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Abstract Applying the concept of triadic closure to coau-

thorship networks means that scholars are likely to publish a

joint paper if they have previously coauthored with the same

people. Prior research has identified moderate to high (20 to

40%) closure rates; suggesting thismechanism is a reasonable

explanation for tie formation between future coauthors. We

show how calculating triadic closure based on prior opera-

tionalizations of closure, namely Newman’s measure for one-

mode networks (NCC) and Opsahl’s measure for two-mode

networks (OCC) may lead to higher amounts of closure

compared to measuring closure over time via a metric that we

introduce and test in this paper. Based on empirical experi-

ments using four large-scale, longitudinal datasets, we find a

lower bound of 1–3% closure rates and an upper bound of

4–7%. These results motivate research on new explanatory

factors for the formation of coauthorship links.

Keywords Clustering coefficient � Transitivity � Triadic
closure � Coauthorship networks

1 Introduction and background

In the field of collaboration networks research, scholars

aim to understand the mechanisms that underlie the

formation of relationships between authors, which result

in coauthorship ties and networks. One of these mecha-

nisms is homophily (McPherson et al. 2001), i.e., the

tendency of scholars to be more likely to collaborate

with each other if they share personal, behavioral,

sociodemographic, or other attributes. Prior work on this

topic has shown that sociologists in three European

countries had a tendency to work together if they were of

the same gender, belonged to the same department, or

had similar citation patterns (Hâncean and Perc 2016;

Hâncean et al. 2014). Homophily-based tie formation in

collaboration networks was also confirmed in a study of

collaboration patterns among Turkish engineering schol-

ars over a period of 33 years, where it was found that

authors are likely to publish together if they had similar

degrees, which could be a proxy for similar backgrounds,

and were of similar academic ages (Türker and Çavu-

soglu 2016).

Unlike the aforementioned studies that mostly leverage

similarities in node-level features, another stream of col-

laboration networks research focused on the patterns in

network structure in order to model the formation of sci-

entific collaboration networks. This approach relates to the

long-held observation that people have a natural tendency

to engage in small, tightly knit groups, even though

coauthorship networks might differ from non-professional

types of relationships, such as friendship (Holland and

Leinhardt 1970). This tendency has been studied under the

term ‘clustering’ or ‘community detection’ in the networks

literature, and several algorithms and metrics have been

proposed to detect and measure this effect. For example,

Watts and Strogatz (1998) introduced the clustering coef-

ficient, which measures the density of a node’s ego net-

work. Barabási et al. (2002) interpreted this clustering in

collaboration networks as the likelihood of an author’s

collaborators to work together.
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Newman (2001b) extended this notion to the graph level

by proposing a new measure, i.e., the Global Clustering

Coefficient, and used this measure to describe link for-

mation mechanisms in collaboration networks. Comparable

to the original notion of triadic closure (Rapoport 1953),

Newman’s global clustering coefficient is concerned with

the clustering of trios (groups of three nodes): if node A is

connected to nodes B and C, but B and C are not yet linked,

then B and C are likely to form a link in the future.

Although Newman (2001b) referred to this tendency as

transitivity, it is better known in the social network liter-

ature as triadic closure (Kossinets and Watts 2006). In our

paper hereafter, triadic closure is used synonymously with

Newman’s clustering tendency (what he called transitiv-

ity).1 In order to measure triadic closure on the network

level, Newman (2001b) just proposed a clustering coeffi-

cient to calculate the ratio of the number of trios that are

triads (i.e., three nodes connected by three edges) over the

number of three nodes that are connected by two edges.

Applying this measure to scientific collaboration networks,

he found that triadic closure happens more often in com-

puter science and physics than in biomedicine.

Newman’s global clustering coefficient (NCC) has been

adopted as a proxy for the likelihood of two scholars who

share a common third coauthor, but who have not yet

published together, to collaborate with each other on a joint

paper in the future. For example, Newman (2001b) found a

clustering coefficient of 0.43 for a coauthorship network of

52,909 authors from 98,502 papers available from the Los

Alamos e-Print Archive. Based on this result, he argued

that ‘two scientists typically have a 30% or greater prob-

ability of collaborating if both have collaborated with a

third scientist’ (Newman 2001b, p. 408). Until recently,

scholars have often followed Newman’s way of interpret-

ing clustering coefficients for triadic closure in coauthor-

ship networks. Table 1 summarizes selected empirical

results for measuring triadic closure based on NCC at the

field level (e.g., Franceschet 2011; Kim and Diesner 2015),

institutional level (e.g., Türker et al. 2016), and national

level (e.g., Çavuşoğlu and Türker 2013; Kim et al. 2016;

Perc 2010).

