) + L(g|�) = L(�) + L(E+

�
) + L(E−

�
) , where

E+
�
 and E−

�
 encode the erroneously modeled and unmodeled

edges of g. The pattern type in � that leads to the smallest
MDL cost is used as the identifier of the corresponding sub-
graph g (lines 11–12 in Algorithm 1).

Finding the best representation r(g,�) Per pattern type � ,
each pattern g can be represented by a family of structures—
e.g., we can represent g with as many bipartite cores as can
be induced on all possible permutations of g’s nodes into
two sets L (left node-set) and R (right node-set). The only
exception is the full clique (fc) pattern, which has a unique
(unordered) set of nodes. To make the problem tractable, we
use the graph-theoretical properties of the pattern types in Ω
in order to choose the representation of g which minimizes
the incorrectly modeled edges.

Specifically, we represent g as a star by identifying its
highest degree node as the hub and all other nodes as spokes.
Representing g as a bipartite core reduces to finding the
maximum bipartite pattern, which is NP-hard. To scale-up
the computation, we approximate it with semi-supervised
classification with two classes L and R, and the prior infor-
mation that the highest degree node belongs to L and its
neighbors to R. For the classification, we use Fast Belief
Propagation (Koutra et al. 2011) with heterophily between
neighbors. Similarly, representing g as a chain reduces to
finding its longest path, which is also NP-hard. By starting
from a random node, we perform breadth-first search two
times, and end on nodes v1 and v2 , respectively. Then, we
consider the path v1 to v2 (based on BFS), and perform local
search to further expand it. For the hyperbolic structures,
we used power-law fitting (http://tuval u.santa fe.edu/~aaron

c/power laws/ by Clauset et al.). Lines 7-10 in Algorithm 1
succinctly describe the search of the best representation r for
every subgraph g and pattern type �.

4.3 Module C: Structural pattern selection module

This module is key for creating compact summaries and is
described in lines 13–14 of Algorithm 1. Ideally, we would
consider all possible combinations of the previously identi-
fied structures and pick the subset that minimizes the encod-
ing cost in Eq. (1). If || structures have been found and
identified in the previous steps, finding the optimal sum-
mary from 2|| possibilities is not tractable. For reference,
we have seen empirically that graphs with about 100,000
nodes, have over 50K structures. The optimization function
is neither monotonic nor submodular, in which case a greedy
hill climbing approach would give a (1 − 1

�
)-approximation

of the optimal.
Instead of considering all possible combinations of

structures for the summary, prior work has proposed GnF,
a heuristic that considers the structures in decreasing order
of “local” encoding benefit and includes in the model the
ones that help further decrease the graph’s encoding cost
L(G, M). The local encoding benefit (Koutra et al. 2014)
is defined as L(g, �) − L(g,�) , where L(g, �) represents the
encoding of g as noise (i.e., empty model). Although it
is efficient, its output summary and performance heavily
depend on the structure order. To overcome these short-
comings and obtain more compact summaries, we propose
a new structural pattern selection method, Step, as well as
a faster serial version and three parallel variants: Step-p,
Step-pa, and k-Step.

• Step This method iteratively sifts through all the struc-
tures in and includes in the summary the structure that
decreases the cost in Eq. (1) the most, until no structure
further decreases the cost. Formally, if i is the set of
structures that have not been included in the summary at
iteration i, Step chooses structure s∗

i
 s.t.

 where Mi−1 is the model at iteration i − 1 , and M0 = � is
the empty model. CondenSe with Step finds up to 30%
more compact summaries than baseline methods, but its
quadratic runtime O(||2) makes it less ideal for large
datasets with many structures produced by module A.
Therefore, we propose four methods that significantly
reduce Step ’s runtime while maintaining its summary
quality.

s∗
i
= argmin

s∈i

L(G,Mi−1 ∪ {s})

http://tuvalu.santafe.edu/%7eaaronc/powerlaws/
http://tuvalu.santafe.edu/%7eaaronc/powerlaws/

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 10 of 18

• Step-p The goal of Step-p is to speed up the computa-
tion of Step by iteratively solving smaller, “local” ver-
sions of Step in parallel. Step-p begins by dividing the
nodes of the graph into p partitions using MetiS. Next,
each candidate structural pattern is assigned to the parti-
tion with the maximal node overlap. Step-p then iterates
until convergence, with each iteration consisting of two
phases:

 1. Parallelize In parallel, a process
is spawned for each partition and
is tasked with finding the struc-
ture that would lower the encod-
ing cost in Eq. (1) the most out
of all the structures in its parti-
tion. For any given partition,
there may be no structure that
lowers the global encoding cost.

2. Sync From all structures returned in phase
1, the one that minimizes Eq. (1) the most
is added to the summary. If no structure
reduces the encoding cost, the algorithm
has converged. If not, phase 1 is repeated.

