
ORIGINAL ARTICLE

Hashkat: large-scale simulations of online social networks

Kevin Ryczko1 • Adam Domurad2 • Nicholas Buhagiar3 • Isaac Tamblyn4

Received: 7 October 2016 / Revised: 20 January 2017 / Accepted: 22 January 2017 / Published online: 4 February 2017

� Springer-Verlag Wien 2017

Abstract Hashkat (http://hashkat.org) is a free, open

source, agent-based simulation software package designed

to simulate large-scale online social networks (e.g., Twit-

ter, Facebook, LinkedIn). It allows for dynamic agent

generation, edge creation, and information propagation.

The purpose of hashkat is to study the growth of online

social networks and how information flows within them.

Like real-life online social networks, hashkat incorporates

user relationships, information diffusion, and trending

topics. Hashkat was implemented in C?? and was

designed with extensibility in mind. The software includes

Bash and Python scripts for easy installation and usability.

In this report, we describe all of the algorithms and features

integrated into hashkat before moving on to example use

cases. In general, hashkat can be used to understand the

underlying topology of social networks, validate sampling

methods of such networks, develop business strategy for

advertising on online social networks, and test new features

of an online social network before going into production.

Keywords Agent-based modeling � Kinetic Monte Carlo �
Online social network � Network evolution � Information

propagation � Simulation

1 Introduction

Hashkat is a simulation package designed to study the

growth and time evolution of online social networks. As

online social networks continue to grow in relevance, it has

become increasingly important to quantitatively analyze

their behavior. We show that hashkat can be used to pro-

duce existing analytical graph models, as well as new,

unstudied graphs with similar topologies to online social

networks. Hashkat falls under the field of agent-based

social simulations (Li et al. 2008). Hashkat takes a kinetic

Monte Carlo (kMC) approach, allowing a user to explore

the characteristics of online social networks as they evolve

through time. A wealth of recent work (Gleeson et al.

2014; Brach et al. 2014; Myers and Leskovec 2014; Doerr

et al. 2011) has focused on analyzing the topology of

online social networks, in order to make inferences about

information flow, interaction mechanisms, and network

stability. Brach et al. (2014) were able to make predictions

about the behavior of information diffusion within social

networks based on a random network topology. The model

they developed described the evolution of rumors on social

networks and gave qualitatively good results with respect

to how messages propagate within Twitter. Gleeson et al.

(2014) focused on meme diffusion for a directed social

network. They found that the popularity growth of each

meme can be described by a critical branching process. The

popularity distributions of the memes had heavy tails

similar to the distribution of links on the Internet (Albert

et al. 1999) as well many degree distributions for online

& Kevin Ryczko

kevin.ryczko@uoit.net

Adam Domurad

adomurad@uwaterloo.ca

Nicholas Buhagiar

nbuhagiar@ryerson.ca

Isaac Tamblyn

isaac.tamblyn@nrc.ca

1 University of Ontario Institute of Technology, Oshawa,

Canada

2 University of Waterloo, Waterloo, Canada

3 Ryerson University, Toronto, Canada

4 National Research Council of Canada, Ottawa, Canada

123

Soc. Netw. Anal. Min. (2017) 7:4

https://doi.org/10.1007/s13278-017-0424-7

http://hashkat.org
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-017-0424-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-017-0424-7&domain=pdf
https://doi.org/10.1007/s13278-017-0424-7

social networks (Mislove et al. 2007; Ugander et al. 2011;

Java et al. 2007).

Currently, there are several commercial and non-com-

mercial simulation packages available that simulate some

aspect of online social networks. SMSim (de C Gatti et al.

