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Abstract As fake reviews become more prominent on the

web, a method to differentiate between untruthful and

truthful reviews becomes increasingly necessary. However,

detection of false reviews may be difficult, as determining

the validity of a review based solely on text can be nearly

impossible for a human. In this study, we aim to determine

the effectiveness of machine learning techniques, specifi-

cally ensemble techniques and the combination of feature

selection and ensemble techniques, for the detection of

spam reviews. In addition to traditional ensemble tech-

niques, such as Boosting and Bagging, we employ tech-

niques that combine ensemble methods with a form of

feature selection: Select-Boost, Select-Bagging and Ran-

dom Forest. For Select-Boost and Select-Bagging, we

combine the Boosting and Bagging approaches with three

different feature rankers. Random Forest was performed

using 100, 250, and 500 trees. Our results show a combi-

nation of Select-Boost, multinomial naı̈ve Bayes and,

either Chi-squared or signal-to-noise, significantly outper-

forms all methods except Random Forest using 500 trees.

There is no significant difference between the feature

subset sizes tested when using Select-Boost with multino-

mial naı̈ve Bayes, regardless of the feature selection tech-

nique employed. To the best of our knowledge, this is the

first study to examine the effect of a combination of

ensemble techniques and feature selection in the domain of

spam review detection.
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1 Introduction

People rely on consumer reviews and recommendations for

insight when purchasing products, trying new restaurants,

finding a primary care physician, and other goods and

services. In the past, consumer reviews and recommenda-

tions were passed via word of mouth or publications, but

with the ubiquitous nature of the Internet, more people are

obtaining reviews and recommendations via the web.

Google, Yelp, and Amazon are a few of the websites loa-

ded with user reviews on a multitude of topics. Reviews

can be created by anyone who has access to the web. This

open access leads to one of the main issues with online

reviews—spam.

Spam reviews can be classified into three categories:

untruthful reviews, reviews on brands, and non-reviews

(Dixit and Agrawal 2013). Untruthful reviews are fake

reviews created with malicious intent. Reviews on brands

are reviews not specific to a product, but the entity creating

the product. Non-reviews contain all reviews that do not

actually review a product. This research focuses on the

detection of untruthful reviews, as these have been shown

to be the most difficult to detect (Jindal and Lui 2008).

Spam reviews are created by ‘‘spammers’’ or suspicious

persons to either harm or bolster the reputation of an

establishment or product. As these reviews are all public,

usually posted by an unknown user, and not passed via

word of mouth, it becomes increasingly difficult to deter-

mine whether the review is coming from a rep-

utable source. Up to one-third of all online reviews are

considered untruthful; this increase in false reviews has led

to a drop in credibility of online reviews (I.C. Government

of Canada 2014). To combat this issue, many methods

using machine learning tools, specifically supervised

learning, have been proposed.
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Supervised machine learning algorithms are trained on

labeled data sets, in our case spam review data sets. These

algorithms learn to classify reviews as truthful or untruthful

based on features describing the reviews. These labeled

data sets contain instances (the reviews), features describ-

ing the review, and their corresponding class label. The

features describing a review typically include review text

features, the meta data found in the review (rating, date,

time, etc.), and reviewer-oriented features, which describe

the user that created the review. Since we are interested in

predicting spam reviews based only on the text, we only

explore the effects of text-based features and choose to

leave other features for future work.

Unfortunately, due to the text-based nature of reviews,

the feature space associated with a data set in the domain of

spam detection is large. Having a large feature space is

commonly known as high dimensionality and creates

challenges, such as higher computational costs and

redundant or useless features (Haykin 1998). Classification

algorithms are not adept at handling a high dimensional

feature space and will see degraded performance due to

overfitting (Crawford et al. 2016). A family of machine

learning techniques, known as feature selection, can be

implemented to combat the problem of high dimensional-

ity. Feature selection has only recently been employed in

spam review detection studies (Crawford et al. 2016;

Mukherjee et al. 2013).

In addition to feature selection, a family of techniques

called ensemble learning techniques have been shown to

increase classifier performance and reduce overfitting

(Dietterich 2000). In previous work, we have found

ensemble techniques, such as Bagging and Boosting,

increase classification performance in other text classifi-

cation domains (Prusa et al. 2015). However, ensemble

techniques alone do not combat the issue of high dimen-

sionality (Heredia et al. 2016). To combat high dimen-

sionality, while still taking advantage of the ensemble

framework, feature selection can be embedded within

ensemble techniques. We employed three of these tech-

niques: Select-Boost, Select-Bagging, and Random Forest.

These three techniques combine feature selection and

ensemble learning to form a classifier which is resilient to

the adverse effects brought upon by high dimensionality.

We build upon the results found in Crawford et al. (2016)

by examining ensemble learners, which are known to

improve performance in a variety of domains, and deter-

mine how the addition of feature selection to ensemble

algorithms impacts classification performance. To the best

of our knowledge, this is the first study to employ the

combination of ensemble and feature selection techniques

in the domain of spam review detection.

In this study, we present results for feature selection and

aim to determine the impact of ensemble techniques and

the combination of feature selection and ensemble tech-

niques on spam review detection. We discuss results for a

total of ten feature selection techniques across five classi-

fiers to demonstrate the effects of feature selection. We

explore the effectiveness of Boosting and Bagging when

identifying review spam. Our Select-Boost and Select-

Bagging algorithms are implemented using five base clas-

sifiers: multinomial naı̈ve Bayes (MNB), naı̈ve Bayes

(NB), support vector machines (SVM), logistic regression

(LR), and C4.5 Decision Tree (C4.5). We embed signal-to-

noise (S2N), Chi-Squared (CS), and Mutual Information

(MI) within the Select-Boost and Select-Bagging approa-

ches. Random Forest is conducted with three tree sizes: 100

(RF100), 250 (RF250), and 500 (RF500). All models are

evaluated using four runs of fivefold cross-validation with

model performance measured using the area under the

receiver operator characteristic curve (AUC) metric. Our

study is unique in that we provide a comprehensive over-

view of feature selection, ensemble methods, and the

combinations of both in spam review detection.

The highest performing classifier, using no ensemble

techniques, for spam review detection is multinomial naı̈ve

Bayes (Crawford et al. 2016; Heredia et al. 2016). When

using MNB, no significant changes in performance occur

with the addition of an ensemble technique (Bagging or

Boosting). Moreover, the inclusion of feature selection

when training MNB results in a lower AUC score for

smaller subset sizes. However, applying a combination of

ensemble and feature selection (Select-Boost) shows sig-

nificant improvement in performance when compared to

using solely MNB. Our results indicate the combination of

Select-Boost, MNB, and Chi-Squared (or signal-to-noise)

to be the best performing model, significantly outper-

forming all other methods, with the exception of RF500.

Select-Boost does produce a higher AUC score than

RF500; however, the difference between the two is not

significant. The Select-Boost framework combines re-

weighting and feature selection in each iteration, which is

fundamental for improving model performance. Our results

are tested for significance using ANalysis Of VAriance

(ANOVA) and Tukey’s honestly significant difference

(HSD) tests (Berenson et al. 1983).

The remainder of the paper is organized as follows.

Section 2 contains works related to spam detection,

ensemble learning, and feature selection. Section 3 pro-

vides insight into the feature selection techniques used.

