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Abstract Dynamics of interactions play an increasingly

important role in the analysis of complex networks. A mod-

eling framework to capture this is temporal graphs which

consist of a set of vertices (entities in the network) and a set of

time-stamped binary interactions between the vertices. We

focus on enumerating D-cliques, an extension of the concept

of cliques to temporal graphs: for a given time period D, a D-

clique in a temporal graph is a set of vertices and a time

interval such that all vertices interact with each other at least

after every D time steps within the time interval. Viard, Lat-

apy, and Magnien (ASONAM 2015, TCS 2016) proposed a

greedy algorithm for enumerating all maximal D-cliques in

temporal graphs. In contrast to this approach, we adapt the

Bron–Kerbosch algorithm—an efficient, recursive back-

tracking algorithm which enumerates all maximal cliques in

static graphs—to the temporal setting. We obtain encour-

aging results both in theory (concerning worst-case running

time analysis based on the parameter ‘‘D-slice degeneracy’’

of the underlying graph) as well as in practice with experi-

ments on real-world data. The latter culminates in an

improvement for most interesting D-values concerning

running time in comparison with the algorithm of Viard,

Latapy, and Magnien.

Keywords Data science � Time-varying networks �
D-clique � Community detection � Degeneracy �
Fixed-parameter tractability � Experimental analysis

1 Introduction

Network analysis is one of the main pillars of data sci-

ence. Focusing on networks that are modeled by undi-

rected graphs, a fundamental primitive is the identification

of complete subgraphs, that is, cliques. This is particularly

true in the context of detecting communities in social

networks. Finding a maximum-cardinality clique in a

graph is a classical NP-hard problem, so super-polynomial

worst-case running time seems unavoidable. Moreover,

often one wants to solve the more general task of not only

finding one maximum-cardinality clique but to list all

maximal cliques. Their number can be exponential in the

graph size. The famous Bron–Kerbosch algorithm (‘‘Al-

gorithm 457’’ in Communications of the ACM 1973, Bron

and Kerbosch 1973) addresses this task and still today

forms the basis for the best (practical) algorithms to
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enumerate all maximal cliques in static graphs (Eppstein

et al. 2013). However, to realistically model many real-

world phenomena in social and other network structures,

one has to take into account the dynamics of the modeled

system of interactions between entities, leading to the so-

called temporal networks. In a nutshell, compared to the

standard static networks, the interactions in temporal

networks (edges) appear sporadically over time (while the

vertex set remains static). Indeed, as Nicosia et al. (2013)

pointed out, in many real-world systems the interactions

among entities are rarely persistent over time and the non-

temporal interpretation is an ‘‘oversimplifying approxi-

mation’’. In this work, we use the standard model of

temporal graphs. A temporal graph consists of a vertex set

and a set of edges, each with an integer time stamp. The

generalization of a clique to the temporal setting that we

study is called D-clique and was introduced by Viard

et al. (2015, 2016). Intuitively, being in a D-clique means

to be regularly in contact with all other entities in this D-

clique. In slightly more formal terms, each pair of vertices

in the D-clique has to be in contact in at least every D
time steps. A fully formal definition is given in Sect. 2.

We present an adaption of the framework of Bron and

Kerbosch to temporal graphs. To this end, we overcome

several conceptual hurdles and propose a temporal version

of the Bron–Kerbosch algorithm as a new standard for

efficient enumeration of maximal D-cliques in temporal

graphs.

1.1 Related work

Our work relates to two main lines of research. First,

enumerating D-cliques in temporal graphs generalizes

the enumeration of maximal cliques in static graphs, this

being subject of many different algorithmic approaches

(sometimes also exploiting specific properties such as

the ‘‘degree of isolation’’ of the cliques searched

for) (Bron and Kerbosch 1973; Eppstein et al. 2013; Ito

and Iwama 2009; Hüffner et al. 2009; Komusiewicz

et al. 2009; Tomita et al. 2006). Indeed, clique finding is

a special case of dense subgraph detection. Second, more

recently, mining dynamic or temporal networks for

periodic interactions (Lahiri and Berger-Wolf 2010) or

preserving structures (Uno and Uno 2016) (in particular,

this may include cliques as a very fundamental pattern)

has gained increased attention. Our work is directly

motivated by the study of Viard et al. (2015, 2016) who

introduced the concept of D-cliques and provided a

corresponding enumeration algorithm for D-cliques. In

fact, following one of their concluding remarks on future

research possibilities, we adapt the Bron–Kerbosch

algorithm to the temporal setting, thereby outperforming

their greedy-based approach in most cases.

1.2 Results and organization

Our main contribution is to adapt the Bron–Kerbosch recur-

sive backtracking algorithm for clique enumeration in static

graphs to temporal graphs. In this way, we achieve a signifi-

cant speedup for most interesting time period values D (typ-

ically two orders of magnitude of speedup) when compared to

a previous algorithm due to Viard et al. (2015, 2016) which is

based on a greedy approach. We also provide a theoretic

running time analysis of our Bron–Kerbosch adaption

employing the framework of parameterized complexity

analysis. The analysis is based on the parameter ‘‘D-slice

degeneracy’’ which we introduce, an adaption of the degen-

eracy parameter that is frequently used in static graphs as a

measure for sparsity. This extends results concerning the static

Bron–Kerbosch algorithm (Eppstein et al. 2013). A particular

feature to achieve high efficiency of the standard Bron–Ker-

bosch algorithm is the use of pivoting, a procedure to reduce

the number of recursive calls of the Bron–Kerbosch algo-

rithm. We show how to define this and make it work in the

temporal setting, where it becomes a significantly more deli-

cate issue than in the static case. In summary, we propose our

temporal version of the Bron–Kerbosch approach as a current

standard for enumerating maximal cliques in temporal graphs.

The paper is organized as follows. In Sect. 2, we introduce

all main definitions and notations. In addition, we give a

description of the original Bron–Kerbosch algorithm as well

as two extensions: pivoting and degeneracy ordering. In

Sect. 3, we propose an adaption of the Bron–Kerbosch algo-

rithm to enumerate all maximalD-cliques in a temporal graph,

prove the correctness of the algorithm and give a running time

upper bound. Furthermore, we adapt the idea of pivoting to the

temporal setting. In Sect. 4, we adapt the concept of degen-

eracy to the temporal setting and give an improved running

time bound for enumerating all maximalD-cliques. In Sect. 5,

we present the main results of the experiments on real-world

data sets. We measure the D-slice degeneracy of real-world

temporal graphs, and we study the efficiency of our algorithm,

and compare its running time to the algorithm of Viard et al.

(2015), showing a significant performance increase due to our

Bron–Kerbosch approach. We conclude in Sect. 6, also pre-

senting directions for future research.

2 Preliminaries

In this section, we introduce the most important notations

and definitions used throughout this article.

2.1 Graph-theoretic concepts

In the following, we provide definitions of adaptations to

the temporal setting for central graph-theoretic concepts.
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2.1.1 Temporal graphs

The motivation behind temporal graphs, which are also

referred to as temporal networks (Holme and Saramäki

2012), time-varying graphs (Nicosia et al. 2013), or link

streams (Viard et al. 2015), is to capture changes in a

graph that occur over time. In this work, we use the well-

established model where each edge is given a time

stamp (Viard et al. 2015; Holme and Saramäki 2012;

Boccaletti et al. 2014). Assuming discrete time steps, this

is equivalent to a sequence of static graphs over a fixed set

of vertices (Michail 2016; Erlebach et al. 2015). Formally,

the model is defined as follows.

Definition 1 (Temporal Graph) A temporal graph G ¼
ðV;E; TÞ is defined as a triple consisting of a set of ver-

tices V, a set of time edges E � V

2

� �
� T , and a time

interval T ¼ ½a;x�, where a;x 2 N, T � N and x� a is

the lifetime of the temporal graph G.