2013) simulates the network surrounding one agent and

studies how information propagates from the central agent

throughout the local neighborhood. SeSAm (Klügl and

Puppe 1998) is able to treat a moderately small number of

agents (10s of 1000s) with an agent-based modeling

approach. Zeng et al. (2015) discussed a simulation method

where random sampling techniques were used to build the

initial network. Once the initial network was constructed,

they then used a ‘‘close degree algorithm’’ to obtain snap-

shots of the social network at certain points in time. An R

package calledNetSim (Stadtfeld et al. 2013) allows users to

simulate the coevolution of social networks and individual

attributes. The engine of this package uses a generic Markov

model, and the simulation incorporates social pressure (a

user will connect to friends of a user they are connected to)

and likeness of agents when making connections.

Hashkat represents a significant step forward in the area

of simulating online social behavior due to its combination

of scalability and features. Despite the complexity of the

numerous features integrated into hashkat, it simplifies the

user-defined modeling process to the determination of rates

for a given system. If the rates of events in a system are

known (and correct), hashkat will time evolve the system

along the true trajectory.

In this report, we first describe the design and high-level

structure of the algorithms used within hashkat. This

includes a description of all events that can occur in the

model. We then use hashkat to reproduce existing analyt-

ical graph models as test cases. This includes constructing

random and preferential attachment graphs. Lastly, we

walk through example use cases for which no analytical

solutions are known.

2 Algorithms, design, and features of hashkat

2.1 Engine

We begin by first discussing the core engine of hashkat.

Prior to using the software, rates at which events occur

within the network must be set. These include the rate of

content generation/propagation (i.e., tweeting and

retweeting), the rate of agents connecting (user following),

and the rate of agent creation (users joining the network).

These rates are used to evolve the simulation through time

using the kMC algorithm (Voter 2007). Such rates can be

obtained from publicly available social network APIs.

kMC, popular in molecular simulations, is a generic and

highly scalable (Schulze 2008) algorithm used for gener-

ating event sequences based on input rates. It should be

noted that kMC is only valid if the rates are correct, the

events associated with the rates are Poisson type events,

and the different events are independent of one another.

The kMC algorithm is as follows:

At each simulation time step, a list of all possible events is

generated. From these events, a randomchoice ismade among

all possible outcomes.The probability of choosing a particular

event is weighted based on how frequently (i.e., based on the

defined rate) that event is expected to occur. Given a set of

possible events X, we define the cumulative rate function as

R ¼
X

x2X
rðxÞ: ð1Þ

begin
comment: array of rates for n events
rates := [r1, r2, ..., rn]
while simulation time < maximum time :

comment: Get random number u1 ∈ (0, 1]
u1 := rand()
comment: Create binary tree for efficient event selection
binary tree = create binary tree(rates)
R := binary tree.sum()
comment: Perform a weighted random selection using our random number u1
event := binary tree.event select(u1)
carry out event(event)
comment: Get random number u2 ∈ (0, 1], update simulation time and rates if needed
u2 := rand()
simulation time := simulation time − ln(u2)/R
update rates(rates)

end
end

4 Page 2 of 13 Soc. Netw. Anal. Min. (2017) 7:4

123

An event x 2 X occurring with r(x) frequency has

selection probability of r(x) / R. The time step used is

inversely proportional to the sum of the event rates in the

system. In the standard kMC algorithm, two random vari-

ables, u1; u2 2 ð0; 1� are used for event selection and to

progress through time, respectively. After event execution,

the kMC method advances the simulation time by

dt ¼ � lnðu2Þ=R: ð2Þ

As the number of events in the systemgets arbitrarily large,

over a time frame t, the expected value of an event x will be

r(x)t. To further simplify constructing the total rate within the

simulations, we have applied the notion of homogeneous

agent behavior and collective events. Homogenous agent

behavior implies that agents within the same category will

have equivalent rates associated with their behavior. That is,

two users with an identical categorization will rebroadcast a

message with the same probability and connect with other

users with the same rate. Although the agents within the same

category act identically, they may follow different agents

diversifying information diffusion. Hashkat can be used with

an arbitrary number of agent profiles, but for optimal perfor-

mance, 10–100 agent profiles are recommended.

