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Abstract
Several models have been proposed that describe the evolution of the graph properties of many online social networks 
(OSNs) and explain the behavior of their users. These models are essential for understanding the growth dynamics of the 
underlying social graph. One of the most prominent OSNs is Twitter, since it covers a significant part of the online worldwide 
population. Nevertheless, investigating the validity of these models on Twitter entails many difficulties. The size of Twit-
ter and the limitations of its access API make extremely difficult the estimation of many graph properties and therefore the 
evaluation of the proposed models. In this study, we present a simple and efficient method to fit an already existing model, 
which describes the densification power law property of modern OSNs. This model states that the average degree of an OSN 
increases over time. In a case study, we assess this model in two large samples of Twitter, and we demonstrate how it can 
portray the altering growth periods of Twitter. Finally, we make some remarks on several events during the early period of 
Twitter that may have affected its growth rates.

Keywords  Twitter · Evolution · Average node degree · Temporal growth rate · Online social networks · Densification power 
law

1  Introduction

Today, a large proportion of online activity is happening 
through online social networks (OSNs). The study of this 
activity provides valuable insight regarding the growth and 
dynamics of an OSN. One of the major research objects in 
this area is the graph that represents the social network. In 
this graph, nodes represent individual users (or accounts), 
and edges are friendship (or following) relationships 
between them.

The study of the underlying graph of a social network can 
give valuable insight, regarding the dynamics that govern the 
creation, and evolution of the network (Strogatz 2001). One 
of the most common strategies in this area is to model the 

node degree distribution of the network. This distribution 
is denoted as the function P(d) of the percentage of nodes 
with degree equal to d. By studying this distribution, we 
can often make accurate assumptions regarding the ration-
ale followed by users when making new connections. For 
example, a P(d), that follows a Poisson distribution, indi-
cates a random graph. The Gaussian distribution indicates 
a single-scale network, where various limiting factors (i.e., 
aging) constrain nodes from becoming “very rich”, and 
emerges, usually, in acquaintance networks (Amaral et al. 
2000). Finally, a power-law distribution ( P(d) ∼ d−� ) indi-
cates a scale-free network. This last class of networks arise 
in various cases, for example, when the probability of a node 
receiving new connections depends on the number of con-
nections, it already has. This also is known as the “prefer-
ential attachment” model (Barabási 1999).

The degree distribution of Twitter has been extensively 
studied (Sadikov and Martinez 2009; Kwak et al. 2010; 
Myers et al. 2014). A study of 2009, that examined the 
topology of 54.3 million users (Sadikov and Martinez 2009), 
found that both the outgoing and incoming degree follow 
a power law, with exponents 1.95 and 2.13, respectively. 
Nevertheless, a study of 2010 with 41.7 million users (Kwak 
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et al. 2010) concluded that Twitter deviates from other social 
networks and that the outgoing degree distribution is not a 
power law. The most recent study (Myers et al. 2014) with 
the largest sample size (175 million users) demonstrates that 
the indegree is best fitted by a power law with � = 1.35 , 
whereas the outdegree is best fitted by a log-normal distri-
bution with � = 3.56 and �2 = 2.87 . Given the plethora of 
contradicting findings, we can conclude that the elucidation 
of Twitter’s degree distribution is an active research ques-
tion. However, all studies agree that the outgoing degree 
distribution follows partly a power law for users, with less 
than ∼ 105 followers.

Instead of trying to fit the degree distribution to a known 
function, another line of work tries to include time as a fac-
tor and locates models that describe the evolution or else 
the temporal growth of the network. The main design prin-
ciple of a mathematical model that captures the evolution of 
modern OSNs is to be able to formally describe the behavior 
of users in a way that the structure and properties of the 
network can be accurately predicted (Kumar et al. 2006). 
For example, studies have modeled the ‘rich get richer’ prop-
erty (Barabási 1999), the ‘small world phenomenon’ (Klein-
berg 2000) and the decreasing diameter observation (Lesko-
vec et al. 2005). Areas like graph sampling (Leskovec and 
Faloutsos 2006), graph generation (Leskovec et al. 2008b) 
and spam detection (Benevenuto et al. 2010) rely heavily 
on models that describe accurately the growth of a network. 
A model can also be useful for predicting the actions of 
individual users or for identifying events in time that caused 
structural changes in the graph (Chan et al. 2012). For exam-
ple, Barbieri et al. (2014) and Bliss et al. (2013) suggested 
following recommendation systems based on evolution 
models of social networks. Similar work has been done 
in the area of community detection (Barbieri et al. 2013), 
measurement of users’ influence (Morales et al. 2014; Bray 
2015), and the study of temporal variation of hashtag popu-
larity (Yang and Leskovec 2011).