The notation
V

2

� �
describes the set of all possible

undirected edges fv1; v2g with v1 6¼ v2 and v1; v2 2 V . A

time edge e ¼ ðfv1; v2g; tÞ 2 E can be interpreted as an

interaction between v1 and v2 at time t. Note that we will

restrict our attention to discretized time, implying that

changes only occur at discrete points in time. This seems

close to a natural abstraction of real-world dynamic sys-

tems and ‘‘gives the problems a purely combinatorial fla-

vor’’ (Michail and Spirakis 2016).

2.1.2 D-Cliques

A straightforward adaptation of a clique to the temporal set-

ting is to additionally assign a lifetime I ¼ ½a; b� to it, that is,

the largest time interval such that the clique exists in each time

step in said interval. However, this model is often too

restrictive for real-world data. For example, if the subject

matter of examination is e-mail traffic and the data set includes

e-mails with time stamps including seconds, we are not

interested in people who sent e-mails to each other every

second over a certain time interval, but we would like to know

which groups of people were in contact with each other, say, at

least every seven days over months. One possible approach

would be to generalize the time stamps, taking into account

only the week an e-mail was sent, resulting in a loss of

accuracy in the data set. The constraint of each pair of vertices

being connected in each time step can be relaxed by intro-

ducing an additional parameter D, quantifying how many

time steps may be skipped between two connections of any

vertex pair. These so-called D-cliques were introduced by

Viard et al. (2015, 2016) and are formally defined as follows.

Definition 2 (D-Clique) Let D 2 N. A D-clique in a

temporal graph G ¼ ðV ;E; TÞ is a tuple C ¼ ðX; I ¼
½a; b�Þ with X � V , b� a�D, and I � T such that for

all s 2 ½a; b� D� and for all v;w 2 X with v 6¼ w there

exists a ðfv;wg; tÞ 2 E with t 2 ½s; sþ D�.

In other words, for a D-clique C ¼ ðX; IÞ all pairs of

vertices in X interact with each other at least after every D
time steps during the time interval I. We implicitly

exclude D-cliques with time intervals smaller than D.

It is evident that the parameter D is a measurement of

the intensity of interactions in D-cliques. Small D-values

imply that the interaction between vertices in a D-clique

has to be more frequent than in the case of large D-values.

The choice of D depends on the data set and the purpose of

the analysis.

We can also consider D-cliques from another point of

view. For a given temporal graph G ¼ ðT ;V;EÞ and

a D 2 N, the static graph GD
s ¼ ðVs;EsÞ describes all

contacts that appear within the D-sized time win-

dow ½s; sþ D� with s 2 ½a;x� D� in the temporal

graph G, that is Vs ¼ V and for every fv1; v2g 2 Es there

is a time step t 2 ½s; sþ D� such that ðfv1; v2g; tÞ 2 E. The

existence of a D-clique C ¼ ðX; I ¼ ½a; b�Þ indicates that

all vertices in X form a clique in all static graphs GD
s

with s 2 ½a; b� D�. This implies that all vertices in X are

pairwise connected to each other in the static graphs of all

sliding, D-sized time windows from time a until b� D.

By setting D to the length of the whole lifetime of the

temporal graph, every D-clique corresponds to a normal

clique in the underlying static graph that results from

ignoring the time stamps of the time edges.

We are most interested in D-cliques that are not con-

tained in any other D-clique. For this, we also need to

adapt the notion of maximality to the temporal set-

ting (Viard et al. 2015, 2016). Let G be a temporal graph.

We call a D-clique C ¼ ðX; IÞ in G vertex-maximal if we

cannot add any vertex to X without having to decrease the

clique’s lifetime I. That is, there is no D-

clique C0 ¼ ðX0; I0Þ in G with I � I0 and X(X0. We say

that a D-clique is time-maximal if we cannot increase the

lifetime I without having to remove vertices from X. That

is, there is no D-clique C0 ¼ ðX0; I0Þ in G with I(I0 and

X � X0. We call a D-clique maximal if it is both vertex-

maximal and time-maximal.

2.1.3 D-Neighborhood, D-cut, and other temporal graph

concepts

In this section, we introduce and define further graph-the-

oretic concepts that need to be adapted to the temporal

setting.
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We refer to a tuple ðv; I ¼ ½a; b�Þ with v 2 V and I � T

as a vertex-interval pair of a temporal graph. We call a the

starting point of interval I and b the endpoint of interval I.

Let X be a set of vertex-interval pairs. The modified ele-

ment relation (v, I) �− X (temporal membership) expresses

that there exists a vertex-interval pair ðv; I0Þ 2 X

with I � I0.
Using these definitions, we can adapt the notion of a

neighborhood of a vertex to temporal graphs. Intuitively,

we want that two vertex-interval pairs are neighbors if they

can be put into a D-clique together.

Definition 3 (D-Neighborhood) For a vertex v 2 V and a

time interval I � T in a temporal graph, the D-neighbor-

hood NDðv; IÞ is the set of all vertex-interval

pairs ðw; I0 ¼ ½a0; b0�Þ with the property that for

every s 2 ½a0; b0 � D� at least one edge ðfv;wg; tÞ 2 E

with t 2 ½s; sþ D� exists. Furthermore, b0 � a0 �D, I0 � I,

and I0 is maximal, that is, there is no time interval I00 � I

with I0 � I00 satisfying the properties above.

Notice that being a D-neighbor of another vertex is a

symmetric relation. If (w, I
′) �− NΔ(v, I), then we say

that w is a D-neighbor of v during the time interval I0. In

Fig. 1, we visualize the concepts of D-neighborhood and D-

clique in a temporal graph. See also Example 1.

We need to define a suitable way of intersecting of two

sets of vertex-interval pairs, so that, as the intuition sug-

gests, a D-clique is just the intersection of the ‘‘closed’’ D-

neighborhoods1 of its elements over the lifetime of the

clique.

Definition 4 (D-Cut) Let X and Y be two sets of vertex-

interval pairs. The D-cut X u Y contains for each vertex, all

intersections of intervals in X and Y that are of size at

least D. More precisely,

X u Y ¼ fðv; I \ I0Þ j ðv; IÞ 2 X ^ ðv; I0Þ 2 Y ^ jI \ I0j �Dg:

In other words, the D-cut X u Y contains all vertex-in-

terval pairs (v, I) such that (v, I) �− X and (v, I) �− Y , as

well as jIj �D, and I is maximal under these properties.

That is, there is no J with I(J and J � I0 and J � I00 such

that (v, I
′) �− X and (v, I ′′) �− Y for some I0 and I00.

Example 1 In Fig. 1, we visualize a temporal graph and

the concepts of D-neighborhood and D-clique. We consider

a temporal graph G ¼ ðT ;V;EÞ with T ¼ ½0; 8�,

V ¼ fa; b; cg, E ¼ fðfa; bg; 2Þ; ðfa; bg; 3Þ; ðfa; cg; 4Þ; ðfb;
cg; 5Þ; ðfa; cg; 6Þg, and D ¼ 2. The vertices are visualized

as horizontal lines. The connections between two vertices

at a specific time step represent the time edges of the

temporal graph.

We visualize the D-neighborhood of each vertex of the

temporal graph over the whole time interval T in Fig. 1a–c:

• In Fig. 1a, we consider the D-neighborhood NDða; TÞ of

vertex a during the whole time interval T. The yellow-

shaded bar marks the vertex-interval pair

ðb; ½0; 5�Þ 2 NDða; TÞ. The vertex b is a D-neighbor of

a during [0, 5] because for every s 2 ½0; 5 � D ¼ 3� at

least one time edge ðfa; bg; tÞ 2 E with t 2 ½s; sþ D�
exists since ðfa; bg; 2Þ; ðfa; bg; 3Þ 2 E. The same holds

for the vertex-interval pair ðc; ½2; 8�Þ 2 NDða; TÞ which

is marked in hatched green.

• In Fig. 1b, we visualize the D-neighborhood NDðb; TÞ
of b over the whole lifetime T of the temporal graph.