Section 4 describes ensemble techniques, such as Boosting

and Bagging. In Sect. 5, we examine techniques that

combine feature selection and ensemble learning: Select-

Boost, Select-Bagging, and RF. Section 6 summarizes our

methodology including data set information, learners,

cross-validation, and the performance metric. Section 7

contains the first case study, which presents baseline results
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for each base learner and the effectiveness of feature

selection. In Sect. 8, we present our second case study,

discussing the results for ensemble techniques and the

combination of ensemble and feature selection. Section 9

provides a discussion of the results. Finally, in Sect. 10, we

present our final conclusions and possible avenues for

future work.

2 Related work

The area of spam review detection includes various studies

dedicated to detecting untruthful reviews using supervised

learning. There exist multiple types of feature sets which

may be used for detection of untruthful reviews (Crawford

et al. 2015). However, one of the main problems with spam

review detection is labeled data set availability. A study by

Jindal and Lui (2008) used review-oriented features to

predict whether a review was classified as spam or not

spam. A data set was generated by collecting 5.8 million

reviews of products offered by Amazon. A subset of

222,000 instances were sampled from the original data set

and a method known as w-shingling (Broder 1997) was

utilized to detect near-duplicate reviews. The near-dupli-

cate reviews were classified as untruthful reviews. From

these reviews, 36 additional features were derived and used

in a logistic regression model to predict spam reviews.

These additional features consisted of Part Of Speech

(POS) and reviewer-centric features. Using the full feature

set, their model resulted in an AUC of 0.78 when detecting

duplicate reviews. The data set was tested against two other

review categories: brand only and non-reviews. For brand

only and non-reviews, the resulting AUC values were over

0.98, indicating the detection of untruthful reviews to be a

more difficult task.

A study by Ott et al. (2011) proposed a data set of

considerably smaller size with an equal number of positive

(spam) and negative (non-spam) instances. The authors put

forth a data set created using Amazon Mechanical Turk

(AMT) (Buhrmester and Goslining 2011). AMT is a ser-

vice provided by Amazon that allows access to a scalable

work force. By leveraging AMT, the authors were able to

generate fake positive reviews for hotels. The data set

consists of 800 positive reviews with half the positive

reviews being false, while the remaining half was obtained

from TripAdvisor. The best model created had an accuracy

measure of 89.8% using a support vector machine (SVM)

classifier with a combination of Linguistic Inquiry and

Word Count (LIWC) and bigram features. Although this

data set has been used in many studies, it was shown to

have a major flaw in that it is not representative of real-

world review scenarios. The word distributions found in

the AMT reviews are significantly different from

distributions found in truthful reviews, allowing for easier

detection of false reviews (Mukherjee et al. 2013). A more

realistic data set was proposed by Li et al. (2014) which

extends the AMT data set created by Ott et‘al. (2011)

through the addition of expert reviews and by combining

reviews from three different domains: hotels, restaurants,

and doctors. To create a more comprehensive and accurate

real-world data set, Li et al. (2014) obtained reviews from

employees of the locations being reviewed in addition to

reviews from AMT. The authors elected to use the hotel

reviews to train the model and the doctor reviews to test the

model. Using a classification algorithm modeled off the

Sparse Additive Generic Model (SAGE), they were able to

obtain an accuracy of 64.7 and 63.4% when using LIWC

and POS features, respectively. We elected to use this data

set in our study, since it most closely represents real-world

review scenarios.

In Shojaee et al. (2013), stylometric attributes were used

for detection of untruthful reviews. Stylometric features

consist of lexical and syntactic features. These include

features which give an indication of the grammar and

vocabulary used by the writer. Lexical features focus on

word or character use, while syntactic features represent

the style of the writer, such as their use of the words ‘‘the’’,

‘‘of’’, ‘‘a’’, etc. Three sets of experiments were performed

using the data set from Ott et‘al. (2011). The first set used

solely lexical features, the second used syntactic features,

and the final set used a combination of both. Two classifiers

were trained with each feature set: SVM and naı̈ve Bayes.

The classifiers were trained using tenfold cross-validation.

In all three feature sets, SVM outperformed naı̈ve Bayes in

terms of F-measure. The best F-measure, 0.84, was

obtained using the feature set containing the combination

of lexical and syntactic features. The increase in feature

space, due to the addition of stylometric features, requires

higher computational costs and no feature selection was

done to optimize the feature space.

A study by Mukherjee et al. (2013) used reviewer-cen-

tric features to detect spam reviews. The data set used was

a combination of the data set found in Ott et‘al. (2011) and

reviews collected from Yelp. In total, there were three

feature sets, one consisting of LIWC features, one con-

sisting of POS features, and the final set contained bigram

features. The study applied feature selection using Infor-

mation Gain (IG) to select the top 1 and 2% of features

from each set. The models created using the reduced fea-

ture space did not generalize well to real-world data.

Feature selection was found to offer no improvement on

classification performance. However, only a single feature

selection technique was tested; thus, no conclusive results

can be drawn from the effect of feature selection on the

classification of spam reviews. A study by Crawford et al.

(2016) determined the effects of ten feature rankers on
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classification of spam review. Ten filter-based feature

selection techniques were applied across five classifiers and

a range of subset sizes. Out of the ten feature selection

techniques, Chi-Squared was chosen for comparison

against a word frequency feature selection method. Results

show multinomial naı̈ve Bayes has the highest performance

and Chi-Squared performs better than word frequency at

low subset sizes across all classifiers. However, at large

subset sizes, word frequency performs just as well as Chi-

Squared, if not better.

Ensemble techniques have largely gone unused in spam

review detection studies in exchange for a more traditional

supervised learning approaches. Our study is the first to

apply a wide range of ensemble techniques in the area of

spam review detection. Ensemble techniques may be useful

for detecting untruthful reviews as they have been shown to

increase performance in noisy data (Dietterich 2000).

There is evidence of the effects of ensemble techniques on

classifier performance in related domains such as sentiment

detection (Prusa et al. 2015). A previous study on tweet

sentiment classification showed the improved effects of

employing ensemble classifiers with feature selection

(Prusa et al. 2015). The study compares the performance of

Select-Boost and Select-Bagging against various feature

selection techniques using five base learners: K-Nearest

Neighbor (KNN), C4.5 decision tree, multilayer perceptron

(MLP) and logistic regression (LR). Two tweet sentiment

data sets were used: SemEval and Sentiment140.

A Threshold-Based Feature Selection (TBFS) technique,

and the area under the Receiver Operator Characteristic

(ROC) curve metric was employed within Select-Boost and

Select-Bagging. Results showed Select-Boost performing

significantly better than Select-Bagging and plain classifi-

cation on both tweet sentiment data sets.

Our study is unique since it explores the effects of

Boosting, Bagging, Select-Boost, Select-Bagging, and

Random Forest in the spam review domain. Moreover, no

other study has examined the effect of Boosting and Bag-

ging in this domain. We also compare the classification

performance of these techniques against feature selection

and the base learners. To the best of our knowledge, this is

the first study to present a thorough comparison of these

techniques in the realm of spam review detection.

3 Feature selection

Feature selection can be performed using wrapper-based,

filter-based, embedded or hybrid techniques. Wrapper-

based techniques use a classifier to rank the performance of

a subset of features. Wrapper-based techniques do not scale

well with a high feature space, due to their computationally

expensive approach. Filter-based techniques can be

categorized into two types: filter-based subset evaluation

and filter-based ranking. Filter-based subset evaluation

techniques attempt to find the subset of features which

maximizes classification performance. Usually, this pro-

cess uses a greedy approach, where a feature set is created

by adding the initial best feature that discriminates between

the classes (or starting with all features and removing the

feature which discriminates the least between the classes).