One problem with this common procedure is that the

NCC may report false positives for triadic closure, espe-

cially in scientific collaboration networks, as illustrated

with an example in Table 2. In a collaboration network,

authors are nodes that get connected if they appear in the

same byline of a publication. In Case 1, authors Y and Z

collaborate with author X on papers A and B, respectively,

and thus form edges with author X (i.e., X–Y and X–Z).

These two pairs of edges are called a 2-path. In paper C,

authors Y and Z collaborate, which completes a triangle of

edges among authors X, Y, and Z, and this is exactly the

effect that triadic closure is supposed to represent. Here,

the 2-path is said to be closed by the edge Y–Z.2 The NCC

counts the number of closed 2-paths over all 2-paths in a
1 Transitivity seems to be associated more commonly with directed

networks (Wasserman and Faust 1994) than with undirected ones.

Many network research papers and software packages implementing

the Newman metric (2001b) still use transitivity to refer to triadic

closure.

2 The triadic closure contains three cases of 2-path closure: (1) Y–X–

Z closed by Y–Z, (2) X–Z–Y closed by Y–X, and (3) Z–Y–X closed

by X–Z. This also applies to Case 2 in Table 2.

Table 1 Selected studies reporting clustering coefficients for triadic closure

Field or country Years No. of papers (No. of authors) Avg. authors per paper Clustering coefficient References

Computer Science 1936–2008 1,216,526 (731,333) 2.56 0.24 Franceschet (2011)

Computer Science 1995–1999 13,169 (11,994) 2.22 0.496 Newman (2001b)

Korea 1948–2011 703,073 (415,695) 2.79 0.19 Kim et al. (2016)

Mathematics 1940–1999 1,598,000 (337,000) 1.45 0.15 Grossman (2002)

Mathematics 1991–1998 70,901 (70,975) – 0.59 Barabási et al. (2002)

Medicine 1995–1999 2,163,923 (1,520,251) 3.75 0.066 Newman (2001b)

Neuroscience 1991–1998 210,750 (209,293) – 0.76 Barabási et al. (2002)

Physics 1995–1999 98,502 (52,909) 2.53 0.43 Newman (2001b)

Physics 1995–1999 66,652 (56,627) 8.96 0.726 Newman (2001b)

Slovenia 1960–2010 76,194 (7380) – 0.20 Perc (2010)

Sociology 1963–1999 281,090 (197,976) 1.56 0.19 Moody (2004)

Turkey 1980–2010 237,409 (151,745) 4.08 0.75 Çavuşoğlu and

Türker (2013)

Eight papers reported clustering coefficients for collaboration networks from six fields—computer science, math, medicine, neuroscience,

physics, and sociology—and three nations—Korea, Slovenia, and Turkey. The coefficients range from 0.066 (medicine) to 0.76 (neuroscience).

For mathematics and neuroscience in Barabási et al. (2002), the coefficients were estimated from Fig. 4 using an open source image analysis tool,

ImageJ (https://imagej.nih.gov/ij/)
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network. In contrast, in Case 2, authors X, Y, and Z are

fully connected to each other, seemingly leading to triadic

closure because these authors appear in the same byline of

paper D. However, the NCC does not distinguish these two

cases and may thus inflate the tendency of triadic closure in

a coauthorship network, especially in data where papers

written by three or more people are common (Opsahl

2013).

Technically, this problem arises mainly when New-

man’s measure is directly applied to one-mode networks

projected from a two-mode (i.e., bipartite) network. A two-

mode network has two types of nodes (e.g., papers and

authors), and edges only across nodes of different types. A

two-mode network can be projected onto two one-mode

networks. For example, a two-mode network of papers and

authors can be transformed into one network of papers

where two papers (nodes) are connected if they are written

by the same authors. Thus, a coauthorship network is a

special case of a one-mode projection from a two-mode

network (of papers and authors) where people are linked

because they coauthored a paper. As shown in Case 2 of

Table 2, if three or more authors who jointly wrote a paper

as per the two-mode network, the one-mode network of

authors will have triangles solely as a result of the pro-

jection process, not because of triadic closure.

To overcome the aforementioned limitation, several

scholars have proposed alternative clustering measures (for

examples, see Lind et al. 2005; Opsahl 2013; Robins and

Alexander 2004), including Newman himself (Newman

et al. 2001). Despite their variations, the common theme

with these alternatives is that clustering should be calcu-

lated directly on two-mode networks in order to exclude

artifactual triangles as in Case 2 above. Among them, the

Opsahl (2013) measure is designed to capture triadic clo-

sure in two-mode scientific collaboration networks as

illustrated in Table 3 (Opsahl 2013, p. 162). Opsahl (2013)

defines triadic closure in a two-mode network as closed

4-paths (as opposed to Newman 2001b, who defines triadic

Table 2 Visualization of the concept of triadic closure according to

Newman’s clustering coefficient (NCC)

Case Network visualization

Case 1

Paper A: authors X, Y

Paper B: authors X, Z

Paper C: authors Y, Z

Case 2

Paper D: authors X, Y and Z

Circles represent authors, while squares represent papers. Case 1

shows the typical situation of triadic closure where authors Y and Z

who have once collaborated with X on different papers start to work

with each other later. NCC captures this well. In Case 2, however,

NCC falsely reports that triadic closure happens

Table 3 Visualization of the

concept of triadic closure

according to Opsahl’s clustering

coefficient (OCC)

Case Network visualization

Case 1

Paper A: author X and author Y

Paper B: author X and author Z

Paper C: author Y and author Z

Case 2

Paper D: author X, author Y, and author Z

Circles represent authors, while squares represent papers. Case 1 shows the typical situation of triadic

closure where authors Y and Z, who have previously collaborated with X on different papers, work with

each other later. OCC captures this effect through a two-mode network approach to triadic closure. Unlike

NCC, OCC does not report false triadic closure in Case 2
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closure as closed 2-paths in one-mode networks). For

example, in Table 3, Case 1, a 4-path (Y–A–X–B–Z) is

closed by Y–C–Z.3 Opsahl (2013) applied this measure

(hereafter referred to as OCC) and found a triadic closure

(clustering coefficient) of 0.28 for a coauthorship network

of 16,726 physicists and 22,016 papers, which is consid-

erably lower than when NCC is applied to the same data

(clustering coefficient: 0.36).4

Opsahl (2013)’s measure can exclude false positives in

terms of triadic closure, which are generated by the pro-

jection of two-mode networks onto one-mode networks,

but another problem, which also applies to the NCC,

remains unsolved. Practically speaking, actual triadic clo-

sure in scientific collaboration networks entails a time lag

between (1) the formation of 2-paths in a one-mode net-

work as well as 4-paths in two-mode networks and (2) their

closure. This can happen in an asynchronous or simulta-

neous manner. For instance, in the example of Case 1 in

Tables 2 and 3, author X can collaborate with Y first, and

then with Z later (asynchronous), or with Y and Z on two

different papers simultaneously. However, the new col-

laboration between Y and Z should happen after both the

collaborations between X and Y and between X and Z have

occurred. This seems logical, especially if we want to use

triadic closure as a proxy for the probability of two scholars

forming a new coauthoring tie conditioned on their shared

collaborator(s) as conceptualized by Newman (2001b) and

his followers.5 The clustering measurements proposed by

Newman (2001b) and Opsahl (2013) are both calculated on

a static snapshot of a network and, therefore, may include

the clustering of three nodes that are not an instance of

triadic closure but wrongly counted as such. In Case 1 of

Table 3, for example, paper C might be written before

papers A and B were produced. In other words, authors Y

and Z may have collaborated with each other before each

of them worked with author X. Consequently, the collab-

oration between Y and Z is not related to their shared

coauthor X. According to Newman and Opsahl’s measures,

however, this case is counted as an instance of triadic

closure.

Therefore, we argue that triadic closure in collaboration

networks has not been appropriately measured because the

temporal aspect of this process was disregarded. Both of

the aforementioned measures, whether they are calculated

on one-mode or two-mode networks, use a snapshot of

three nodes being fully connected, ignoring which edges

formed first. Subsequently, scholars have used the static

approach to infer a specific edge formation mechanism that

inevitably requires time to be considered. For example,

based on clustering coefficients obtained via the Newman

(2001b) measure, many coauthorship network studies have

concluded that scholars show a strong tendency to close

links to shared coauthors (see Table 1). Except for the field

of biomedicine (0.066), the average clustering coefficient

of eight selected collaboration networks is 0.40, indicating

that triadic closure happens in nearly 40% of the studied

cases. A part of these results might be cases of artifactual

triadic closure due to network projection or the reversed

temporal order of closure. In this paper, we address this

issue by empirically identifying how often triadic closure

truly happens instead of just estimating it. This is done by

considering the temporal order of open 4-paths and their

closing in two-mode networks. We compare our results to

those obtained by applying Newman’s and Opsahl’s met-

rics to the same large-scale collaboration networks from

three fields (computer science, physics, and biomedicine)

and one nation (South Korea) over a time period of almost

20 years. Using this strategy allows us to uncover the

actual number of triadic closures in scientific collaboration

networks. In the next section, we describe the datasets and

define three different measures for triadic closure.

2 Methodology

2.1 Datasets

The following four co-publishing datasets are analyzed:

MEDLINE (biomedicine), DBLP (computer science and

informatics), APS (physics), and KISTI (country-level data

for Korea). Table 4 summarizes the characteristics of these

datasets. For each dataset, papers published between 1991

(or 1996) and 2009 were considered. In the original

MEDLINE and APS datasets, author names are not dis-

ambiguated, while the DBLP and KISTI datasets contain

disambiguated author names. Prior research has shown that

insufficient attention to author name disambiguation can

strongly bias network properties including clustering

coefficients (Fegley and Torvik 2013; Kim and Diesner

2016). In order to avoid this effect, we obtained an algo-

rithmically disambiguated version of the MEDLINE and

APS datasets (details below).

2.1.1 DBLP

The Digital Bibliography and Library Project (DBLP)

contains publication records from computer and

3 The triadic closure contains three cases of 4-path closure: (1) Y–A–

X–B–Z closed by Y–C–Z, (2) X–B–Z–C–Y closed by Y–A–X, and

(3) Z–C–Y–A–X closed by X–B–Z.
4 Although calculated against the same dataset, the clustering

coefficient by the Newman (2001b) method in Opsahl (2013) is

0.3596, while the one in Newman (2001b) is 0.348.
5 Opsahl (2013) never uses the clustering coefficient defined for two-

mode networks as an indicator of the probability of two scientists

collaborating when they have a third coauthor in common.
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information science starting in the 1950s. In DBLP,6 author

names are disambiguated by (1) matching author name

strings, (2) calculating coauthor similarity based on coau-

thor matching of authors and their coauthor’s coauthors,

and (3) manual correction of errors that were reported by

scholars (Reitz and Hoffmann 2011). According to Kim

and Diesner (2015), disambiguation accuracy in DBLP is

reported to be 0.952 (K-metric) and 0.96 (pairwise F1).

DBLP indexes more than 2 million papers published in

journals and conferences. For this study, over 231,000

papers published in 392 computer science journals7 were

used as a sample of DBLP data.

2.1.2 APS

The American Physical Society (APS) maintains publica-

tion records from the Physical Review journals dating back

to 1893. Author names in the original APS dataset8 are not

disambiguated. In order to correct for that, we applied the

name disambiguation algorithm described in Martin et al.

(2013), which utilizes name string, coauthor name, affili-

ation, and venue information to determine the match of a

pair of author names. The algorithm’s accuracy is reported

to merge 3% of sampled authors incorrectly and to split

12% of sampled authors incorrectly (Martin et al. 2013).

Out of approximately 540,000 papers, 241,329 papers

spanning 1991–2009 were selected for this study.

2.1.3 MEDLINE

The National Library of Medicine’s (MEDLINE)9 biblio-

graphic database indexes journal papers from biology and

medicine published from 1950 to the present. Each paper is

recorded with a unique identifier (PMID), author name(s),

author affiliation (if available), title, publication venue, and

keywords [also referred to as medical subject headings

(MeSH)]. We obtained the data through the Authority

database (Torvik and Smalheiser 2009), where author

names in MEDLINE are algorithmically disambiguated

based on similarity calculation of the author name, coau-

thor name, title word, journal, and the MeSH. The accuracy

of these data is reported to be up to 98–99%. We only

considered terms with the MeSH term ‘brain’ since this is

one of the most frequent MeSH terms in MEDLINE. This

filtering resulted in approximately 302,000 papers out of

about 10 million papers published between 1991 and 2009.

2.1.4 KISTI

The Korea Institute of Science and Technology Informa-

tion (KISTI) dataset10 includes around 710,000 publication

records from both conference proceedings and journals

published in Korea beginning in the late 1940s until 2016.

In the KISTI data, author names are disambiguated by a

clustering algorithm utilizing features like name string,

affiliation, coauthor name, title, and publication venue. The

accuracy is reported to be 0.94 in terms of pairwise F1.

After the computational disambiguation, people at KISTI

performed manual inspection for the remaining cases that

were unclear. Since previous studies mostly measured tri-

adic closure for journal papers, we only considered 273,869

journal papers in this study for consistency.

2.2 Measurements

To measure how often triadic closures truly occur in sci-

entific collaboration networks, we used three different

measurements. First, the Newman (2001b) Clustering

Coefficient (NCC) calculates the ratio of the number of

Table 4 Summary of datasets

Dataset Field Period of analysis Number of papersa Avg. number of authors per paperb

DBLP Computer and Information Science 1991–2009 231,161 2.91

APS Physics 1991–2009 241,329 3.80

MEDLINE Biomedicine 1996–2009 302,293 4.91

KISTI Domestic Publication in Korea 1991–2009 273,869 3.17

Four datasets representing three fields and one nation were used for analysis. Each dataset was carefully filtered from its original source such that

size and time coverage are comparable
a In each dataset, the distribution of the number of authors per paper was calculated. Then, we identified a threshold value for the number of

authors per paper such that 98–99% of the papers in our data are written by that many or less authors: DBLP (7), APS (14), MEDLINE (14), and

KISTI (8). Papers with a higher number of authors were excluded from analysis
b Single-authored papers are excluded from analysis

6 http://dblp.uni-trier.de/xml/.
7 The list of 392 journals was obtained from Thomson Reuters

Journal Citation Report 2012 for the Computer Science category.

Then, those journals’ names and papers published in these journals

were searched for in DBLP.
8 http://journals.aps.org/datasets.
9 https://www.nlm.nih.gov/bsd/licensee/medpmmenu.html. 10 http://scholar.ndsl.kr/index.do.
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closed 2-paths over the number of 2-paths in a network as

in Eq. (1). Since the NCC is calculated on one-mode net-

work data (i.e., an author-by-author matrix), the byline

information (i.e., author list per paper) in each dataset was

converted into an edge list to produce an author-by-author

network matrix, where two author names are connected if

they appear in the same byline. The NCC was then cal-

culated by using R package igraph (Csardi and Nepusz

2006).

NCC ¼ Number of closed 2 paths

Number of 2 paths
ð1Þ

Second, the Opsahl (2013) Clustering Coefficient (OCC)

calculates the ratio of the number of closed 4-paths over the

number of 4-paths in a network as in Eq. (2). Since the

OCC is defined for two-mode networks, the byline infor-

mation for each dataset was transformed into an edge list,

where an author name is connected to any paper (co-)au-

thored by this person. The OCC was calculated with the R

package tnet (Opsahl 2009).

OCC ¼ Number of closed 4 paths

Number of 4 paths
ð2Þ

Third, a measure that we introduce with this paper,

namely the Over-Time Clustering Coefficient (TCC),

extends the Opsahl (2013) approach by dividing the num-

ber of node pairs embedded in closed 4-paths in a network

at time ‘x ? 1’ by the number of node pairs embedded in

4-paths in a network at time ‘x.’

TCC ¼ Number of node pairs embedded in closed 4 paths at txþ1

Number of node pairs embedded in 4 paths at tx

ð3Þ

The first difference between OCC and TCC lies in the

treatment of multiple 4-paths involving two nodes. In

Table 5, Case 2 shows an example where a paper

(C) and an author (W) are added to Case 1. According to

the OCC, this addition increases the number of 4-paths

in the network: i.e., in Case 1, a single 4-path exists,

while in Case 2, three 4-paths are found.11 Although

Case 1 and Case 2 have a different number of 4-paths,

these two cases can be considered as the same situation

where the closure between nodes Y and Z is of major

interest. Based on this proposition, the TCC focuses on

whether two target nodes are embedded in any open

4-path while ignoring how many 4-paths involve these

two nodes. Thus, for the TCC, Case 1 and Case 2 are the

same situation. For example, if nodes Y and Z are

connected in each case, the TCC produces the same

value (=1.0).

The second difference between the OCC and the TCC is

the consideration of time: When it comes to time slicing,

coauthorship networks often are partitioned on an annual

basis, and data are compared from time t to time t ? 1

(e.g., Barabási et al. 2002; Liben-Nowell and Kleinberg

2007; Newman 2001a). In our study, we define a target

year (tx?1) as a 1-year period and its prior year (tx) as a

period of 5 years. For example, if the target year is 2009,

the prior year is the period from 2004 to 2008. Then, we

identify authors who appear both in the target year (e.g.,

2009) and its preceding 5 years (e.g., 2004–2008). Next,

we retrieve all author pairs embedded in 4-paths and that

were not in closed 4-paths during the five preceding years.

Table 5 Visualized concept of

triadic closure by over-time

measure (TCC)

Case Network visualization

Case 1

Paper A: author X and author Y

Paper B: author X and author Z

Case 2

Paper A: author W, author X, and author Y

Paper B: author W, author X, and author Z

Paper C: author X and author Y

Circles represent authors, while squares represent papers. Case 1 is a typical situation where authors Y and

Z are embedded in a 4-path, which NCC and TCC count the same way. In Case 2, however, OCC counts

three 4-paths for Y and Z, while TCC counts a single 4-path for them because TCC considers only the

embeddedness of Y and Z in any 4-path ignoring how often they appear together in 4-paths

11 The 4-path in Case 1 is Y–A–X–B–Z. The 4-paths in Case 2 are:

(1) Y–A–X–B–Z, (2) Y–A–W–B–Z, and (3) Y–C–X–B–Z.
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Finally, we calculate how many of those node pairs

embedded in 4-paths also are embedded in closed 4-paths

in the target year. The values can range from zero (none of

author pairs are embedded in closed 4-paths) to one (all

pairs are embedded in closed 4-paths).

3 Results

Conceptualizing and calculating triadic closure in different

ways leads to different results. Figure 1 illustrates the over-

time change in the clustering coefficient, i.e., the ratio of

Fig. 1 Triadic closure in four datasets measured via three different

measurements. NCC Newman’s (2001b) clustering coefficient, OCC

Opsahl’s (2013) clustering coefficient, and TCC over-time clustering

coefficient. NCC and OCC measure triadic closure for a 5-year period

(e.g., 2001–2005), which is denoted on the x-axis by the last year of

the period (e.g., 2005). TCC counts how many 4-paths in any

preceding 4 years (e.g., 2001–2004) are closed in a target year (e.g.,

2005). In all datasets and over time, measuring actual triadic closure

via TCC leads to considerably lower values than when measuring

those values via NCC and OCC
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triadic closure, based on the Newman’s Clustering Coef-

ficient (NCC) (circles), the Opsahl’s Clustering Coefficient

(OCC) (squares), and the Over-Time Clustering Coefficient

(TCC) (triangles). In this figure, each time point on the x-

axis represents the last 5 years for the NCC and OCC. For

example, the NCC and OCC for the year 2009 are calcu-

lated against the DBLP coauthorship network covering

2005–2009 (5 years). For the TCC, each year in the

chart refers to a target year in which the closure of 4-path

happens, and the preceding 5 years are used to detect open

4-paths.

Depending on the operationalizations of the clustering

coefficient, different results are obtained across all datasets

and periods. For example, in the DBLP-based coauthorship

networks, the average NCC of all 5-year windows is 0.429,

the OCC is 0.152, and the TCC is 0.031. First, the differ-

ences between the NCC and OCC are not unexpected: The

NCC does not distinguish artificial triadic closure intro-

duced by the projection from two-mode to one-mode

networks.

Triadic closure, when measured based on the NCC and

TCC, decreases over time, but increases slightly according

to the OCC, especially for the DBLP and KISTI data. An

explanation for the change in the OCC value might be that

OCC detects triadic closure that the NCC cannot capture.

Another finding is that the values for the NCC and OCC

become closer to each other when considering long time

periods. For example, using the (d) KISTI data, the values

for the NCC and OCC differ considerably in the beginning,

but start to converge around the late 2000s.12 Table 6

provides an explanation for this effect: There, the three

measures produce different values when being applied to

the same case. First, according to the OCC, a total of seven

4-paths are found, with five of them being closed

(OCC = 4/7 = 0.71).13 In contrast, the NCC-based

approach results in five 2-paths, and three of them are

closed (NCC = 3/5 = 0.60).14 The difference in values

between the OCC and NCC comes from the treatment of

papers A and B. According to the NCC, multiple collab-

orations between X and Y (i.e., they coauthored A and B)

are ignored (i.e., counted only once). The OCC, however,

counts each collaboration between X and Y separately: X

and Y are embedded in two different 2-paths (i.e., Y–B–X

and Y–A–X). When multiple collaborations between

authors are common in a network, the OCC will result in

higher scores than the NCC. The TCC provides a different

value from the NCC and OCC for the same case: Only one

node pair is embedded in closed 4-path (TCC = 1/

2 = 0.50)15 when we assume that paper E is written in a

target year and other papers A, B, C, and D are written in

preceding years.

The most noticeable finding from this work is that,

across all datasets and over time, measuring actual closure

via TCC leads to considerably lower values than when

Table 6 Visualized

operationalization of triadic

closure by NCC, OCC, and

TCC

Case Measure Network visualization

Paper A: authored by X, Y

Paper B: authored by X, Y

Paper C: authored by X, Z

Paper D: authored by W, Z

Paper E: authored by Y, Z

OCC

TCC

NCC

Repeated collaboration between two authors is counted only once by NCC. In contrast, OCC considers each

collaboration instance as unique for counting 4-paths, which can lead to a higher count of triadic closure

than NCC. TCC only cares about embeddedness of two authors in any 4-path, ignoring repeated collab-

orations between them

12 In 2010, OCC (0.34) surpasses NCC (0.33).

13 4-paths by OCC: (1) Y–B–X–C–Z (closed by Z–D–Y), (2) Y–A–

X–C–Z (closed by Z–D–Y), (3) X–C–Z–D–Y (closed by Y–A–X or

Y–B–X), (4) Z–D–Y–A–X (closed by X–C–Z), (5) Z–D–Y–B–X

(closed by X–C–Z), (6) X–C–Z–E–W, and (7) W–E–Z–D–Y.
14 2-paths by NCC: (1) Y–X–Z (Y–Z), (2) X–Z–Y (Y–Z), (3) Z–Y–X

(X–Z), (4) W–Z–X, and (5) W–Z–Y.
15 4-paths by TCC: (1) Y–A and B–X–C–Z (closed by Z–D–Y) and

(2) X–C–Z–E–W.
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calculating those values based on the NCC and OCC. For

example, in the DBLP-based coauthorship networks, on

average, 42.9% of the 2-paths are closed according to the

NCC, 15.2% of the 4-paths are closed when using the

OCC, and only 3.1% of the 4-paths are closed based on the

TCC. This pattern is similar for the other datasets; TCC

leads to average closure values of 1.6% in ASP, 2.9% in

MEDLINE, and 4.9% in KISTI, while NCC and OCC

result in 25% and higher closure ratios.

One problem with the TCC is that it does not consider

all open 4-paths within the 5 years preceding the target

year. This is because the TCC is applicable only to nodes

(i.e., authors) that appear both in a target year and the

preceding 5 years. We tested whether this assumption is

reasonable as follows: Table 7 shows how many nodes

from a target year also have appeared in the preceding

5 years for each dataset. In DBLP, for example, nodes that

appear both in the target year and its preceding years

constitute on average 45.92% of all nodes in target years

and on average 18.50% of all nodes in preceding years. In

order to investigate how the number of preceding years

impacts TCC, we varied this parameter (1–5 years). Fig-

ure 2 shows the ratio of triadic closure measured via TCC

depending on the number of preceding years. We find that

the amount of triadic closure decreases when the number of

preceding years is increased. For example, in each dataset,

considering one preceding year yields almost two times

larger ratios of clustering coefficients than using five pre-

ceding years. One possible explanation of this effect might

be that as the number of preceding years increases, more

node pairs embedded in open 4-paths (denominator) can be

found. However, not all of these pairs (numerator) are

embedded in closed 4-paths in the target year. Another

reason may be that some triadic closures are not captured

by the TCC, especially with lengthy windows into the past.

This may happen when, if we set the value for preceding

years to five, for example, triadic closure that takes place

during the 5 years is excluded from the TCC calculation.

The results also show that the ratio of triadic closure

tends to decrease over time in all dataset and regardless of

the number of preceding years. This tendency may be a

function of network size and/or a result of changes in the

underlying personal, professional, organizational, or other

social (dis)incentives and mechanisms for tie formation

among collaborators. Further research is needed to identify

and distinguish these possible reasons.

Next, we analyze how often open 4-paths get closed

with the shared coauthor(s) involved. Table 8 illustrates

two possible cases of triadic closure: An open 4-paths is

closed by the collaboration Y and Z (1) without the shared

coauthor X in Paper C, or (2) with the shared coauthor X’s

involvement in Paper D. Figure 3 shows the ratio (%) of

triadic closure where the shared coauthors also participate

in a collaboration that completes triadic closure (going

back to our general approach of using one target year and

five preceding years for TCC calculation). According to

our results, less than 50% of shared coauthors in open

4-paths tend to participate in collaborations that close

triads.

Another relevant characteristic of the effects of triadic

closure is the number of shared coauthors. Several studies

have confirmed that higher numbers of shared coauthors

are associated with a stronger likelihood of two yet

unconnected authors to collaborate in the future (e.g.,

Martin et al. 2013; Newman 2001a). Figure 4 illustrates

how often triadic closure happens for all node pairs

embedded in open 4-paths that share n third collaborators

(target year = 2009 and preceding years = 2004–2008).

Similar to the findings from previous studies, as the number

of shared collaborators increases, the ratio of node pairs

embedded in closed 4-paths also increases in each dataset.

For values of 10 and lower on the x-axis, we see an almost

linear increase of triadic closure ratios. However, these

ratios are very low even for the case of 5 shared coauthors:

Only 10% of open 4-paths are closed in every dataset. Even

for 10–40 shared coauthors, some open 4-paths are not

closed.

4 Conclusion and discussion

This paper compares triadic closure rates based on three

different metrics of closure, namely Newman’s measure of

closed 2-paths in one-mode networks (NCC), Opsahl’s

measure of closed 4-paths in two-mode networks (OCC),

and an over-time version of Opsahl’s measure (TCC).

These metrics were applied to four large-scale coauthor-

ship networks. We find that different operationalizations of

triadic closure can lead to vastly different interpretations of

Table 7 Average ratio of number of nodes appearing both in a target

year and preceding years against total number of nodes in a target

year and preceding years

Datasets DBLP APS MEDLINE KISTI

Target yeara 45.92%

(3.14%p)

69.94%

(2.31%p)

50.96%

(1.64%p)

52.75%

(3.53%p)

Preceding years 18.50%

(1.32%p)

31.23%

(1.13%p)

17.42%

(1.05%p)

23.35%

(1.08%p)

Standard deviation is shown in percentage points in parentheses. On

average, 45.92–69.94% of authors who appeared in target years also

appeared in its preceding 5 years across four datasets. In contrast,

17.42–31.23% of authors who appeared in the preceding 5 years also

appeared in the target years
a Target year means every single year between 1991 and 2009 for

DBLP, APS, and KISTI, and between 1996 and 2009 for MEDLINE.

Preceding years mean 5 years prior to each target year in each dataset

Soc. Netw. Anal. Min. (2017) 7:9 Page 9 of 12 9

123



underlying effects in networks: according to the Newman

(2001b) clustering coefficient, for DBLP data, a pair of

scholars who have not yet published a paper together but

share a common coauthor have a future co-publishing

chance of 42.9%, and using the Opsahl (2013) measure

(though Opsahl never used his clustering coefficient this

way), the chance would be 15.2% on average. If we simply

log what truly happens in the data using the over-time

measurement proposed in this paper, this likelihood further

drops to 3.1% on average. Our findings do not imply that

any one measure is right or wrong. If we assume a static

structure in which three nodes (e.g., A, B, and C) are fully

connected when two of them (e.g., B and C) are both linked

to a shared third (e.g., A), then Newman’s measure is

appropriate. If, however, clustering gets inflated due to

network projection, the metric we introduce in this paper

allows for staying truthful to effects in data and offers a

reliable alternative to the NCC and OCC. If we want to

infer edge formation in evolving collaboration networks,

OCC may not suffice, while TCC takes temporal effects

into account.

The main take away from this study is that triadic clo-

sure is rare in scientific coauthoring if we define triadic

closure as two authors beginning to collaborate after

Fig. 2 Ratio of triadic closure by TCC with varying number of

preceding years. Preceding years vary from 1 to 5 years, while target

years are set to one. The larger the amount of preceding years is, the

lower are the TCC values. This is because, as the amount of preceding

years becomes larger, more 4-paths are likely to happen, leading to

the increase in the denominator in TCC calculation. Even with the

varied numbers of preceding years, the ratio of triadic closure in four

datasets when measured with TCC are considerably lower than those

estimated by NCC and OCC in Fig. 1
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having had at least one shared coauthor. This finding

contradicts several previous studies (starting with seminal

work by Rapoport 1953) and has several implications for

future research. In prior work, two disconnected nodes that

were both linked to the same third node were assumed to

form a tie. If that is not the case for scientific coauthorship

networks, other mechanisms and underlying reasons for

link creation or avoidance thereof might apply, such as the

creating and maintenance of structural holes (Burt 2005):

Sometimes scholars might want to maintain their compet-

itive advantage by brokering between separated others

without connecting them (i.e., preventing open paths from

closing) rather than introducing people to each other (i.e.,

facilitating open paths to close). More research is needed in

order to understand why only a small percentage of

scholars start to collaborate once they share multiple

coauthors. For example, there might be organizational or

environmental constraints, or other disincentives to form-

ing edges.

This study is not without limitations. First, only open

paths that fall into the considered time frames are exam-

ined; more long-term (e.g., more than 5 year horizons) or

short-term (within the same year) opportunities and their

realizations are not captured. These limitations may

Fig. 3 Percentage of shared coauthor’s involvement in collaborations

that close open 4-paths. Less than 50% of shared coauthors in open

4-paths (five preceding years) tend to participate in collaborations that

close triads (in one target year)

Fig. 4 Ratio of triadic closure by TCC as a function of number of

shared collaborators. For illustration, a case of target year = 2009

and preceding years = 2004–2008 is shown. As the number of shared

collaborators increases, the ratio of node pairs embedded in closed

4-paths increases in each dataset. Note that even with 10 shared

coauthors, approximately 20% of open 4-paths are closed in four

datasets

Table 8 Visualized concept of

triadic closure with or without

the shared coauthor

Case Network visualization

Case 1

Paper A: author X and author Y

Paper B: author X and author Z

Paper C: author Y and author Z

Case 2

Paper A: author X and author Y

Paper B: author X and author Z

Paper D: author X, author Y, and author Z

In Case 1 and Case 2, authors Y and Z who collaborated with X on different papers come together to work

on paper C. Case 1 illustrates a case where X is not involved in collaboration for paper C, while, in Case 2,

author X also participates in paper C with Y and Z
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partially explain why the OCC and TCC show a gap in

estimating triadic closure. The OCC considers all open

4-paths and may detect triadic closure that occurs within a

year. By varying window sizes of preceding years, we

showed that the overall trends of triadic closure are

detected quite consistently, but this does not mean that the

TCC correctly captures all instances of closure. Other

limiting factors include missing data, e.g., when paths

being closed via papers in fields or journals that are not

considered in our data. Furthermore, the accuracy of the

used datasets might affect the calculations. For example,

name disambiguation in the APS dataset is relatively low,

which means that merging and splitting of author identities

may happen and thus true triadic closure might not be

correctly identified (or false triadic closure might be

wrongfully counted). Finally, reverse time effects might

still happen when people jointly submit a paper to a journal

with a lengthy review cycle, and then close a triad in their

next conference proceedings publication, which has a

shorter review cycle and hence appears prior to the journal

paper.
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