The vertex-interval pair ðc; ½3; 7�Þ 2 NDðb; TÞ is marked

0 1 2 3 4 5 6 7 8

a

b

c

(a)NΔ(a, T )

0 1 2 3 4 5 6 7 8

a

b

c

(b)NΔ(b, T )

0 1 2 3 4 5 6 7 8

a

b

c

(c)NΔ(c, T )

0 1 2 3 4 5 6 7 8

a

b

c

(d)Maximal Δ-Clique ({a, b, c} , [3 , 5])

Fig. 1 D-Neighborhoods and a D-clique of a temporal graph

with D ¼ 2. The lifetime of the graph is T ¼ ½0; 8�. The elements of

the D-neighborhoods in a, b, and c are shaded in yellow and green

(hatched), respectively. A maximal D-clique (d) is shaded in yellow

1 In static graphs, the closed neighborhood of a vertex includes the

vertex itself.
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in hatched green. The vertex-interval pair ða; ½0; 5�Þ 2
NDðb; TÞ is shaded in yellow. It becomes evident that

being a D-neighbor of another vertex is a symmetric

relation—if a is a D-neighbor of b during [0, 5], then b

is also a D-neighbor of a during [0, 5].

• In Fig. 1c, we visualize the D-neighborhood NDðc;TÞ
of c over the whole lifetime T of the temporal graph.

The vertex-interval pair ðb; ½3; 7�Þ 2 NDðc; TÞ is marked

in hatched green. The vertex-interval pair ða; ½2; 8�Þ 2
NDðc; TÞ is shaded in yellow.

Figure 1d shows the maximal D-clique ðfa; b; cg; ½3; 5�Þ.
During the time interval [3, 5], a and b are D-neighbors, b

and c are D-neighbors and a and c are D-neighbors, see

Fig. 1a–c. We cannot increase the time interval because at

time step 2 the vertices b and c are not yet D-neighbors and

at time step 6 the vertices a and b are no longer D-neigh-

bors. Further nontrivial maximal D-cliques in this temporal

graph are: ðfa; bg; ½0; 5�Þ, ðfa; cg; ½2; 8�Þ, ðfb; cg; ½3; 7�Þ, as

well as the trivial D-cliques ðfag; ½0; 8�Þ, ðfbg; ½0; 8�Þ, and

ðfcg; ½0; 8�Þ.

2.2 Bron–Kerbosch algorithm

In this section, we explain the basic idea of the (static)

Bron–Kerbosch algorithm. We also present two techniques

known from the literature which improve the running time

of the algorithm.

The Bron–Kerbosch algorithm (Bron and Kerbosch

1973) enumerates all maximal cliques in undirected, static

graphs. It is a widely used recursive backtracking algorithm

which is easy to implement and more efficient than alter-

native algorithms in many practical applications (Eppstein

et al. 2013).

The Bron–Kerbosch algorithm, see Algorithm 1,

receives three disjoint vertex sets as an input: P, R,

and X. The set R induces a clique, and P [ X is the set of

all vertices which are adjacent to every vertex in R. Each

vertex in P [ X is a witness that the clique R is not

maximal yet. The set P contains the vertices that have not

been considered yet, whereas the set X includes all ver-

tices that have already been considered in earlier steps. In

each recursive call, the algorithm checks whether the

given clique R is maximal or not. If P [ X ¼ ;, then there

are no vertices that can be added to the clique and

therefore, the clique is maximal and can be added to the

solution. Otherwise, the clique is not maximal because at

least one vertex exists that is adjacent to all vertices in R

and consequently would form a clique with R. For each

v 2 P the algorithm makes a recursive call for the clique

R [ fvg and restricts P and X to the neighborhood of v.

After the recursive call, vertex v is removed from P and

added to X. This guarantees that the same maximal cli-

ques are not detected multiple times. For a

graph G ¼ ðV ;EÞ the algorithm is initially called

with P ¼ V and R ¼ X ¼ ;.

2.2.1 Pivoting

Bron and Kerbosch (1973) introduced a method to increase

the efficiency of the basic algorithm by choosing a pivot

element to decrease the number of recursive calls. It is

based on the observation that for any vertex u 2 P [ X

either u itself or one of its non-neighbors must be con-

tained in any maximal clique containing R. This is true

since if neither u nor one of the non-neighbors of u are

included in a clique containing R, then this clique cannot

be maximal because u can be added to this clique due to

the fact that only neighbors of u were added to R. Hence, if

we modify the Bron–Kerbosch algorithm (Algorithm 1) so

that we choose an arbitrary pivot element u 2 P [ X and

iterate only over u and all its non-neighbors, then we still

enumerate all maximal cliques containing R but decrease

the number of recursive calls in the for loop of Algo-

rithm 1. Tomita et al. (2006) have shown that if u is cho-

sen from P [ X such that u has the most neighbors in P,

then all maximal cliques of a graph G ¼ ðV ;EÞ are enu-

merated in Oð3jV j=3Þ time, see Algorithm 2.

2.2.2 Degeneracy of a graph

Degeneracy is a measure of graph sparsity. Real-world

instances of static graphs (especially social networks) are

often sparse, resulting in a small degeneracy
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value (Eppstein et al. 2013). This motivates a modification

of the Bron–Kerbosch algorithm which we present in this

section and the complexity analysis of this algorithm

parameterized by the degeneracy of the input graph. The

degeneracy of a graph is defined as follows.

Definition 5 (Degeneracy) The degeneracy of a static

graph G is defined as the smallest integer d 2 N such that

each subgraph G0 of G contains a vertex v with degree at

most d.

If a graph has degeneracy d, we also call it d-degenerated.

It is easy to see that the maximal clique size of a d-degen-

erated graph is at most d þ 1: If there is a clique of size at

least d þ 2, then the vertices of this clique would form a

subgraph in which every vertex v of the clique has a degree

larger than d. For each d-degenerated graph, there is a de-

generacy ordering, which is a linear ordering of the vertices

with the property that for every vertex v we have that at

most d of its neighbors occur at a later position in the

ordering. The degeneracy d and a corresponding degeneracy

ordering for a graph G ¼ ðV;EÞ can be computed in linear

time (Eppstein et al. 2013): For graph G, the vertex with the

smallest degree is selected in each step and removed from the

graph until no vertex is left. The degeneracy of the graph is

the highest degree of a vertex at the time the vertex has been

removed from the graph and a corresponding degeneracy

ordering is the order in which the vertices were removed

from the graph.

For a graph G ¼ ðV;EÞwith degeneracy d, Eppstein et al.

(2013) showed that using the degeneracy ordering of G in the

outermost recursive call and afterward using pivoting, all

maximal cliques can be enumerated in Oðd � jV j � 3d=3Þ time,

see Algorithm 3. In other words, enumerating maximal cli-

ques is fixed-parameter tractable with respect to the parameter

degeneracy d of the input graph.

3 Bron–Kerbosch algorithm for temporal graphs

We adapt the static Bron–Kerbosch algorithm to the tem-

poral setting to enumerate all D-cliques, see Algorithm 4.

The input of the algorithm consists of two sets P and X of

vertex-interval pairs as well as a tuple R ¼ ðC; IÞ, where C

is a set of vertices and I a time interval. The idea is that in

every recursive call of the algorithm, R is a time-maximal

D-clique, and the sets P and X contain vertex-interval pairs

that are in the D-neighborhood of every vertex in C during

an interval I0 � I. In particular, P [ X includes all vertex-

interval pairs (v, I) for which ðC [ fvg; IÞ is a time-maxi-

mal D-clique. While each vertex-interval pair in P still has

to be combined with R to ensure that every maximal D-

clique will be found, for every vertex-interval

pair ðv; I0Þ 2 X every maximal D-clique ðC0; I00Þ
with C [ fvg � C0 and I00 � I0 has already been detected

in earlier steps.

We show below that if 8ðw; I0Þ 2 P [ X : I0(I, then

there is no vertex v that forms a D-clique together with C

over the whole time interval I. Consequently, R ¼ ðC; IÞ is

a maximal D-clique.