2.2 Program structure

Due to the use of the homogenous agents, a collection of

identical events can be treated as a single event when

constructing the cumulative rate function (collective

events). This is shown in Fig. 1. Every collective event

summarizes the total rate of children events (possibly

collective themselves), forming a tree. Furthermore, col-

lective events that only require selecting an agent from a

set of homogeneous agents can be fulfilled in O(1) (on

average) time throughout our simulation. Our implemen-

tation first chooses between either the event categories of

information diffusion (message broadcasts and rebroad-

casts), social graph growth (users joining), or an agent

connection forming (user following). For new content

broadcasting, and new followings, hashkat makes use of

homogeneous agent behavior to reason about large lists of

similar users. For message rebroadcasting, hashkat utilizes

binary trees to choose a piece of content during information

diffusion.

Within the code base, there are four important C??

classes that should be mentioned. These are shown in

Fig. 2. These classes were used to separate important parts

of the simulation into different files, thereby organizing the

code base. As briefly explained in Fig. 2, the Analyzer

class (analyzer_main.cpp) is where the core of the simu-

lation takes place. Here, the simulation either begins or

continues (if a restart file was written to disk, i.e., serial-

ized), all of the event functions are called, and statistics are

output to monitor the simulation. Since some events are

more complex than others (i.e., following and retweeting

are more complex than tweeting), we have created separate

While time is less than
max time

Generate random
number r1

If r1 - Radd < 0

Add a new agent

else r1 = r1 - Radd

If r1 - Rfollow < 0

An agent follows

else r1 = r1 - Rfollow

If r1 - Rtweet < 0

An agent tweets

else r1 = r1 - Rtweet

If r1 - Rretweet < 0

A user retweets

else r1 = r1 - Rretweet

Update time:
time += -log(r2) / rate total

Generate another
random number r2

Update rates

Simulation analyzer_main.cpp

analyzer_follow.cpp

analyzer_retweet.cpp

analyzer_rates.cpp

An agent retweets

Fig. 1 Illustration of kMC

event selection with ‘‘collective

events,’’ as applied in hashkat

Soc. Netw. Anal. Min. (2017) 7:4 Page 3 of 13 4

123

classes for following and retweeting. These classes are

AnalyzerFollow (analyzer_follow.cpp) and Analyz-

erRetweet (analyzer_retweet.cpp), respectively. All of the

connection functions are held within AnalyzerFollow. This

includes functions to handle creating and destroying con-

nections between agents. Also included here is the flagging

of agents who may appear to send messages too often. This

information could be used at a later time in the simulation

for unfollowing (destroying a connection between agents).

The AnalyzerRetweet class contains all functions and data

structures for handling information propagation in the

network. These functions include updating the cumulative

retweet rate (which contributes to the cumulative rate

function) and agent selection for a retweet event. The data

structure used to organize agents is also here; this structure

allows for an efficient agent selection when a retweet event

occurs. Lastly, the AnalyzerRates (analyzer_rates.cpp)

class handles building the cumulative rate used in the kMC

algorithm within the analyzer class.

2.3 Simulation workflow

To use hashkat (Fig. 3), a user starts by modifying an input

file (INFILE.yaml). Here, the user can modify, add, or

remove variables for their simulation. Once the user is

satisfied with their simulation configuration, they execute a

Bash script (run.sh) in the top-level directory of hashkat.

The Bash executable first calls a Python script (hashkat_-

pre.py) which generates other files needed for a simulation.

As an example, the Python script generates the numerical

grid from a user-defined probability density function used

in the retweeting algorithm. Once the python script has

finished, the C?? executable is called. This exe-

cutable first reads in the files generated by hashkat_pre.py

where the configuration information is stored within a class

called AnalysisState (analyzer.cpp). If the user has a restart

network file (from a previous run) and has selected the

restart option, then the existing network will be loaded into

memory and will continue running. If not, initial agents are

created, memory is declared, the cumulative rate function

is calculated, time-dependent rates are calculated for the

simulation time duration, and the main kMC loop is

entered. Once the simulation has concluded (either a

maximum wall clock time or simulation time has been

reached), basic analysis is done on the network (io.cpp) and

the program exits. The analysis includes summary statistics

of the network, degree distributions, and visualization files

(all of which are located in the output directory).