A well-studied family of models are the “preferential 
attachment”, and the “copying model” (Kleinberg et al. 
1999). These models can generate scale-free networks, 
where the average degree of the network remains constant, 
and its effective diameter slowly grows.  Leskovec et al. 
(2007) noticed that these assumptions do not apply in many 
modern social networks. In contrast, they suggested that, 
as the number of nodes increases, the average degree also 
increases (the graph becomes more dense), whereas the 
diameter decreases (the graph shrinks). These significant 
differences may originate from the possibility that the out-
degree distribution of these networks is not always a power 
law. Below on this paper, we expand on the specifics of this 
model, to which we refer as the “Leskovec model”.

The “Leskovec model” has been extended in  (Kleineberg 
and Boguñá 2014) to incorporate the layer of the existing yet 

unobserved off-line social network. Since the latter model 
is more appropriate for local social networks (for example, 
nation-wide OSNs), we believe that the Leskovec model is 
more suitable for the study of Twitter. There is an extensive 
discussion on whether Facebook also follows this model, but 
without a decisive answer  (Backstrom et al. 2012). Addi-
tionally, more elaborate models have been proposed that take 
into account better graph metrics, and suggest more thor-
ough measurement techniques (Wei and Carley 2015). Yet, 
efforts to validate these models are limited to graphs, in the 
order of 105 nodes at best, which is incomparable to the size 
of modern social networks, like Twitter.

Although the “Leskovec model” has a sound mathe-
matical base, and it has been applied for the study of the 
evolution of other social networks (Backstrom et al. 2012; 
Leskovec et al. 2008a), it has not been studied on Twitter. 
There are three reasons for this: The first is that acquiring a 
sufficient sample size for Twitter (estimated on this paper as 
∼ 90 million nodes) is extremely difficult, given the current 
limitations of Twitter’s API. The second is that Twitter’s 
API does not reveal the creation time of the links (follow-
ing relationships); hence, moving back in time is not easy. 
Finally, if |V| is the number of nodes, and |E| the number of 
edges in the graph, the computational complexity of deriving 
the diameter is in the order of O(|V||E|), which, in the case of 
Twitter, can reach the prohibitive amount of 1020 calculations 
for a sufficient sample size.

In this paper, we present a case study, where we apply 
the “Leskovec model” on the average outdegree of Twit-
ter. We overcome the first two difficulties, by acquiring two 
large samples of Twitter, and by applying an approximation 
method to infer the link creation time. Here, we do not focus 
on the diameter, due to the third difficulty, although we agree 
that measurements of this property can further assess the 
validity of the “Leskovec model”, and estimate the “shrink-
ing” observation of the social graph. We add this task on 
our future work.

The estimation of the average degree has lower computa-
tion complexity (O(|V|)), whereas it can sufficiently portray 
the ‘densification law’ described in the “Leskovec model.” 
We subsequently demonstrate how this modeling can deline-
ate periods of diverse growth rates, that Twitter underwent, 
especially on its early days(before 2010). Also, the aver-
age degree has a significant meaning in the modeling of 
users’ behavior, since it has been associated with the Dun-
bar’s Number theory, which states that humans can have a 
finite number of stable social interactions in the range of 
100–200 (Gonçalves et al. 2011). Finally, since OSNs are 
constantly growing, historic data are increasingly difficult 
and expensive to be collected (Batrinca and Treleaven 2015); 
the methods that contribute to the study of social networks’ 
“archeology” can be of extreme importance.

The major contributions of this paper are:
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•	 We present a fast, efficient and practical method to fit a 
widely accepted model that describes the evolution of the 
average node degree for large OSNs.

•	 We fit this model on one of the largest samples of Twit-
ter’s OSN and show how the growth of the average 
degree fluctuates over time.

•	 Based on the extracted growth pattern, we pinpoint sev-
eral turning point events that took place on the early 
period of Twitter.

The rest of the paper is organized as follows: Sect. 2 presents 
our datasets and our collection methods. Section 3 applies 
and evaluates a known heuristic to build a snapshot of Twit-
ter dataset, for a given period. Section 4 describes how Lesk-
ovec’s model can accurately describe the growth of Twitter, 
with insufficient data. Section 5 presents the various growth 
periods of Twitter and some events that may have affected 
it. We conclude and discuss our findings, limitations, and 
future work in Sect. 6.