• Step-pa In addition to parallelizing Step, we introduce
the idea of “inactive” partitions, which is an optimiza-
tion designed to reduce the number of processes that are

spawned by Step-p. Step-pa differs from Step-p by des-
ignating every partition of the graph as active, then if a
partition fails x times to find a structure that lowers the
cost in Eq. (1), that partition is declared inactive and is
not visited in future iterations. Thus, the partitions with
structures not likely to decrease the overall encoding
cost of the model get x chances (e.g., 3) before being
eventually ruled out, effectively reducing the number of
processes spawned for each iteration of Step-pa after the
first x iterations.

• k-Step The pseudocode of this variant is given in Algo-
rithm 2. k-Step further speeds up Step while maintain-
ing high-quality summaries. This algorithm has two
phases: the first applies Step-p k times (lines 3–5) to
guarantee that the initial structural patterns included in
the summary are of good quality. The second expands
the summary by building local solutions of Step-p per
active partition (lines 8–9). If a partition does not return
any solution, it is flagged as inactive (lines 10–11). For
the partitions that returned nonempty solutions, the best
structure per partition is added into a temporary list (line
13), and a parallel “glocal” step applies Step-p over that
list and populates the summary (lines 14–16). We refer
to this step as “glocal” because it is a global step within
the local stage. The local stage is repeated until no active
partitions are left.

Social Network Analysis and Mining (2018) 8:17

1 3

Page 11 of 18 17

4.4 Module D: Approximate supergraph creation
module

In the empirical analysis (Sect. 5), we show that Step results
in graph summaries with up to 80–90% fewer structures than
the baselines, and thus can be leveraged for tractable graph
visualization. The last and fourth module of CondenSe
(Algorithm 1, lines 15–18), instead of merely outputting a
list of structures, creates an “approximate” supergraph which
gives a high-level but informative view of large graphs. An
exact supergraph, GS(S, S) , of a graph G(,) consists
of a set of supernodes S = P() which is a power set (i.e.,
family of sets) over and a set of superedges S . The super-
weight is often defined as the sum of edge weights between
the supernodes’ constituent nodes.

Unlike most prior work, CondenSe creates “approxi-
mate,” yet powerful supergraphs: (1) the supernodes do not
necessarily correspond to a set of nodes with the same con-
nectivity, but to rich structural patterns (including hyper-
bolic structures and chains); (2) the supernodes may have
node overlap, which helps to pinpoint bridge nodes (i.e.,
nodes that span multiple communities); (3) the supernodes
may show deviations from the perfect corresponding struc-
tural patterns (i.e., they correspond to near-structures).

Definition A CondenSe approximate supergraph of G is
a supergraph with supernodes that correspond to possibly
overlapping structural patterns in Ω . These patterns are
approximations of clusters in G.

In other words, the CondenSe supergraphs consist
of supernodes that are fc, st, ch, bc, and hs. To obtain an
approximate supergraph, we map the structural patterns
returned in module C to approximate supernodes. Then, for
every pair of supernodes, we add a superedge if there were
edges between their constituent nodes in and set its super-
weight equal to the number of such (unweighted) edges, as
shown in line 18 of Algorithm 1.

To evaluate the edge overlap in the summaries, and hence
the effectiveness of our overlap-aware encoding, we use the
normalized overlap metric. The normalized overlap between
two supernodes is their Jaccard similarity. It is 0 if the super-
nodes do not share any nodes, and close to 1 if they share

many nodes compared to their sizes. Although it is not the
focus of the current paper, the CondenSe supergraphs can
be used for visualization and potentially for approximation
of algorithms on large networks (without specific theoretical
guarantees, at least in the general form).

4.5 CondenSe: complexity analysis

We discuss the complexity of CondenSe by considering
each module separately:

The first module has complexity O(n3) , which corre-
sponds to SpeCtraL. However, in practice, hyCoM is often
slower than SpeCtraL, likely due to implementation differ-
ences (JAVA vs. MATLAB). The complexity of this module
can be lowered by selecting the fastest methods. Module B
is linear on the number of edges of the discovered patterns.
Given that they are overlapping, the computation of L(G, M)
is done in T = O(|M|2 + m) , which is O(m) for real graphs
with |M|2 << m . In module C, Step has complexity
O(|S|2 × T) , where S is the set of labeled structures. Step-p
and Step-pa are O(t × |S|2

p
× T) , where p is the number of

MetiS partitions (‘active’ partitions for Step-pa) and t is
the number of iterations. k-Step is a combination of Step-p
a n d a l o c a l s t a g e , s o i t r u n s i n
O(K ×

|S|2
p

× T + tlcl × (
|S|2
pactive

+ p2
active

) × T) , where tlcl is the

iterations of its local stage. Finally, the supergraph (module
D) can be generated in O(m).

5 Empirical analysis

We conduct thorough experimental analysis to answer three
main questions:

• How effective is CondenSe?
• Does it scale with the size of the input graph?
• How do the clustering methods compare in terms of sum-

marization power?

Setup We ran experiments on the real graphs given in
Table 3.

Table 3 Summary of graphs
used in our experiments

Name Nodes Edges Description

EUmail Leskovec and Krevl (2014) 265,214 420,045 EU university email communications
Enron Leskovec and Krevl (2014) 80,163 288,364 Enron email communications
AS-Caida Leskovec and Krevl (2014) 26,475 106,762 BGP routing table
AS-Oregon Leskovec and Krevl (2014) 13,579 37,448 Router connections
Choc 2899 5467 Co-editor Wikipedia graph

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 12 of 18

With regards to clustering parameters, we choose the
number of SLaShBurn hub nodes to slash per iteration
hslash = 2 to achieve better granularity of clusters. For Lou-
vain, we choose resolution � = 0.0001 as it generates a num-
ber of clusters comparable with other clustering methods
for all our datasets. For SpeCtraL and MetiS, the number

of clusters k are set to
√
n∕2 according to a rule of thumb

(clusterMaker 2018), where n is the number of nodes in the
graph. The other clustering methods are parameter-free.
Unless otherwise specified, we followed the same rule of
thumb for setting the number of input METIS partitions p for
all the Step variants. In Sects. 5.1 and 5.2, we set the number
of chances x = 3 for Step-pa.

5.1 Effectiveness of CondenSe

Ideally, we want a summary to be: (1) concise, with a small
number of structures/supernodes; (2) minimally redundant,
i.e., capturing dependencies such as overlapping supernodes,
but without overly encoding overlaps; and (3) covering in
terms of nodes and edges. We perform experiments on the
real data in Table 3 to evaluate CondenSe ’s performance
with regard to these criteria. We note that we do not evalu-
ate the effectiveness of CondenSe by comparing structural

Table 4 CondenSe:
Compression rate with respect
to the empty model (i.e.,
percentage of bits used with the
model versus the empty model)

In parentheses, we give the number of structures in the corresponding summary. A “–” means that the cor-
responding method was terminated after 4 days. (*In the interest of time, the summary size was limited to
15)

Dataset voG Koutra
et al. (2014)

CondenSe CondenSe with Step Variants

GnF Step Step-p Step-pa k-Step

 Choc 88% (101) 88% (101) 56% (24) 56% (24) 56% (21) 56% (22)
 AS-Oregon 71% (400) 69% (379) 35% (41) 35% (41) 35% (35) 35% (36)
 AS-Caida – 71% (572) 42% (51) 42% (51) 42% (46) 44% (60)
Enron 75% (2330) 74% (2044) – 26% (50) 25% (201) 25% (218)
EUmail – 65% (1440) – – – 59% (15*)

Table 5 Overlapping supernode pairs and average similarity in paren-
theses

CondenSe reduces the overlap. A “–” means that the corresponding
method was terminated after 4 days

Dataset voG Koutra et al. (2014) CondenSe

Choc 900 (0.04) 74 (0.029)
AS-Oregon 15,875 (0.047) 126 (0.026)
AS-Caida – 382 (0.018)
Enron 447,052 (0.02) 509 (0.015)
EUmail – 0

Fig. 3 Choc: CondenSe-Step generates more compact supergraphs. (b, c) The full supergraphs by voG-GnF, and CondenSe-Step, resp. Yellow
for stars, red for cliques, green for bipartite cores. The edge weights correspond to the number of inter-supernode edges (color figure online)

Social Network Analysis and Mining (2018) 8:17

1 3

Page 13 of 18 17

properties of the compressed graph to those of the original
graph, since the goal of our method is to detect ‘impor-
tant’ structures (which can help with better understanding
the underlying patterns) and does not optimize for specific
graph properties or queries (that is usually the goal of graph
sampling techniques).

Baselines The first baseline is voG (Koutra et al. 2014),
which we describe in Sect. 2. For our experiments, we used
the code that is online at https ://githu b.com/GemsL ab/
VoG_Graph _Summa rizat ion. The second baseline is our
proposed method, CondenSe, combined with the GnF heu-
ristic (Sect. 4.3).

A1. Conciseness In Table 4, we compare our proposed
method (for different structure selection methods) and the
baselines with respect to their compression rates, i.e., the
percentage of bits needed to encode a graph with the com-
posed summary over the number of bits needed to encode
the corresponding graph with an empty model/summary
(that is, all its edges are in the error matrix). In parentheses,
we also give the total number of structures in the summaries.
We find that compared to baselines, CondenSe with the Step
variants yields significantly more compact summaries, with
30–50% lower compression rate and about 80–90% fewer

structures. The Step variants give comparable results in sum-
marization power.

A2. Minimal redundancy In Figs. 1 and 3, we visualize the
supergraphs for AS-Oregon and Choc, which are gener-
ated from the selected structures of voG and CondenSe-
Step. It is visually evident that the CondenSe supergraphs
are significantly more compact. In Table 5, we also provide
information about the number of overlapping supernode
pairs and their average Jaccard similarity, as an overlap
quantifier (in parentheses). For brevity, we only give results
for k-Step, since the results of the rest Step series are similar.
We observe that CondenSe has significantly fewer super-
node overlaps, and the overlaps are smaller in magnitude.
We also note that the overlap encoding module achieves
10–20% reduction in overlapping edges, showing its effec-
tiveness for minimizing redundancy.

A3. Coverage We give the summary node/edge coverage as a
ratio of the original for different assembly methods in Fig. 4.
We observe that the baselines have better edge coverage than
the Step variants, which is expected as they include signifi-
cantly more structures in their summaries. However, in most
cases, k-Step and Step-pa achieve better node coverage
than the baselines. Taking into account the (contradicting)
desired property for summary conciseness, CondenSe with

Fig. 4 Node coverage versus edge coverage—marker size corresponds to the graph size. Step variants have better node coverage, and handle the
summary coverage-conciseness trade-off well

Table 6 CondenSe: Number
of structures per type in the
summaries in the format
[fc, st, bc], for voG we have
[fc + nc, st, bc + nb], where nc
is near-clique and nb is near-
bipartite core

The CondenSe summaries are more balanced, without a specific pattern type dominating in all the graphs.
In the interest of time, we find the top-50 and top-15 structures for Enron and EUmail, respectively. A
“–” means that the corresponding method was terminated after 4 days

Dataset voG Koutra
et al. (2014)

CondenSe-GnF CondenSe with Step Variants

Step Step-p Step-pa k-Step

Choc [0, 101, 0] [1, 100, 0] [21, 3, 0] [21, 3, 0] [20, 1, 0] [21, 1, 0]
AS-Oregon [1, 399, 0] [19, 355, 5] [27, 13, 1] [27, 13, 1] [26, 9, 0] [26, 10, 0]
AS-Caida – [2, 557, 13] [38, 7, 6] [38, 7, 6] [37, 5, 4] [43, 12, 5]
Enron [2, 2323, 5] [160, 1676, 208] – [45, 2, 3] [60, 108, 33] [61, 124, 33]
EUmail – [0, 1261, 179] – – – [15, 0, 0]

https://github.com/GemsLab/VoG_Graph_Summarization
https://github.com/GemsLab/VoG_Graph_Summarization

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 14 of 18

Step variants has better performance, balancing coverage
and summary size well.

What other properties do the various summaries have?
What are the main structures found in different types of net-
works (e.g., email vs. routing networks)? In Table 6, we
show the number of in-summary structures per type. We note
that no chains and hyperbolic structures were included in
the summaries of the networks that we show here (although
some were found by the pattern discovery module, and there
are synthetic examples in which they are included in the
final summaries). This is possibly because stars are extreme
cases of hyperbolic structures, and the encoding of (approxi-
mate) hyperbolic structures is of the same order, yet often
more expensive than the encoding of stars with errors. As
for chains, they are not ‘typical’ clusters found by popular
clustering methods, but rather by-products of the decompo-
sition methods that we consider. Moreover, given that the
chain encoding considers the sequence of node IDs, and
errors in the real data increase the encoding cost, very often
encoding them in the error matrix yields better compression.
One observation is that Step gives less biased summaries
than the baselines. For email networks, we see that stars are
dominant (e.g., users emailing multiple employees that do
not contact each other), with considerable number of cliques
and bipartite cores too. For routing networks (AS-Caida
and AS-Oregon), we mostly see cliques (e.g., “hot-potato”
routing), and a few stars and bipartite cores. In collaboration
networks, cliques are the most common structures, followed
by stars (e.g., administrators). voG and CondenSe-GnF are
biased toward stars, which exceed the other structures by
an order of magnitude. Overall, CondenSe fares well with
respect to the desired properties for graph summaries.

5.2 Runtime analysis of CondenSe

We give the runtime of pattern discovery and the Step meth-
ods in Fig. 5. As we discussed in the complexity analysis,
the modules of our summarization method depend on the
number of edges and selected structures. Thus, in the fig-
ure we plot the runtime of our variants with respect to the

Fig. 5 Runtime versus # of edges: k-Step is more efficient than the
other methods, and scales to larger graphs

Table 7 Agreement of Step and its variants

They approximate Step quite well. (*Agreement based on the top-50
structures due to Step-p ’s lack of scalability)

Dataset Step-p Step-pa k-Step

 Choc 1 0.9886 0.9667
 AS-Oregon 1 0.9704 0.9285
 AS-Caida 1 0.9865 0.8238
 Enron 1 0.5012* 0.446*

number of edges in the input graphs.“Discovery” represents
the maximum time of the clustering methods, and “Disc.
Fast” corresponds to the slowest among the fastest methods
(kCBC, Louvain, MetiS, BiGCLaM). We ran the experi-
ment on an Intel(R) Xeon(R) CPU E5-1650 at 3.50 GHz,
and 256 GB memory.

We see that the fast unified discovery is up to 80× faster
than the original one. As expected, Step is the slowest
method. The parallel variants Step-p, Step-pa, and k-Step
are more scalable, with k-Step being the most efficient. Tak-
ing into account the similarity of the heuristics in both con-
ciseness and coverage, Fig. 5 further suggests that k-Step
is the best performing heuristic given that it exhibits the
shortest runtime.

5.3 Sensitivity analysis of CondenSe: agreement
between Step and Step variants

Our analysis so far has shown that k-Step leads to the best
combination of high compression and low runtime compared
to the other methods. But how well does it approximate Step
in terms of the generated summary? To answer this ques-
tion, we evaluate the “agreement” between the generated
summaries, which in this section we view as ordered lists of
structures based on the iteration they were included in the
final summary (which defines the rank of each structure).
Many measures have been proposed to quantify the corre-
lation between sequences, including the famous Pearson’s
product-moment coefficient. And when it comes to rank
correlation measures, Spearman’s � and Kendall’s � are the
popular ones, while others are mostly ad hoc and not perva-
sive. These measures, however, only work on permuted lists
or lists of the same length, while the generated summaries
can have different constituent structures and lengths. Other
measures that are popular in information retrieval, such as
precision, cannot explain in detail the level of disagreement
between two models (i.e., ranked lists) as they treat each
summary as an unordered set of structures. In our evaluation,
we want a measure that (1) effectively handles summaries of
different lengths, and (2) penalizes with different, adaptive
weights ‘rank’ disagreement between structures included in
both summaries, and disagreement for missing structures

Social Network Analysis and Mining (2018) 8:17

1 3

Page 15 of 18 17

from one summary. Thus, we propose a new measure of
agreement between models, which we call AG. Let M1 and
M2 be the two summaries, and rank(s,Mi) be the ranking of
structure s in summary Mi [i.e., the order in which it was
included in the summary while minimizing Eq. (1)]. We
define the agreement of the two summaries as:

AG(M1,M2) = 1 − normalized disagreement = 1 −
1

Z
[�D + (1 −

�

2
)D1 + (1 −

�

2
)D2]

where the disagreement has three components: (1)
D =

∑
s∈M1∩M2

�rank(s,M1) − rank(s,M2)� is the rank disa-
greement for structures that are in both summaries, (2)
D1 =

∑
s∈M1∩M

�
2

�(�M2� + 1) − rank(s,M1)� is the disagree-

ment for structures in M1 but not in M2 , and (3) D2 is defined
analogously to capture the disagreement for structures in M2
but not in M1 . Finally, Z is a normalization factor that guar-
antees that the normalized disagreement, and thus AG, are
in [0, 1]: Z = (1 −

�

2

)
∑

s∈M
1

�(�M
2

� + 1) − rank(s,M
1

)�+∑
s∈M

2

�(�M
1

� + 1) − rank(s,M
2

)� . Based on the definition
above, AG = 1 for identical summaries, while 0 for com-
pletely different summaries. In order to penalize more the
structures that appear in one summary but not in the other,
we set � = 0.3 (the results are consistent for other values of
�). In Table 7, we give the agreement between Step and its
faster variants. As a side note, the agreement with voG is
almost 0 in all the cases. As expected, Step-p produces the
same summaries as Step, while Step-pa and k-Step preserve
the agreement well.

5.4 Sensitivity to the number of partitions

All parallel variants of Step take p METIS partitions as
input. To analyze the effects of varying p on runtime and
agreement, we ran k-Step and increased p from 12 to 96 in
increments of 12.

Fig. 6 The agreement is robust to the number of partitions, while the
runtime decreases

Table 8 CondenSe as an evaluation metric: Compression rate of clustering methods with respect to the empty model (i.e., percentage of bits for
encoding the graph given the chosen model versus the empty model)

The best (i.e., lowest) compression rate per dataset is bolded

Dataset Clustering Methods

SLaShBurn
(%)

Louvain (%) SpeCtraL (%) MetiS (%) hyCoM (%) BiGCLaM (%) kCBC (%)

Choc 88 99 99 100 100 87 78
AS-Oregon 76 94 82 85 98 83 65
AS-Caida 70 100 100 98 98 91 74

Fig. 7 Number of structures found by the clustering methods for AS-Oregon. Transparent/solid rectangles for before/after the structure selec-
tion step. Notation: fc: full clique, st: star, ch: chain, bc: bipartite core, hs: hyperbolic structure

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 16 of 18

We only give the results on AS-Oregon, since other
datasets lead to similar results. We observe that while agree-
ment is robust, runtime decreases as p increases and espe-
cially so with the smaller values of p. This observation is
consistent with our motivation for parallelizing Step: by
decreasing the number of structures in any given partition,
the “local” subproblems of Step become smaller and thus
less time-consuming. Figure 6 shows the effect of the num-
ber of partitions on runtime and agreement, both averaged
over three trials.

5.5 Sensitivity of Step‑pA

We also experimented with varying the number of “chances”
allowed for partitions in the Step-pa variant. Step-pa
speeds up Step-p by forcing partitions to drop out after not
returning structures for a certain number of attempts (x).
However, while giving partitions fewer chances can speed
up the algorithm, smaller values of x can compromise com-
pression and agreement.

In Fig. 6, we give the agreement and runtime of Step-pa
on Choc and AS-Oregon setting x = {1, 2, 3, 4, 5} . We
found that both runtime and agreement increased with x, and
plateaued after x = 3 . This suggests that forcing partitions
to drop out early, while better for runtime, can lead to the
loss of candidate structures that may be useful for compres-
sion later.

5.6 CondenSe as a clustering evaluation metric

Given the independence of Step from the structure ordering,
we use CondenSe to evaluate the different clustering meth-
ods and give their individual compression rates in Table 8.

For number and type of structures we give our observa-
tions based on AS-Oregon (Fig. 7), which is consistent
with other datasets. As we see in the case of AS-Oregon
(which is consistent with the other networks), SLaShBurn
mainly finds stars (136 out of 138 structures); Louvain,

SpeCtraL, kCBC, and BiGCLaM reveal mostly cliques (9/9,
15/17, 9/9, and 28/29, respectively); MetiS has a less
biased distribution (18 cliques, 12 stars), and hyCoM,
though looks for hyperbolic structures, tends to find cliques
in our experiments (45 out of 52 structures). Also, SLaSh-
Burn and BiGCLaM discover more structural patterns than
other methods, which partially explains their good compres-
sion rate in Table 8.

We perform an ablation study to evaluate the graph clus-
tering methods in the context of summarization. Specifically,
we create a leave-one-out unified model for each cluster-
ing method and evaluate the contribution of each cluster-
ing method to the final summary. The results are shown in
Table 9. We see that Louvain appears to be the most impor-
tant method: when included, it contributes the most; and
when dropped, the compression rate reduces (worse). When
kCBC is dropped, SLaShBurn gets to the top, but Louvain
also has considerable contribution. In the missing-Louvain
case, the contribution gets redistributed among other clus-
tering methods to make up for it, this effect differs by data-
set, e.g., MetiS gets boosted for AS-Oregon, while it is
SpeCtraL for Choc.

In terms of runtime, for modules A and B (pattern dis-
covery and identification), SpeCtraL and hyCoM take the
longest time, while kCBC, Louvain, MetiS, and BiGCLaM
are the fastest ones, with SLaShBurn falling in the middle.
For Module C (summary assembly), the trade-off between
runtime and candidate structures is given in the complexity
analysis (Sect. 4.5). In practice, hyCoM usually takes the
longest time, followed by SpeCtraL and SLaShBurn.

6 Conclusion

In this work we proposed CondenSe, a method that sum-
marizes large graphs as small, approximate and high-quality
supergraphs conditioned on diverse pattern types. CondenSe
features a new selection method, Step, which generates

Table 9 Ablation study for
AS-Oregon. Louvain and
SLaShBurn contribute most to
the CondenSe summaries

The leave-one-out unified model in each row does not include the method noted in the first column (“clus-
tering method”). In the columns spanned by “Contribution per method”, the maximum contribution per
row is in bold (i.e., it shows which method contributes most in each of the leave-one-out unified models
that we consider)

Clustering method Compres-
sion rate
(%)

Contribution per method

SLaShBurn Louvain SpeCtraL MetiS hyCoM BiGCLaM kCBC

SLaShBurn 22 – 63% 10% 7% 7% 0 13%
Louvain 30 30% – 16% 45% 0 3% 7%
SpeCtraL 22 32% 51% – 3% 0 0 14%
MetiS 22 34% 46% 5% – 2% 0 12%
hyCoM 22 35% 48% 3% 3% – 0 13%
BiGCLaM 22 34% 46% 2% 2% 2% – 12%
kCBC 25 50% 35% 6% 2% 2% 6% –

Social Network Analysis and Mining (2018) 8:17

1 3

Page 17 of 18 17

summaries with high compression and node coverage. How-
ever, this comes at the cost of increased runtime, which we
addressed by introducing faster parallel approximations to
Step. We provided a thorough empirical analysis of Con-
denSe, and contributed a novel evaluation of clustering
methods in terms of summarization power, complementing
the literature that focuses on classic quality measures. We
showed that each clustering approach has its strengths and
weaknesses and make different contributions to the final
summary. Moreover, CondenSe leverages their strengths,
handles edge-overlapping structures, and shows results supe-
rior to baselines, including significant improvement in the
bias of summaries with respect to the considered pattern
types.

Ideally without the constraint of time, we naturally rec-
ommend the application of as many clustering methods in
Module A of CondenSe. On the other hand, to deal with the
additional complexity of having more structures, we recom-
mend choosing faster clustering methods or a mixture of fast
and ‘useful’ methods (depending on the application at hand)
that contribute good structures, as shown in our analysis.

References

Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola
AJ (2013) Distributed large-scale natural graph factorization. In:
Proceedings of the 22nd international conference on world wide
web(WWW), Rio de Janeiro, Brazil. International World Wide
Web Conferences Steering Committee

Aho AV, Garey MR, Ullman JD (1972) The transitive reduction of a
directed graph. SIAM J Comput 1(2):131–137

Araujo M, Günnemann S, Mateos G, Faloutsos C (2014) Beyond
blocks: hyperbolic community detection. In: Proceedings of the
European conference on machine learning and principles and
practice of knowledge discovery in databases (ECML PKDD),
Nancy, France

Backstrom L, Huttenlocher DP, Kleinberg JM, Lan X (2006) Group
formation in large social networks: membership, growth, and evo-
lution. In: Proceedings of the 12th ACM international conference
on knowledge discovery and data mining (SIGKDD), Philadel-
phia, PA

Backstrom L, Kumar R, Marlow C, Novak J, Tomkins A (2008) Pref-
erential behavior in online groups. In: Proceeding of the 1st ACM
international conference on web search and data mining (WSDM)

Batson JD, Spielman DA, Srivastava N, Teng S (2013) Spectral spar-
sification of graphs: theory and algorithms. Commun. ACM
56(8):87–94

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast
unfolding of communities in large networks. J Stat Mech Theory
Exp 2008(10):P10008

Chakrabarti D, Papadimitriou S, Modha DS, Faloutsos C (2004) Fully
automatic cross-associations. In: Proceedings of the 10th ACM
international conference on knowledge discovery and data mining
(SIGKDD), Seattle, WA

Chierichetti F, Kumar R, Lattanzi S, Mitzenmacher M, Panconesi A,
Raghavan P (2009) On compressing social networks. In: Proceed-
ings of the 15th ACM international conference on knowledge dis-
covery and data mining (SIGKDD), Paris, France

Cilibrasi R, Vitányi P (2005) Clustering by compression. IEEE Trans
Inf Theory 51(4):1523–1545

clusterMaker (2016) Creating and visualizing Cytoscape clusters.
http://www.cgl.ucsf.edu/cytos cape/clust er/clust erMak er.shtml .
Accessed 22 Feb 2016

Cook DJ, Holder LB (1994) Substructure discovery using minimum
description length and background knowledge. J Artif Intell Res
1:231–255

Cover TM, Thomas JA (2012) Elements of information theory. Wiley,
Hoboken

Faloutsos C, Megalooikonomou V (2007) On data mining, compres-
sion and kolmogorov complexity. Data Min Knowl Disc 15:3–20

Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relation-
ships of the internet topology. In: Proceedings of the ACM SIG-
COMM 1999 conference on applications, technologies, architec-
tures, and protocols for computer communication, Cambridge,
MA

Fortunato S (2010) Community detection in graphs. Phys Rep
486(3):75–174

Giatsidis C, Thilikos DM, Vazirgiannis M (2011) Evaluating coopera-
tion in communities with the k-core structure. In: Proceedings of
the 2011 international conference on advances in social networks
analysis and mining. ASONAM ’11. IEEE, Washington

Girvan M, Newman MEJ (2002) Community structure in social and
biological networks. Proc Natl Acad Sci 99:7821–7826

Goonetilleke O, Koutra D, Sellis T, Liao K (2017). Edge labeling
schemes for graph data. In: Proceedings of the 29th international
conference on scientific and statistical database management.
SSDBM ’17. ACM, Chicago, pp 12:1–12:12

Hasan MA, Ahmed NK, Neville J (2016) Network sampling: methods
and applications. https ://www.cs.purdu e.edu/homes /nevil le/cours
es/Netwo rkSam pling -KDD13 -final .pdf Accessed 21 Mar 2016

Hespanha JP (2004) An efficient matlab algorithm for graph partition-
ing. Department of Electrical and Computer Engineering, Univer-
sity of California, Santa Barbara

Hübler C, Kriegel H-P, Borgwardt K, Ghahramani Z (2008) Metropolis
algorithms for representative subgraph sampling. In: Proceeding-
sof the 2008 eighth IEEE international conference on data mining,
ICDM ’08, Washington, DC, USA, 2008. IEEE Computer Society

Jin L, Koutra D (2017) Ecoviz: Comparative vizualization of time-
evolving network summaries. In: ACM knowledge discovery and
data mining (KDD) 2017 workshop on interactive data exploration
and analytics, Halifax, NS, Canada

Jin D, Koutra D (2017) Exploratory analysis of graph data by leverag-
ing domain knowledge. In: Proceedings of the 17th IEEE inter-
national conference on data mining (ICDM), New Orleans, LA,
pp 187–196

Jin D, Leventidis A, Shen H, Zhang R, Wu J, Koutra D (2017) PER-
SEUS-HUB: interactive and collective exploration of large-scal-
egraphs. Informatics 4(3):22

Kang U, Faloutsos C (2011) Beyond ‘Caveman Communities’: hubs
and spokes for graph compression and mining. In: Proceedings of
the 11th IEEE international conference on data mining (ICDM),
Vancouver, Canada

Karypis G, Kumar V (1999) Multilevel k-way hypergraph partitioning.
In: Proceedings of the IEEE 36th conference on design automa-
tion conference (DAC), New Orleans, LA

Kleinberg J, Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999)
The web as a graph: measurements, models, and methods. In:
Proceedings of the international computing and combinatorics
conference (COCOON), Tokyo, Japan, Berlin, Germany. Springer

Koutra D, Faloutsos C (2017) Individual and collective graph mining:
principles, algorithms, and applications. Synth Lect Data Min
Knowl Discov 9(2):1–206

Koutra D, Ke T-Y, Kang U, Chau DH, Pao H-KK, Faloutsos C (2011)
Unifying guilt-by-association approaches: theorems and fast

http://www.cgl.ucsf.edu/cytoscape/cluster/clusterMaker.shtml
https://www.cs.purdue.edu/homes/neville/courses/NetworkSampling-KDD13-final.pdf
https://www.cs.purdue.edu/homes/neville/courses/NetworkSampling-KDD13-final.pdf

 Social Network Analysis and Mining (2018) 8:17

1 3

17 Page 18 of 18

algorithms. In: Proceedings of the European conference on
machine learning and principles and practice of knowledge dis-
covery in databases (ECML PKDD), Athens, Greece

Koutra D, Koutras V, Prakash BA, Faloutsos C (2013) Patterns amongst
competing task frequencies: super-linearities, and the Almond-DG
model. In: Proceedings of the 17th Pacific-Asia conference on
knowledge discovery and data mining (PAKDD), Gold Coast,
Australia

Koutra D, Kang U, Vreeken J, Faloutsos C (2014) VoG: summarizing
and understanding large graphs. In: Proceedings of the 14th SIAM
international conference on data mining (SDM), Philadelphia, PA

LeFevre K, Terzi E (2010) Grass: graph structure summarization. In:
Proceedings of the 10th SIAM international conference on data
mining (SDM), Columbus, OH. SIAM

Leskovec J, Krevl A (2014) SNAP datasets: stanford large network
dataset collection. http://snap.stanf ord.edu/data. Accessed 22 Feb
2018

Leskovec J, Kleinberg J, Christos F (2005) Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In:
Proceedings of the 11th ACM international conference on knowl-
edge discovery and data mining (SIGKDD), Chicago, IL. ACM

Leskovec J, Lang KJ, Mahoney M (2010) Empirical comparison of
algorithms for network community detection. In: Proceedings of
the 19th international conference on world wide web (WWW),
Raleigh, NC. ACM

Liu Y, Shah N, Koutra D (2015) An empirical comparison of the sum-
marization power of graph clustering methods. In: Neural infor-
mation processing systems (NIPS) networks workshop, Montreal,
Canada

Liu Y, Safavi T, Koutra D (2016) A graph summarization: a survey.
CoRR. ACM Comput Surv. arXiv :1612.04883 (to appear)

Maiya AS, Berger-Wolf TY (2010) Sampling community structure. In:
Proceedings of the 19th international conference on world wide
web (WWW), Raleigh, NC. ACM

Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011)
Sparsification of influence networks. In: Proceedings of the 17th
ACM international conference on knowledge discovery and data
mining (SIGKDD), San Diego, CA

Navlakha S, Rastogi R, Shrivastava N (2008) Graph summarization
with bounded error. In: Proceedings of the 2008 ACM interna-
tional conference on management of data (SIGMOD), Vancouver,
BC

OCP (2014). Open Connectome Project. http://www.openc onnec tomep
rojec t.org. Accessed 3 Feb 2016

Prakash BA, Seshadri M, Sridharan A, Machiraju S, Faloutsos C
(2010) EigenSpokes: surprising patterns and scalable community
chipping in large graphs. In: Proceedings of the 14th Pacific-Asia
conference on knowledge discovery and data mining (PAKDD),
Hyderabad, India

Rafiei D, Curial S (2005) Sampling effectively visualizing large net-
works through sampling. In: 16th IEEE visualization conference
(VIS), Minneapolis, MN

Raghavan S, Garcia-Molina H (2003) Representing web graphs. In:
Proceedings of the 19th international conference on data engineer-
ing (ICDE), Bangalore, India. IEEE

Rissanen J (1983) A universal prior for integers and estimation by
minimum description length. Ann Stat 11(2):416–431

Safavi T, Sripada C, Koutra D (2017) Scalable hashing-based network
discovery. In: Proceedings of the 17th IEEE International Confer-
ence on Data Mining (ICDM), New Orleans, LA, pp 405–414

Shah N, Koutra D, Zou T, Gallagher B, Faloutsos C (2015) Time-
crunch: interpretable dynamic graph summarization. In: Proceed-
ings of the 21st ACM international conference on knowledge
discovery and data mining (SIGKDD), Sydney, Australia. ACM

Spielman DA, Srivastava N (2011) Graph sparsification by effective
resistances. SIAM J. Comput. 40(6):1913–1926

Yang J, Leskovec J (2013) Overlapping community detection at scale:
a nonnegative matrix factorization approach. In: Proceeding of
the 6th ACM international conference on web search and data
mining (WSDM). ACM

http://snap.stanford.edu/data
http://arxiv.org/abs/1612.04883
http://www.openconnectomeproject.org
http://www.openconnectomeproject.org

	Reducing large graphs to small supergraphs: a unified approach
	Abstract
	1 Introduction
	2 Related work and background
	3 ConDeNSe: proposed model
	3.1 Encoding the model
	3.2 Encoding the errors
	3.3 Encoding the edge-overlap penalty

	4 ConDeNSe: our proposed algorithm
	4.1 Module A: Unified pattern discovery module
	4.2 Module B: Structural pattern identification module
	4.3 Module C: Structural pattern selection module
	4.4 Module D: Approximate supergraph creation module
	4.5 CondeNSe: complexity analysis

	5 Empirical analysis
	5.1 Effectiveness of CondeNSe
	5.2 Runtime analysis of CondeNSe
	5.3 Sensitivity analysis of CondeNSe: agreement between Step and Step variants
	5.4 Sensitivity to the number of partitions
	5.5 Sensitivity of Step-PA
	5.6 CondeNSe as a clustering evaluation metric

	6 Conclusion
	References