2.4 Agents

All agents within hashkat are classified by several attri-

butes which describe their region, political ideology, lan-

guage, humor preferences, and musical tastes. These

attributes define both the semantic nature of content they

create, as well as their reactions to other agent’s content.

These attributes are shown in Fig. 4. An agent’s prefer-

ences for content discovery (i.e., finding like minded agents

within the same region) are also determined by these

attributes. Each of the attributes are discrete and have user-

Includes:

Main KMC loop
Action create agent
Action tweet
Action retweet
Mid-simulation output

Main Follow

RatesRetweet

Includes:

Follow functions
Unfollow functions

Includes:

Functions for updating retweet
rates
User selection for retweet

to determine which user will be
selected to retweet

Includes:

Functions for updating the add,
tweet and follow rates
Sums all the rates of the system to
move forward properly in time
Updates rates after switching
months

Fig. 2 Schematic view of the

four most important classes

used while a simulation is active

4 Page 4 of 13 Soc. Netw. Anal. Min. (2017) 7:4

123

defined weights associated with them. This allows for

simulations with agents from multiple countries, speaking

different languages, and even different personal prefer-

ences. These options allow for the possibility of creating

networks for a wide variety of sociologically relevant

cases. For example, a multilingual country with a wide

variety of political beliefs can be described as a collection

of multilingual agents with the same region attribute and a

spread of political views. Conversely, agents within the

same region may use different (incompatible) languages

and exhibit strongly opposite political ideology. Such a

simulation could describe a country where strife and civil

discourse are possible. The structure of the graph generated

under these two examples will be quite different. It should

be noted that although we have used terms like ideology,

humor, and music, these attributes can be mapped to

arbitrary concepts or types of information. The important

distinction between these labels is their scope, discover-

ability, and transmission factor. An example of transmis-

sion factor is shown in Fig. 5. In hashkat, messages

transcend artificial barriers if certain conditions are met

when comparing two agents. This is given in Table 1.

As an example of what kind of agent types can be cre-

ated, we have constructed and visualized a network with

four agent types (see Sect. 2.9, Fig. 8). We have labeled

these agent types standard, celebrity, organization, and bot.

Their labels are based on their external attributes (i.e.,

attributes outside the network that define their behavior

within the network) and are motivated by Twitter. On

Twitter, real-life celebrities are more highly connected than

other users, have a much higher in-degree than out-degree,

and make up very little of the network. Real-life organi-

zations tend to have more connections than standard users,

have a similar out- and in-degree, and also make up very

little of the network. Lastly, standard users and bots are

usually less connected, have varied behavior, but make up

most of the network. Bots are the phenomena on Twitter

where the account is driven by scripts rather than a person.

An example is an account that follows only verified users

on Twitter (either celebrities or well-know organizations).

Python.

INFILE.yaml read into
hashkat_pre.py

Python produces generated

INFILE.yaml-generated read into
main.cpp

All of the information in the input

INFILE.yaml-generated parsed

Initial agents are
created.

Agents created in
analyzer_main.cpp

The cumulative rate
function is calculated.

Function call from
analyzer_rates.cpp

The rates for agents
are pre-calculated.

Rates calculated in
analyzer_rates.cpp

If starting new network

Else continuing from
existent network

Start running
simulation

Continue
running

simulation

Analysis of
network.

Calculations done
in io.cpp

Analysis of
network.

Calculations done
in io.cpp Exit.