1.1 � Terminology

In directed graphs, like social networks, the degree of a node 
is the sum of its outdegree and its indegree. The outdegree 
is the number of edges with direction outward to the node, 
whereas indegree is the number of inward directed edges. 
The average node outdegree is the average outdegree over 
all nodes. The density Q of a network is defined as the ratio 
of the number of edges E to the maximum possible number 
of edges and is defined as (2E)∕(N(N − 1)) , where N is the 
number of nodes.

On Twitter, any user can “follow” any other user with 
a public profile. So given a specific user, A, we call the set 
of users that follow A as “followers”, and the set of users 
that are followed by A, as “friends”. We also use the term 
“following(s)”, to refer to any link on the social graph, 
regardless its direction.

2 � Data collection

We used two independent datasets for our analysis. The 
first dataset consists of all the followers and friends of 92 
million users. We used the random walk network sampling 
algorithm to obtain this dataset, which according to Lesko-
vec and Faloutsos (2006) is the best method for capturing 
temporal graph patterns. Briefly, this algorithm simulates 
a random walk on the graph. Initially, we select a random 
user of Twitter, and we extract all her friends and followers. 
Then, we randomly select one of the newly added nodes 
and we repeat this procedure. At every step, we return at 
the starting point, with a probability of p = 0.15 , and begin 
a new walk. For time-efficiency reasons, we initiated 11 

random walks that were running concurrently. Each of these 
11 “walks” had a different starting seed. We selected these 
seeds by randomly selecting 11 users, each one residing on 
a different geographic location (according to its latest tweet). 
These locations were: Canada, USA, Mexico, Argentina, 
UK, Greece, South Africa, Russia, Indonesia, Japan and 
Australia. Whenever a new sample (friend or follower of a 
node) was collected, we stored it in a Mongo database.

The same study that suggests random walk as an efficient 
sampling technique, (Leskovec and Faloutsos 2006), also 
addresses the issue of sufficient sample size for capturing 
graph metrics. A 15% sampling size is enough for measuring 
the graph properties of a graph as it grows and evolves. It is 
estimated that when the sampling happened (from Septem-
ber 2015 to April 2016), Twitter had 500–600 million users, 
who half of them were active users. Therefore, we reckon 
that 92 million users are a sufficient sampling size, since it 
constitutes 15% to 18% of the complete network. The aver-
age number of followers per user was 624, and the average 
number of friends was 763. For the remaining of this work, 
we will refer to this as the BIG dataset.

The second dataset contains the followers and friends of 
all users that are present on the study of Kwak et al. (2010). 
This dataset contains the entire graph of Twitter as of July 
2009 and contains 40.8 million users. In the period from 
November 2014 to January 2015, we downloaded all the fol-
lowers and friends of these users. Each user on this dataset 
has on average 210 friends and 214 followers. We will refer 
to this dataset as the KWAK dataset.

KWAK represents a sample of the early stage of Twitter, 
whereas BIG does not focus on a specific period. This will 
allow us to focus on some interesting events that took place 
during the early period of Twitter.

In Figs. 1 and 2, we show the evolution of the average 
outdegree and the density, respectively, for the two datasets. 
From these plots, we observe a first validation of the ‘den-
sification law’ of the Leskovec model, which states that the 
average degree increases over time.

3 � Generating time snapshots

Although Twitter does not reveal the creation time of follow-
ings, we can apply a heuristic that produces a lower bound 
estimation (Meeder et al. 2011). This heuristic is based on 
the fact that Twitter’s API returns the lists of followers and 
friends of a user ordered according to the link creation time. 
This list contains the unique IDs of friends and followers. 
These IDs are increased monotonically. Consequently, the 
order of these IDs also reveals the subscription order of 
these users: Between any two users, the one that has the 
lower ID, subscribed earlier in Twitter. Therefore, the link 
creation time of the following relationship, between users 
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A and B, can be approximated by the most recent account 
creation time, among all users, that followed B prior to A. 
The computational complexity of this heuristic is O(|E|)).

The accuracy of the inferred link creation times of this 
heuristic depends on the number of friends and followers 
of a user. The higher the number of friends, or followers of 
a user, the more accurate this heuristic is. For celebrities 

(users with more than 5000 followers), the link creation 
time is estimated with an accuracy level of several min-
utes. For users with lower number of followers or friends, 
the error can be higher reaching days or even weeks. Given 
the fact that the range of time this study covers spans over 
9 years (2006–2015), we do not expect these inaccuracies 
to introduce significant errors in our analysis.

