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Abstract The high-level contribution of this paper is a

quantitative measure (called Randomness Index) to assess

the extent of randomness in the topology of a complex real-

world network. We exploit the observation that the local

clustering coefficient (LCC) for a node in a truly random

network is independent of the degree of the node and is

simply the probability for a link to exist between any two

nodes in the network. On the other hand, for real-world

networks that are not truly random, nodes with a larger

degree are more likely to have a lower LCC value and vice

versa. For any complex real-world network, we propose to

determine the Randomness Index as the Pearson’s corre-

lation coefficient (ranging from -1 to 1) of the degree

versus average LCC of the nodes with the particular

degree. We evaluate the Randomness Index values for a

suite of 48 real-world networks of diverse degree distri-

bution and observe the median value to be -0.72.

Keywords Randomness Index � Complex networks �
Degree centrality � Local clustering coefficient � Pearson’s
correlation coefficient

1 Introduction

Complex network analysis is an emerging area of research

interest, and it corresponds to analyzing the topology of

complex networks (such as biological networks, citation

networks, social networks and web) from a graph-theoretic

perspective (Newman 2010). Random network models, like

the well-known Erdos–Renyi G(N, plink) model (Erdos and

Renyi 1959): where plink is the probability for a link

between any two nodes, are used to theoretically model

complex real-world networks as truly random networks and

form the basis to assess the extent of randomness among

the links of the real-world networks. Until now, the

assessment has been through a collection of characteristics

such as degree distribution, path length and connectedness

(Barabasi 2016), but none of these can be unequivocally

used to quantify the extent of randomness in any complex

real-world network.

In this paper, we investigate one characteristic feature of

truly random versus real-world networks (that are not truly

random) that has not been explored to its fullest potential.

The feature that we seek to explore is the distribution of the

degree (K) versus average local clustering coefficient

(LCC) of the nodes with a certain degree (hereafter,

referred to as the K vs. LCCðKÞ distribution). The local

clustering coefficient (LCC) for a node (Newman 2010) is

the probability that any two neighbors of the node are

connected. The LCC (ranges from 0 to 1) for a node is

measured as the ratio of the actual number of links between

the neighbors of the node to that of the maximum possible

number of links between the neighbors of the node. For

truly random networks following the G(N, plink) model, the

probability for a link between any two nodes is the same,

and hence, the probability that any two neighbors of a node

are connected is simply the plink value. In other words, the

LCC for a node in a truly random network does not depend

on the degree of the node. On the other hand, for a real-

world network, a node having a smaller degree has a larger

chance of having any two of its neighbor nodes to be

connected (compared to a node having a larger degree).

That is, for a real-world network, a node having a larger
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degree is more likely to have a lower LCC compared to a

node having a smaller degree. Hence, for real-world net-

works, if we average the LCC of the nodes having a certain

degree and plot the K versus LCCðKÞ distribution, the

distribution is more likely to exhibit a strong negative

correlation [as already reported in several related works

(Barabasi 2016; Foudalis et al. 2011; Pizzuti and Rombo

2014)], whereas for a truly random network generated

based on the average degree and number of nodes for a

real-world network graph, the K versus LCCðKÞ distribu-

tion is more likely to be a flat distribution (i.e., no

dependence) or sometimes exhibit a positive correlation.

The current status of the literature is to visually inspect

the K versus LCCðKÞ distribution and infer whether a real-

world network is truly random or not. We seek to proceed

one step further. We propose to quantify the extent of

randomness for a complex real-world network in the form

of a measure called the Randomness Index, and it is the

Pearson’s correlation coefficient (ranges from -1 to 1) of

the K vs. LCCðKÞ values for the vertices of the network.

For any complex real-world network, the closer the Ran-

domness Index value to zero (or even positive), the larger

the extent of randomness in the distribution of the links in

the network, whereas the closer the Randomness Index

value to -1, the lower the extent of randomness. We

analyze a suite of 48 real-world networks of diverse degree

distribution and observe the median of the Randomness

Index values to be -0.72. Only two of the 48 real-world

networks had a positive Randomness Index value, and the

rest of the networks had Randomness Index values less

than -0.15.

To the best of our knowledge, we have not come across

a single and dimensionless quantitative measure to

unequivocally quantify (that is, its range of values -1…1

remains the same, irrespective of the number of nodes and

edges in the network) the extent of randomness of complex

real-world networks. The Randomness Index value for a

real-world network could form the basis for further

exploratory studies conducted on the network. The links in

a real-world network with a larger Randomness Index

value are more likely to have formed due to random

association, and such a network could thence be subjected

to further tests that are characteristic for random networks;

on the other hand, the links in a real-world network with a

lower Randomness Index value are more likely to have not

formed due to random association (instead, it could be due

to preferential attachment), and such a network could

thence be subjected to further tests that are more charac-

teristic for non-random networks (such as scale-free net-

works). From a structural perspective, the Randomness

Index value for a network could be considered as a quan-

tified measure of the significance of the high-degree nodes

in the network. For networks with lower Randomness

Index values, the high-degree nodes are more likely to have

a lower local clustering coefficient; hence, in such net-

works, if the high-degree nodes are removed, several

structural measures such as neighborhood connectivity,

network robustness, path length (for shortest path com-

munication) and feedback capacity for diffusion (Al-

Shiridah et al. 2013) are likely to be affected. On the other

hand, for networks with larger Randomness Index values,

the high-degree nodes are relatively less critical as the

probability for any two nodes to be connected does not

depend on the degree of the nodes or the degree of their

neighbors.