Features are then added to the subset individually and

tested for performance, the feature with the highest

increase in performance is added to the subset. This process

is repeated until the best subset of features is found. Similar

to wrapper-based techniques, filter-based subset evaluation

does not scale well with very high dimensional data as it is

computationally expensive.

Unlike the previous two approaches, feature rankers

provide the type of fast and scalable feature selection

suitable for very large feature spaces. They use various

measures to rank features based on performance. Features

are given a score relative to the class label based on the

performance metric used. In this study, filter-based feature

rankers were employed, as they scale well with high

dimensional data sets and have been previously used in

detection of untruthful reviews (Crawford et al. 2016). We

applied ten different feature rankers to the data set from

three different feature selection families: commonly used

(Dittman et al. 2010), Threshold-Based Feature Selection

(TBFS) (Dittman et al. 2010), and first-order statistics

(FOS) (Khoshgoftaar et al. 2012). These families use dis-

tinctly different methods to rank features. The following

three subsections describe the feature ranker techniques

used and the families they belong to.

3.1 Commonly used techniques

This family of commonly used techniques consists of

techniques that are widely used and easily accessible.

These techniques are found in most open-source machine

learning tool-kits, such as the Weka toolkit (Hall et al.

2009). From this family of techniques, we employ the Chi-

Squared (CS) ranker (Witten and Frank 2005).

Chi-Squared utilizes the Chi-Squared statistic to mea-

sure the relationship between a feature and the class. This

feature ranker measures the independence of two events, in

this case the events are the occurrence of the feature and

the occurrence of a specific class. If we consider the

occurrence of a feature as A and the occurrence of a class

as B, then these occurrences are independent if

PðABÞ ¼ PðAÞ � PðBÞ. The formula below shows the

common form of the Chi-Squared ranker:

v2 ¼
Xn

k¼1

ðOk � EkÞ2

Ek
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where O is the observed value and E is the expected value.

Thus, a higher Chi-Squared value indicates some form of

dependence between the feature and the class, whether

positive or negative.

3.2 Threshold-based feature selection techniques

TBFS techniques are bi-variate procedures, where each

feature is evaluated against the class, independent of all

other features (Dittman et al. 2010). All attributes are first

normalized in a range [0,1], then a classifier is built for

all thresholds t 2 ½0; 1�. Two classification rules are used

for building the simple classifiers. Rule 1 classifies

instances with a normalized value greater than t as posi-

tive, and examples with a normalized value less than t as

negative. Rule 2 is the converse of rule 1 and classifies

instances with a normalized value greater than t as neg-

ative, while examples with a normalized value less than t

are positive. The metric x is used to create the attribute

ranking. These x metrics are primarily used to measure

classification performance (Dittman et al. 2010). We use

Mutual Information (MI), the area under the Precision–

Recall Curve (PRC), the area under the receiver operator

characteristics curve (ROC), Gini-Index, Kolmogorov–

Smirnov (KS), significance analysis of microarrays

(SAM) and probability ratio as our x metrics used to rank

the features.

Mutual Information determines the importance of a

feature by measuring the contribution of the presence, or

absence, of a feature toward a correct classification (Peng

et al. 2005). The formula below describes mutual

information:

IðW ;CÞ ¼
X

eW2½0;1�

X

eC2½0;1�
pðeW ; eCÞ log

pðeW ; eCÞ
pðeWÞpðeCÞ

whereW is the word and C is the class. This formula can be

simplified to IðX; YÞ ¼ HðYÞ � HðYjXÞ or

IðX; YÞ ¼ HðXÞ � HðXjYÞ, where HðXÞ and HðYÞ are

marginal entropy values and HðXjYÞ and HðY jXÞ are

conditional entropy values. HðXjYÞ and HðY jXÞ are values
that indicate the amount of uncertainty left after HðXÞ or

HðYÞ are learned.

The PRC metric measures the area under the curve of

Recall on the x-axis and Precision on the y-axis. Recall is

defined as the True Positive Rate (TPR) and Precision is

defined as the fraction of instances classified as positive

that are actually positive.

The ROC metric measures the area under the curve of

False Positive Rate (FPR) on the x-axis and TPR on the y-

axis. This directly indicates model performance, where the

higher the area under the ROC curve the better the model

performance across all thresholds.

Probability Ratio was used for text classification in

Forman (2003) and was defined as the probability of the

feature given the positive class divided by the sample

estimate probability of the feature given the negative class.

The formula (TPR/FPR) describes the probability ratio

between the positive and negative classes.

The Gini-Index was originally utilized for measuring

income over a population. The Gini-Index has a range from

0 to 1, which indicates the following: GI ¼ 0 implies the

income is split evenly across the population, and GI ¼ 1

means that a single person receives all the income. The

feature ranker version of the Gini-Index analyzes the dis-

tribution of a feature across the classes.

The KS statistic is a nonparametric test that measures the

difference in the cumulative distribution of two data sets.

SAM was originally created for detecting significance in

microarrays within the bioinformatics domain. SAM com-

pares the observed and expected values of the parameter to

identify features whose associated values differ by an amount

of statistical significance among the sets (Tusher et al. 2001).

3.3 First-order statistics techniques

The FOS family of techniques are uni-variate feature ran-

kers that use first-order statistic measures, such as mean,

mode and standard deviation, to rank features in order of

importance. In our experiments, two feature rankers from

this family are used: signal-to-noise (S2N) (Chen and

Wasikowski 2008) and Wilcoxon Rank Sum (WRS)

(Breitling and Herzyk 2005).

The signal-to-noise ratio represents the ratio of signal

information to noisy background information. This process

can be used to determine how well a feature discriminates

between two classes. The formula for S2N is:

S2N ¼ ðlP � lNÞ
ðrP þ rNÞ

where lP is the mean of the positive class, lN is the mean

of the negative class, rP is the standard deviation of the

positive class, and rN is the standard deviation of the

negative class.

The Wilcoxon Rank Sum is a variation of the standard t-

statistic. In a standard t-statistic, the distribution is assumed

to be normal, while in the WRS no assumption on the

distribution is made. There are two steps to be performed

before defining the WRS: (1) all instances are ranked based

on the value of the feature, and (2) all the rankings in the

positive class are summed as Wp. The formula for WRS is:

WRS ¼
Wp � npðnpþ1Þ

2

� �
� npnn

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npnnðnpþnnþ1Þ

12

q
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4 Ensemble techniques

Two different ensemble algorithms are used in our study:

Boosting and Bagging. These techniques are similar in

that they combine multiple instances of a base learner to

generate a more robust and generalized classifier; how-

ever, the process by which this is achieved is different.

Boosting takes an iterative approach; training and evalu-

ating a model using a classifier, then training and evalu-

ating subsequent classifiers based on the results of the

previous classification (Freund and Schapire 1996). In our

study, we use the AdaBoost family of techniques,

specifically AdaBoost.M1. AdaBoost works by training a

base learner then re-weighting the misclassified instances

and repeating this process every iteration. Therefore, the

subsequent iterations have more focus on the classifica-

tion of previously misclassified instances, due to the

weights. All initial weights are set to one. The algorithm

runs for a predetermined number of iterations, then

aggregates the results of all models to form a final deci-

sion. In our study, ten boosting iterations are performed

and model results are aggregated using majority voting.