Fig. 3 Simulation workflow of

hashkat. The white boxes are a

high-level description of the

process and black boxes indicate

which parts of the code are

called

Agent 0 ...Network = Agent 1 Agent 2 Agent 3 Agent N

id = 1
Agent type
Number of tweets, retweets
Region
Creation time
Language
Ideology
List of chatty agents
Following and follower set

Array of
structs

Fig. 4 Schematic view of the network built in hashkat outlining the

attributes of agents within hashkat. Each agent has attributes which

define both their content preferences and their generation profiles

Soc. Netw. Anal. Min. (2017) 7:4 Page 5 of 13 4

123

This bot follows 212,000 users indicating that celebrities

and well-known organizations only make up 0.06% of the

Twitter population (Twitter has a reported 313 active

million users in the second quarter of 2016). The distinc-

tion between a celebrity and standard agent can be under-

stood based on how other agents react to them. Standard

agents are judged based only on their observed activity

within the network, whereas celebrity agents are intrinsi-

cally attractive or persuasive irrespective of their ‘‘in-

simulation behavior.’’

2.5 Trending topics

Trending topics on Twitter tend to be synonymous with

‘‘hashtags.’’ Hashtags are keywords that begin with the ‘‘#’’

character. Twitter parses the user generated content stream

to find hashtags and uses them to classify messages into

trending topic lists. These topic lists allow for global

information diffusion throughout the network. In hashkat,

we model these global topic lists as circular buffers of fixed

size. When a new message is added to a full buffer, old

messages are discarded. The size of the buffer can be

determined experimentally based on the lifetime of content

relevancy. It is assumed that the effect of messages older

than those in this list can be neglected. The probability of

an agent adding a hashtag into their message can be set

prior to a simulation. If an agent adds a hashtag to their

message, they are added to the circular buffer. This allows

for agents within the network to search for specific hash-

tags (network-wide content discovery) and find other

agents with similar interests.

2.6 Adding agents

Throughout a simulation, it is possible for agents to con-

tinuously join the network at a rate set by the user in the

configuration file (similar to a real online social commu-

nity). The agent add rate is one of many rates that can be

set prior to a simulation. All rates in hashkat can be set to

vary throughout the simulation (this requires additional

user input). This kind of variation of the input rates is

analogous to the changing of rules in cellular automata

(Wolfram et al. 1986). Simple changes in the rules can

form very different complex systems as time evolves. An

example of a realistic agent add rate may be low in the

early days of a network, increase as it gains in size, and

eventually decrease as the set of possible users is exhaus-

ted. When hashkat performs an ‘‘add agent’’ event, it

selects an agent type and region based on the configured

input and creates a new agent from the particular region.

The new agent’s region may be used to decide other

Retweet preference A

Retweet preference B

Information propagates

Information stagnates

Fig. 5 Toy example outlining

transmission factor in a

network. In this example, users

can either have a retweet

preference for A (squares) or

B (circles). This could be

ideology, religion, or some

other interest. The agent shown

on the left sends out a message,

and only agents where they have

the same preference

rebroadcasts the original

message. The transmission

probability is 1 for preference

A and 0 for preference

B. Although binary in this

example, hashkat allows

continuous transmission

probability values when

rebroadcasting

Table 1 Table outlining how different tweets transcend artificial

boundaries on online social networks

Type of

tweet

Rebroadcast condition

Political Two agents share the same ideology, region, and

language

Humorous Two agents share the same language

Musical No condition

In hashkat, if these conditions are met, there is an additional trans-

mission probability (that can be set prior to a simulation) of the

rebroadcast occurring

4 Page 6 of 13 Soc. Netw. Anal. Min. (2017) 7:4

123

attributes depending on the user’s direction. For example,

an agent from a particular region may be more likely to

speak one language than another and may be more likely to

hold a particular political view.

2.7 Connecting agents

There are many ways for agents to connect within hashkat

to mimic the complexity of relationships in real online

social networks. In hashkat, the follow rates use the

homogeneous agent assumption for users which have the

same classification. These correspond to the expected rate

that a given agent makes new connections in the network.

When hashkat performs a ‘‘follow agent’’ event, it selects a

follow model based on the user configuration. Several

connection mechanisms have been integrated into hashkat:

random, twitter suggest (preferential attachment), agent

(selecting a certain agent type), agent type with nested

preferential attachment, compatible content (likeness of

agents), reciprocal connection, and a combination of all

follow models. Hashkat also allows for connections to be

removed within the network (unfollowing). Currently,

there are two unfollow mechanisms available. The first

unfollow mechanism is random, and the second unfollow

mechanism takes into account how often an agent tweets

with respect to other agents that are being followed (ex-

cessive tweeting/chattiness). In hashkat, when an agent is

followed, the tweet rate of the agent is compared with the

average tweet rate of the agents previously followed. If the

tweet rate exceeds the average, the newly followed agent is

flagged and can be later unfollowed. Online social net-

works have the interesting property that subscribers may

disagree about which agent is dominating their screen

depending on the number and characteristics of agents they

follow (Fig. 6). In this regard, discussions in an online

setting can be quite different than what transpires in real

life. For example, the overly talkative person at a dinner

party is easy for everyone to identify; their rate of content

generation is large compared to the other attendees. In an

online setting, however, different users have different

subscription lists; they are all effectively attending many

dinner parties simultaneously. In practice, this means that

while one observer may be overwhelmed by the content

generated from a talkative user, to another observer, there

may be a constant flow of messages from the rest of the

subscription list making the talkative user seem less

intrusive.

2.8 Information propagation

One of the differentiating features of hashkat is the fact that

agents within the simulation have the ability to create

content (e.g., tweets or wall posts) in a topologically

dynamic network. Moreover, other agents within the sim-

ulation have the ability to rebroadcast this content to their

subscriber lists. The propensity for an agent to rebroadcast

observed content depends on both the nature of the content

and the receiving agent’s own preference for such content.

Different agents within the simulation can generate content

with different meanings. If another agent agrees with the

sentiment, they have a higher rebroadcasting probability.

This probability can be any value on the interval [0, 1]. To

perform content rebroadcasts, we first make a selection

between all active broadcasts. We select content m with

probability proportional to the collective rebroadcast rate

r(m) of the broadcasts’ audience. This rate depends on the

makeup of the subscriber list. If subscribers agree with the

content, the retransmission rate will be high. Otherwise,

there will be a low probability of rebroadcasting. We

consider the audience to be the subscribers of the broad-

casting user ub. The probability density function of

rebroadcasting a given piece of content at a certain time

after the content is created is an input to the system [XðtÞ].
The expected number of rebroadcasts can be calculated

given XðtÞ, and a transmission probability a;

Nrebroadcasts ¼
Z

aNsubscribersXðtÞdt: ð3Þ

Tweet once / day Tweet 3 times / dayTweet once / day Tweet 10 times / day

Tweet 3 times / day

Tweet once / day

Tweet once / day

Tweet 3 times / day Tweet 3 times / day

BA

Agent 0 Agent 1 Agent 2 Agent 3

Tweet 10 times / day

Tweet 10 times / day

Tweet 10 times / day

Tweet 10 times / day

Tweet 10 times / day

Tweet 3 times / day

Tweet 3 times / day

Fig. 6 Example of excessive tweeting and how it must be measured

relative to a crowd. On screen a, agent 2 dominates the feed in

comparison to agents 0 and 1. However, on screen b agent 3

dominates the feed. Even though agent 2 dominates the feed on screen

a, they do not dominate the feed on screen b. Chattiness is in the eye

of the beholder

Soc. Netw. Anal. Min. (2017) 7:4 Page 7 of 13 4

123

where Nsubscribers is the number of subscribers of the orig-

inal broadcaster ub. Note that the time frame is reset for

each rebroadcast and the rebroadcast is then treated in the

same manner as an original broadcast. This allows for

rebroadcasts themselves to be rebroadcast, analogous to

how infections spread through a population. A schematic

explanation of this is shown in Fig. 7. The susceptible-

infected-recovered (SIR) epidemic model (Pastor-Satorras

et al. 2015) is very similar to the mechanism we have

applied to propagate messages. In this model, they consider

the effective spreading rate of a disease to be k ¼ b=l,
where b is the rate of infection and l is the cure rate. In our

model, l ¼ 1, and the effective spreading rate of a disease

is therefore a from Eq. 3. For a subscribing agent ui, the

transmission probability a is a piecewise function which

depends on both ui and the broadcasting agent ub. To

facilitate this, the subscriber set of ub is partitioned into

separate structures, each with their own summary data.

These structures are implemented using Google’s sparse-

hash (Silverstein 2010) data structure. Rebroadcasting is

considered idempotent. After an agent has rebroadcast a

given message once, further rebroadcasts by the same agent

will have no effect. To this end, every piece of content is

also associated with a set of agents who have previously

broadcast the content. The set of active broadcasts is

implemented as a binary tree containing rate summary

information at every node, necessary to locate the message

to select. Selection and insertion are Oðlog nÞ, where n is

the number of live broadcasts. Periodic cleanup is per-

formed on the set to remove broadcasts unlikely to be

rebroadcast. Once a message has been chosen, an agent is

chosen with a uniform random selection on the sparsehash

data structure to rebroadcast the message. Every message

broadcast has a unique identifier, allowing hashkat to track

a particular message through the network as it propagates.

Hashkat logs the information related to this process to the

output directory allowing the user to investigate informa-

tion propagation in the network even further.

2.9 Visualization

When a simulation has completed in hashkat, there are

several different output files to analyze the network

constructed. Some of these files are distributions including

degree distributions, tweet count distributions, retweet

count distributions, and network summary statistics. There

are also two main files that can be used to visualize the

network itself; one is designed for a network visualization

tool called Gephi (Bastian et al. 2009), and the other can

be used in Python’s networkX (Hagberg et al. 2013)

package or R’s iGraph package (Csardi and Nepusz

2006). Two visualizations using Gephi of networks gen-

erated in hashkat are shown in Fig. 8. Apart from visu-

alizing the full graph, hashkat is also capable of tracking

the tweet that has been rebroadcasted the most, and cre-

ates a directed graph around that tweet. This is shown in

Fig. 9.

2.10 Compatibility and performance

Hashkat is an open source project (GNU General Public

License version 3) and has roughly 8600 lines of fully

commented code. Hashkat has integrated build tests, unit

tests, input tests, and has been built on all three major

operating systems: Windows 10 (using the Linux subsys-

tem), Linux, and OS X. It should also be noted that it has

been run on systems that vary greatly in size. These include

systems with very small amounts of memory (Raspberry

Pi) to systems with terabytes of memory (supercomputers).

Scalability tests showed that hashkat can produce a random

graph of five million nodes in roughly an hour, and 30

million nodes in approximately 40 h. The project home-

page (http://hashkat.org) has links to documentation (with

an extensive set of examples), source code, and a Web

interface for sample input file generation.

2.11 Limitations of the software

Hashkat was designed to study large online social net-

works, where agents continuously join the network, con-

nect through various mechanisms, and broadcast/

Fig. 7 Example of how retweeting is incorporated into the cumula-

tive rate function. At t ¼ 0, there are no current retweets and the agent

tweet event is selected. Agent A is then selected and sends out a

message. Moving forward in time, the retweet rate of agent A is first

added into the cumulative rate function and then selected as the next

event to be carried out. Moving forward in time once again, the

retweet rate of agent A has decreased [due to XðtÞ], agent B was

selected to retweet, and therefore agent B’s retweet rate is now added

onto the cumulative rate function. Note that in the expression for the

retweet rate of agent A, if pt ¼ pABt ¼ pACt ¼ pADt , then the retweet

rate becomes XðtÞNA
subscribers pt as shown in Eq. 3. Here, pt � a, the

transmission probability. