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Abstract
Summarizing a large graph with a much smaller graph is critical for applications like speeding up intensive graph algorithms 
and interactive visualization. In this paper, we propose CONditional Diversified Network Summarization (CondenSe), a 
Minimum Description Length-based method that summarizes a given graph with approximate “supergraphs” conditioned on 
a set of diverse, predefined structural patterns. CondenSe features a unified pattern discovery module and a set of effective 
summary assembly methods, including a powerful parallel approach, k-Step, that creates high-quality summaries not biased 
toward specific graph structures. By leveraging CondenSe ’s ability to efficiently handle overlapping structures, we contrib-
ute a novel evaluation of seven existing clustering techniques by going beyond classic cluster quality measures. Extensive 
empirical evaluation on real networks in terms of compression, runtime, and summary quality shows that CondenSe finds 
30–50% more compact summaries than baselines, with up to 75–90% fewer structures and equally good node coverage.

1 Introduction

In an era of continuous generation of large amounts of data, 
summarization techniques are becoming increasingly crucial 
to help abstract away noise, uncover patterns, and inform 
human decision processes. Here we focus on the summariza-
tion of graphs, which are powerful structures that capture a 
number of phenomena, from communication between people 
(Leskovec et al. 2005; Backstrom et al. 2006; Koutra et al. 
2013) to links between webpages (Kleinberg et al. 1999), 
to interactions between neurons in our brains (OCP 2014; 
Safavi et al. 2017). In general, graph summarization or 
coarsening approaches (Liu et al. 2016) seek to find a con-
cise representation of the input graph that reveals patterns in 
the original data, while usually preserving specific network 
properties. As graph summaries are application-dependent, 
they can be defined with respect to various aspects: they can 

preserve specific structural patterns, focus on some entities 
in the network, preserve the answers to a specific set of que-
ries, or maintain the distributions of some graph properties. 
Graph summarization leads to the reduction of data volume, 
speedup of graph algorithms, improved storage and query 
time, and interactive visualization. Its major challenges are 
in effectively handling the volume and complexity of data, 
defining the interestingness of patterns, evaluating the pro-
posed summarization techniques, and capturing network 
structural changes over time. The graph mining community 
has mainly studied summarization techniques for the struc-
ture of static, plain graphs (Chierichetti et al. 2009; Navlakha 
et al. 2008) and to a smaller extent, methods for attributed or 
dynamic networks (Shah et al. 2015).

Our method, CondenSe or CONditional Diversified Net-
work Summarization, summarizes the structure of a given 
large-scale network by selecting a small set of its most 
informative structural patterns. Inspired by recent work 
(Navlakha et al. 2008; Koutra et al. 2014), we formulate 
graph summarization as an information-theoretic optimiza-
tion problem in search of local structures that collectively 
minimize the description of the graph. CondenSe is a uni-
fied, edge-overlap-aware graph summarization method that 
summarizes a given graph with approximate “supergraphs” 
conditioned on diverse, predefined structural patterns. An 
example is shown in Fig.  1, where the (super)nodes in 
Fig. 1b correspond to sets of nodes in the original graph. 
Specifically, the predefined patterns include structures that 
have well-understood graph-theoretical properties and are 
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found in many real-world graphs (Kleinberg et al. 1999; 
Araujo et al. 2014; Faloutsos et al. 1999; Prakash et al. 
2010): cliques, stars, bipartite cores, chains, and patterns 
with skewed degree distribution.

Our work effectively addresses three main shortcomings 
of prior summarization work (Koutra et al. 2014; Koutra and 
Faloutsos 2017), namely: (1) its heavy dependence on the 
structural pattern discovery method and intrinsic tendency, 
or bias, to select star-like structures in the final summary; (2) 
its inability to handle edge-overlapping patterns in the sum-
mary; and (3) its dependence on the order in which candidate 
structures are considered for the final summary. Our proposed 
unified approach effectively handles these issues and results 
in robust, compact summaries with 5–10× fewer structural 
patterns (or supernodes) and up to 50% better compression.

CondenSe consists of three modules that address the 
aforementioned shortcomings. (1) A unified structural pat-
tern discovery module leverages the strengths of various 
popular graph clustering methods (e.g., Louvain Blondel 
et al. 2008, MetiS Karypis and Kumar 1999) to address 
the biases toward specific structures per clustering method; 
(2) A Minimum Description Length-based (MDL) formula-
tion with a penalty term effectively minimizes redundancy in 
edge coverage by the structural patterns included in the sum-
mary. This term is paramount when the candidate structural 
patterns have significant edge overlap, such as in the case 
of our unified structure discovery module; (3) An iterative, 
multi-threaded, and divide-and-conquer-based summary 
assembly module further reduces structure selection bias 
during the summary creation process by being independent 
of the order in which the candidate structural patterns are 
considered. This parallel module is up to 53× faster than its 
serial counterpart on a 6-core machine.

Our contributions in this paper are as follows:

• Approach We introduce CondenSe, an effective unified, 
edge-overlap-aware graph summarization approach. Con-
denSe includes a powerful parallel summary assembly 
module, k-Step, that creates compact and easy-to-under-
stand graph summaries with high node coverage and low 
redundancy.

• Novel metric We propose a way to leverage CondenSe 
as a proxy to compare graph clustering methods with 
respect to their summarization performance on large, 
real-world graphs. Our work complements the usual 
evaluation metrics in the related literature (e.g., modu-
larity, conductance).

• Experiments We present a thorough empirical analysis 
on real networks to evaluate the summary quality and 
runtime, and study the properties of seven clustering 
methods.

For reproducibility, the code is available online at https ://
githu b.com/yikel iu/ConDe NSe. Next, we present the related 
work and necessary background.

2  Related work and background

Our work is related to (1) graph summarization methods, 
(2) compression and specifically MDL, (3) graph clustering, 
and (4) graph sampling. We briefly review each of these 
topics next.

Graph summarization Most research efforts in graph sum-
marization (Liu et al. 2016) focus on plain graphs and can be 
broadly classified as group-based (LeFevre and Terzi 2010; 
Raghavan and Garcia-Molina 2003), compression-based 
(Chierichetti et al. 2009; Navlakha et al. 2008; Goonetilleke 

Fig. 1  CondenSe generates 
simpler and more compact 
supergraphs than baselines. 
Yellow, red, and green nodes 
for stars, cliques, and bipartite 
cores, respectively (color figure 
online)

https://github.com/yikeliu/ConDeNSe
https://github.com/yikeliu/ConDeNSe
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et al. 2017), simplification-based, influence-based, and 
pattern-based (Cook and Holder 1994). Dynamic graph 
summarization has been studied to a much smaller extent 
(Shah et al. 2015; Jin and Koutra 2017). Beyond the classic 
definition of graph summarization, there are also approaches 
that summarize networks in terms of structural proper-
ties (e.g., degree, PageRank) by automatically leveraging 
domain knowledge (Jin and Koutra 2017; Jin et al. 2017). 
Most related to our work are the ideas of node grouping and 
graph compression. Built on these ideas, two representative 
methods, MdL-SuMMarization (Navlakha et al. 2008) and 
voG (Koutra et al. 2014), are MDL-based summarization 
methods that compress the graphs by finding near-structures 
[e.g., (near-) cliques, (near-) bipartite cores]. MdL-SuMMa-
rization, which iteratively combines neighbors into super-
nodes as long as it helps with minimizing the compression 
cost, includes mostly cliques and cores in the summaries, 
and has high runtime complexity.

On the other hand, voG finds structures by employing 
SLaShBurn (Kang and Faloutsos 2011) (explained below) 
and hence is particularly biased toward selecting star struc-
tures. Moreover, it creates summaries (i.e., lists of structures) 
using a greedy heuristic on a pre-ordered set of structures 
(cf. Sect. 4.3). Unlike these methods, CondenSe performs 
ensemble pattern discovery and handles edge-overlapping 
structures. Furthermore, its summary assembly is robust to 
the ordering of structures.

MDL in graph mining Many data mining problems are related 
to summarization and pattern discovery, and, thus, to Kol-
mogorov complexity (Faloutsos and Megalooikonomou 
2007), which can be practically implemented by the MDL 
principle (Rissanen 1983). Applications include clustering 
(Cilibrasi and Vitányi 2005), community detection (Chakra-
barti et al. 2004), pattern discovery in static and dynamic 
networks (Koutra et al. 2014; Shah et al. 2015), and more.

Graph clustering Graph clustering and community detec-
tion are of great interest to many domains, including social, 
biological, and web sciences (Girvan and Newman 2002; 
Backstrom et al. 2008; Fortunato 2010). Here, we leverage 
several graph clustering methods to obtain diversified graph 
summaries, since each method is biased toward certain types 
of structures, such as cliques and bipartite cores (Blondel 
et al. 2008; Karypis and Kumar 1999; Yang and Leskovec 
2013) or stars (Kang and Faloutsos 2011). Unlike the exist-
ing literature (Leskovec et al. 2010) where clustering meth-
ods are compared with respect to classic quality measures, 
we also propose to use CondenSe as a vessel to evaluate the 
methods’ summarization power. We leverage seven decom-
position methods, compared quantitatively in Table 1:

• SLaShBurn Kang and Faloutsos (2011) is a node reorder-
ing algorithm initially developed for graph compression. 
It performs two steps iteratively: (1) It removes high-
centrality nodes from the graph; (2) It reorders nodes 
such that high-degree nodes are assigned the lowest IDs 
and nodes from disconnected components get the high-
est IDs. The process is repeated on the giant connected 
component. We use SLaShBurn by identifying structures 
from the egonet of each high-centrality node, and the 
disconnected components, as subgraphs.

• Louvain Blondel et al. (2008) is a modularity-based par-
titioning method for detecting hierarchical community 
structure. Like SLaShBurn, Louvain is iterative: (1) Each 
node is placed in its own community. Then, the neigh-
bors j of each node i are considered, and i is moved to j’s 
community if the move produces the maximum modu-
larity gain. The process is applied repeatedly until no 
further gain is possible. (2) A new graph is built whose 
supernodes represent communities, and superedges are 
weighted by the sum of weights of links between the two 
communities. The algorithm typically converges in a few 
passes.

Table 1  Qualitative comparison of the graph clustering techniques included in CondenSe 
SLASHBURN [21] LOUVAIN [7] SPECTRAL [19] METIS [22] HYCOM [4] BIGCLAM [39] KCBC [29]

Overlapping
Clusters
Cliques Many Many Many Many Some Many Many
Stars Many Some Some Some Many Some Some
Bipartite Cores Some Few Many Some Some Few Few
Chains Few Few Few Few Few Few Few
Hyperbolic

Few Few Few Few Many Few Few
Structures

Complexity
O(t(m+

O(n logn) O(n3) O(m · k) O(k(m+ h log h2
O(d · n · t) O(t(m+ n))+n logn)) +hmh))

Summarization
Excellent Very Good Good Good Poor Good Poor

Power

Symbols: n = number of nodes, m = number of edges, k = number of clusters/partitions, t = number of iterations, d = average degree, h(mh) = 
number of nodes (edges) in hyperbolic structure
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• SpeCtraL clustering refers to a class of algorithms that 
rely on eigen-decomposition to identify community 
structure. We use one such spectral clustering algorithm 
(Hespanha 2004), which partitions a graph by perform-
ing k-means clustering on the top-k eigenvectors of the 
input graph. The idea behind this clustering is that nodes 
with similar connectivity have similar eigen-scores in the 
top-k vectors and form clusters.

• MetiS Karypis and Kumar (1999) is a cut-based k-way 
multilevel graph partitioning scheme based on multilevel 
recursive bisection (MLRB). Until the graph size is sub-
stantially reduced, it first coarsens the input graph by 
grouping nodes into supernodes iteratively such that the 
edge-cut is preserved. Next, the coarsened graph is par-
titioned using MLRB, and the partitioning is projected 
onto the original input graph G through backtracking. 
The method produces k roughly equally sized partitions.

• hyCoM Araujo et al. (2014) is a parameter-free algo-
rithm that detects communities with hyperbolic struc-
ture. It approximates the optimal solution by iteratively 
detecting important communities. The key idea is to find 
in each step a single community that minimizes an MDL-
based objective function given the previously detected 
communities. The iterative procedure consists of three 
steps: community candidates, community construction, 
and matrix deflation.

• BiGCLaM Yang and Leskovec (2013) is a scalable over-
lapping community detection method. It is built on the 
observation that overlaps between communities are 
densely connected. By explicitly modeling the affili-
ation strength of each node-community pair, the latter 
is assigned a nonnegative latent factor which represents 
the degree of membership to the community. Next, the 
probability of an edge is modeled as a function of the 
shared community affiliations. The identification of net-
work communities is done by fitting BiGCLaM to a given 
undirected network G.

• kCBC Liu et al. (2015) is inspired by the k-cores algo-
rithm Giatsidis et al. (2011), which unveils densely con-
nected structures. A k-core is a maximal subgraph for 
which each node is connected to at least k other nodes. 
kCBC iteratively removes k-cores starting by setting 
k equal to the maximum core number (the max value 
k for which the node is present in the resulting sub-
graph) across all nodes. Each connected component in 
the induced subgraphs is identified as a cluster, and is 
removed from the original graph. The process is repeated 
on the remaining graph.

Other clustering methods that we considered (e.g., Weighted 
Stochastic Block Model or WSBM) are not included in Con-
denSe due to lack of scalability. For instance, WSBM took 
more than a week to finish on our smallest dataset.

Graph sampling Sampling graph nodes and/or edges may 
be considered an alternative method of graph compression, 
and as such these techniques relate to graph summarization 
(Hübler et al. 2008; Batson et al. 2013). Graph sampling 
techniques have been extensively studied and reviewed 
(Mathioudakis et al. 2011; Ahmed et al. 2013; Hasan et al. 
2016). Node sampling methods include sampling according 
to degree, PageRank score, or substructures like spanning 
trees. Edge sampling techniques include uniform sampling 
and sampling according to edge weights or effective resist-
ance (Spielman and Srivastava 2011) to maintain node 
reachability (Aho et al. 1972) or the graph spectrum up to 
some multiplicative error. Graph sampling can also be used 
to approximate queries with theoretical guarantees.

That said, the fundamental goals of graph sampling and 
summarization differ. Sampling focuses on obtaining sparse 
subgraphs that maintain properties of the original input 
graph, like degree distribution, size distribution of connected 
components, diameter, or community structure (Maiya and 
Berger-Wolf 2010). Unlike graph summarization, sampling 
is less concerned with identifying succinct patterns or struc-
tures that represent the input graph and assist user under-
standing. Although sampling has been shown to support 
visualization (Rafiei and Curial 2005), these methods usu-
ally operate on individual nodes/edges instead of collective 
patterns. Furthermore, the results of graph sampling algo-
rithms may require additional processing for interpretability.

3  ConDenSe: proposed model

We formulate the graph summarization problem as a graph 
compression problem. Let G( , ) be a graph with n = || 
nodes and m = || edges, without self-loops. The Minimum 
Description Length (MDL) problem, which is a practical 
version of Kolmogorov Complexity (Faloutsos and Mega-
looikonomou 2007), aims to find the best model M in a given 
family of models  for some observed data  such that it 
minimizes L(M) + L(|M) , where L(M) is the description 
length of M in bits and L(|M) is the description length of  
which is encoded by the chosen model M. Table 2 provides 
the definitions of the recurrent symbols used in this section.

We consider summaries in the model family  , which 
consists of all possible permutations of subsets of structural 
patterns in Ω . One option is to populate Ω with the frequent 
patterns that occur in the input graph (in a data-driven man-
ner), but frequent subgraph mining is NP-complete and 
does not scale well. Moreover, even efficient approximate 
approaches are not applicable to unlabeled graphs and can 
only handle small graphs with a few tens or hundreds of 
nodes. To circumvent this problem, we choose set Ω with 
five patterns that are common in real-world static graphs 
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(Kleinberg et al. 1999; Araujo et al. 2014), correspond to 
interesting real behaviors, and can (approximately) describe 
a wide range of structural patterns: stars (st), full cliques 
(fc), bipartite cores (bc), chains (ch), and hyperbolic struc-
tures with skewed degree distribution (hs). Under the MDL 
principle, any approximate structures (e.g., near-cliques) 
can be easily encoded as their corresponding exact struc-
tures (e.g., fc) with some errors. Since many communities 
have hyperbolic structure (Araujo et al. 2014) and it cannot 
be expressed as a simple composition of the other struc-
tural patterns in Ω , we consider it separately. Motivated by 
real-world discoveries, we focus on structures that are com-
monly found in networks, but our framework is not restricted 
to them; it can be readily extended to other, application-
dependent types of structures as well.

Formally, we tackle the following problem:

Problem 1 Given a graph G with adjacency matrix � and 
structural pattern types Ω , we seek to find the model M that 
minimizes the encoding length of the graph and the redun-
dancy in edge coverage:

where � is � ’s approximation induced by M, � = �⊕ � 
is the error matrix to correct for edges that were errone-
ously described by M, ⊕ is exclusive OR, and � is the edge-
overlap matrix to penalize edges covered by many patterns.

Model M induces a supergraph with each s ∈ M as an 
(approximate) supernode, and weighted superedges between 

(1)L(G,M) = L(M) + L(�) + L(�)

them. Before we further formalize the task of encoding the 
model, the error matrix, and the edge-overlap penalty matrix, 
we provide a visual illustration of our MDL objective.

An illustrative example Figure 2 shows the original adja-
cency matrix � of an input graph, which is encoded as (1) 
� (the matrix that is induced by the model M), and (2) the 
error matrix E (which captures additional/missing edges that 
are not properly described in M). In this example, there are 
6 structures in the model (from the top left corner to the 
bottom right corner: a star, a large clique, a small clique, a 
bipartite core, a chain, and a hyperbolic structure), where 
the cliques and the bipartite core have overlapping nodes 
and edges.

3.1  Encoding the model

To fully describe a model M ∈  for the input graph G, we 
encode it as L(M):

where in the first two terms we encode the number of struc-
tural patterns in M using Rissanen’s optimal encoding for 
integers (Rissanen 1983) and the number of patterns per 
type in Ω , respectively. Then, for each structure s ∈ M , we 
encode its type x(s) using optimal prefix codes (Cover and 

(2)
L(M) = L

ℕ
(|M| + 1) + log2

(
|M| + |Ω| − 1

|Ω| − 1

)

+
∑

s∈M

(
− log Pr(x(s) ∣ M) + L(s)

)

Table 2  Major symbols and 
definitions

Notation Description

G( , ) , � Graph, and its adjacency matrix
 , n = || Node-set and number of nodes of G, resp.
 , m = || Edge-set and number of edges of G, resp.
k # of clusters or communities or patterns
t # of iterations
h,mh Size of hyperbolic community, and # of edges in it, resp.
d Average degree of nodes in G
hslash # of hub nodes to slash per iteration in SLaShBurn

fc, bc, st, ch, hs Full clique, bipartite core, star, chain, hyperbolic structure, resp.
|fc|, |bc|, |st|, |ch|, |hs| Number of nodes in the corresponding structure
Ω Predefined set of structural pattern types
M A model or summary for G
s Structure in M
|S|, |s| Cardinality of set S and number of nodes in s, resp.
||s||, ||s||′ # existing and nonexisting edges of � that s describes
� error matrix, � = �⊕ � , where ⊕ is exclusive OR
� Edge-overlap penalty matrix
L(G, M) # of bits to describe model M, and G using M
L(M), L(O), L(s) # of bits to describe M, the edge overlap O, and structure s
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Thomas 2012), and its connectivity L(s). Next, we introduce 
the MDL encoding per type of structure in Ω.

• Stars A star consists of a “hub” node connected to two or 
more “spoke” nodes. We encode it as: 

 where we encode in order the number of spokes, the hub 
ID (we identify it out of n nodes using an index over the 
combinatorial number system), and the spoke IDs.

• Cliques A clique is a densely connected set of nodes 
with: 

 where we encode its number of nodes followed by their 
IDs.

• Bipartite cores A bipartite core consists of two nonempty 
sets of nodes, L and R, which have edges only between 
them, and L ∩ R = � . Stars are a special case of bipartite 
cores with |L| = 1 . The encoding cost is given as: 

 where we encode the number of nodes in L and R fol-
lowed by the node IDs in each set.

• Chains A chain is a series of nodes that are linked con-
secutively—e.g., node-set {a, b, c, d} in which a is con-
nected to b, b is connected to c, and c is connected to d. 
Its encoding cost, L(ch), is: 

(3)L(st) = L
ℕ
(|st| − 1) + log2 n + log2

(
n − 1

|st| − 1

)

(4)L(fc) = L
ℕ
(|fc|) + log2

(
n

|fc|

)

(5)

L(bc) = L
ℕ
(|L|) + L

ℕ
(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
,

(6)L(ch) = L
ℕ
(|ch| − 1) +

|ch|∑

i=1

log2(n − i + 1)

 where we encode its number of nodes, followed by their 
node IDs in order of connection.

• Hyperbolic structures A hyperbolic structure or commu-
nity (Araujo et al. 2014) has skewed degree distribution 
which often follows a power law with exponent between 
− 0.6 and − 1.5. The encoding length of a hyperbolic 
structure hs is given as: 

 where we first encode the power-law exponent (using 
Rissanen’s encoding (Rissanen 1983) for the integer 
part, the number of decimal values, and the decimal 
part), followed by the number of nodes and their IDs. 
Then, we encode the number of edges in the structure 
(=|�(hs)| ), and use optimal prefix codes, l0, l1 , for the 
missing ( ||hs||′ ) and present ( ||hs|| ) edges, respectively. 
Specifically, l1 = − log((||hs||∕(||hs|| + ||hs||�)) , and l0 
is defined similarly.

3.2  Encoding the errors

Given that M is a summary, and � is only an approxima-
tion of � , we also need to encode errors of the model. For 
instance, a near-clique is represented as a full clique in the 
model, and, thus, contributes some edges to the error matrix 
(i.e., the missing edges from the real data). We encode the 
error � = �⊕ � in two parts, �+ and �− , since they likely 
follow different distributions (Koutra et al. 2014). The for-
mer encodes the edges induced by M which were not in the 
original graph, and the latter the original edges that are miss-
ing in M:

(7)

L(hs) = k + L
ℕ
(|hs|) + log2

(
n

|hs|

)

+ log2(|�(hs)|) + ||hs||l1 + ||hs||�l0

(8)L(�+) = log2(|�+|) + ||�+||l1 + ||�+||�l0
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Fig. 2  Illustration of MDL encoding
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where we encode the number of 1s in �+ (or �− ), followed 
by the actual 1s and 0s using optimal prefix codes (as 
before).

3.3  Encoding the edge‑overlap penalty

Several of the graph decomposition methods that we con-
sider (e.g., SLaShBurn, kCBC in Table 1) generate edge-
overlapping patterns. The MDL model we have presented so 
far naturally handles node overlaps—if two structures con-
sist of the same large set of nodes, only one of the them will 
be chosen during the encoding cost minimization process, 
because their combination would lead to higher encoding 
cost. However, up to this point, the model considers a binary 
state for each edge: that is, an edge is described by the model 
M, or not described by it. This could lead to summaries with 
high redundancy in edge coverage, as we show next with an 
illustrative example.

To explicitly handle extensive edge overlaps in the graph 
summaries (which can lead to low node/edge coverage), 
we add a penalty term, L(�) , in the optimization function 
in Eq. (1). We introduce the matrix � , which maintains 
the number of times each edge is described by M, i.e., the 
number of selected structures in which the edge occurs. We 
encode the description length of � as:

where we first encode the number of distinct overlaps, and 
then use the optimal prefix code to encode the number of 
the present and missing entries in � . As before, l0 and l1 are 
the lengths of the optimal prefix codes for the present and 
missing entries, respectively. Finally, we encode the weights 
in � using the optimal encoding for integers L

ℕ
 (Rissanen 

1983). We denote with (�) the set of nonnegative entries 
in matrix �.

(9)L(�−) = log2(|�−|) + ||�−||l1 + ||�−||�l0

(10)L(�) = log2(|�|) + ||�||l1 + ||�||�l0 +
∑

o∈(�)

L
ℕ
(|o|)

An illustrative example Let us assume that the output of an 
edge-overlapping graph clustering method consists of three 
full cliques: (1) full clique 1 with nodes 1–20; (2) full clique 
2 with nodes 11–30; and (3) full clique 3 with nodes 21–40. 
The encoding that does not account for overlaps (which 
is based on the modeling described in Sects. 3.1 and 3.2) 
includes all three structures in the summary, which clearly 
yields both redundant nodes and edges. Despite the overlap, 
the description length of the graph given the model above is 
calculated as 441 bits, since edges that are covered multiple 
times are not penalized. For reference, the graph needs 652 
bits under the null (empty) model, where all the original 
edges are captured in the error matrix � . Ideally, we want a 
method that penalizes extensive overlaps and maximizes the 
node/edge coverage.

In the example that we described above, by leveraging 
the full optimization function in Eq. (1), which includes the 
edge-overlap penalty term, we obtain a summary with only 
the first two cliques, as desired. The encoding of our pro-
posed method has a length of 518 bits, which is higher than 
the number of bits of the non edge-overlap aware encoding 
(441 bits). The reason is that in the former (edge-overlap-
aware) summary, some edges have remained unexplained 
(edges from nodes 11–20 to nodes 21–40), and thus are 
encoded as error. On the other hand, the latter summary 
encodes all the nodes and edges (without errors), but 
explains many edges twice (e.g., the nodes 11–20 and the 
edges between them, the edges between nodes 11–20 and 
21–30) without accounting for the redundancy-related bits 
twice.

Our proposed edge-overlap-aware encoding can effec-
tively handle a family model  that consists of subsets of 
node- and edge-overlapping structural patterns, and can 
choose a model M that describes the input graph well, and 
also minimizes redundant modeling of nodes and edges.
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4  ConDenSe: our proposed algorithm

biased toward identifying specific types of graph structures, 
which are most often cliques and bipartite cores. Choosing a 
decomposition method to generate patterns for the summary 
depends on the domain, the expected patterns (e.g., mainly 
clique- or star-like structures), and runtime constraints. To 
mitigate biases introduced by individual clustering methods, 
and to consider a diverse set of candidate patterns, we pro-
pose a unified approach that leverages seven existing clus-
tering methods: SLaShBurn, Louvain, SpeCtraL, MetiS, 
hyCoM, BiGCLaM, and kCBC (Sect. 2). In Table 1, we pre-
sent the qualitative advantages, disadvantages, and biases 
of the methods. Specifically, SLaShBurn tends to provide 
excellent graph coverage and biased summaries in which 
stars dominate. Conversely, most other approaches produce 
primarily full cliques and stars, and some bipartite cores. 
hyCoM finds mainly hyperbolic communities with skewed 
degree distributions.

Our proposed unified approach (Algorithm 1, lines 2–4) 
is expected to lead to summaries with a better balanced set of 
structures (i.e., a good mix of exact and approximate cliques, 
bipartite cores, stars, chains and hyperbolic structures), and 
lower encoding cost than any standalone graph clustering 
method. At the same time, it is expected to take longer to 
generate all the patterns (although the clustering methods 
can trivially run in parallel) and the search space for the 
summary becomes larger, equal to the union of all the sub-
graphs that the clustering methods generate.

Based on the model from Sect. 3, we propose CondenSe, an 
ensemble, edge-overlap-aware algorithm that summarizes 
a graph with a compact supergraph consisting of a diverse 
set of structural patterns (e.g., fc, hs). CondenSe consists of 
four modules (Algorithm 1), described in detail next.

4.1  Module A: Unified pattern discovery module

As we mentioned earlier, in our formulation, we consider 
summaries in the model family  , which consists of all 
possible permutations of subsets of structural patterns in 
Ω (e.g., a summary with 10 full cliques, 3 bipartite cores, 
5 stars and 9 hyperbolic structures). Toward this goal, the 
first step is to discover subgraphs in the input graph. These 
can then be used to build its summary. To find the “perfect” 
graph summary, we would need to generate all possible ( 2n ) 
patterns for a given graph G, and then, from all possible 
( 22n ) combinations of these patterns pick the set that mini-
mizes Eq. (1). This is intractable even for small graphs. For 
example, for n = 100 nodes, there are more than 2nonillion (1 
nonillion = 1030 ) possible summaries. We reduce the search 
space by considering patterns that are found via graph clus-
tering methods, and are likely to fit the structural patterns 
in Ω well.

The literature is rich in graph clustering methods (Blondel 
et al. 2008; Karypis and Kumar 1999; Yang and Leskovec 
2013; Kang and Faloutsos 2011). However, each approach is 
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In the experimental evaluation, we use CondenSe to 
empirically compare the impact of these methods on the 
summary quality and evaluate their summarization power.

4.2  Module B: Structural pattern identification 
module

This module (Algorithm  1, lines 5–12) identifies and 
assigns an identifier structural pattern in Ω to all the sub-
graphs found in module A. In other words, this module 
seeks to characterize each cluster with its best suited pat-
tern in Ω = {fc, st, bc, ch, hs} . Let g be the induced graph 
of a pattern generated in Step 1, and � be a pattern in 
Ω . Following the reasoning in Sect. 3, we use MDL as a 
selection criterion. To model g with � , we first model g 
with its best representation as structure type � (explained 
in detail next), r(g,�) , and define its encoding cost as 
Lr(g,�(g,�) = L(�) + L(g|�) = L(�) + L(E+

�
) + L(E−

�
) , where 

E+
�
 and E−

�
 encode the erroneously modeled and unmodeled 

edges of g. The pattern type in � that leads to the smallest 
MDL cost is used as the identifier of the corresponding sub-
graph g (lines 11–12 in Algorithm 1).

Finding the best representation r(g,�) Per pattern type � , 
each pattern g can be represented by a family of structures—
e.g., we can represent g with as many bipartite cores as can 
be induced on all possible permutations of g’s nodes into 
two sets L (left node-set) and R (right node-set). The only 
exception is the full clique (fc) pattern, which has a unique 
(unordered) set of nodes. To make the problem tractable, we 
use the graph-theoretical properties of the pattern types in Ω 
in order to choose the representation of g which minimizes 
the incorrectly modeled edges.

Specifically, we represent g as a star by identifying its 
highest degree node as the hub and all other nodes as spokes. 
Representing g as a bipartite core reduces to finding the 
maximum bipartite pattern, which is NP-hard. To scale-up 
the computation, we approximate it with semi-supervised 
classification with two classes L and R, and the prior infor-
mation that the highest degree node belongs to L and its 
neighbors to R. For the classification, we use Fast Belief 
Propagation (Koutra et al. 2011) with heterophily between 
neighbors. Similarly, representing g as a chain reduces to 
finding its longest path, which is also NP-hard. By starting 
from a random node, we perform breadth-first search two 
times, and end on nodes v1 and v2 , respectively. Then, we 
consider the path v1 to v2 (based on BFS), and perform local 
search to further expand it. For the hyperbolic structures, 
we used power-law fitting (http://tuval u.santa fe.edu/~aaron 

c/power laws/ by Clauset et al.). Lines 7-10 in Algorithm 1 
succinctly describe the search of the best representation r for 
every subgraph g and pattern type �.

4.3  Module C: Structural pattern selection module

This module is key for creating compact summaries and is 
described in lines 13–14 of Algorithm 1. Ideally, we would 
consider all possible combinations of the previously identi-
fied structures and pick the subset that minimizes the encod-
ing cost in Eq. (1). If || structures have been found and 
identified in the previous steps, finding the optimal sum-
mary from 2|| possibilities is not tractable. For reference, 
we have seen empirically that graphs with about 100,000 
nodes, have over 50K structures. The optimization function 
is neither monotonic nor submodular, in which case a greedy 
hill climbing approach would give a (1 − 1

�
)-approximation 

of the optimal.
Instead of considering all possible combinations of 

structures for the summary, prior work has proposed GnF, 
a heuristic that considers the structures in decreasing order 
of “local” encoding benefit and includes in the model the 
ones that help further decrease the graph’s encoding cost 
L(G, M). The local encoding benefit (Koutra et al. 2014) 
is defined as L(g, �) − L(g,�) , where L(g, �) represents the 
encoding of g as noise (i.e., empty model). Although it 
is efficient, its output summary and performance heavily 
depend on the structure order. To overcome these short-
comings and obtain more compact summaries, we propose 
a new structural pattern selection method, Step, as well as 
a faster serial version and three parallel variants: Step-p, 
Step-pa, and k-Step.

• Step This method iteratively sifts through all the struc-
tures in  and includes in the summary the structure that 
decreases the cost in Eq. (1) the most, until no structure 
further decreases the cost. Formally, if i is the set of 
structures that have not been included in the summary at 
iteration i, Step chooses structure s∗

i
 s.t. 

 where Mi−1 is the model at iteration i − 1 , and M0 = � is 
the empty model. CondenSe with Step finds up to 30% 
more compact summaries than baseline methods, but its 
quadratic runtime O(||2) makes it less ideal for large 
datasets with many structures  produced by module A. 
Therefore, we propose four methods that significantly 
reduce Step ’s runtime while maintaining its summary 
quality.

s∗
i
= argmin

s∈i

L(G,Mi−1 ∪ {s})

http://tuvalu.santafe.edu/%7eaaronc/powerlaws/
http://tuvalu.santafe.edu/%7eaaronc/powerlaws/
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• Step-p The goal of Step-p is to speed up the computa-
tion of Step by iteratively solving smaller, “local” ver-
sions of Step in parallel. Step-p begins by dividing the 
nodes of the graph into p partitions using MetiS. Next, 
each candidate structural pattern is assigned to the parti-
tion with the maximal node overlap. Step-p then iterates 
until convergence, with each iteration consisting of two 
phases: 

  1.  Parallelize In parallel, a process 
is spawned for each partition and 
is tasked with finding the struc-
ture that would lower the encod-
ing cost in Eq. (1) the most out 
of all the structures in its parti-
tion. For any given partition, 
there may be no structure that 
lowers the global encoding cost.

2.  Sync From all structures returned in phase 
1, the one that minimizes Eq. (1) the most 
is added to the summary. If no structure 
reduces the encoding cost, the algorithm 
has converged. If not, phase 1 is repeated.

• Step-pa In addition to parallelizing Step, we introduce 
the idea of “inactive” partitions, which is an optimiza-
tion designed to reduce the number of processes that are 

spawned by Step-p. Step-pa differs from Step-p by des-
ignating every partition of the graph as active, then if a 
partition fails x times to find a structure that lowers the 
cost in Eq. (1), that partition is declared inactive and is 
not visited in future iterations. Thus, the partitions with 
structures not likely to decrease the overall encoding 
cost of the model get x chances (e.g., 3) before being 
eventually ruled out, effectively reducing the number of 
processes spawned for each iteration of Step-pa after the 
first x iterations.

• k-Step The pseudocode of this variant is given in Algo-
rithm 2. k-Step further speeds up Step while maintain-
ing high-quality summaries. This algorithm has two 
phases: the first applies Step-p k times (lines 3–5) to 
guarantee that the initial structural patterns included in 
the summary are of good quality. The second expands 
the summary by building local solutions of Step-p per 
active partition (lines 8–9). If a partition does not return 
any solution, it is flagged as inactive (lines 10–11). For 
the partitions that returned nonempty solutions, the best 
structure per partition is added into a temporary list (line 
13), and a parallel “glocal” step applies Step-p over that 
list and populates the summary (lines 14–16). We refer 
to this step as “glocal” because it is a global step within 
the local stage. The local stage is repeated until no active 
partitions are left.



Social Network Analysis and Mining (2018) 8:17 

1 3

Page 11 of 18 17

4.4  Module D: Approximate supergraph creation 
module

In the empirical analysis (Sect. 5), we show that Step results 
in graph summaries with up to 80–90% fewer structures than 
the baselines, and thus can be leveraged for tractable graph 
visualization. The last and fourth module of CondenSe 
(Algorithm 1, lines 15–18), instead of merely outputting a 
list of structures, creates an “approximate” supergraph which 
gives a high-level but informative view of large graphs. An 
exact supergraph, GS(S, S) , of a graph G( , ) consists 
of a set of supernodes S = P() which is a power set (i.e., 
family of sets) over  and a set of superedges S . The super-
weight is often defined as the sum of edge weights between 
the supernodes’ constituent nodes.

Unlike most prior work, CondenSe creates “approxi-
mate,” yet powerful supergraphs: (1) the supernodes do not 
necessarily correspond to a set of nodes with the same con-
nectivity, but to rich structural patterns (including hyper-
bolic structures and chains); (2) the supernodes may have 
node overlap, which helps to pinpoint bridge nodes (i.e., 
nodes that span multiple communities); (3) the supernodes 
may show deviations from the perfect corresponding struc-
tural patterns (i.e., they correspond to near-structures).

Definition A CondenSe approximate supergraph of G is 
a supergraph with supernodes that correspond to possibly 
overlapping structural patterns in Ω . These patterns are 
approximations of clusters in G.

In other words, the CondenSe supergraphs consist 
of supernodes that are fc, st, ch, bc, and hs. To obtain an 
approximate supergraph, we map the structural patterns 
returned in module C to approximate supernodes. Then, for 
every pair of supernodes, we add a superedge if there were 
edges between their constituent nodes in  and set its super-
weight equal to the number of such (unweighted) edges, as 
shown in line 18 of Algorithm 1.

To evaluate the edge overlap in the summaries, and hence 
the effectiveness of our overlap-aware encoding, we use the 
normalized overlap metric. The normalized overlap between 
two supernodes is their Jaccard similarity. It is 0 if the super-
nodes do not share any nodes, and close to 1 if they share 

many nodes compared to their sizes. Although it is not the 
focus of the current paper, the CondenSe supergraphs can 
be used for visualization and potentially for approximation 
of algorithms on large networks (without specific theoretical 
guarantees, at least in the general form).

4.5  CondenSe: complexity analysis

We discuss the complexity of CondenSe by considering 
each module separately:

The first module has complexity O(n3) , which corre-
sponds to SpeCtraL. However, in practice, hyCoM is often 
slower than SpeCtraL, likely due to implementation differ-
ences (JAVA vs. MATLAB). The complexity of this module 
can be lowered by selecting the fastest methods. Module B 
is linear on the number of edges of the discovered patterns. 
Given that they are overlapping, the computation of L(G, M) 
is done in T = O(|M|2 + m) , which is O(m) for real graphs 
with |M|2 << m . In module C, Step has complexity 
O(|S|2 × T) , where S is the set of labeled structures. Step-p 
and Step-pa are O(t × |S|2

p
× T) , where p is the number of 

MetiS partitions (‘active’ partitions for Step-pa) and t is 
the number of iterations. k-Step is a combination of Step-p 
a n d  a  l o c a l  s t a g e ,  s o  i t  r u n s  i n 
O(K ×

|S|2
p

× T + tlcl × (
|S|2
pactive

+ p2
active

) × T) , where tlcl is the 

iterations of its local stage. Finally, the supergraph (module 
D) can be generated in O(m).

5  Empirical analysis

We conduct thorough experimental analysis to answer three 
main questions:

• How effective is CondenSe?
• Does it scale with the size of the input graph?
• How do the clustering methods compare in terms of sum-

marization power?

Setup We ran experiments on the real graphs given in 
Table 3.

Table 3  Summary of graphs 
used in our experiments

Name Nodes Edges Description

EUmail Leskovec and Krevl (2014) 265,214 420,045 EU university email communications
Enron Leskovec and Krevl (2014) 80,163 288,364 Enron email communications
AS-Caida Leskovec and Krevl (2014) 26,475 106,762 BGP routing table
AS-Oregon Leskovec and Krevl (2014) 13,579 37,448 Router connections
Choc 2899 5467 Co-editor Wikipedia graph
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With regards to clustering parameters, we choose the 
number of SLaShBurn hub nodes to slash per iteration 
hslash = 2 to achieve better granularity of clusters. For Lou-
vain, we choose resolution � = 0.0001 as it generates a num-
ber of clusters comparable with other clustering methods 
for all our datasets. For SpeCtraL and MetiS, the number 

of clusters k are set to 
√
n∕2 according to a rule of thumb 

(clusterMaker 2018), where n is the number of nodes in the 
graph. The other clustering methods are parameter-free. 
Unless otherwise specified, we followed the same rule of 
thumb for setting the number of input METIS partitions p for 
all the Step variants. In Sects. 5.1 and 5.2, we set the number 
of chances x = 3 for Step-pa.

5.1  Effectiveness of CondenSe

Ideally, we want a summary to be: (1) concise, with a small 
number of structures/supernodes; (2) minimally redundant, 
i.e., capturing dependencies such as overlapping supernodes, 
but without overly encoding overlaps; and (3) covering in 
terms of nodes and edges. We perform experiments on the 
real data in Table 3 to evaluate CondenSe ’s performance 
with regard to these criteria. We note that we do not evalu-
ate the effectiveness of CondenSe by comparing structural 

Table 4  CondenSe: 
Compression rate with respect 
to the empty model (i.e., 
percentage of bits used with the 
model versus the empty model)

In parentheses, we give the number of structures in the corresponding summary. A “–” means that the cor-
responding method was terminated after 4 days. (*In the interest of time, the summary size was limited to 
15)

Dataset voG Koutra 
et al. (2014)

CondenSe CondenSe with Step Variants

GnF Step Step-p Step-pa k-Step

 Choc 88% (101) 88% (101) 56% (24) 56% (24) 56% (21) 56% (22)
 AS-Oregon 71% (400) 69% (379) 35% (41) 35% (41) 35% (35) 35% (36)
 AS-Caida – 71% (572) 42% (51) 42% (51) 42% (46) 44% (60)
Enron 75% (2330) 74% (2044) – 26% (50) 25% (201) 25% (218)
EUmail – 65% (1440) – – – 59% (15*)

Table 5  Overlapping supernode pairs and average similarity in paren-
theses

CondenSe reduces the overlap. A “–” means that the corresponding 
method was terminated after 4 days

Dataset voG Koutra et al. (2014) CondenSe

Choc 900 (0.04) 74 (0.029)
AS-Oregon 15,875 (0.047) 126 (0.026)
AS-Caida – 382 (0.018)
Enron 447,052 (0.02) 509 (0.015)
EUmail – 0

Fig. 3  Choc: CondenSe-Step generates more compact supergraphs. (b, c) The full supergraphs by voG-GnF, and CondenSe-Step, resp. Yellow 
for stars, red for cliques, green for bipartite cores. The edge weights correspond to the number of inter-supernode edges (color figure online)
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properties of the compressed graph to those of the original 
graph, since the goal of our method is to detect ‘impor-
tant’ structures (which can help with better understanding 
the underlying patterns) and does not optimize for specific 
graph properties or queries (that is usually the goal of graph 
sampling techniques).

Baselines The first baseline is voG (Koutra et al. 2014), 
which we describe in Sect. 2. For our experiments, we used 
the code that is online at https ://githu b.com/GemsL ab/
VoG_Graph _Summa rizat ion. The second baseline is our 
proposed method, CondenSe, combined with the GnF heu-
ristic (Sect. 4.3).

A1. Conciseness In Table  4, we compare our proposed 
method (for different structure selection methods) and the 
baselines with respect to their compression rates, i.e., the 
percentage of bits needed to encode a graph with the com-
posed summary over the number of bits needed to encode 
the corresponding graph with an empty model/summary 
(that is, all its edges are in the error matrix). In parentheses, 
we also give the total number of structures in the summaries. 
We find that compared to baselines, CondenSe with the Step 
variants yields significantly more compact summaries, with 
30–50% lower compression rate and about 80–90% fewer 

structures. The Step variants give comparable results in sum-
marization power.

A2. Minimal redundancy In Figs. 1 and 3, we visualize the 
supergraphs for AS-Oregon and Choc, which are gener-
ated from the selected structures of voG and CondenSe-
Step. It is visually evident that the CondenSe supergraphs 
are significantly more compact. In Table 5, we also provide 
information about the number of overlapping supernode 
pairs and their average Jaccard similarity, as an overlap 
quantifier (in parentheses). For brevity, we only give results 
for k-Step, since the results of the rest Step series are similar. 
We observe that CondenSe has significantly fewer super-
node overlaps, and the overlaps are smaller in magnitude. 
We also note that the overlap encoding module achieves 
10–20% reduction in overlapping edges, showing its effec-
tiveness for minimizing redundancy.

A3. Coverage We give the summary node/edge coverage as a 
ratio of the original for different assembly methods in Fig. 4. 
We observe that the baselines have better edge coverage than 
the Step variants, which is expected as they include signifi-
cantly more structures in their summaries. However, in most 
cases, k-Step and Step-pa achieve better node coverage 
than the baselines. Taking into account the (contradicting) 
desired property for summary conciseness, CondenSe with 

Fig. 4  Node coverage versus edge coverage—marker size corresponds to the graph size. Step variants have better node coverage, and handle the 
summary coverage-conciseness trade-off well

Table 6  CondenSe: Number 
of structures per type in the 
summaries in the format 
[fc, st, bc], for voG we have 
[ fc + nc, st, bc + nb ], where nc 
is near-clique and nb is near-
bipartite core

The CondenSe summaries are more balanced, without a specific pattern type dominating in all the graphs. 
In the interest of time, we find the top-50 and top-15 structures for Enron and EUmail, respectively. A 
“–” means that the corresponding method was terminated after 4 days

Dataset voG Koutra 
et al. (2014)

CondenSe-GnF CondenSe with Step Variants

Step Step-p Step-pa k-Step

Choc [0, 101, 0] [1, 100, 0] [21, 3, 0] [21, 3, 0] [20, 1, 0] [21, 1, 0]
AS-Oregon [1, 399, 0] [19, 355, 5] [27, 13, 1] [27, 13, 1] [26, 9, 0] [26, 10, 0]
AS-Caida – [2, 557, 13] [38, 7, 6] [38, 7, 6] [37, 5, 4] [43, 12, 5]
Enron [2, 2323, 5] [160, 1676, 208] – [45, 2, 3] [60, 108, 33] [61, 124, 33]
EUmail – [0, 1261, 179] – – – [15, 0, 0]

https://github.com/GemsLab/VoG_Graph_Summarization
https://github.com/GemsLab/VoG_Graph_Summarization
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Step variants has better performance, balancing coverage 
and summary size well.

What other properties do the various summaries have? 
What are the main structures found in different types of net-
works (e.g., email vs. routing networks)? In Table 6, we 
show the number of in-summary structures per type. We note 
that no chains and hyperbolic structures were included in 
the summaries of the networks that we show here (although 
some were found by the pattern discovery module, and there 
are synthetic examples in which they are included in the 
final summaries). This is possibly because stars are extreme 
cases of hyperbolic structures, and the encoding of (approxi-
mate) hyperbolic structures is of the same order, yet often 
more expensive than the encoding of stars with errors. As 
for chains, they are not ‘typical’ clusters found by popular 
clustering methods, but rather by-products of the decompo-
sition methods that we consider. Moreover, given that the 
chain encoding considers the sequence of node IDs, and 
errors in the real data increase the encoding cost, very often 
encoding them in the error matrix yields better compression. 
One observation is that Step gives less biased summaries 
than the baselines. For email networks, we see that stars are 
dominant (e.g., users emailing multiple employees that do 
not contact each other), with considerable number of cliques 
and bipartite cores too. For routing networks (AS-Caida 
and AS-Oregon), we mostly see cliques (e.g., “hot-potato” 
routing), and a few stars and bipartite cores. In collaboration 
networks, cliques are the most common structures, followed 
by stars (e.g., administrators). voG and CondenSe-GnF are 
biased toward stars, which exceed the other structures by 
an order of magnitude. Overall, CondenSe fares well with 
respect to the desired properties for graph summaries.

5.2  Runtime analysis of CondenSe

We give the runtime of pattern discovery and the Step meth-
ods in Fig. 5. As we discussed in the complexity analysis, 
the modules of our summarization method depend on the 
number of edges and selected structures. Thus, in the fig-
ure we plot the runtime of our variants with respect to the 

Fig. 5  Runtime versus # of edges: k-Step is more efficient than the 
other methods, and scales to larger graphs

Table 7  Agreement of Step and its variants

They approximate Step quite well. (*Agreement based on the top-50 
structures due to Step-p ’s lack of scalability)

Dataset Step-p Step-pa k-Step

 Choc 1 0.9886 0.9667
 AS-Oregon 1 0.9704 0.9285
 AS-Caida 1 0.9865 0.8238
 Enron 1 0.5012* 0.446*

number of edges in the input graphs.“Discovery” represents 
the maximum time of the clustering methods, and “Disc.
Fast” corresponds to the slowest among the fastest methods 
(kCBC, Louvain, MetiS, BiGCLaM). We ran the experi-
ment on an Intel(R) Xeon(R) CPU E5-1650 at 3.50 GHz, 
and 256 GB memory.

We see that the fast unified discovery is up to 80× faster 
than the original one. As expected, Step is the slowest 
method. The parallel variants Step-p, Step-pa, and k-Step 
are more scalable, with k-Step being the most efficient. Tak-
ing into account the similarity of the heuristics in both con-
ciseness and coverage, Fig. 5 further suggests that k-Step 
is the best performing heuristic given that it exhibits the 
shortest runtime.

5.3  Sensitivity analysis of CondenSe: agreement 
between Step and Step variants

Our analysis so far has shown that k-Step leads to the best 
combination of high compression and low runtime compared 
to the other methods. But how well does it approximate Step 
in terms of the generated summary? To answer this ques-
tion, we evaluate the “agreement” between the generated 
summaries, which in this section we view as ordered lists of 
structures based on the iteration they were included in the 
final summary (which defines the rank of each structure). 
Many measures have been proposed to quantify the corre-
lation between sequences, including the famous Pearson’s 
product-moment coefficient. And when it comes to rank 
correlation measures, Spearman’s � and Kendall’s � are the 
popular ones, while others are mostly ad hoc and not perva-
sive. These measures, however, only work on permuted lists 
or lists of the same length, while the generated summaries 
can have different constituent structures and lengths. Other 
measures that are popular in information retrieval, such as 
precision, cannot explain in detail the level of disagreement 
between two models (i.e., ranked lists) as they treat each 
summary as an unordered set of structures. In our evaluation, 
we want a measure that (1) effectively handles summaries of 
different lengths, and (2) penalizes with different, adaptive 
weights ‘rank’ disagreement between structures included in 
both summaries, and disagreement for missing structures 
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from one summary. Thus, we propose a new measure of 
agreement between models, which we call AG. Let M1 and 
M2 be the two summaries, and rank(s,Mi) be the ranking of 
structure s in summary Mi [i.e., the order in which it was 
included in the summary while minimizing Eq. (1)]. We 
define the agreement of the two summaries as:

AG(M1,M2) = 1 − normalized disagreement = 1 −
1

Z
[�D + (1 −

�

2
)D1 + (1 −

�

2
)D2]

where the disagreement has three components: (1) 
D =

∑
s∈M1∩M2

�rank(s,M1) − rank(s,M2)� is the rank disa-
greement for structures that are in both summaries, (2) 
D1 =

∑
s∈M1∩M

�
2

�(�M2� + 1) − rank(s,M1)� is the disagree-

ment for structures in M1 but not in M2 , and (3) D2 is defined 
analogously to capture the disagreement for structures in M2 
but not in M1 . Finally, Z is a normalization factor that guar-
antees that the normalized disagreement, and thus AG, are 
in [0,  1]: Z = (1 −

�

2

)
∑

s∈M
1

�(�M
2

� + 1) − rank(s,M
1

)�+∑
s∈M

2

�(�M
1

� + 1) − rank(s,M
2

)� . Based on the definition 
above, AG = 1 for identical summaries, while 0 for com-
pletely different summaries. In order to penalize more the 
structures that appear in one summary but not in the other, 
we set � = 0.3 (the results are consistent for other values of 
� ). In Table 7, we give the agreement between Step and its 
faster variants. As a side note, the agreement with voG is 
almost 0 in all the cases. As expected, Step-p produces the 
same summaries as Step, while Step-pa and k-Step preserve 
the agreement well.

5.4  Sensitivity to the number of partitions

All parallel variants of Step take p METIS partitions as 
input. To analyze the effects of varying p on runtime and 
agreement, we ran k-Step and increased p from 12 to 96 in 
increments of 12.

Fig. 6  The agreement is robust to the number of partitions, while the 
runtime decreases

Table 8  CondenSe as an evaluation metric: Compression rate of clustering methods with respect to the empty model (i.e., percentage of bits for 
encoding the graph given the chosen model versus the empty model)

The best (i.e., lowest) compression rate per dataset is bolded

Dataset Clustering Methods

SLaShBurn 
(%)

Louvain (%) SpeCtraL (%) MetiS (%) hyCoM (%) BiGCLaM (%) kCBC (%)

Choc 88 99 99 100 100 87 78
AS-Oregon 76 94 82 85 98 83 65
AS-Caida 70 100 100 98 98 91 74

Fig. 7  Number of structures found by the clustering methods for AS-Oregon. Transparent/solid rectangles for before/after the structure selec-
tion step. Notation: fc: full clique, st: star, ch: chain, bc: bipartite core, hs: hyperbolic structure
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We only give the results on AS-Oregon, since other 
datasets lead to similar results. We observe that while agree-
ment is robust, runtime decreases as p increases and espe-
cially so with the smaller values of p. This observation is 
consistent with our motivation for parallelizing Step: by 
decreasing the number of structures in any given partition, 
the “local” subproblems of Step become smaller and thus 
less time-consuming. Figure 6 shows the effect of the num-
ber of partitions on runtime and agreement, both averaged 
over three trials.

5.5  Sensitivity of Step‑pA

We also experimented with varying the number of “chances” 
allowed for partitions in the Step-pa variant. Step-pa 
speeds up Step-p by forcing partitions to drop out after not 
returning structures for a certain number of attempts (x). 
However, while giving partitions fewer chances can speed 
up the algorithm, smaller values of x can compromise com-
pression and agreement.

In Fig. 6, we give the agreement and runtime of Step-pa 
on Choc and AS-Oregon setting x = {1, 2, 3, 4, 5} . We 
found that both runtime and agreement increased with x, and 
plateaued after x = 3 . This suggests that forcing partitions 
to drop out early, while better for runtime, can lead to the 
loss of candidate structures that may be useful for compres-
sion later.

5.6  CondenSe as a clustering evaluation metric

Given the independence of Step from the structure ordering, 
we use CondenSe to evaluate the different clustering meth-
ods and give their individual compression rates in Table 8.

For number and type of structures we give our observa-
tions based on AS-Oregon (Fig. 7), which is consistent 
with other datasets. As we see in the case of AS-Oregon 
(which is consistent with the other networks), SLaShBurn 
mainly finds stars (136 out of 138 structures); Louvain, 

SpeCtraL, kCBC, and BiGCLaM reveal mostly cliques (9/9, 
15/17, 9/9, and 28/29, respectively); MetiS has a less 
biased distribution (18 cliques, 12 stars), and hyCoM, 
though looks for hyperbolic structures, tends to find cliques 
in our experiments (45 out of 52 structures). Also, SLaSh-
Burn and BiGCLaM discover more structural patterns than 
other methods, which partially explains their good compres-
sion rate in Table 8.

We perform an ablation study to evaluate the graph clus-
tering methods in the context of summarization. Specifically, 
we create a leave-one-out unified model for each cluster-
ing method and evaluate the contribution of each cluster-
ing method to the final summary. The results are shown in 
Table 9. We see that Louvain appears to be the most impor-
tant method: when included, it contributes the most; and 
when dropped, the compression rate reduces (worse). When 
kCBC is dropped, SLaShBurn gets to the top, but Louvain 
also has considerable contribution. In the missing-Louvain 
case, the contribution gets redistributed among other clus-
tering methods to make up for it, this effect differs by data-
set, e.g., MetiS gets boosted for AS-Oregon, while it is 
SpeCtraL for Choc.

In terms of runtime, for modules A and B (pattern dis-
covery and identification), SpeCtraL and hyCoM take the 
longest time, while kCBC, Louvain, MetiS, and BiGCLaM 
are the fastest ones, with SLaShBurn falling in the middle. 
For Module C (summary assembly), the trade-off between 
runtime and candidate structures is given in the complexity 
analysis (Sect. 4.5). In practice, hyCoM usually takes the 
longest time, followed by SpeCtraL and SLaShBurn.

6  Conclusion

In this work we proposed CondenSe, a method that sum-
marizes large graphs as small, approximate and high-quality 
supergraphs conditioned on diverse pattern types. CondenSe 
features a new selection method, Step, which generates 

Table 9  Ablation study for 
AS-Oregon. Louvain and 
SLaShBurn contribute most to 
the CondenSe summaries

The leave-one-out unified model in each row does not include the method noted in the first column (“clus-
tering method”). In the columns spanned by “Contribution per method”, the maximum contribution per 
row is in bold (i.e., it shows which method contributes most in each of the leave-one-out unified models 
that we consider)

Clustering method Compres-
sion rate 
(%)

Contribution per method

SLaShBurn Louvain SpeCtraL MetiS hyCoM BiGCLaM kCBC

SLaShBurn 22 – 63% 10% 7% 7% 0 13%
Louvain 30 30% – 16% 45% 0 3% 7%
SpeCtraL 22 32% 51% – 3% 0 0 14%
MetiS 22 34% 46% 5% – 2% 0 12%
hyCoM 22 35% 48% 3% 3% – 0 13%
BiGCLaM 22 34% 46% 2% 2% 2% – 12%
kCBC 25 50% 35% 6% 2% 2% 6% –
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summaries with high compression and node coverage. How-
ever, this comes at the cost of increased runtime, which we 
addressed by introducing faster parallel approximations to 
Step. We provided a thorough empirical analysis of Con-
denSe, and contributed a novel evaluation of clustering 
methods in terms of summarization power, complementing 
the literature that focuses on classic quality measures. We 
showed that each clustering approach has its strengths and 
weaknesses and make different contributions to the final 
summary. Moreover, CondenSe leverages their strengths, 
handles edge-overlapping structures, and shows results supe-
rior to baselines, including significant improvement in the 
bias of summaries with respect to the considered pattern 
types.

Ideally without the constraint of time, we naturally rec-
ommend the application of as many clustering methods in 
Module A of CondenSe. On the other hand, to deal with the 
additional complexity of having more structures, we recom-
mend choosing faster clustering methods or a mixture of fast 
and ‘useful’ methods (depending on the application at hand) 
that contribute good structures, as shown in our analysis.
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