Due to the re-weighting step, Boosting is not compatible

with certain base learners; however, a separate approach,

where the instances are re-sampled from the original data

set according to the weights, allows these base learners to

be compatible with Boosting. This data sampling

approach is applied to re-select instances in accordance

with the assigned weights.

Bagging, also known as bootstrap aggregating, uses data

sampling with replacement (re-sampling from the original

data set where the same instances can be re-selected) to

create a predefined number of bootstrap data sets. In our

study, ten bootstrap data sets are created. These new

bootstrap data sets are the same size as the original and

contain instances from the original data set. The bootstrap

data sets are then used to train a single base classifier each.

Once all the classifiers have been trained an aggregation

technique, in our case majority voting, is used to determine

the final classification. Bagging has been shown to increase

performance of weak classifiers but adversely affect the

performance of stable learners (Breiman 1996).

5 Ensemble techniques with feature selection

In addition to Boosting and Bagging, we want to examine

the effects of ensemble techniques that take advantage of

feature selection. Three of these techniques are used in our

study and explained in this section: Select-Boost, Select-

Bagging, and Random Forest.

Select-Boost is a modified version of the AdaBoost.M1

algorithm developed by our research team. The Select-

Boost (Prusa et al. 2015) framework embeds feature

selection within the Boosting ensemble framework. As

with Boosting, Select-Boost is also incompatible with

certain base learners due to the re-weighting step. To

mitigate this, we re-sample from the original data set

according to the weights assigned and create a new training

data set where the probability of selecting an instance is

equal to its weight. Initially, all samples in the training data

are assigned equal weights. The data is then sampled from

the original data set. Feature selection is applied and

classifiers are trained on the reduced feature space. The

weights are then updated based on misclassified instances

and the Select-Boost algorithm begins anew. As with

Boosting, we use ten iterations of the Select-Boost

framework. Figure 1 depicts the Select-Boosting frame-

work. The dotted line represents the path the framework

takes once all iterations have finished.

Select-Bagging (Prusa et al. 2015), like Select-Boosting,

adds a feature selection step to the Bagging algorithm. The

Select-Bagging framework first creates a predefined num-

ber of bootstrap data sets from the original through sam-

pling with replacement. As with Bagging, ten bootstrap

data sets are created for Select-Bagging. Feature Selection

is applied to every bootstrap data set and then each data set

is used to train a classifier. The results of those trained

classifiers are aggregated and a final classification is made

through majority voting. Figure 2 shows the Select-Bag-

ging framework.

6 General methodology

This section describes the general methodology for our

experiments with ensemble and feature selection tech-

niques. We describe the data set, the base learners, cross-

validation, and the performance metric.

Fig. 1 Select-Boosting framework
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6.1 Data set

Our data set originated from the study by Li et al. (2014).

The data set contains spam reviews from three distinct

domains: doctors, hotels, and restaurants. The original data

set was obtained through as similar process as used in Ott

et‘al. (2011), using AMT. AMT (Buhrmester and Goslining

2011) is a service provided by Amazon which gives cus-

tomers access to an on-demand, scalable workforce. This

workforce was employed to create fake reviews using real

reviews as a baseline. As AMT uses regular workers,

whom may have no knowledge of domain keywords, the

word distributions found in the reviews are significantly

different from word distributions found in real reviews

(Mukherjee et al. 2013). These synthetic reviews are not

always representative of real-world spam data; to coun-

teract this, domain experts were hired to create false

reviews for their specific domains. For example, an

employee in a doctor’s office was asked to write false

reviews for their practice. Li et al. (2014) posited

employees would have a better grasp on daily processes

which would lead to a better synthetic spam reviews. Two

examples of reviews from the data set can be found below.

From a human standpoint, determining which is spam

between the two from reading the text alone is near

impossible. The following review is an untruthful spam

review:

The rates at The Talbott Hotel were cheaper than I

had expected, and that was my reason for booking a

room. I had been prepared for service and a room

similar to what I had experienced in the past, and I

was quite pleased when I did stay. The room was neat

and clean, and the halls were quiet at night. The

traffic noise was muffled to the point where it was no

problem sleeping either. I did ask one question at the

service desk and they answered it nicely, which is

good because normally hotel workers can be a bit

snippy, especially at night. Overall I had no problems

with The Talbott Hotel and I would stay at this here

again if I were in the area a second time.

The following review is a truthful review, created by a

guest who stayed in the hotel:

My husband & I stayed at the Fitzpatrick in early

June 2004 for my birthday-great hotel! Location

provides easy walking to Navy Pier, Marshall Field,

Michigan Avenue & John Hancock. Room seemed

spacious even though its only about 300 sq ft. Lots of

room in bathroom; comfortable bed; very quiet,

upscale hotel. We would definitely stay here again!

The data set characteristics can be found in Table 1. The

domain of review spam detection suffers from a lack of

data sets representative of real-world scenarios. To the best

of our knowledge, this data set is the closest publicly

available text-based spam review data set representative of

real-world data. The data set contains the text found in the

review, the rating given, the domain the review belongs to,

and the class label. For our purposes, the rating and domain

information are not required as we are interested in using

only text; thus, they are removed from the data set. To

create the feature set, the StringToWordVector filter in

Weka is used. While StringToWordVector can output a

variety of word vector representations, we elect to use a

bag-of-words representation over TF-IDF as preliminary

studies have found it to be more effective. The

StringToWordVector filter in Weka returns the number of

words specified in the WordsToKeep parameter based on

word frequency. However, if there is a tie in the word

frequencies, it returns all the words with that specific

frequency, causing more words to be returned than the

specified number. To remedy this, we created the

ExactStringToWordVector filter that returns the exact

number of words specified in WordsToKeep parameter.

ExactStringToWordVector samples randomly from the

Fig. 2 Select-Bagging framework

Table 1 Data set characteristics

Domain Truthful Spam Total

Doctors 200 356 556

Hotels 800 1080 1880

Restaurants 200 200 400

Total 1200 1636 2836
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words that have equal frequency. If a value larger than the

number of unique words in a document is specified for the

WordsToKeep parameter, all unique words are extracted as

features.

6.2 Base learners

In this study, we use five base learners: naı̈ve Bayes (NB),

multinomial naı̈ve Bayes (MNB), support vector machine

(SVM), logistic regression (LR), and C4.5 decision tree

(C4.5) in combination with the Boosting and Bagging

ensemble techniques. We provide only a brief discussion of

these learners here, since they are all well-understood

classifiers. However, an interested reader may consult the

provided references for more information. All models in

this paper are built using the Weka data mining open-

source software package (Hall et al. 2009) with default

parameter values, unless otherwise specified. Note that any

changes to default parameter values were applied when

experimentation showed an overall improvement of the

classification performance based on preliminary analysis.

Naı̈ve Bayes (Rish 2001) falls under the category of

Bayesian learners. Naı̈ve Bayes uses Bayes’ theorem to

approximate the posterior probability of an instancebelonging

to a class based on its feature values (Witten and Frank 2005).

Naı̈ve Bayes makes the ‘‘naı̈ve’’ assumption that all features

are independent. Although, in general, this is not the casewith

the majority of features, naı̈ve Bayes still offers good perfor-

mance and we consider it a good baseline learner for com-

parisons. The formula for naı̈ve Bayes is found below:

ŷ ¼ pðCkÞ
Yn

i¼1

pðxijCkÞ

where ŷ is the predicted class, pðCkÞ is the probability of

the instance belonging to class k, and
Qn

i¼1 pðxijCkÞ is the
product of all conditional probabilities for the features

associated with the instance.