Another consideration is that the heuristic assumes 
that users’ IDs are ordered according to account creation 
time or else that users’ IDs are increased monotonically. 
In fact, that was actual the case when the heuristic was 
published. According to Twitter, this is not always the 
case. The strict monotonic order was guaranteed, until 
approximately 2011. After that, ID’s kept increasing, but 
the monotonic order is not guaranteed. To validate this, 
we plotted the Twitter IDs for 10 million random users 
ordered according to the creation time of their accounts. 
Figure 3 shows that although, the increase of Twitter IDs 
is not always monotonic after approximately 2013, it has 
a relatively canonical distribution. Moreover, since in the 
remaining of this paper, we focus on the early period of 
Twitter (before 2010), we do not expect this discrepancy 
to affect our findings.

Fig. 1   The average outdegree of Twitter’s social network is increased 
over time. This is agrees with the “Leskovec model” and is evident 
in both datasets (BIG and KWAK). We also notice that the average 
outdegree of KWAK peaks and drops after August 2009. Since all 
users in KWAK have subscribed in Twitter before that date, a fair 
proportion of them were inactive when the sampling happened (5–6 
years later). Inactive users do not add new followers; therefore, the 
measurement of the average outdegree past that date (August 2009) 
with the KWAK dataset is not representative of the real average outde-
gree value of Twitter. Nevertheless, this demonstrates that the influx 
of new users after 2009 compensated this effect and resulted in the 
increase of the average outdegree, as it is shown in the line represent-
ing the BIG dataset

Fig. 2   The density of Twitter’s social network decreases 
over time. The density of a network at time t is defined as 
Qt = (2Et)∕(Nt(Nt − 1)) . Nt is the number of nodes, and Et is the 
number of edges at time t. This plot demonstrates the ‘densification 
law’ of the Leskovec model

Fig. 3   Twitter provided unique user IDs, on 10 million random users. 
The x axis shows the subscription date of users, and y axis shows the 
IDs provided by Twitter. In general, we notice a monotonic increase 
of these IDs over time. Nevertheless, there are small deviations, 
where the increase is not monotonic. In the subplot, we notice that, 
after a period, there are two different ID sequences. Our model, that 
estimates the friendship creation date, assumes strong monotonic ID 
increases (user A with ID greater than user’s B ID is assumed to have 
subscribed later than B). Since we mainly focus on the early period of 
Twitter (before 2010), we do not expect these deviations to have any 
effect on our friendship date estimations
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4 � The average outdegree of Twitter

Two of the main properties that characterize the structure 
of OSNs are the average outdegree and the diameter of 
the graph. In Twitter, the outdegree of a node (or else, 
a user) is the number of other users (or else “friends”) 
that this user follows. The diameter is the longest short-
est path in the graph, among all pairs of nodes. Usually, 
measuring the evolution of an OSN over time involves 
the study of the evolution of these parameters. It has 
been proposed (Broder et al. 2000; Albert et al. 1999) 
that the main “laws” that characterize the evolution of 
OSNs are: (1) constant average degree, and (2) slowly 
growing diameter.

In an influential study, Leskovec et al. (2007) sug-
gested that both these laws are wrong and fail to describe 
the evolution of many modern social networks. In con-
trast, the authors proposed an alternative set of laws, 
based on empirical observations. These laws are: (1) 
Increasing average degree, and (2) decreasing diameter.

Leskovec et al. (2007) also suggested a model that 
describes the evolution of average degree. This model 
takes into account two parameters. The first is the com-
munity branching factor, b. If we model the graph as a 
tree of branching sub-communities, then b is the fanout 
of this tree. Fanout is the maximum number of children 
that a parent node might have in a tree. A large b is a 
characteristic of a dense network with tight communities. 
The second parameter is the Difficulty Constant, c and 
represents the difficulty to create a cross-community link 
in the graph.