The rest of the paper is organized as follows: In Sect. 2,

we present an illustrative example to generate a truly

random network for a given real-world network (that is not

random), determine the K versus LCCðKÞ distribution for

these two networks and compute the Randomness Index

values for the two network graphs. In Sect. 3, we first

present an overview of the 48 real-world networks ana-

lyzed in this research and tabulate/discuss the Randomness

Index values observed for these networks. We then

demonstrate the uniqueness of our proposed Randomness

Index metric by comparing the distribution of the values

for this metric with those obtained for some of the well-

known modeling parameters for complex network analysis

as well as with those available to quantify the variation or

correlation of node degree. In Sect. 4, we review related

work and highlight the unique contributions of the paper.

Section 5 concludes the paper. Throughout the paper, the

terms ‘‘node’’ and ‘‘vertex,’’ ‘‘link’’ and ‘‘edge,’’ ‘‘net-

work’’ and ‘‘graph’’ are used interchangeably. They mean

the same.

2 Randomness Index: illustration

The Randomness Index of a complex network is the

Pearson’s correlation coefficient (Strang 2006) of the

degree (K) versus the average local clustering coefficient of

the vertices with a certain degree, LCCðKÞ. In this section,

we illustrate the computation of the Randomness Index of a

real-world network and a truly random network that is

generated according to the well-known Erdos–Renyi model

(Erdos and Renyi 1959) on the basis of the average degree

(\K[) and number of nodes (N) for the real-world network

(see Fig. 1 for an illustration of the procedure).

For a given real-world network (the top graph in Fig. 1),

we first compute the average degree of the nodes in the

network. We then determine the probability for a link

(plink =\K[/N - 1) between any two nodes if we were to

generate a truly random network according to the Erdos–
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Renyi model based on\K[ and N for the real-world net-

work. We then consider all possible pairs of vertices (with

vertex IDs ranging from 0 to N - 1). We generate a ran-

dom number in the range of (0,…, 1) for each pair of

vertices; if the random number generated for a pair is less

than or equal to the plink value, then there is an edge

between the vertices forming the pair as part of the truly

random network (the bottom graph in Fig. 1); otherwise,

not.

Figure 2 presents the calculation of the degree (K)

versus average LCC for a particular degree (LCCðKÞ)
distribution for both the real-world network graph and the

truly random network graph. For the real-world network

graph, we observe the LCCðKÞ values to decrease with

increase in K; on the other hand, for the truly random

network, the LCCðKÞ values remain almost the same for

the three K values of 3, 4 and 5.

Randomness Index

¼
P

K K �\K[½ � LCCðKÞ �\LCCðKÞ[
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
K K �\K[½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

K LCCðKÞ �\LCCðKÞ[
� �2

q

ð1Þ

Figures 3 and 4 present the calculation of the Ran-

domness Index (see formulation 1) as the Pearson’s cor-

relation coefficient of the K versus LCCðKÞ values for the

Fig. 1 Generation of a Truly

Random Network according to

the Erdos–Renyi Model based

on the Average Degree and

Number of Nodes for a Real-

World Network

Fig. 2 Computation of the K

versus LCCðKÞ Values for the
Real-World Network and Truly

Random Network Graphs of

Fig. 1
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real-world network graph and truly random graph,

respectively. Let\K[ and\LCCðKÞ[ , respectively,

denote the average of the K values (represented by\K[)

and average of the LCCðKÞ values (represented

by\LCCðKÞ[). We determine the terms [K -\K[] and

[LCCðKÞ -\LCCðKÞ[] as well as their squares and

product. We observe the Randomness Index (Fig. 3) for the

real-world network graph to be -0.9665, clearly vindi-

cating our earlier assertion that the K and LCCðKÞ values
typically exhibit a strong negative correlation. On the other

hand, the Randomness Index (Fig. 4) for the truly random

graph (generated based on the\K[ and N for the real-

world network graph) is 0.7038, again vindicating our

assertion that the Randomness Index for the truly random

graphs generated based on the parameters for the real-

world network graph could be close to zero or positive.

3 Real-world network graphs and their analysis

In this section, we first introduce the 48 real-world net-

works analyzed in this paper. Table 1 lists the three-char-

acter code acronym, name and the network type, the values

for the number of nodes and edges as well as the average

node degree (kavg) and spectral radius ratio for node degree

(ksp). All the real-world networks are modeled as undi-

rected graphs. The spectral radius ratio for node degree

(Meghanathan 2014) is a measure of the variation in node

degree and is calculated as the ratio of the principal

eigenvalue (Bonacich 1987) of the adjacency matrix of the

graph to that of the average node degree. The spectral

radius ratio for node degree is independent of the number

of vertices and the actual degree values for the vertices in

the graph. The spectral radius ratio for node degree is

always greater than or equal to 1.0; the farther is the ratio

from the value of 1.0, the larger the variation in node

degree. The spectral radius ratio for node degree for the

real-world network graphs analyzed in this paper ranges

from 1.01 to 3.48 (indicating that the real-world network

graphs analyzed range from networks with smaller varia-

tion in node degree to networks with larger variation in

node degree).

The networks considered cover a broad range of cate-

gories (as listed below along with the number of networks

in each category): Acquaintance network (12), Friendship

network (9), Co-appearance network (6), Employment

network (4), Citation network (3), Literature network (3),

Fig. 3 Computation of the

Randomness Index for the K

versus LCCðKÞ Values for the
Real-World Network Graph of

Fig. 1

Fig. 4 Computation of the

Randomness Index for the K

versus LCCðKÞ Values for the
Truly Random Graph of Fig. 1

25 Page 4 of 15 Soc. Netw. Anal. Min. (2017) 7:25

123



Table 1 Real-World Networks used in the correlation analysis

# Net. Net. description References Network Type ksp #nodes #edges kavg

1 ADJ Word Adjacency Network Newman (2006) Co-appearance Net. 1.73 112 425 7.589

2 AKN Anna Karenina Network Knuth (1993) Co-appearance Net. 2.48 140 494 7.057

3 JBN Jazz Band Network Geiser and Danon (2003) Employment Net. 1.45 198 2742 27.697

4 CEN C. elegans Neural Network White et al. (1986) Biological Net. 1.68 297 2148 14.465

5 CLN Centrality Literature Net. Hummon et al. (1990) Citation Net. 2.03 118 613 10.39

6 CGD Citation Graph Drawing Net. Biedl and Franz (2001) Citation Net. 2.24 259 640 4.942

7 CFN Copperfield Network Knuth (1993) Co-appearance Net. 1.83 89 407 9.146

8 DON Dolphin Network Lusseau et al. (2003) Acquaintance Net. 1.40 62 159 5.129

9 DRN Drug Network Lee (2004) Acquaintance Net. 2.76 212 284 2.679

10 DLN Dutch Literature 1976 Net. de Nooy (1999) Literature Net. 1.49 37 81 4.378

11 ERD Erdos Collaboration Net. Batagelj and Mrvar (2006) Collaboration Net. 3.00 433 1314 6.069

12 FMH Faux Mesa High School Net Resnick et al. (1997) Friendship Net. 2.81 147 202 2.748

13 FHT Friendship in Hi-Tech Firm Krackhardt (1999) Friendship Net. 1.57 33 91 5.515

14 FTC Flying Teams Cade Net. Moreno (1960) Employment Net. 1.21 48 170 7.083

15 FON US Football Network Girvan and Newman (2002) Game Net. 1.01 115 613 10.661

16 CDF College Dorm Fraternity Net Bernard et al. (1980) Acquaintance Net. 1.11 58 967 33.345

17 GD96 Graph Drawing 1996 Net Batagelj and Mrvar (2006) Citation Net. 2.38 180 228 2.533

18 MUN Marvel Universe Network Gleiser (2007) Co-appearance Net. 2.54 167 301 3.605

19 GLN Graph Glossary Network Batagelj and Mrvar (2006) Literature Net. 2.01 67 118 3.522

20 HTN Hypertext 2009 Network Isella et al. (2011) Acquaintance Net. 1.21 115 2164 37.635

21 HCN Huckleberry Co-appear. Net. Knuth (1993) Co-appearance Net. 1.66 76 302 7.947

22 ISP Infectious Socio-Patterns Net Isella et al. (2011) Acquaintance Net. 1.69 309 1924 12.453

23 KCN Karate Club Network Zachary (1977) Acquaintance Net. 1.47 34 78 4.588

24 KFP Korea Family Planning Net. Rogers and Kincaid (1980) Acquaintance Net. 1.70 37 85 4.595

25 LMN Les Miserables Network Knuth (1993) Co-appearance Net. 1.82 77 254 6.597

26 MDN Macaque Dominance Net. Takahata (1991) Biological Net. 1.04 62 1167 37.645

27 MTB Madrid Train Bombing Net. Hayes (2006) Acquaintance Net. 1.95 64 295 9.219

28 MCE Manufact. Comp. Empl. Net. Cross et al. (2004) Employment Net. 1.12 77 1549 40.23

29 MSJ Soc. Net. Journal Co-authors McCarty et al. (2008) Co-author Net. 3.48 475 625 2.632

30 AFB Author Facebook Network – Friendship Net. 2.29 171 940 10.994

31 MPN Mexican Political Elite Net. Gil-Mendieta and Schmidt (1996) Political Net. 1.23 35 117 6.686

32 MMN ModMath Network Batagelj and Mrvar (2006) Friendship Net. 1.59 30 61 4.067

33 PBN US Politics Books Network Krebs (2003) Literature Net. 1.42 105 441 8.4

34 PSN Primary School Contact Net. Gemmetto et al. (2014) Acquaintance Net. 1.22 238 5539 46.546

35 PFN Prison Friendship Network MacRae (1960) Friendship Net. 1.32 67 142 4.239

36 SJN San Juan Sur Family Net. Loomis et al. (1953) Acquaintance Net. 1.29 75 155 4.133

37 SDI Scotland Corp. Interlock Net Scott (1900) Employment Net. 1.94 230 359 3.122

38 SPR Senator Press Release Net. Grimmer (2010) Political Net. 1.47 92 477 10.37

39 SWC Soccer World Cup 1998 Net Batagelj and Mrvar (2006) Game Net. 1.45 35 118 6.743

40 SSM Sawmill Strike Comm. Net. Michael (1997) Acquaintance Net. 1.22 24 38 3.167

41 TEN Taro Exchange Network Schwimmer (1973) Acquaintance Net. 1.06 22 39 3.545

42 TWF Teenage Female Friend Net. Pearson and Michell (2000) Friendship Net. 1.59 47 77 3.277

43 UKF UK Faculty Friendship Net. Nepusz et al. (2008) Friendship Net. 1.35 83 578 13.928

44 APN US Airports 1997 Network Batagelj and Mrvar (2006) Transportation Net. 3.22 332 2126 12.807

45 USS US States Network Meghanathan (2017) Geographical Net. 1.24 49 107 4.37

46 RHF Residence Hall Friend Net. Freeman et al. (1998) Friendship Net. 1.27 217 1839 16.949

47 WSB Windsurfers Beach Network Freeman et al. (1989) Friendship Net. 1.22 43 336 15.628

48 WTN World Trade Metal Network Smith and White (1992) Trade Net. 1.38 80 875 21.875
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Collaboration network (2), Political network (2), Biologi-

cal network (2), Game network (2), Geographical Network,

Transportation network and Trade network (1 each). A

brief description about each category of networks is as

follows: An acquaintance network is a kind of social net-

work in which the participant nodes slightly (not closely)

know each other, as observed typically during an obser-

vation period. A friendship network is a kind of social

network in which the participant nodes closely know each

other, and the relationship is not captured over an obser-

vation period. A co-appearance network is a network

typically extracted from novels/books in such a way that

two characters or words (modeled as nodes) are connected

if they appear alongside each other. An employment net-

work is a network in which the interaction/relationship

between people is primarily due to their employment

requirements and not due to any personal liking. A citation

network is a network in which two papers (nodes) are

connected if one paper cites the other paper as reference. A

collaboration network is a network of researchers/authors

who are listed as co-authors in at least one publication. A

biological network is a network that models the interac-

tions between genes, proteins, animals of a species, etc. A

political network is a network of entities (typically politi-

cians) involved in politics. A game network is a network of

teams or players playing for different teams and their

associations. A literature network is a network of

books/papers/terminologies/authors (other than collabora-

tion, citation or co-authorship) involved in a particular area

of literature. A transportation network is a network of

entities (like airports and their flight connections) involved

in public transportation. A trade network is a network of

countries/people involved in certain trade. The reader is

referred to Meghanathan (2017) for a more detailed

description of the individual real-world networks.

Table 2 lists the Randomness Index values for the 48

real-world network graphs. Only two networks (# 15—

Football Network and # 32—ModMath Network) incur a

positive Randomness Index value, indicating that their

edges are formed due to random association. This could be

justified due to the fact that the Football Network com-

prises of edges whose end vertices are teams that have

played against each other during the round-robin league.

Since the round-robin league games are arbitrarily sched-

uled between any two teams, it is convincing to observe a

neutral or positive correlation between degree and local

clustering coefficient values. Likewise, the ModMath

Network comprises of school superintendents who have an

edge between them if at least either of them considers the

Table 2 Randomness Index of

the real-world network graphs
# Net. Randomness Index # Net. Randomness Index # Net. Randomness Index

1 ADJ -0.3614 17 GD96 -0.3320 33 PBN -0.8048

2 AKN -0.8962 18 MUN -0.9662 34 PSN -0.9139

3 JBN -0.7923 19 GLN -0.6649 35 PFN -0.6210

4 CEN -0.6221 20 HTN -0.7648 36 SJN -0.7275

5 CLN -0.6977 21 HCN -0.8457 37 SDI -0.4612

6 CGD -0.6650 22 ISP -0.7218 38 SPR -0.3867

7 CFN -0.8447 23 KCN -0.8779 39 SWC -0.5376

8 DON -0.3899 24 KFP -0.1853 40 SSM -0.8676

9 DRN -0.5884 25 LMN -0.8476 41 TEN -0.8712

10 DLN -0.3860 26 MDN -0.8296 42 TWF -0.6113

11 ERD -0.6337 27 MTB -0.6354 43 UKF -0.7918

12 FMH -0.7700 28 MCE -0.9144 44 APN -0.8887

13 FHT -0.7403 29 MSJ -0.8286 45 USS -0.9234

14 FTC -0.6694 30 AFB -0.1667 46 RHF -0.5527

15 FON 0.8855 31 MPN -0.3598 47 WSB -0.9266

16 CDF -0.9336 32 MMN 0.2703 48 WTN -0.9564

Fig. 5 Sorted Order of the Randomness Index of the Real-World

Networks
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other person as someone who can effectively spread around

modern Math methods among the schools in a county. In

such a network, the links among the neighbor nodes of a

node are more likely to be formed independent of the

degree of the node.

Figure 5 presents the Randomness Index values of the

networks in the sorted order. We observe the median of the

Randomness Index values to be -0.72, and 35 of the 48

real-world networks (i.e., about 70% of the networks)

exhibit Randomness Index values less than -0.60, all of

which indicate a strong negative correlation, as per the

ordinal scale proposed by Evans (Evans 1995). Thus, the

extent of randomness in real-world networks is minimal,

and links are more likely not to get arbitrarily created.

However, if links are to get randomly generated, then the

average local clustering coefficient of the nodes is more

likely to be independent of node degree (like the truly

random graph in Figs. 1, 4) and the Randomness Index of

the networks is likely to be close to zero or positive.

3.1 Comparison with the Erdos–Renyi random

network graphs

In this subsection, we compare the Randomness Index

values obtained for the 48 real-world network graphs with

those obtained for their corresponding random network

graphs generated according to the well-known Erdos–

Renyi (ER) model. For each real-world network graph, we

generate 1000 instances of the corresponding ER-random

network graphs following the procedure described in

Sect. 2 and determine the average of the Randomness

Index values obtained for these 1000 random network

graphs. In Fig. 6, we plot the Randomness Index values

observed for a real-world network graph versus the average

of the Randomness Index values observed for its corre-

sponding random network graphs generated according to

the ER model. For 43 of the 48 real-world networks (the

data points lie below the diagonal line), the Randomness

Index values observed for the real-world networks are

lower (i.e., relatively more closer to -1) compared to the

Randomness Index values observed for their corresponding

ER-random graphs.

The median of the average Randomness Index values of

the ER-random graphs is -0.12 (see Fig. 7 for a distribu-

tion of the Randomness Index values vs. the probability for

a link in the ER-random graphs corresponding to the real-

world network graphs). For 13 of the 48 real-world net-

work graphs, the average Randomness Index values of the

Fig. 7 Probability for a link in

the ER-Random Graphs

corresponding to the Real-

World Network Graphs versus

Average of the Randomness

Index Values for the ER-

Random Graphs

Fig. 6 Randomness Index of the Real-World Network Graphs versus

Average of the Randomness Index Values for the Corresponding

Instances of the ER-Random Graphs
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corresponding ER-random graphs are positive (i.e., above

0.0) and for more than half of the real-world networks, the

average Randomness Index values of the corresponding

ER-random graphs are greater than -0.20. Such observa-

tions vindicate our earlier claim that if the links in a net-

work came into existence due to just random association,

the Randomness Index value for that network is more

likely to be closer to 0 (rather than being closer to -1).

Only for 3 of the 48 real-world network graphs, their

corresponding ER-random graphs had average Random-

ness Index values that are less than -0.60, whereas, as

mentioned earlier (see Fig. 5), the Randomness Index

values for 35 of the 48 real-world network graphs are less

than -0.60. All of the above observations demonstrate the

potential of the Randomness Index measure to categori-

cally differentiate real-world network graphs from random

network graphs.

3.2 Comparison with the power-law model scale-

free network graphs

Scale-free network graphs are modeled using the power-

law model (Barabasi and Albert 1999) according to

which the probability for observing a node with degree

K is given by P(K) = CK -c, where C is the propor-

tionality constant and c is the power-law exponent.

Unlike the Poisson model (Erdos and Renyi 1959; Ugarte

et al. 2015) of degree distribution that is characteristic

for random network graphs, the power-law model of

degree distribution for scale-free network graphs is

characteristic of a heavy tail (i.e., there exists a few, but

appreciable number of nodes, with degree centrality

values that are extremely larger compared to those for

the rest of the nodes). The smaller the value for c, the
larger the chances for finding one or more node(s),

typically called the hub nodes, with a degree that is

much larger than the rest of the nodes in the network.

On the other hand, the larger the value for c, the lower

the chances for finding the hub nodes; all the nodes are

more likely to be of comparable degree (such a degree

distribution is characteristic of the random network

graphs). The convention in the literature (Barabasi 2016)

is that networks with c values less than 3.0 are consid-

ered to be in the scale-free regime and networks with c
values greater than 3.0 are considered to fall in the

random network regime.

Table 3 Estimation of the power-law exponent (c) and the R2 values of these estimates for the real-world network graphs

# Net. Estimate of the

power-law exponent (c)
R2 of the estimate # Net. Estimate of the

power-law exponent (c)
R2 of the estimate

1 ADJ 0.7768 0.6457 25 LMN 0.8565 0.6691

2 AKN 0.9355 0.7854 26 MDN 0.3699 0.0288

3 JBN 0.2661 0.1533 27 MTB 0.7191 0.5464

4 CEN 0.7987 0.4866 28 MCE 0.6822 0.1543

5 CLN 0.7727 0.7579 29 MSJ 2.0581 0.8941

6 CGD 1.3321 0.7973 30 AFB 0.7188 0.5206

7 CFN 0.7039 0.6502 31 MPN 0.3855 0.1131

8 DON 0.6233 0.4780 32 MMN 0.9689 0.5083

9 DRN 1.8458 0.8766 33 PBN 0.6614 0.2477

10 DLN 0.6602 0.6080 34 PSN 0.0330 0.0009

11 ERD 1.4945 0.8649 35 PFN 0.6967 0.2582

12 FMH 1.8304 0.8517 36 SJN 0.5759 0.1279

13 FHT 0.4441 0.2610 37 SDI 1.7105 0.6382

14 FTC 0.0022 0.0000 38 SPR 0.4538 0.3380

15 FON 6.4181 0.7148 39 SWC 0.3702 0.2024

16 CDF 0.2510 0.0907 40 SSM 0.3730 0.0635

17 GD96 1.2039 0.6458 41 TEN 3.1458 0.5016

18 MUN 1.2671 0.9395 42 TWF 0.8008 0.2530

19 GLN 1.2735 0.8422 43 UKF 0.2649 0.0759

20 HTN 0.0496 0.0045 44 APN 0.9456 0.7690

21 HCN 0.6304 0.4503 45 USS 0.0954 0.0043

22 ISP 0.7787 0.4158 46 RHF 0.2243 0.0308

23 KCN 0.5512 0.2914 47 WSB 0.3085 0.0683

24 KFP 0.2149 0.1541 48 WTN 0.4158 0.2005
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In this section, we fit the degree distributions of the real-

world networks to follow a power-law model and estimate

the c values for the corresponding scale-free networks. For

each real-world network, we count the number of nodes

with a certain degree K and divide that count by the total

number of nodes in the network to obtain the value of P(K).

Since P(K) = CK -c, ln P(K) = ln C ? (-c)*ln (K). We

model the ln (K) versus ln P(K) distribution using linear

regression and determine the slope of the line (-c). We

observe the median of the estimated c values to be 0.67,

and only two of the 48 real-world networks (the # 15 FON

and the # 41 TEN) have the estimated c values greater than
3.0. However, we cannot very confidently claim that these

real-world networks follow a power-law model, because

the R2 values for the power-law model fits of these net-

works are not appreciably high; the median of the R2 values

is only 0.43 (Table 3 displays the estimated c values and

the R2 values of these estimates for the 48 real-world

networks considered, and Fig. 8 plots the same). It is

interesting to note from Fig. 8 that lower the estimated c
values, the lower the R2 values of these estimates. Hence,

even though the estimated c values are low for the real-

world networks, due to the lower R2 values for these esti-

mates, the c values cannot be alone construed as a measure

of the scale-freeness (or indirectly, the lack of randomness)

of a real-world network.

Our proposal for directly estimating the Randomness

Index for a real-world network fills this gap. Rather than

estimating the measure of scale-freeness of a real-world

network and considering it as an indirect measure of the

lack of randomness in the network, we propose to directly

measure the extent of randomness of a real-world network

using the Randomness Index measure. Figure 9 that plots

the Randomness Index versus the estimated power-law

exponent (c) indicates the same. Real-world networks with

lower c values have the Randomness Index values spread

over the entire range from [-1…0]. Hence, the power-law

exponent c would not be a sufficient measure to effectively

quantify the extent of randomness of a real-world network.

3.3 Comparison with the small-worldness index

A network is considered to be a small-world network

(Newman 2010) if the average path length between any

two nodes is proportional to the logarithm of the number of

nodes in the network as well as the average local clustering

coefficient of the nodes is high. The clustering coefficient

for a network (Newman 2010) is the average of the local

clustering coefficient of the individual nodes in the net-

work. Structurally, a small-world network is considered to

be in between a regular network (wherein all nodes have

the same degree) and random network (Newman 2010).

Regular networks have a larger clustering coefficient, but a

larger average path length too. On the other hand, random

networks have a lower average path length, but a lower

clustering coefficient too. The well-known Watts–Strogatz

model (Watts and Strogatz 1998) is typically used to

transform a regular network to a small-world network by

arbitrarily rewiring the links of the regular network with a

probability b. If b = 1, the network is truly random.

Typically, b values of 0.10 or lower have been observed

(Meghanathan 2015) to be appropriate to transform a reg-

ular network to a random network without significantly

decreasing the clustering coefficient, but at the same time

appreciably decreasing the average path length.

In Humphries and Gurney (2008), the authors proposed

a metric called ‘‘Small-worldness Index’’ that could be

used to quantify the extent of small-worldness in a real-

world network. The Small-worldness Index of a real-world

network is computed as follows: We generate 1000

instances of the ER-random graphs for the real-world

Fig. 8 Distribution of the Estimated Values for the Power-Law

Exponent (c) and the R2 Values for these Estimates for the Real-

World Network Graphs

Fig. 9 Distribution of the Estimated Values for the Power-Law

Exponent (c) versus the Randomness Index Values for the Real-

World Network Graphs
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network (using the procedure described in Sect. 2) and

determine the overall average clustering coefficient of

these random graphs as well as the overall average path

lengths between any two nodes in these graphs. We

determine the clustering coefficient ratio as the ratio of the

average clustering coefficient of the real-world network

and the overall average clustering coefficient for all the

corresponding ER-random graphs. Likewise, we determine

the path length ratio as the ratio of the average path length

between any two nodes in the real-world network and the

overall average path length between any two nodes in the

corresponding ER-random graphs. The average path length

for a real-world network is expected to be larger than the

overall average path incurred for its corresponding ER-

random graphs. Hence, the average path length ratio for a

real-world network is expected to be larger than 1.0, but

closer is the ratio to 1.0 or even lower than 1.0, the larger

the extent of small-worldness. On the other hand, the

average clustering coefficient for a real-world network is

expected to be larger than that incurred for its corre-

sponding ER-random graphs. Hence, the Small-worldness

Index of a real-world network is computed as the clustering

coefficient ratio divided by the average path length ratio.

The larger the magnitude of the Small-worldness Index for

a real-world network, the larger the extent of small-

worldness in the network (i.e., smaller path length and

larger clustering coefficient of the nodes).

Table 4 displays the Small-worldness Index values

computed for the 48 real-world networks, and Fig. 10

presents a plot showing the distribution of the Randomness

Index vs. Small-worldness Index values for the real-world

network graphs. The median of the Small-worldness Index

values is 2.85. For real-world networks with Small-

worldness Index values much larger than the median (say,

for example, networks with Small-worldness Index values

of 6.0 or above), the Randomness Index values are less

than -0.60 (except for # 30: AFB network). Though we

could see such an inverse relationship between the two

indexes for highly small-world networks, we are not able to

generalize it for all the real-world networks studied. In

particular, for 25 of the 48 real-world networks that had

Small-worldness Index values less than 3.0, the Random-

ness Index values range from -1.0 to 0.20. Thus, the

Table 4 Small-worldness Index of the real-world network graphs

# Net. Small-worldness Index # Net. Small-worldness Index # Net. Small-worldness Index

1 ADJ 3.7454 17 GD96 1.2951 33 PBN 4.6476

2 AKN 16.2410 18 MUN 6.3164 34 PSN 2.6542

3 JBN 3.8344 19 GLN 3.0292 35 PFN 2.4758

4 CEN 6.9976 20 HTN 1.5768 36 SJN 2.3040

5 CLN 6.9937 21 HCN 7.9463 37 SDI 0.5886

6 CGD 5.9216 22 ISP 6.2047 38 SPR 2.8095

7 CFN 8.2710 23 KCN 3.5292 39 SWC 2.0331

8 DON 2.8175 24 KFP 2.2426 40 SSM 1.5488

9 DRN 1.5486 25 LMN 7.9039 41 TEN 1.2619

10 DLN 1.2839 26 MDN 1.0799 42 TWF 3.2944

11 ERD 13.6027 27 MTB 6.2209 43 UKF 2.8887

12 FMH 1.7365 28 MCE 1.6601 44 APN 19.2159

13 FHT 3.5309 29 MSJ 3.0847 45 USS 2.5624

14 FTC 2.6611 30 AFB 10.2375 46 RHF 4.1281

15 FON 3.9315 31 MPN 2.1514 47 WSB 1.7135

16 CDF 1.2747 32 MMN 1.9368 48 WTN 2.7231

Fig. 10 Distribution of the Randomness Index Values versus the

Small-worldness Index Values for the Real-World Network Graphs
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Small-worldness Index measure cannot be used as a direct

measure to infer the extent of randomness of any arbitrary

real-world network.

3.4 Transitions in the pattern of the K

versus LCCðKÞ distribution

Figure 11 presents the K versus LCCðKÞ distribution

(where the degree centrality values are normalized in a

scale of 0 to 1 for uniformity) for selected networks such

that we capture the transitions in the pattern of the distri-

bution as the Randomness Index values change from -1 to

1. The K versus LCCðKÞ distributions for networks MUN

(# 18), KCN (# 23), SJN (# 36), DON (# 8), with Ran-

domness Index values smaller than -0.35 clearly show a

negative correlation. The Author Facebook Network (# 30:

AFB) shows a random pattern for the K versus LCCðKÞ
distribution, vindicating its Randomness Index value of

-0.1667. The Football Network (# 15: FON) shows an

opposite trend, wherein the LCCðKÞ values increase with

increase in K until certain values of K and then decrease;

such a behavior is unexpected for real-world networks and

can happen only when the LCC for a node is independent

of the degree of the node (a characteristic of truly random

networks and is also vindicated by the lowest spectral

radius ratio for node degree value of 1.01 for the Football

Network).

3.5 Randomness Index versus metrics to quantify

the extent of variation in node degree

Figure 12 presents a distribution of the Randomness Index

values versus metrics that have been hitherto used to

quantify the extent of variation in node degree (spectral

radius ratio for node degree (Meghanathan 2014), ratio of

the standard deviation to the average of node degree) or the

heavy-tailed nature of a degree distribution (Kurtosis) or

the degree–degree correlation of the end vertices of the

edges (assortativity index) (Newman 2002). We do not

observe any particular trend of increase or decrease in the

Randomness Index values for each of these four metrics.

We observe networks with lower variation in node degree

(lower values for the spectral radius ratio for node degree

or the ratio of the standard deviation to the average of node

degree) need not have lower values for the Randomness

Index, implying that the lack of variation in node degree

cannot be perceived as the sole reason to expect a real-

world network to exhibit randomness in the distribution of

its links. For example, the Taro Exchange Network (# 41:

TEN) and the Football Network (# 15: FON) have spectral

radius ratio for node degree and standard deviation/average

Fig. 11 K vs.LCCðKÞ Distribution for Selected Real-World Networks and Randomness Index Values
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degree ratio values of (1.06, 0.265) and (1.01, 0.083),

respectively; however, the Randomness Index of the TEN

is -0.8712 (lack of randomness in the distribution of links

among the nodes) and that of the FON is 0.8855 (signifi-

cant randomness in the distribution of links among the

nodes). Likewise, we also observe that two networks with

vastly different Kurtosis values could have very close

Randomness Index values. For example, the Anna Karen-

ina Network (# 2: AKN) and the Fraternity College Dor-

mitory Network (# 16: CDF) have Kurtosis values of 16.97

and 2.87, respectively, whereas their Randomness Index

values (-0.8962 and -0.9336) are very close to each other.

With respect to assortativity of the end vertices of the edges

on the basis of node degree, we observe a majority of the

real-world networks to exhibit assortativity index (calcu-

lated as the Pearson’s correlation coefficient of the degrees

of the end vertices of the edges) values closer to 0, irre-

spective of the Randomness Index.

4 Related work

Several works in the literature [e.g., (Foudalis et al. 2011)

for social networks, (Pizzuti and Rombo 2014) for protein–

protein interaction networks] have reported the negative

correlation between the degree of a vertex and the local

clustering coefficient of vertices with a particular degree.

In (Bloznelis 2013), the authors attempted to study this

phenomenon [to explore the hierarchical organization of

real-world networks (Ravasz and Barabasi 2003)] using

two random graph models (Godehardt and Jaworski 2001)

that admit power-law degree distribution. However, there

is no attempt to quantify the strength of this correlation and

relate the value of the correlation coefficient with that of

the extent of randomness in the network. To the best of our

knowledge, ours is the first attempt to quantify the extent of

randomness in the distribution of the links on the basis of

the negative correlation of the K versus LCCðKÞ
distribution.

We use the classical Erdos–Renyi model (Erdos and

Renyi 1959) as the basis for the degree-independent local

clustering coefficient for the nodes (the local clustering

coefficient for any node is close to the probability for a link

between any two nodes) in truly random graphs. We do not

advocate the use of other random network models [such as

the configuration model (Britton et al. 2006)] because these

models restrict the distribution of the links among the

nodes in the network subject to certain constraints [such as

a particular degree sequence (Meghanathan 2016) or an

LCC sequence (Li and O’Riordan 2013)]. For example, in

(Li and O’Riordan 2013), the authors exploited the nega-

tive K versus LCCðKÞ correlation to evaluate the

Fig. 12 Randomness Index versus {Spectral Radius Ratio, Standard Deviation/Average Ratio, Kurtosis, Assortativity Index} for node degree
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cooperation among the nodes as well as the robustness of

the network with regard to link removals and proposed

algorithms that would generate graphs with certain LCC

values for the nodes for a given degree distribution. Such

models cannot be used to evaluate the extent of random-

ness in real-world networks.

In Soffer and Vazquez (2005), the authors proposed a

novel approach to determine the maximum possible number

of links between the neighbors of a node as part of the for-

mulation to compute the local clustering coefficient for a

node. If the degree constraints of the neighbors of a node are

taken into consideration, the maximum possible number of

links among the neighbors of a node is more likely to be

lower than themaximumpossible number of links used in the

standard LCC formulation (that is also used in this paper).

For example, if a node i has four neighbors (say, A, B, C, D)

and all these neighbors have degree 2, as per (Soffer and

Vazquez 2005), the maximum possible number of links

between these neighbors is 2 (say, A–B and C–D) and not

4(4 - 1)/2 = 6. The extent of randomness of a real-world

network could not be evaluated with such a formulation for

the LCC as it forces all the possible links incident on the

neighbors of a node to be those connecting the neighbors of

the nodes themselves (and the chances of randomness in the

distribution of the links are suppressed). To corroborate our

observation with regard to the computation of LCC, the K

versus LCCðKÞ distribution for several real-world networks
based on the formulation of (Soffer and Vazquez 2005) has

been observed to be a flat distribution, and with such a

degree-independent distribution of LCC, the extent of ran-

domness in a real-world network could not be evaluated.

5 Conclusions

The high-level contribution of this paper is the proposal for

a quantitative metric to assess the extent of randomness in

the distribution of the links in real-world networks. We

make use of the fact that if a real-world network is not a

truly random network, the chances for any two neighbors

of a node to be connected (quantified in terms of the local

clustering coefficient, LCC) decrease with increase in the

degree for the node. We define the Randomness Index of a

real-world network as the Pearson’s correlation coefficient

of the degree and average LCC of the nodes with the

particular degree. We propose that stronger the negative

correlation (i.e., closer the values of the correlation coef-

ficient to -1), the lower the extent of randomness in the

distribution of the links in the network. For networks with

lower values of the Randomness Index (close to -1), the

chances for any two neighbors of a node to be connected

decrease with increase in degree, and hence, the links are

more likely to have not formed due to random association.

For networks with Randomness Index closer to 0 or above

0, the chances for any two neighbors of a node to be

connected do not depend on the degree of the node, and

hence, the links between nodes are more likely to have

formed due to random association.

We evaluate a suite of 48 real-world networks of diverse

degree distribution and observe that the median of the

Randomness Index values is as low as -0.72 (indicating

that the extent of randomness in a majority of the real-

world networks is limited). We also show that the Ran-

domness Index values for a real-world network and its

corresponding ER-random graphs are indeed different and

the former is more likely to be lower. We advocate that the

Randomness Index metric is a dimensionless metric (the

values always range from -1 to 1 and do not depend on the

actual degree values of the nodes or the number of nodes

and edges in the network) that could be unequivocally used

(unlike the currently used approaches of evaluating the

degree distribution, standard deviation/average ratio, con-

nectedness, assortativity index, etc.) to evaluate the extent

of randomness in any real-world network. Further, we

show that the Randomness Index metric is a unique metric

for complex network analysis and is different from some of

the well-known modeling parameters like the power-law

exponent for scale-free networks and Small-worldness

Index for small-world networks. We also show that it does

not have similarity to any of the existing metrics to quan-

tify the variation or correlation of node degree.
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