In one step, for every vertex-interval pair ðv; I0Þ 2 P a

recursive call is initiated for the D-clique R0 ¼ ðC [ fvg; I0Þ
with all parameters restricted to the D-neighborhood of v in

the time interval I0, that is, P u NDðv; I0Þ and X u NDðv; I0Þ.
For the set P0 for example, we get a set of all time-maximal

vertex-interval pairs ðw; I00Þ for which it holds that

(w, I ′′) �− NΔ(v, I ′) and (w, I ′′) �− P . This restriction is

made so that for all ðw; I00Þ 2 P0 of the recursive call the

vertex w is not only a D-neighbor of all x 2 C but also of

the vertex v during the time I00 � I0.
After the recursive call for D-clique ðC [ fvg; I0Þ, the

tuple ðv; I0Þ is removed from the set P and added to the set

X to avoid that the same cliques are found multiple times.

For a temporal graph G ¼ ðV ;E; TÞ and a given time

period D, the initial call of Algorithm 4 to enumerate all

maximal D-cliques in graph G is made with

P ¼ fðv; TÞ j v 2 Vg, R ¼ ð;; TÞ and X ¼ ;. In the

remainder of this document, we will always assume that

BRON KERBOSCH DELTA is initially called with those inputs.

3.1 Analysis

In the following, we prove the correctness of the algorithm

and analyze its running time. We start with arguing that the

sets P and X behave as claimed.
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Lemma 1 For each recursive call of BRON KERBOSCH

DELTA with R ¼ ðC; IÞ and C 6¼ ;, it holds

that P [ X ¼ uv2CN
Dðv; IÞ.

Proof We prove this by induction on the recursion depth,

that is, the number |C| of vertices in the clique in the cur-

rent recursive call. In the initial call, we have that C ¼ ;.

In each iteration of the first call, we have

that P [ X ¼ fðv; TÞ j v 2 Vg since, whenever a vertex-

interval pair is removed from P, then it is added to X, and

initially P ¼ fðv; TÞ j v 2 Vg. For every recursive call of

BRON KERBOSCH DELTA with R0 ¼ ðC0; I0Þ, P0, and X0,

and C0 ¼ fvg for some vertex v we have that P0 ¼ P u
NDðv; I0Þ and X0 ¼ X u NDðv; I0Þ. Hence, we get

P0 [ X0 ¼ fðv; TÞ j v 2 Vg u NDðv; I0Þ ¼ NDðv; I0Þ:

Now we assume that we are in a recursive call of BRON

KERBOSCH DELTA with R ¼ ðC; IÞ, P, and X,

where jCj[ 1. By the induction hypothesis, we know that

P [ X ¼ uv2CN
Dðv; IÞ. Let ðv; I0Þ 2 P be the vertex added

to the D-clique, that is, in the next recursive call we have

that R0 ¼ ðC0; I0Þ, with C0 ¼ C [ fvg, and P0 ¼ P u ND

ðv; I0Þ as well as X0 ¼ X u NDðv; I0Þ. Then,

P0 [ X0 ¼ ðP u NDðv; I0ÞÞ [ ðX u NDðv; I0ÞÞ
¼ ðP [ XÞ u NDðv; I0Þ
¼ u

w2C
NDðw; IÞ u NDðv; I0Þ

¼ u
w2C0

NDðw; I0Þ:

This proves the claim. h

Next, we show that the set R behaves as claimed, that

is, R is indeed a time-maximal D-clique in each recursive

call of BRON KERBOSCH DELTA.

Lemma 2 In each recursive call of BRON KERBOSCH

DELTA, R ¼ ðC; IÞ is a time-maximal D-clique.

Proof We show by induction on the recursion depth

that R ¼ ðC; IÞ is a time-maximal D-clique and that all

vertex-interval pairs ðv; I0Þ in P are D-neighbors during I0

to all vertices in the D-clique R and that I0 is maximal

under this property. The algorithm is initially called

with R ¼ ð;; TÞ, which is a trivial time-maximal D-clique,

and P ¼ fðv; TÞ j v 2 Vg, which fulfills the desired prop-

erty since the initial D-clique is empty and T is the maxi-

mum time interval. In each recursive call, BRON KERBOSCH

DELTA is called with ðP u NDðv; I0Þ; ðC [ fvg; I0Þ;Xu
NDðv; I0ÞÞ for some ðv; I0Þ 2 P. By the induction hypothe-

sis, v is a D-neighbor to all vertices in C during time

interval I0, and I0 is maximal. Hence, ðC [ fvg; I0Þ is a

time-maximal D-clique. Furthermore, each vertex-interval

pair ðv0; I00Þ in P u NDðv; I0Þ is in the D-neighborhood of

each vertex-interval pair ðv00; I0Þ with v00 2 C [ fvg, since it

is both in P and hence in the D-neighborhood of each

vertex in C and in NDðv; I0Þ. The maximality of I0 follows

from the fact that the D-cut and D-neighborhood operations

preserve maximality of intervals by definition. h

Now we can prove the correctness of the algorithm.

Theorem 1 (Correctness of Algorithm 4)

Let G ¼ ðV;E; TÞ be a temporal graph. If algorithm BRON

KERBOSCH DELTA(P, R, X) is run on

input ðV � fTg; ð;; TÞ; ;Þ, then it adds all maximal D-cli-

ques of G, and only these, to the solution.

Proof Let R	 ¼ ðC	; I	Þ be a maximal D-clique

with jC	j[ 1. For a recursive call of BRON KERBOSCH

DELTA on (P, R, X), say that a vertex is a candidate, if there

is an interval I with I	 � I such that ðv; IÞ 2 P. We show by

induction on jC	j � ‘, that for each ‘ ¼ 0; 1; . . .; jC	j there

is a recursive call of BRON KERBOSCH DELTA on ðP;R ¼
ðC; IÞ;XÞ with C � C	 and ‘ ¼ jC	nCj candidates.

Clearly, in the initial call, C ¼ ; � C	 and each vertex

in C	 is a candidate. Now assume that there is a recursive

call with ðP;R ¼ ðC; IÞ;XÞ and C � C	, and with ‘� 1 ¼
jC	nCj candidates. Consider the for loop in that recursive

call and consider the first vertex-interval pair ðv; I0Þ in that

loop in which v is a candidate and I	 � I0. BRON KERBOSCH

DELTA proceeds with a recursive call on

ðP u NDðv; I0Þ;R0 ¼ ðC [ fvg; I0Þ;X u NDðv; I0ÞÞ. Observe

that each candidate except v remains a candidate also in

this recursive call. Furthermore, jC	nðC [ fvgÞj ¼ ‘. Thus,

by induction there is a recursive call with the sets (P, R, X)

in which R	 ¼ R. Since R	 is maximal by assumption, for

each vertex-interval pair ðw; I00Þ 2 uv2C	NDðv; I	Þ we have

I00(I	. By Lemma 1 we have 8ðw; I0Þ 2 P [ X : I0(I	 and

hence, R	 is added to the solution.

Now assume that R ¼ ðC; IÞ is added to the solution. By

Lemma 2, R is a time-maximal D-clique. By Lemma 1 and

since P [ X ¼ ;, there is no vertex that can be added to R.

Hence, R is a maximal D-clique. h

Next, we analyze the running time of BRON KERBOSCH

DELTA. We start with the following observation.

Lemma 3 For every time-maximal D-clique R of a

temporal graph G ¼ ðV;E; TÞ, there is at most one

recursive call of BRON KERBOSCH DELTA with R as an input.

Proof Assume that there are two recursive calls A and B of

BRON KERBOSCH DELTA with the same R ¼ ðC; IÞ.
Let R0 ¼ ðC0; I0Þ, with C0 � C and I � I0, occur in the

recursive call corresponding to the closest common ancestor

of the recursive callsA andB in the recursion tree. Hence, there

are two vertex-interval pairs ðv; JÞ; ðw; J0Þ 2 P that lead to the

calls A and B, respectively, in the for loop.
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Consider the case v ¼ w. Then, J and J0 must overlap in

at least D time steps, because I � J; J0 � I0. However, P is

contained in the D-cut of the D-neighborhoods of C0 over I0

and thus, for each vertex no two vertex-interval pairs in P

overlap in D time steps, a contradiction.

Now consider the case v 6¼ w. Without loss of generality

due to symmetry assume that (v, J) is processed first in the

for loop. Then, when processing ðw; J0Þ, pair (v, J) has

been added to X. This is a contradiction to the fact that

recursive call B outputs R, that is, it outputs a clique with

time interval I � J.

Hence, we have that there cannot be two recursive calls

of BRON KERBOSCH DELTA with R ¼ ðC; IÞ. h

Now we upper-bound the running time for computing a

D-cut.

Lemma 4 Let X and Y be two sets of vertex-interval

pairs with the following properties.

• For every ðv; IÞ 2 X [ Y we have that jIj �D,

• for every ðv; IÞ 2 X and ðv; I0Þ 2 X we have

that jI \ I0j\D,

• for every ðv; IÞ 2 Y and ðv; I0Þ 2 Y we have

that jI \ I0j\D,

• X and Y are sorted lexicographically by first the vertex

and then the starting point of the interval.

Then the D-cut X u Y can be computed in OðjXj þ jYjÞ
time such that it is also sorted lexicographically by first the

vertex and then the starting point of the interval.

Proof The D-cut X u Y of two sets of vertex-interval

pairs X and Y can be computed in the following way.

For every vertex v, we do the following:

1. Select the first vertex-interval pairs (v, I) and ðv; I0Þ
from X and Y, respectively.

2. If jI \ I0j[D, then add ðv; I \ I0Þ to the output (the D-

cut). If the endpoint of I0 is smaller than the endpoint

of I, then replace ðv; I0Þ with the next vertex-interval

pair in Y, otherwise replace (v, I) with the next vertex-

interval pair in X.

3. Repeat Step 2 until all vertex-interval pairs containing

vertex v are processed.

Note that the intervals for each vertex v are added to the

output in order of their starting point. Furthermore, by

construction of the algorithm we have that for each (v, I) in

the output, (v, I) is also in the D-cut X u Y . It remains to

show that for all ðv; IÞ 2 X and ðv; I0Þ 2 Y with jI \ I0j �D
we have that ðv; I \ I0Þ is included in the output. Let I ¼
½a; b� and I0 ¼ ½a0; b0�. At some point, the procedure pro-

cesses in Step 2 for the first time one of ðv; IÞ 2 X or

ðv; I0Þ 2 Y . Without loss of generality, let ðv; IÞ 2 X be

processed first. If at the same time also ðv; I0Þ 2 Y is pro-

cessed, clearly, ðv; I \ I0Þ is added to the output, as

required. Now assume that Step 2 processes some other

vertex-interval pair ðv; I00 ¼ ½a00; b00�Þ 2 Y , a00\a0, together

with ðv; IÞ 2 X. Since jI \ I0j �D and jI0 \ I00j\D we have

that b00\b and hence, (v, I) is not replaced in this step.

Consequently, the procedure eventually adds ðv; I \ I0Þ to

the output.

In each step of the procedure, at least one new vertex-

interval pair is processed and each vertex-interval pair in X

and Y is only processed once. Hence, the running time is

in OðjXj þ jY jÞ. h

Lemmas 3 and 4 allow us to upper-bound the running

time of BRON KERBOSCH DELTA depending on the number of

different time-maximal D-cliques of the input graph.

Theorem 2 Let G ¼ ðV ;E; TÞ be a temporal graph

with x distinct time-maximal D-cliques. Then BRON KER-

BOSCH DELTA enumerates all maximal D-cliques

in Oðx � jEj þ jEj � jT jÞ time.

Proof We assume that all edges of the temporal graph are

sorted by their time stamp. Note that this can be done in a

preprocessing step in OðjEj � jTjÞ time using Counting Sort.

Furthermore, we assume that for each vertex v, the D-

neighborhood NDðv; TÞ is given. These neighborhoods can

be precomputed in O(|E|) time, assuming that the edges are

sorted by their time stamps.

By Lemma 3, we know that for each time-maximal D-

clique there is at most one recursive call of BRON

KERBOSCH DELTA. By charging the computation of P0, R0,
and X0 to the corresponding recursive call, for each

recursive call we compute a constant number of D-

neighborhoods and D-cuts. The size of the sets P, X, and

any D-neighborhood is upper-bounded by |E|, and each

of these sets has the property that for every (v, I)

and ðv; I0Þ out of the same set we have that jI \ I0j\D.

Given NDðv; TÞ, NDðv; IÞ can be computed in O(|E|) time

for any I and by Lemma 4, a D-cut can be computed

in O(|E|) time. Hence, all maximal D-cliques can be

enumerated in Oðx � jEj þ jEj � jT jÞ time. h

We now use a general upper bound for the number of

time-maximal D-cliques in a temporal graph to bound the

overall running time of BRON KERBOSCH DELTA.

Corollary 1 Let G ¼ ðV;E; TÞ be a temporal graph.

BRON KERBOSCH DELTA enumerates all maximal D-cliques

of G in Oð2jVj � jT j � jEjÞ time.

Proof Note that the vertex set of each maximal D-clique

induces a static clique in the static graph G underlying G

that has an edge between two vertices if and only if there is
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a time edge in G between these vertices at some time step.

Furthermore, for each clique in G, there are at most |T|

maximal D-cliques because their time intervals are pair-

wise not contained in one-another. Hence, the number of

time-maximal D-cliques of any temporal graph is upper-

bounded by 2jV j � jT j. By Theorem 2, we get an overall

running time in Oð2jV j � jTj � jEjÞ. h

3.2 Pivoting

In this section, we explain how we can decrease the

number of recursive calls of BRON KERBOSCH DELTA by

using pivoting. Recall that the idea of pivoting in the

classic Bron–Kerbosch algorithm for static graphs is based

on the observation that for any vertex u 2 P [ X

either u itself or one of its non-neighbors must be con-

tained in any maximal clique containing R. Vertex u is also

called pivot.

A similar observation holds for maximal D-cliques in

temporal graphs. Instead of vertices, however, we now

choose vertex-interval pairs as pivots: For any ðvp; IpÞ 2
P [ X and any maximal D-clique Rmax ¼ ðCmax; ImaxÞ
with Imax � Ip, either vertex vp or one vertex w 6¼ vp which

is not a D-neighbor of vp during the time Imax, that

is, (w, Imax) ��− NΔ(vp, Ip), must be contained in Cmax.

By choosing a pivot element ðvp; IpÞ 2 X [ P we only

have to iterate over all elements in P which are not in the

D-neighborhood of the pivot element, see Algorithm 5. In

other words, we do not have to make a recursive call for

any ðw; I0Þ 2 P which holds (w, I ′) �− NΔ(vp, Ip).

In Fig. 2, we give an illustrative example for pivoting.

In this example, we assume that the algorithm runs on a

temporal graph such that the set P ¼ fða; ½0; 8�Þ;
ðb; ½0; 4�Þ; ðc; ½1; 3�Þ; ðc; ½5; 8�Þg occurs within a recursive

call of BRON KERBOSCH DELTA PIVOT. For simplicity, we

show in Fig. 2a only the subgraph containing the elements

of P and the relation between these elements rather than

displaying the whole graph. In Fig. 2b, we choose ele-

ment (a, [0, 8]) (hatched) as pivot. It can be seen that the

elements (b, [0, 4]) and (c, [5, 8]) lie completely in the

D-neighborhood (dotted) of the pivot, that is,

(b, [0, 4]), (c, [5, 8]) �− NΔ(a, [0, 8]). These two elements

can therefore be left out in the iteration over the elements

in P of the BRON KERBOSCH DELTA. We only have to iterate

over the pivot (a, [0, 8]) and the element (c, [1, 3]) which

is not completely in the D-neighborhood of our chosen

pivot. In Fig. 2c, we can see that for every maximal D-

clique (C, I) with respect to P either a 2 C, I � ½0; 8� or

c 2 C, I � ½1; 3�. The figure hence shows that iterating over

the elements (b, [0, 4]) and (c, [5, 8]) will not find any

maximal D-clique that we do not find via one of the ele-

ments (a, [0, 8]) and (c, [1, 3]).

Next, we formally prove the correctness of this

procedure.

Proposition 1 For each D-clique R ¼ ðC; IÞ and a

pivot element ðvp; IpÞ 2 P [ X, the following holds: for

every Rmax ¼ ðCmax; ImaxÞ with C � Cmax and Imax � Ip �
I it either holds that vp 2 Cmax or otherwise there

is a vertex w 2 Cmax that satisfies ðw; I0Þ 2 P [ X,

Imax � I0, and (w, Imax) ��− NΔ(vp, Ip), and consequently

(w, I ′) ��− NΔ(vp, Ip).

Proof Let Rmax ¼ ðCmax; ImaxÞ be a maximal D-clique

with C � Cmax and Imax � Ip � I. Assume that vp 62 Cmax

and for each w 2 Cmax it holds that

(w, Imax) �− NΔ(vp, Ip). Consequently, for each w 2
CmaxnC there exists a ðw; I0Þ 2 P [ X with Imax � I0.
Because vp is a D-neighbor of all vertices in CmaxnC at

least during Imax and a D-neighbor of all vertices in C

during Ip, the vertex vp can be added to the D-clique Rmax,

yielding another D-clique with at least the same lifetime.

This is a contradiction to the assumption that Rmax is

maximal. h

0 1 2 3 4 5 6 7 8

a

b

c

(a) P = {(a, [0, 8]), (b, [0, 4]), (c, [1, 3]), (c, [5, 8])}

0 1 2 3 4 5 6 7 8

a

b

c

(b) Pivot (a, [0, 8]) with (b, [0, 4]), (c, [5, 8]) ∈ NΔ(a, [0, 8])

0 1 2 3 4 5 6 7 8

a

b

c

(c) Δ-cliques

Fig. 2 A exemplary set P of BRON KERBOSCH DELTA PIVOT, a possible

pivot element (hatched) including its D-neighborhood (dotted), and all

maximal D-cliques with respect to set P, D ¼ 2
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An optimal pivot element is chosen in such a way that it

minimizes the number of recursive calls. It is the element

in the set P [ X having the largest number of elements in P

in its D-neighborhood. We have seen that the whole pro-

cedure is quite similar to pivoting in the basic Bron–Ker-

bosch algorithm but with one difference: we are able to

choose more than one pivot element. The only condition

that has to be satisfied is that the time intervals of the pivot

elements cannot overlap:

For each D-clique R ¼ ðC; IÞ in a recursive call of the

algorithm, choosing a pivot element ðvp; IpÞ 2 P [ X only

affects maximal D-cliques Rmax ¼ ðCmax; ImaxÞ fulfill-

ing Imax � Ip. Moreover, for all elements ðw; I0Þ 2 P satis-

fying (w, I ′) �− NΔ(vp, Ip) it holds I0 � Ip. Consequently,

a further pivot element ðv0p; I0pÞ 2 P [ X fulfilling that I0p
does not overlap with Ip neither interferes with the consid-

ered maximal D-cliques nor with the vertex-interval pairs

in P that are in the D-neighborhood of the pivot

element ðvp; IpÞ.
The problem of finding the optimal set of pivot elements

in P [ X can be formulated as a weighted interval

scheduling maximization problem:

WEIGHTED INTERVAL SCHEDULING

Input: A set J of jobs j with a time interval Ij and a

weight wj each.

Task: Find a subset of jobs J0 � J that

maximizes
P

j2J0 wj such that for all i; j 2 J0

with i 6¼ j, the time intervals Ii and Ij do not

overlap.

In our problem, the jobs are the elements of P [ X and

the weight of an element is thereby the number of all

elements that are in P and lie in the D-neighborhood of this

element. Formally, the jobs are the elements ðv; I0Þ
2 P [ X, the corresponding time interval is I0 of the

element ðv; I0Þ and the corresponding weight

w(v,I′) = |{(v, I) | (v, I) ∈ P ∧ (v, I) �− NΔ(v, I ′)}|.
This problem can be solved efficiently

in OðminðjEj; jVj � jT jÞ � logðminðjEj; jV j � jT jÞÞÞ time by

using dynamic programming (Kleinberg and Tardos

2006, Chapter 6.1) under the assumption that the weights

of the potential pivot elements are known.

4 Degeneracy of temporal graphs

Recall from Sect. 2.2.2 that one can upper-bound the

running time of the static Bron–Kerbosch algorithm using

the degeneracy of the input graph. The degeneracy of a

graph G is the smallest integer d such that every non-

empty subgraph of G contains a vertex of degree at

most d. We now give an analogue for the temporal setting,

motivated by the fact that static graphs are often sparse in

practice as measured by small degeneracy (Eppstein et al.

2013). Intuitively, we want to capture the fact that a tem-

poral graph keeps its degeneracy value during its whole

lifetime.

Definition 6 (D-slice degeneracy) A temporal

graph G ¼ ðV;E; TÞ has D-slice degeneracy d if for

all t 2 T we have that the graph Gt ¼ ðV ;EtÞ, where

Et ¼ ffv;wg j ðfu;wg; t0Þ 2 Eforsomet0 2 ½t; t þ D�g, has

degeneracy at most d.

Using the parameter D-slice degeneracy, we can upper-

bound the number of time-maximal D-cliques of a temporal

graph.

Lemma 5 Let G ¼ ðV;E; TÞ be a temporal graph with

D-slice degeneracy d. Then, the number of time-maximal

D-cliques in G is at most 3d=3 � 2dþ1 � jVj � jTj.
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Proof Let G ¼ ðV ;E; TÞ be a temporal graph with

D-slice degeneracy d. Then we call the graph Gt ¼ ðV ;EtÞ,
where Et ¼ ffv;wg j ðfu;wg; t0Þ 2 Eforsomet0 2 ½t; tþ
D�g a D-slice of G at time t. The vertex set of each time-

maximal D-clique which starts at time t is also a clique

in Gt, otherwise there would be two vertices which are

disconnected for more than D time steps. Since Gt has

degeneracy at most d, the number of maximal cliques of Gt

is upper-bounded by 3d=3 � jV j (Eppstein et al. 2013). Fur-

thermore, the maximum size of a clique is upper-bounded

by d þ 1. Hence, the total number of cliques is upper-

bounded by 3d=3 � 2dþ1 � jVj. Note that for each of those

cliques we have at most one time-maximal D-clique

starting at time t. Hence, the total number of D-cliques is at

most 3d=3 � 2dþ1 � jV j � jT j. h

Lemma 5 now allows us to bound the running time of

Algorithm 4 using the D-slice degeneracy d of the input

graph G.

Theorem 3 Let G ¼ ðV;E; TÞ be a temporal graph with

D-slice degeneracy d. Then, BRON KERBOSCH DELTA enu-

merates all D-cliques of G in Oð3d=3 � 2d � jV j � jT j � jEjÞ
time.

Proof By Lemma 5 we know that the number of time-

maximal D-cliques in a temporal graph with D-slice

degeneracy d is at most 3d=3 � 2dþ1 � jV j � jT j. Hence, by

Theorem 2, we get an overall running time

in Oð3d=3 � 2d � jVj � jTj � jEjÞ. h

Note that Theorem 3 implies that enumerating all

maximal D-cliques is fixed-parameter tractable with

respect to the parameter D-slice degeneracy. Hence, while

NP-hard in general, the problem can be solved efficiently if

the D-slice degeneracy of the input graph is small.

5 Experimental results

In this section, we present our experimental results. We

give the D-slice degeneracy of several real-world temporal

graphs for several values for D. Then we show the behavior

of our implementation of BRON KERBOSCH DELTA PIVOT

(Algorithm 5) applied to these real-world temporal graphs

and compare it to the algorithm implemented by Viard

et al. (2016).

5.1 Setup and statistics

We now give details of the implementation and the used

reference algorithm and introduce the data sets we used in

the experiments. Furthermore, we explain how the values

of D were chosen, give some statistics for the data set, and

calculate the D-slice degeneracy of the data sets for the

chosen values of D.

Implementation. We implemented2 BRON KERBOSCH

DELTA PIVOT with slight modifications that allow the

algorithm to use multiple pivot elements (we refer to this

version as BRON KERBOSCH DELTA PIVOT*). Furthermore, we

implemented a simple algorithm to compute the D-slice

degeneracy. Both implementations are in Python 2.7.12,

and all experiments were carried out on an Intel Xeon E5-

1620 computer with four cores clocked at 3.6 GHz and

64 GB RAM. We did not utilize the parallel-processing

capabilities although it should be easy to achieve almost

linear speedup with growing number of cores due to the

simple nature of BRON KERBOSCH DELTA PIVOT. The oper-

ating system was Ubuntu 16.04.4 with Linux kernel version

4.4.0-57. We compared BRON KERBOSCH DELTA PIVOT* with

the algorithm by Viard et al. (2016) which was also

implemented in Python. We modified their source code3 by

removing the text output in their implementation in order

to avoid speed differences. We call their algorithm Algo-

rithm VLM below.

Data Sets We chose several freely available real-world

temporal graphs aiming for an overview over the different

kinds of contexts in which such graphs arise, that is, an

overview over different modes of communication and

different kinds of entities and environments in which this

communication takes place. However, a focus is on tem-

poral graphs based on physical proximity of individuals,

since previous work on D-cliques also focused on the-

se (Viard et al. 2016, 2015). The contexts and sources of

our test set of temporal graphs are as follows:

• internet-router communication: as733 (Leskovec et al.

2005),

• e-mail communication: karlsruhe (Goerke 2011),

• social-network communication: facebook-like (Opsahl

and Panzarasa 2009), and

• physical proximity4 between

• high school students: highschool-2011, high-

school-2012, highschool-2013 (Gemmetto et al.

2014; Stehlé et al. 2011; Barrat and Fournet 2014),

• patients and healthcare workers: hospital-

ward (Vanhems et al. 2013),

• attendees of the ACM Hypertext 2009 conference:

hypertext (Isella et al. 2011),

• attendees of the Infectious SocioPatterns event:

infectious (Isella et al. 2011), and

2 Code freely available at http://fpt.akt.tu-berlin.de/temporalcliques/

(GNU General Public License).
3 Code freely available at https://github.com/TiphaineV/delta-cliques .
4 Available at http://www.sociopatterns.org/datasets .
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• children and teachers in a primary school: prima-

ryschool (Stehlé et al. 2011).

Table 1 contains the number of vertices, edges, temporal

resolution, and lifetime of the corresponding temporal

graphs. As a time step, we fixed one second for each of the

data sets. Viard et al. (2016), as the first work on enu-

merating D-cliques, used the data set highschool-2012 in

their experiments.

Chosen values of D In order to limit the influence of

time scales in the data and to make running times com-

parable between instances, as well as to be able to present

the results in a unified way, we chose the D-values as

follows. We decided on a reference point of the edge

appearance rate that is, of the average number of edges per

time step and we fixed a set of D-values for this reference

point. For each considered instance, we then scaled the

reference D-values proportionally to the quotient of the

reference edge appearance rate and the edge appearance

rate in the instance.

As the reference point we chose the edge appearance

rate of 1 / 5 edges per time step; this value was chosen for

convenience within the interval of edge appearance rates in

the studied data sets (see Table 1). Since, intuitively, the D-

values of interest in practice increase exponentially, we

chose as reference D-values the numbers 0 and 5i for

i ¼ 1; 2; . . .. As mentioned, for each instance, these values

are then multiplied by the quotient of edge appearance

rates. That is, if the instance has m edges and lifetime ‘,

then we scaled the reference D-values by the factor

ð1=5Þ=ðm=‘Þ ¼ ‘=ð5mÞ. For example, for highschool-

2012 we obtain the D-values f0; 80; 404; 2024;

10; 121; 50; 606; 253; 034; . . .g. For reference, recall that

each time step in highschool-2012 corresponds to one

second (a day has 86,000 seconds and a week has

604,800 s). In figures, we refer to each scaled value of D by

D
 5i for some concrete i. Viard et al. (2015) used D-

values according to 60 s, 15 min, 1 and 3 h.

D-Slice degeneracy The D-slice degeneracies for our

set of instances are shown in Table 2 together with the

static degeneracy of the underlying static graph which

has an edge whenever there is an edge at some time step

in the temporal graph. Clearly, as the value of D
increases, the D-slice degeneracy approaches—and is

upper-bounded by—the static degeneracy. The static

degeneracy of our instances is small in comparison with

the size of the graph. This falls in line with the analysis

by Eppstein et al. (2013) for many real-world graphs.

Moreover, for many practically relevant values of D the

D-slice degeneracy is still significantly smaller. For

example, in the instance highschool-2012, the scaled

value of D corresponding to 53 equals 2204 time steps

(s) and the corresponding D-slice degeneracy is 5. This

indicates that D-slice degeneracy can be a very promis-

ing (that is, also small) parameter when designing and

analyzing algorithms for temporal graphs.

We computed the D-slice degeneracies using a

straightforward approach. We iteratively computed for

each D-long time interval the graph induced by the edges in

that time interval. For each of these graphs, we computed

the static degeneracy using an implementation from the

NetworkX python library (Hagberg et al. 2008). This

approach is rather inefficient. For example, it took about

7 h to compute the D-slice degeneracy for karlsruhe with

D
 55 (equating to a D value of about 2 h).

5.2 Results and running times

We now study the efficiency of BRON KERBOSCH DELTA

PIVOT*, evaluate pivoting strategies, and compare the result

to Algorithm VLM.

Pivoting Generally, we observed that pivoting plays a

negligible role when D is small compared to the overall

lifetime of the graph , that is, when D is less than roughly

one-third of the lifetime. In this case, pivoting has almost

no effect on the running time and the number of recursive

calls. For larger values of D, however, pivoting can make a

clear difference depending on the type of temporal graph.

We tested five strategies for selecting a set of pivots

from P in BRON KERBOSCH DELTA PIVOT*. Call a set of

pivots is maximal if the interval of each element

from P overlaps with at least one pivot. We tested the

following variants of pivot sets:

1A) a single arbitrary pivot,

1G) a single pivot maximizing the number of elements

removed from P,

MA) an arbitrary maximal set of pivots (pivots picked

one by one arbitrarily),

MG) a maximal set of pivots (pivots picked one by one

according to the maximum number of further

elements removed from P), and

MM) a set of pivots which maximizes the number of

elements removed from P.

Clearly, each strategy has its own trade-off between the

time needed to compute the pivots and the possible

reduction in recursive calls.

Running times are given for highschool-2012 in Fig. 3

with D between 15,000 and 725,000. We note that running

times for some very small values of D below 15,000 are

larger than 30 s and hence do not fit in the chart. We

consider this phenomenon more closely below. For

D� 15; 000 there is no appreciable difference between the

pivoting strategies. In terms of relative difference between
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pivoting strategies, highschool-2012 seems to be a rep-

resentative example. Strategies 1G and MG seem to be the

best options: they do not incur much overhead compared to

no pivoting for small D and yield strong running time

improvements for larger D. In comparison with no pivot-

ing, strategies 1G and MG achieve a 60% reduction in

recursive calls for D-values of around 7 � 106 in high-

school-2012. Since the running times of strategy 1G

and MG are so close to each other, we conclude that in

most cases there is only one important pivot that should be

selected. We were surprised to see that maximizing the

overall number of elements removed from P via the pivot

set (strategy MM) results in slightly worse running times

and slightly larger numbers of recursive calls . The number

of elements that are removed by a pivot in one recursive

call of the algorithm ranges between one and 14 while

many of the calls remove two to four elements . Notice that

occasional reduction by ten or more elements can sub-

stantially decrease the search space, because in general its

size depends exponentially on the size of P.

Figure 4 shows running times for facebook-like. On

this graph, pivoting seldom removes more than one

element from the candidate set P in one call of the recur-

sive procedure. Hence, for this instance, pivoting mainly

incurs overhead for computing the pivots, but do not sub-

stantially decrease the search space. We consequently

observe about 10% slower running times, regardless of the

pivoting strategy.

In conclusion, strategy 1G offers the best trade-off

between additional running time spent with computing the

pivot(s) and running time saved due to decreased number

of recursive calls. Overall, the possible benefits seem to

outweigh the overhead incurred by pivoting on some

instances. All remaining experiments were thus carried out

with strategy 1G.

Running Times and Comparison with Algorithm VLM.

We experimented with BRON KERBOSCH DELTA PIVOT*

(Algorithm 5) using pivoting strategy 1G and with Algo-

rithm VLM for D ¼ 0 and D
 5i with i ¼ 1; 3; 5; 7; 9

(where the lifetime allowed such values of D). An excerpt

of the results is given in Table 3. Clearly, larger instances

with more vertices or edges demand a longer running time.

However, even large instances like infectious can still be

solved within 1 h.

From our theoretic results in Sect. 3, we expected that

the running time of BRON KERBOSCH DELTA PIVOT*

increases exponentially with growing D-slice degener-

acy. As the D-slice degeneracy grows very slowly with

increasing D (see Table 2), we expected a corresponding

moderate growth in running time with respect to D. For

larger D, this is consistent with the experimental results,

as shown in Figs. 3, 4 and Table 3. However, for (very)

small D we often observe an initial spike in the running

time (and number of D-cliques) which then subsides.

This is also shown in Fig. 5. A possible explanation for

this spike is that, for small D, the D-neighborhood of

many vertices becomes very fragmented, leading to large

candidate sets P in the algorithm (although the size of P

is still linear in the input size for constant D-slice

degeneracy). Furthermore, if D is small, then many

singleton edges may form maximal D-cliques

Table 1 Statistics for the data

sets used in our experiments
Instance Vertices Edges Resolution Lifetime (s)

as733 7716 11,410,810 1 d 67,824,000

Facebook-like 1899 59,835 1 s 16,736,181

High school-2011 126 28,560 20 s 272,330

High school-2012 180 45,047 20 s 729,500

High school-2013 327 188,508 20 s 363,560

Hospital-ward 75 32,424 20 s 347,500

Hypertext 113 20,818 20 s 212,340

Infectious 10972 415,912 20 s 6,946,340

Karlsruhe 1870 461,661 1 s 123,837,267

Primary school 242 125,773 20 s 116,900

Table 2 Static degeneracy and D-slice degeneracy

Instance Static D ¼ 0 
 53 
 55 
 57 
 59

as733 24 13 13 14 15 24

Facebook-like 20 1 3 6 19

High school-2011 21 4 7 11 19

High school-2012 18 4 5 6 12

High school-2013 24 4 5 9 14

Hospital-ward 22 4 6 11 18

Hypertext 28 6 7 8 22

Infectious 18 4 9 18 18 18

Karlsruhe 33 2 6 9 17 32

Primary school 47 4 4 10 31

Empty cells indicate that the lifetime of the temporal graph is smaller

than the scaled D-value
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themselves. These D-cliques then get taken up into larger

maximal D-cliques when D increases, which decreases

the number of D-cliques and running times for BRON

KERBOSCH DELTA PIVOT*.

On facebook-like our algorithm notably is comparably

efficient given the relatively large size (see Figs. 4 and 6).

Furthermore, the number of D-cliques does not seem to

vary strongly with changing values of D. These two facts

may hint at some special structure that is present in tem-

poral graphs based on online social networks, in addition to

small D-slice degeneracy.

Algorithm VLM is usually faster than BRON KERBOSCH

DELTA PIVOT* for small values of D below the D
 53

threshold. Starting from there, however, BRON KERBOSCH

DELTA PIVOT* outperforms Algorithm VLM with running

times smaller by at least one order of magnitude and up to

three orders of magnitude (see Table 3). In terms of main

memory, 385 MB is the maximum used by BRON KERBOSCH

DELTA PIVOT* over all solved instances, attained on infec-

tious for D ¼ 0. On this instance, Algorithm VLM uses

494 MB and often more than 1 GB.

Finally we mention that, increasing the time limit to 6 h,

BRON KERBOSCH DELTA PIVOT* can solve all instances of

karlsruhe with D ¼ 0 and D
 5i for i ¼ 1; 3; 5; 7; 9

wherein the last value of D involves enumerating 43 � 106

maximal D-cliques.
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MM

Fig. 4 Running time for different pivoting strategies on facebook-
like

Table 3 D-clique statistics and running times: jCj denotes the number

of maximal D-cliques, s denotes the maximum D-clique size, ‘ the

maximum D-clique lifetime divided by 105, tBKD and tVLM denote the

running time in seconds of BRON KERBOSCH DELTA* and Algorithm

VLM, respectively

Instance jCj s ‘ tBKD tVLM

D ¼ 0

Facebook-like 61,648 2 1,674 169 12

High school-2011 26,510 5 27 131 7

High school-2012 42,285 5 73 248 12

High school-2013 172,362 5 36 1,952 118

Hospital-ward 27,910 5 35 370 14

Hypertext 19,150 6 21 85 5

Infectious 349,787 5 695 1,530 2,515

Karlsruhe 1,494

Primaryschool 107,121 5 12 995 147

D
 53

Facebook-like 33,876 4 1,675 70 1,141

High school-2011 7,394 7 27 5 153

Highschool-2012 9,501 6 73 8 236

Highschool-2013 57,121 6 36 178 1,990

Hospital-ward 8,694 7 35 15 226

Hypertext 6,345 7 21 8 107

Infectious 134,787 9 695 1,195

Karlsruhe

Primaryschool 83,314 9 12 83

D
 55

Facebook-like 23,247 5 1,709 47

Highschool-2011 7,760 10 28 4

Highschool-2012 7,536 7 75 4 1,365

Highschool-2013 29,752 8 37 23

Hospital-ward 10,869 12 36 7

Hypertext 7,459 7 23 4 2,193

Infectious 163,162 16 697 1,277

Karlsruhe 235,684 9 12,417 1,235

Primaryschool 508,430 20 15 890

Empty cells represent an exceeded running time limit of 1 h
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Fig. 3 Running time for different pivoting strategies on highschool-
2012
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6 Conclusion and outlook

We studied the algorithmic complexity of enumerating D-

cliques in temporal graphs. We adapted the Bron–Kerbosch

algorithm (Bron and Kerbosch (1973)), including the pro-

cedure of pivoting to reduce the number of recursion calls,

to the temporal setting and provided a theoretic analysis.

For the theoretic analysis, we formalized and employed the

concept of D-slice degeneracy which may be a useful

parameter when analyzing problems in sparse temporal

graphs.

In experiments on real-world data sets, we showed that

our algorithm is notably faster than the first approach for

enumerating all maximal D-cliques in temporal graphs due

to Viard et al. (2015, 2016). Our experimental results fur-

ther reveal that pivoting can notably decrease the running

time for large values of D. Furthermore, we measured the

D-slice degeneracy for different D-values and showed that

it is reasonably small in many real-world data sets.

As to future research, an algorithmic challenge is to find

a more efficient way to compute the D-slice degeneracy of

a given temporal graph, perhaps via different characteri-

zations as in the case of static graphs. See Eppstein et al.

(2013) for an account of several equivalent definitions of

the degeneracy of a static graph. Regarding the adapted

version of the Bron–Kerbosch algorithm, our theoretic

analysis (based on the D-slice degeneracy parameter) of the

running time still leaves room for improvement. In par-

ticular, we leave the impact of pivoting on the running time

upper bound as an open question for future research. It

furthermore makes sense to try and implement further

improved branching rules on top of pivoting. This was also

successful for the static Bron–Kerbosch algorithm (Naudé

2016). Another interesting question is whether an analogue

to the degeneracy ordering can be defined in the temporal

setting and, if so, whether it can be used to further improve

the algorithm.
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