The growth of the average outdegree of an OSN 
depends on the relation between these parameters. If the 
branching factor is higher than the difficulty factor, then 
the network’s outdegree increases superlinearly. If these 
parameters are equal, it increases logarithmically, and 
if the difficulty parameter is greater than the branching 
parameter, the network has a constant average outdegree 
through time. As defined by Leskovec et al. (2007), the 
expected average outdegree of a network ( d ) is propor-
tional to:

while nodes ( Nt ) increase through time (t).
In this formula, b is the community branching factor 

and c is the difficulty constant. In case of superlinear 
growth (when c < b ) the exponent g = 1 − logb(c) is a 
quantification of the growth of the network. We will refer 
to value g as the “growth exponent.”

d = n1−logb(c) if 1 ⩽ c < b

= logb(Nt) if c = b

= constant if c > b

4.1 � Fitting the model to Twitter

In both our datasets, we performed incremental measure-
ments of the average outdegree, for every day of the dataset. 
Then, we fitted the Leskovec model, to a “sliding window” 
of the average outdegree. The size of the window was 200 
days, and it moved from the first 200 days of our dataset to 
the last 200 days, with a timestep of 1 day. At each step, we 
fit all three functions of the Leskovec model to the current 
window, with the Levenberg–Marquardt algorithm (Mar-
quardt 1963). Then, we assigned the midpoint of the window 
to the model with the lowest root mean square error. The 
Levenberg–Marquardt algorithm also produced estimations 
for the b and c parameters.

Figure 4 shows the average outdegree of the graph, while 
the nodes are increasing in the BIG dataset. Red parts are 
following a superlinear growth, whereas yellow parts follow 
a logarithmic scale and this pattern agrees with the Lesko-
vec model. For parts with superlinear growth, we also have 
plotted the “growth exponent”, g. As predicted by Leskovec 
et al. (2007), Twitter’s social graph indeed does not have a 
constant outdegree distribution. In contrast, in most of the 
graph it exhibits a superlinear growth. The growth factor 
during the superlinear growth, oscillates drastically, reaches 
a maximum, and then, it is reduced. In the subsequent sec-
tion, we will present some events that may have caused these 
variations.

Fig. 4   Here we plot the evolution of the average outdegree for the 
BIG dataset, according to the nodes. X axis shows the number of 
nodes at a given time, and y axis shows the growth exponent of the 
graph (black line) and the average outdegree (colored line). The aver-
age outdegree is colored according to which function (superlinear, 
logarithmic or linear) estimates it better based on the Levenberg–
Marquardt algorithm. Here, we notice that the average outdegree 
initially increased in a superlinear rate, and after 50 million nodes it 
slowed its rate into a logarithmic growth. Also, the growth exponent 
of the superlinear phase shows large variations that are indicative 
of various events that altered Twitter’s evolution in its early period 
(color figure online)
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In Fig. 5 we present the same plot for the KWAK data-
set, KWAK dataset, contains users that have registered to 
Twitter anytime before the end of 2009. Consequently, we 
cannot make any estimations of the overall outdegree dis-
tribution of the network, for any day past the end of 2009, 
based on these users. This is due to the fact that followings 
in the network are happening at a higher rate from recently 
subscribed users, compared to older ones. This is why we 
notice that the outdegree distribution drops after the end 
of 2009, which does not reflect a real tendency for the 
network. Similarly, we cannot produce reliable estimations 
of the growth exponent, when the window goes over the 
end of 2009. Nevertheless, we have a better resolution of 
the growth rate and the average outdegree of the graph, for 
the period marked from the start of Twitter until the end 
of 2009. In Figs. 6 and 7, we show the temporal evolution 
of the average outdegree for both datasets, respectively.

Finally, in Fig. 8 we plot only the growth exponent on 
the same time scale for both datasets. From this plot, we 
notice that the growth exponent is able to delineate vari-
ous periods of increased or decreased superlinear growth. 
Moreover, it can help pinpoint various time points, where 
potential events might have taken place, that alter the 
growth rate of the network. In Fig. 9, we plot the first 
gradient of the growth exponent for both graphs. In this 
figure, it is clear that although in different scale, the two 
plots increase or decrease with the same gradient.

5 � Events at the early stage of Twitter

As we have described, the growth exponent is able to capture 
various periods at the early stage of Twitter. These periods 
are marked either with increased or decreased superlinear 
growth. In Fig. 10, we plot the growth exponent annotated 
with events that have affected Twitter according to Wikipe-
dia (2004). It is important to note that, in this study, we do 
not infer causal relationships between these events and the 
growth exponent, since a simple coincidence is not enough 
to justify a causal relation between an event and a growth 

Fig. 5   Here we plot the evolution of the average outdegree for the 
KWAK dataset. The semantics of the lines in this plot are the same 
as in Fig. 4. Notice that the last user subscription of KWAK happened 
when this dataset had 37 million nodes. Therefore, the large drop of 
the growth exponent after that is an artifact and not a real event

Fig. 6   Here, we plot the temporal evolution of the average outdegree 
and growth exponent for the BIG dataset. The semantics of the lines 
in this plot are the same as in Fig. 4. The only difference is that x axis 
shows the date, and y axis shows the growth exponent of the graph 
(black line) and the average outdegree (colored line) of the graph at 
that date (color figure online)

Fig. 7   Here, we plot the temporal evolution of the average outdegree 
for the KWAK dataset. The blue rectangle indicates a “bump” on the 
plot of average outdegree, which coincides with the disruption of 
the Twitter service from the death of Michael Jackson (discussed in 
Sect. 5.2) (color figure online)
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change. The purpose of this paragraph is to put these events 
into perspective, according to the changes of the growth 
exponent. Additional work is required, in order to quantify 
how these events might have actually affected (or not) the 
growth of Twitter.

Nevertheless, the importance of some of these events 
(like the SXSW conference) has been validated by Twitter’s 

officials. In the beginning (July 2006), Twitter was an 
experimental service developed exclusively for use with 
mobile phones. In October 2006, it was possible to sign 
up without the use of mobile phone (Widrich 2011). This 
change marked a transition to a regular OSN, and we also 
notice a first increase in growth exponent. In the end of 
2006, several technical problems indicative of the service 
immaturity (Duncan 2007) may have slowed down Twitter’s 
growth. Moreover, several rival services (e.g., FriendFeed, 
Pownce, Jaiku, Brightkite) appeared to attract potential new 
users (Lardinois 2008). The decisive breakthrough of Twit-
ter happened in March 2007, at the SXSW conference (Shah 
2010), where Twitter won the top award and got a lot of 
attention. The user base of Twitter grew significantly, dur-
ing this period.

In May 2008, Twitter applies its first action against spam, 
by massive deleting many spam accounts. Whether spam 
increases or decreases the superlinear growth is an open 
question that we discuss below. In June 2008, a lot of blogs 
and websites were expecting that Twitter will not withstand 
the extreme traffic from Apple’s keynote conference. Nev-
ertheless, Twitter did not have any failures which was a sign 
of a transition to a more mature and stable service, and as a 
consequence an increase of the growth exponent. The period 
from November 2008 to April 2009 has been characterized 
as the “red carpet era” of Twitter, due to the attraction of 
many personalities from the show business industry. It is 
estimated (Judge 2010) that 54% of the most popular Twitter 
users started using Twitter during this period. The increase 
of growth rate is visible in the BIG dataset, but not in KWAK, 
and this is the only difference between the growth rate of the 
two datasets.

Fig. 8   Here, we plot the comparison of the growth exponent between 
the BIG and the KWAK datasets. The estimation of the growth expo-
nent (g) depends on the number N of nodes in the graph ( d = Ng ). 
The average outdegree ( d ) between the two datasets, for the period 
before the subscription of the last KWAK user, is approximately the 
same (see Fig. 1). Nevertheless, since KWAK focuses exclusively on 
this time period, it contains more samples (nodes) than BIG. There-
fore, our fitting model algorithm generated higher g values for the 
BIG dataset. However, we notice that, despite the inherent differences 
between the two datasets (size, users), the fluctuations of the growth 
exponent delineate almost the same time periods

Fig. 9   The estimation of the growth exponent (g) is sensitive to vari-
ous parameters of the sampling method. Yet, the rate of increase or 
decrease of g shows a relevant tolerance to these parameters. To dem-
onstrate this, we plot the first gradient of g, between the BIG, and 
KWAK datasets

Fig. 10   Here, we plot the events that may have affected the growth 
exponent g of Twitter during its early period. When g decreases, then 
the average outdegree grows at a smaller rate. Periods of decreased 
g indicate higher rates of addition of new users, and periods of 
increased g indicate higher rates of new connections (followings)
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Another measurement that we performed, was the aver-
age outdegree per isolated day. For these measurements, 
we counted the average degree of the graph for each day, 
without taking into account any previously formed edges. 
This gives an evaluation of the density of the graph that 
was generated each day. We were surprised to find that this 
average degree was increasing each day until June of 2009, 
where it peaked and then started to decrease. We located 
two events that happened in this period. The first was the 
blocking of Twitter in China, and the second was the death 
of the famous pop artist Michael Jackson. In Fig. 12, we 
show these measurements annotated with these two events. 
On the following subsections, we discuss how these events 
might have affected Twitter.

5.1 � Blocking from China

China blocked Twitter in early June 2009. Although we do 
not see any change in the growth exponent, we speculate that 
this might have reduced the average degree per isolated day, 
as we notice in Fig. 12. To test this hypothesis, we searched 
a dataset that contained the user objects of 250 million users.

A user object is a data structure that contains several 
meta-information about a user’s profile, like language, loca-
tion, creation time and other profile preferences. User objects 
can be requested from Twitter’s API, and they include the 
last tweet of a user. In this dataset, we looked for users 
whose last tweet was tagged with geo-location information 
and we measured the percentage of those located in China. 
We also measured this percentage per year according to the 
account creation time, and according to the time this last 
tweet was sent. Unfortunately, Twitter, enabled geo-tagging 
of tweets in August of 2009 and it was very slowly adopted 
by users due to lack of support from Twitter clients (Bry-
ant 2010). As an effect, statistics, prior to 2010, based on 
geo-tagged tweets are unavailable. To tackle this, we also 
looked into the “location” field of user objects. This field 
is a user-defined location, so there is no guarantee that the 
actual location of the tweet is in China. Nevertheless, since 
it was the only location information available for tweets prior 
to blockage, we also measured the percentage of users that 
specified their location as “China” (in English or in Chinese) 
in their profile.

In Fig. 11, we plot the percentages of Chinese users in 
Twitter, for each year, between 2006 and 2015. We used 4 
different criteria to determine whether a user is Chinese or 
not. The first (black bars) is the account creation year of the 
users whose last tweet was geo-tagged in a location within 
China, and the second (gray bars) is the year of the last tweet 
for these users. The third (red bars) is the account creation 
years of the users who are self-described as Chinese in their 
profile, and the forth (pink bars) is the year of the last tweet 
for these years.

In this figure, we notice that the percentage of Chinese 
users peaked at 2007. After 2007, the percentage drops 
even more than before the blockage takes place. From these 
measurements, the maximum decrease was 1.4% (from 1.6% 
at 2007 to 0.2% at 2009) for the account creation year of 

Fig. 11   Percentages of Chinese users in Twitter between 2006 and 
2015. Black bars and gray bars show the percentages of users, who 
were identified as Chinese, according to geo-tagging. Red bars and 
pink bars show the percentages of self-identified Chinese users, 
according to the description of their profile. In black bars and red 
bars, we show the account creation year. In gray bars and pink bars, 
we show the year of their last tweet. Since geo-tagging was enabled 
in August of 2009, we do not have geo-tagged tweets before that 
period (color figure online)

Fig. 12   For each day from 1/6/2008 until 31/12/2010, we extracted 
the following relationships that happened that day on the BIG data-
set. Then, we constructed the social graph of each day, and we meas-
ured its average outdegree (black lines). We also show the number 
of nodes (blue) and edges (red) for each one of this daily graph. We 
notice that the daily average degree peaked between the dates when 
China blocked Twitter and the death of popular singer Michael Jack-
son. We also notice that the number of nodes and edges of the daily 
graph were stabilized on that period (color figure online)
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users that posted geo-tagged tweets from China. Although 
in Fig. 12, we notice that in July 2009 the average degree 
per day starts to decrease, we believe that this large change 
cannot be attributed to the sudden blockage of only 1.4% of 
Twitter users.

5.2 � Death of Michael Jackson

On 25 of June 2009, the excessive online traffic that sparked 
from the death of the famous pop artist Michael Jackson, 
created a disruption of many websites including Twitter. 
This disruption is noticeable, as a small “bump”, in the plot 
of average outdegree, in Fig. 7. From this technical prob-
lem, Twitter recovered quickly. Researchers have used this 
event, in order to study the propagation patterns of Twit-
ter (Ye and Wu 2010), as well as the emotional content of 
related posts (Kim et al. 2009). However, this event might 
also have contributed to the increase of popularity of Twit-
ter, in the long term, due to the publicity that this disruption 
reached. Figure 12 shows that before this disruption, the 
average outdegree of the daily graph was increasing linearly 
in time. On the day that coincides with the death of Michael 
Jackson, this increase stops abruptly. After that, the daily 
average outdegree decreases constantly and converges to a 
value close to 2. One hypothesis is that the death of Michael 
Jackson made Twitter suddenly increasingly popular, attract-
ing users that enrolled in a high rate. Since new users have 
lower outdegree compared to older ones, this might have 
contributed to the decrease of the overall average.

5.3 � Spam filtering

Spam in Twitter has been an important issue (Benevenuto 
et al. 2010). Studies have shown that the click-through rate 
of Twitter spam is significantly higher than mail spam (Grier 
et al. 2010). In August 2009, the percentage of spam tweets 
in Twitter had reached 9%, affecting its public image as a 
“clean” service that did not propagate spam or malicious 
sites. To mitigate this, in August 2009 Twitter embedded a 
spam filtering mechanism on its URL shortening service. 
According to a report from Twitter, this technique reduced 
the spam percentage to 1% in February 2010 (Chowdhury 
2010). This period coincides with the beginning of a long 
decrease of the superlinear growth rate. This is shown as a 
blue shade in Fig. 10. The hypothesis in this case is that the 
superlinear growth rate was affected by spam accounts. In 
order to increase their target base, spam accounts were fol-
lowing as many users as possible with the hope that these 
users would follow back, thus making them potential targets 
for spam or malicious URLs. This might have contributed to 
the increase in the growth of average outdegree. The applica-
tion of the spam filter stopped or slowed down this promo-
tion technique and stabilized the average outdegree.

6 � Discussion and conclusions

Existing models of the evolution of social networks are 
of extreme importance for elucidating their structure and 
explaining the behavior of their users. Unfortunately, the 
enormous size of modern OSNs and the prohibitive com-
putational complexity of many essential graph properties 
make this modeling a cumbersome procedure. Here, we 
have demonstrated a computationally efficient method to 
model the growth of an OSN, based on the simple property 
of node average degree.

Our methodology consists of four distinct parts. The 
first is the application of the heuristic that approximates 
the friendship time-creation with a time complexity of 
O(|E|). The second is the sorting of all edges according 
to this approximation. The third is the calculation of the 
average outdegree of the network, for every day, between 
June 2006 and January 2015 (in total 3100 days). The time 
complexity of this part is O(T|V|), where T is the total 
number of time periods ( T = 3100 ). The final part is fit-
ting the average outdegree for all days to the “Leskovec 
model” and requires minutes of computation in a com-
modity computer. The only computational challenging part 
is sorting all edges of the network, which can be easily 
parallelized. The rest computational part can take place in 
a single workstation. Overall, the complete computation 
required approximately one day, in a high end workstation 
(single 4-core Intel i7 processor, 3.4GHz, 16Gb RAM).

In our experiments, we demonstrated that, approxi-
mately, the same growth periods could be delineated from 
two fundamentally different samples of Twitter. The first 
(BIG) contains 92 million users and was created with the 
random walk sampling method. The second (KWAK) is 
approximately half of the size of the first and contains the 
friends and followers of a relatively old (2009) dataset.

We have also demonstrated how this method can portray 
fluctuations of growth, even years before the sampling of 
the OSN happened. In our case, we focus on events that 
happened more than 5 years before the OSN was sampled.

Although the outdegree distribution of Twitter is 
most likely not a power law, there is an open question, 
whether the moments of this distribution are well defined. 
The mean of a power-law distribution with exponent 
𝜆 < 2 diverges, meaning that repetitive measurement in 
independent samples, will result in very large fluctua-
tions (Newman 2005). The latest and largest study  (Myers 
et al. 2014) concluded that this distribution is the best 
fit by a log-normal function, which has all its moments 
well defined. In order to fit the “Leskovec model,” we do 
not measure the average outdegree in independent sam-
ples, but instead we measure the average degree of the 
same sample of the social graph, on a day-by-day base, 
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therefore, we do not expect large fluctuations. This also 
is evident from the relative smooth form of the average 
outdegree plot, in Fig. 1. Nevertheless, the proper elucida-
tion of the form of this distribution with adequately large 
sample sizes is a crucial open question that needs to be 
addressed.

Additionally, future work is required, in order to establish 
reliable causal relationships between the presented events 
and the alterations of the growth exponent. Additionally, 
we plan to apply heuristics for the estimation of the second 
half of the Leskovec model parameter, which is the diam-
eter. This will allow us to estimate the effect and size of the 
“Shrinking parameter” of Twitter.

As a final comment, we believe that this approach will 
help researchers to model efficiently the evolution of large 
OSNs and delve into their past, in order to investigate 
“which” and more important “how” specific events alter 
their growth patterns.
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