Multinomial naı̈ve Bayes (McCallum and Nigam 1998)

is a variant of the naı̈ve Bayes learner. The main difference

between NB and MNB is the way in which the probabilities

are calculated. Naı̈ve Bayes uses conditional probabilities

of each feature to help determine classification status. In

multinomial naı̈ve Bayes for text classification, the

instance (a document in this example) is assigned to the

class which has the highest conditional probability of

PðCjXÞ. To calculate this probability, a count is done of the
words which overlap between the document and the class,

and then the count is divided by the total number of words.

If PðC1jXÞ[PðC2jXÞ then the document is classified as

C1; otherwise, it is classified as C2. The MNB algorithm

does not take any parameters, thus no changes can be made

to the default function within Weka.

Support vector machine (Hsu et al. 2003) constructs a

hyper-plane that divides the instances into two groups. The

data may be transformed via a kernel function into linearly

separable spaces. The transformations allow for nonlinear

boundaries to be formed around the data. The best such

hyper-plane would be the one that maximizes the distance

between the hyper-plane and members of each class. For

our models, the complexity constant ‘‘c’’ was set to 5.0 and

the ‘‘buildLogisticModels’’ parameter set to ‘‘true.’’

Logistic regression (Hosmer and Lemeshow 2004) seeks

to find a linear relationship between the features and the

class label. This process is different from linear regression

as it is used for the task of classification. Logistic regres-

sion aims to create a probability function that uses features

as inputs and returns the probability of that instance

belonging to a class as an output. Logistic regression was

chosen due to its simplicity and effectiveness. The formula

for logistic regression can be found below:

log
P

1� P
¼ b0 þ b1X1 þ b2X2 þ � � � þ bnXn

where P
1�P

is the odds ratio, Xi is the value for that feature,

and bi is the coefficient associated with feature Xi.

The final learner, C4.5 decision tree (Quinlan 2014),

creates a tree based on the features that discriminate the

most between classes. The decision tree process uses IG to

determine a decrease in entropy when examining a certain

feature. The tree splits at the feature that minimizes entropy

and maximizes information for a class, meaning the more

discriminant features will be found toward the top of the

tree. The final classification is found in the leaves of the

tree. When constructing the trees, we implement ‘‘Laplace

smoothing’’ and ‘‘no pruning’’ as this increased perfor-

mance in previous studies (Witten and Frank 2005).

6.3 Cross-validation and performance metric

All models are trained using four runs of fivefold cross-

validation. For each run of cross-validation, the data is split

into five separate folds. At any time, four of the fivefolds

are used to train the data, while the last fold is used to

evaluate the model. This process is repeated five times,

varying the fold that is used for testing so every fold is used

for testing once. We chose to use cross-validation over

random sampling as all the data is used both to test and

train the model in cross-validation, while only part of the

data is used with a random sampling approach. Four runs of

fivefold cross-validation are performed to reduce the bias

due to an unlucky split in the data when creating the folds.

The results of the four runs of fivefold cross-validation are

averaged for final results.

We elect to use the Area Under the receive operator

characteristic Curve (AUC) as a performance metric
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(Witten and Frank 2005). This metric is chosen because it

plots the performance of the model across all decision

thresholds. The AUC is a graph of the False Positive Rate

versus the True Positive Rate. The area under the curve

shows performance of the model across all decision

thresholds, thus the larger the area under the curve, the

better the performance of the model. This is not to be

confused with the TBFS technique ROC, which uses AUC

to rank features.

7 Case Study I: plain classification and feature
selection

7.1 Non-ensemble

We consider results for classification using the base

learners and word frequency in the interest of having a

baseline for comparison with ensemble methods and fea-

ture selection techniques. For this purpose, we examine

how our five learners perform for a variety of features, as

we vary the number of words extracted by changing the

WordToKeep parameter which selects words based on

frequency. In Fig. 3, we see the resulting AUC values of

the models generated using the base learners and varying

levels of features based on frequency. We use a modified

version of the StringToWordVector in the WEKA toolkit

(Hall et al. 2009). This modified version returns the num-

ber of words specified in the frequency selection option

WordsToKeep. For example, if you specify 100 Word-

sToKeep, you will receive 100 distinct words based on the

frequency of the word in the data set. This allows for

comparison between word frequency performance and

performance of features chosen by a feature ranker. Word

frequency selection is used with 46 feature subset sizes

ranging from 100 to 20,000 to determine performance of

word frequency as a feature ranker (20,000 is chosen as the

upper limit and encompasses the full feature set as the data

set contains less than 20,000 unique words).

In Fig. 3, it can be seen that the best performing learner

is multinomial naı̈ve Bayes and its performance improves

as WordsToKeep (the number of features used to train the

classifier) increases; however, other learners do not follow

this trend. C4.5 and NB level off at approximately 2000

features. LR has the highest performance when using

approximately 6500 features. SVM performance levels off

at approximately 10,000 features. To aid in the choice of

the best learner and number of features, we conduct a two-

factor ANalysis Of VAriance (ANOVA) to confirm both

the choice of learner and the number of features that are

significantly impacting classifier performance. The results

of the ANOVA test are presented in Table 2A and show

both factors and their interactions are significant.

We conduct further tests using Tukey’s honestly sig-

nificant difference (HSD) test to group factors by con-

ducting pairwise similarity tests and determining whether

the choice between two levels of a factor is significant.

First, we wish to determine which learner, without

ensemble technique, is best. If the classifiers share the same

letter, then the difference in performance is not statistically

significant. Table 2B shows that multinomial naı̈ve Bayes

is the best learner across all levels. From Fig. 3, we see that

performance for multinomial naı̈ve Bayes increases with

number of features; however, from the figure alone we

Fig. 3 Classification with word

frequency
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cannot determine when this increase is no longer signifi-

cant. To determine the top performing subset size, an

additional HSD test, found in Table 3, is conducted with

feature subset sizes ranging from 100 to 20,000. We found

there is no significant difference when using more than 900

features; however, the highest AUC (0.8995) is observed

using the full feature set. Thus, multinomial naı̈ve Bayes

with the full feature set will be used as the plain classifier

in comparison with feature selection in the following

section.

7.2 Feature selection

We would like to confirm the effects of feature selection on

spam review detection to determine whether to use word

frequency or feature selection as a baseline with which to

compare ensemble techniques in Case Study II. To test

performance of each feature selection technique, we use all

base learners and subset sizes ranging from 100 to 1000, as

this was shown to be a good range of feature subset size

(Crawford et al. 2016). As it is difficult to distinguish

significant differences between the rankers, a Tukey’s HSD

test, at a 95% confidence level, is used to conduct pairwise

similarity tests to determine whether the differences

between two given rankers is statistically significant.

Table 4 presents the results of this test, summarized by

placing rankers into groups. Both Chi-squared and signal-

to-noise belong to the top group, while ROC, KS, MI and

PRC are all in the second group. The remaining rankers

perform considerably worse than these 6 rankers.

In Fig. 4, classification results for Chi-Squared are

compared against those using word frequency. Chi-

Squared is chosen over signal-to-noise as it is more

commonly used and the results for both signal-to-noise

and Chi-squared are similar across all classifiers as shown

in Table 4. We do not provide the results for every fea-

ture selection technique against every learner, as the

emphasis of this study is on ensemble methods with

feature selection and not feature selection alone. We see

that as subset size increases, the difference between Chi-

Squared and word frequency decreases. Subfigures a and

c show performance for subset sizes up to 5000, while

subfigures b, d, and e show performance up to 10,000.

This subset size difference is due to performance; for

C4.5 and NB there is no difference in performance

between word frequency and Chi-Squared past 5000

features, while for LR, MNB, and SVM there is a dif-

ference up to 10,000 features. Figure 4 shows word fre-

quency performing as well as a feature ranker when

working with larger subset sizes. As more features

(words) are used, the overlap in feature sets between

feature ranker and word frequency increases, leading to

similar performance. It is important to note that, with

either Chi-Squared or word frequency, multinomial naı̈ve

Bayes has the highest AUC scores for most subset sizes.

Additionally, multinomial naı̈ve Bayes’ performance

increases with the number of features when using Chi-

Squared, though these changes are not significant. The

difference between Chi-Squared and word frequency is

minimal when using larger subset sizes. In the case study

on algorithms combining ensemble and feature selection

techniques presented in the following section, signal-to-

noise, Chi-squared, and Mutual Information are chosen as

the feature selection techniques to be embedded within

ensemble learners. We elect to use S2N and CS due to their

performances, as both techniques fall under group ‘a’. MI

is selected because of it’s performance in other social

media/text domains, such as sentiment analysis (Prusa

Table 2 ANOVA and Tukey’s HSD test for plain classification

Df Sum Sq Mean Sq F value Pr([F)

(A) ANOVA for plain classification

Subset Size 45 4.34 0.10 127.73 0.0000

Learner 4 15.01 3.75 4976.04 0.0000

Subset Size:Learner 160 7.25 0.05 60.09 0.0000

Residuals 3990 3.01 0.00

Rank Learner Group AUC SD

(B) Tukey’s HSD test for the base learners using word frequency

1 MNB a 0.878 0.034

2 SVM b 0.847 0.027

3 NB c 0.821 0.032

4 LR d 0.734 0.107

5 C4.5 e 0.722 0.025
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et al. 2015). We consider this to be a similar domain as

both are considered social media, both are online and

publicly viewable, both are user-generated, and both con-

tain short texts. This allows us to explore the effects of

Select-Boost and Select-Bagging on top scoring rankers

and a group ‘b’ ranker, resulting in a more robust

experiment.

8 Case Study II: ensemble techniques

This section presents results related to the ensemble tech-

niques and the combination of ensemble techniques and

feature selection. We first present results for Boosting and

Bagging; then, we present results for RF, Select-Boost, and

Select-Bagging.

8.1 Boosting and Bagging

Results for our experiments utilizing Boosting and Bagging

can be found in Table 5. From Table 5, we observe the top

performing combination is MNB with Boosting. Bagging

shows higher AUCs for three of the five learners (C4.5, LR,

SVM), while Boosting produces higher AUCs for the

remaining two (MNB, NB).

To determine whether Boosting or Bagging statistically

improve over the base learners, we perform a two-factor

ANOVA and a Tukey’s HSD test. Table 6 presents both

the ANOVA and Tukey’s HSD results for Boosting, Bag-

ging and the base learners. The two-factor ANOVA test is

presented in Table 6A. The factors for this ANOVA are

ensemble techniques and base learners. Ensemble tech-

niques include Boosting and Bagging, while the base

learners are NB, MNB, SVM, C4.5, and LR. The ANOVA

results show there is a significant difference between base

Table 3 Tukey’s HSD test for WordsToKeep with MNB

Rank WordsToKeep Group AUC SD

1 20,000 a 0.900 0.013

2 10,000 a 0.899 0.013

3 9500 a 0.899 0.014

4 9000 a 0.899 0.014

5 8500 a 0.899 0.013

6 8000 a 0.899 0.013

7 7500 a 0.899 0.013

8 7000 a 0.898 0.013

9 6500 a 0.898 0.013

10 6000 a 0.898 0.014

11 5500 a 0.897 0.014

12 5000 a 0.896 0.014

13 4800 a 0.896 0.014

14 4600 a 0.895 0.014

15 4400 ab 0.895 0.014

16 4200 ab 0.894 0.014

17 4000 ab 0.894 0.015

18 3800 ab 0.893 0.015

19 3600 ab 0.893 0.015

20 3400 ab 0.892 0.015

21 3200 ab 0.892 0.016

22 3000 abc 0.891 0.016

23 2800 abc 0.890 0.016

24 2600 abc 0.889 0.016

25 2400 abc 0.888 0.016

26 2200 abc 0.887 0.016

27 2000 abc 0.884 0.017

28 1900 abcd 0.883 0.016

29 1800 abcd 0.882 0.017

30 1700 abcd 0.881 0.016

31 1600 abcd 0.879 0.017

32 1500 abcd 0.878 0.017

33 1400 abcde 0.877 0.019

34 1300 abcdef 0.874 0.019

35 1200 abcdef 0.872 0.018

36 1100 abcdef 0.868 0.018

37 1000 abcdef 0.867 0.018

38 900 abcdef 0.863 0.018

39 800 bcdef 0.858 0.018

40 700 cdef 0.855 0.021

41 600 defg 0.847 0.021

42 500 efg 0.841 0.022

43 400 fg 0.839 0.022

44 300 gh 0.815 0.023

45 200 hi 0.792 0.025

46 100 i 0.756 0.025

Table 4 Tukey’s HSD test of feature selection techniques across all

classifiers with feature subset sizes from 100 to 1000

Feature selection Group AUC SD

S2N a 0.822 0.061

CS a 0.821 0.062

ROC b 0.818 0.054

KS b 0.818 0.054

MI b 0.817 0.054

PRC b 0.816 0.054

SAM c 0.661 0.060

WRS d 0.614 0.050

GI e 0.605 0.072

PR e 0.604 0.070
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learners, ensemble methods, and the interaction between

them.

From Table 6B, we see the average AUC and Tukey’s

groups across all experiments for Boosting and Bagging.

There are eight distinct groupings: ‘a’ through ‘f’. These

results indicate that ensemble techniques significantly

increase performance of SVM, LR, NB, and C4.5.

Bagging significantly increases performance over the base

SVM and LR learners, while Boosting significantly

increases performance of LR, NB, and C4.5. We see that

the best base learner is MNB. Moreover, the differences

between MNB with and without ensemble techniques are

not significant; however, not using an ensemble technique

is faster and less computationally costly. Boosting with

(a) (b)

(c) (d)

(e)

Fig. 4 Average AUC score using feature selection. a C4.5, subset

sizes from 100 to 5000, b logistic regression, subset sizes from 100 to

10,000, c naı̈ve Bayes, subset sizes from 100 to 5000, d multinomial

naı̈ve Bayes, subset sizes from 100 to 10,000 and e support vector

machines, subset sizes from 100 to 10,000
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MNB does produce the highest AUC and the lowest

standard deviation.

8.2 Random Forest

Random Forest provides an different ensemble approach

when compared to Bagging and Boosting and performs its

own internal random feature selection; thus, the classifier is

trained using the full feature set. This ensemble technique

does not directly use feature rankers, but does perform

random feature subspace selection at every node within a

tree. Presented in Table 7, a Tukey’s HSD test includes

AUC scores for each of the three RF tree sizes and for the

C4.5 learner. The result for the C4.5 learner is included as a

baseline for comparison, as it is a single decision tree. All

RF tree sizes significantly outperform the C4.5 baseline.

Moreover, the results show that RF250 and RF500 perform

significantly better than RF100, but there are no significant

differences between RF250 and RF500. If we compare

results in Table 7, we see RF500 generates the highest

AUC score.

8.3 Select-Boost and Select-Bagging

Figure 5 presents results for ensemble classifiers trained

using Select-Boost and Select-Bagging grouped by feature

ranker (Signal-to-Noise, Chi-Squared, and Mutual Infor-

mation) and ensemble method (Select-Bagging and Select-

Boosting). In each subfigure, AUC for each learner is

plotted against the number of attributes selected.

From the subfigures, there are several important trends

that warrant further discussion. First, Select-Boost yields

higher performance than Select-Bagging for all rankers.

We have seen this trend in previous work, where we found

Select-Boost outperforms Select-Bagging in the text clas-

sification domain (Prusa et al. 2015). Second, as seen in

Fig. 5, multinomial naı̈ve Bayes produces the highest AUC

for any base learner using Select-Boost.

We are interested in which factors (base learner,

feature selection technique, ensemble approach, and

subset size) are significant; thus, we conduct a four-

factor ANOVA. Results are shown in Table 8 and indi-

cate that all four factors and many of their interactions

are significant. To investigate each factor: base learner,

feature selection (FS in the table), ensemble method

(ensemble in the table), and subset size, we conduct

Tukey’s HSD tests on each factor. Our HSD test for base

learners, presented in Table 9A, shows that multinomial

naı̈ve Bayes and SVM are the top performing learners

and the difference between them and other learners is

significant; however, the difference between MNB and

SVM is not significant. Table 9B shows that Chi-

Squared or Signal-to-Noise should be chosen over

Mutual Information. As the difference between using

Signal-to-Noise and Chi-Squared is not significant and

Chi-Square is more readily available, we will be using

Chi-Squared for future experiments. Table 9C shows

Select-Boost performs significantly better than Select-

Table 5 AUC results for Boosting and Bagging across five base

learners and all feature subset sizes

Rank Learner Boosting Bagging

1 MNB 0.902 0.900

2 SVM 0.879 0.889

3 LR 0.876 0.888

4 NB 0.874 0.833

5 C4.5 0.827 0.823

Table 6 ANOVA and Tukey’s HSD for Boosting and Bagging

Df Sum Sq Mean Sq F value Pr([F)

(A) ANOVA Results for Boosting and Bagging

Learner 4 0.41 0.10 345.73 0.0000

Ensemble 2 0.07 0.04 123.41 0.0000

Learner:Ensemble 8 0.09 0.01 37.31 0.0000

Residuals 275 0.08 0.00

Rank Model Group AUC SD

(B) Tukey’s HSD test AUC values for Boosting and Bagging

1 MNB:Boosting a 0.902 0.009

2 MNB:Bagging a 0.900 0.014

3 MNB:None a 0.900 0.013

4 SVM:Bagging ab 0.889 0.011

5 LR:Bagging ab 0.888 0.011

6 SVM:Boosting bc 0.879 0.012

7 LR:Boosting bcd 0.876 0.015

8 NB:Boosting bcd 0.874 0.011

9 SVM:None cd 0.867 0.014

10 LR:None d 0.857 0.027

11 NB:Bagging e 0.833 0.028

12 NB:None e 0.829 0.026

13 C4.5:Boosting e 0.827 0.013

14 C4.5:Bagging e 0.823 0.019

15 C4.5:None f 0.728 0.018

Table 7 Tukey’s HSD test for Random Forest and C4.5

Rank Model Group AUC SD

1 RF500 a 0.907 0.016

2 RF250 a 0.899 0.017

3 RF100 b 0.876 0.015

4 C4.5 c 0.729 0.020
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(a) (b)

(c) (d)

(e) (f)
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Bagging. These tests indicate the best performing clas-

sifiers are trained with Select-Boost using Chi-Squared,

or Signal-to-Noise, as a ranker and MNB, or SVM, as a

base learner.

In Fig. 5, we see that the AUC values for Select-Boost

are higher than Select-Bagging and Table 9C shows this

difference is significant. Furthermore, we observe higher

AUC values when using MNB as the base learner within

Select-Boost, thus we elect to examine this combination

further. There is little change in AUC for multinomial

naı̈ve Bayes, across feature subset sizes with Select-

Boost. As this is our best performing learner, further

investigation is warranted to determine the optimal subset

size. A Tukey’s HSD test will determine if feature subset

size significantly impacts classifier performance with

MNB as the learner and Chi-Squared as the ranker.

Results, presented in Table 10, show that there are no

significant differences as all subset sizes are in the same

group; however, 400 features resulted in the highest

observed AUC.

8.4 Comparisons

The results presented in the previous sections indicate that

multinomial naı̈ve Bayes is the best performing learner,

when using no ensemble technique, and one of the top base

learners when using the Select-Boosting ensemble

framework. Thus, it is of interest to compare how this

learning algorithm performs, both with and without the

Select-Boost framework, and also how it compares to the

best performing models generated with Random Forest.

Additionally, we have yet to compare ensemble algorithms

with no feature selection and ensemble methods with fea-

ture selection. Thus, we compare RF250 and RF500, MNB

as a classifier, and Select-Boost with Chi-Squared and 400

features, Bagging, and Boosting using MNB.

Table 11A presents a one-factor ANOVA result (choice of

model) for the previously stated classifiers. In the case of this

bFig. 5 Results for Select-Boost and Select-Bagging. a Chi-Squared

with Select-Boosting, b Chi-Squared with Select-Bagging, c Mutual

Information with Select-Boosting, d Mutual Information with Select-

Bagging, e Signal-to-Noise with Select-Boosting, f Signal-to-Noise

with Select-Bagging

Table 8 ANOVA for ensemble

classifiers
Df Sum Sq Mean Sq F value Pr([F)

Base Learner 4 2.80 0.70 2851.65 0.0000

Subset Size 9 0.09 0.01 42.25 0.0000

FS 2 0.08 0.04 155.24 0.0000

Ensemble 1 0.80 0.80 3253.94 0.0000

Base Learner:Subset Size 36 0.58 0.02 65.14 0.0000

Base Learner:FS 8 0.02 0.00 11.96 0.0000

Subset Size:FS 18 0.02 0.00 4.93 0.0000

Base Learner:Ensemble 4 0.53 0.13 544.35 0.0000

Subset Size:Ensemble 9 0.10 0.01 44.91 0.0000

FS:Ensemble 2 0.01 0.00 17.89 0.0000

Base Learner:Subset Size:FS 72 0.03 0.00 1.87 0.0000

Base Learner:Subset Size:Ensemble 36 0.11 0.00 12.92 0.0000

Base Learner:FS:Ensemble 8 0.00 0.00 1.84 0.0656

Subset Size:FS:Ensemble 18 0.01 0.00 1.83 0.0176

Base Learner:Subset Size:FS:Ensemble 72 0.02 0.00 1.15 0.1886

Residuals 5700 1.40 0.00

Table 9 Tukey’s HSD for base learners, feature rankers, and

ensemble techniques

Rank Learner Group AUC SD

(A) Tukey’s HSD test for base learners

1 SVM a 0.895 0.015

2 MNB a 0.893 0.024

3 LR b 0.862 0.029

4 NB c 0.857 0.034

5 C4.5 d 0.839 0.020

Rank Feature selection Group AUC SD

(B) Tukey’s HSD test for feature rankers

1 CS a 0.872 0.034

2 S2N a 0.872 0.034

3 MI b 0.864 0.031

Rank Ensemble Group AUC SD

(C) Tukey’s HSD test for ensemble approaches

1 Select-Boost a 0.881 0.028

2 Select-Bagging b 0.858 0.034
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ANOVA, model encompasses the combination of base lear-

ner, feature selection technique and ensemble technique.

From Table 11A, we note that the choice of model is signif-

icant, thus, we use a Tukey’s HSD test to determine the dif-

ference between the six rankers. Table 11B presents a

Tukey’s HSD test showcasing the AUC values for each of

these techniques grouped by pairwise similarity. Figure 6

depicts the results found in Table 11B where each model is

shown along with their confidence interval. If there is no

overlap between two models, then their averages are signifi-

cantly different. We observe that there are two groups ‘a’ and

‘b’. The bottom group, ‘b’, contains RF250, MNB as a clas-

sifier, and Boosting and Bagging using MNB. Group ‘a’

contains the Select-Boost algorithmwith the previously listed

components, implying Select-Boost performs significantly

better than RF250, Bagging, Boosting, and MNB with no

ensemble technique. RF500 is in group ‘ab’ indicating no

statistically significant difference from the other classifiers.

9 Discussion

Our results show a combination of Select-Boost, multino-

mial naı̈ve Bayes and, either Chi-Squared or Signal-to-

Noise, significantly outperforms all methods except RF500.

However, it is interesting to note that while Select-Boost

improves performance significantly, the components which

create the Select-Boost framework do not increase perfor-

mance when applied separately.

Feature selection techniques alone do not improve

classification over the full data set, in fact, feature selection

shows degraded performance with lower feature set sizes.

This could be due to properties specific to this data set. The

data set contains reviews from three domains, features

(words) that determine spam in one domain may not be the

same for a different domain. For example, the word ‘small’

may be positive in respect to cell phones, but negative in

respect to hotel rooms. Thus, the reduced feature set may

not be able to discriminate between truthful and untruthful

reviews across all three domains, leading to lower classi-

fication performance.

We also observe that, while boosting increases the AUC

of our MNB model, the difference is not significant. It is

likely that Boosting and Bagging show no improvement

over the base MNB model because they do not address the

high dimensionality of the data. When we compare Select-

Boost to ensemble techniques using feature selection (RF

and Select-Bagging), we see closer performance. Select-

Boost still outperforms Select-Bagging, RF100, and

RF250. However, the difference between RF500 and

Select-Boost not significant. Overall, we recommend

Select-Boost over RF500, since Select-Boost has less

variance than RF500, most likely due the independent

trees, and is faster than RF500.

Table 10 Tukey’s HSD test for feature subset size with multinomial

naı̈ve Bayes and Select-Boost with Chi-Squared

Rank Feature set size Group AUC SD

1 400 a 0.916 0.011

2 200 a 0.915 0.010

3 300 a 0.915 0.010

4 500 a 0.914 0.010

5 600 a 0.914 0.011

6 900 a 0.912 0.008

7 700 a 0.912 0.009

8 800 a 0.912 0.009

9 1000 a 0.911 0.012

10 100 a 0.909 0.010

Table 11 ANOVA and Tukey’s results for models

Df Sum Sq Mean Sq F value Pr([F)

(A) ANOVA for RF500 and RF250, and Select-Boost, Bagging, Boosting and plain classification using MNB

Model 5 0.00 0.00 4.94 0.0004

Residuals 114 0.02 0.00

Rank Model Group AUC SD

(B) Tukey’s HSD test for RF500 and RF250, and Select-Boost, Bagging, Boosting and plain classification using MNB

1 Select-Boost a 0.916 0.011

2 RF500 ab 0.907 0.016

3 Boosting b 0.902 0.009

4 Bagging b 0.900 0.014

5 MNB b 0.900 0.013

6 RF250 b 0.899 0.017
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Select-Boost significantly outperforms Select-Bagging,

implying an aspect of the Select-Boost’s iterative frame-

work significantly affects performance. This performance

difference may be due to a combination of the re-weighing

step found in Boosting and feature selection done in Select-

Boost. The Select-Boost framework re-weights instances

every iteration, with greater weight being placed on pre-

viously misclassified instances, by re-sampling (with

replacement) from the original data set with probabilities of

selecting instances determined by their weight. As feature

selection is performed during every iteration, after the re-

sampling step (where misclassified instances are more

likely to be present), the weights assigned to the instances

directly affect the features chosen by our feature rankers.

Every iteration allows for more focus on misclassified

instances and their features, which leads to a more opti-

mized feature set as the Select-Boosting framework pro-

gresses. Thus, Select-Boost is more effective than Select-

Bagging, which performs feature selection on randomly

sampled data bootstraps, and offers a significant improve-

ment in classification performance, whereas Boosting and

feature selection, individually, do not.

10 Conclusion

In this study, we tested the performance of ensemble

classifiers, classification using feature selection, and the

combination of both on spam review detection. We eval-

uated the performance of Select-Boost and Select-Bagging

against Random Forest, feature selection, Boosting and

Bagging. Select-Boost and Select-Bagging were employed

with five learners, three feature selection techniques, and

subset sizes ranging from 100 to 1000 in increments of 100.

Random Forest was done using three tree sizes: 100, 250

and 500. Ten feature selection techniques were used with

subset sizes ranging from 100 to 20,000. The effects of

ensemble classifiers on spam review detection had previ-

ously not been explored. As spam reviews make up more

than a third of all online reviews, the exploration of

advanced machine learning techniques, to further current

methods for the detection of spam reviews, becomes

increasingly necessary.

Our results show that feature selection has degradative

effects on classification performance when compared to

using the full feature set. The performance of the model

steadily increases as feature set size increases, although this

increase is no longer significant above 900 features when

using word frequency. Ensemble techniques, without fea-

ture selection, had no significant effect on classification

performance for spam detection. However, using Select-

Boost, a combination of feature selection and boosting,

significantly increased classification performance. Select-

Boost significantly outperformed the base MNB classifier,

Boosting, Bagging, Select-Bagging, RF100, and RF250.

Select-Boost provides a higher AUC value than all other

learners; however, the difference between Select-Boost and

RF500 was not significant.

We recommend the use of Select-Boost over Select-

Bagging. The re-weighting step in Select-Boost is crucial

in generating an optimized, reduced feature set, allowing

for significantly better performance, since each iteration

selects a new subset of features that aid in the correct

classification of previously misclassified instances. Select-

Boost should be chosen over RF500 as it results in a higher

AUC, although not significantly different, and is faster. We

found using the combination of Select-Boost, multinomial

naı̈ve Bayes, Chi-squared and a subset size of 400 has the

highest AUC when detecting spam reviews, although Chi-

Squared and Signal-to-Noise may be interchanged. There is

no significant difference in performance between feature

subset sizes when using feature selection within Select-

Boost, thus, while the highest AUC is observed when

selecting 400 features, computational resources can be

preserved by using a smaller number of features without

significantly degrading classification performance.

Future work may involve testing this process on other

data sets to see if results generalize. Additionally, work

should be conducted to establish what types of features are

the most beneficial, since we only employed text-based

features.
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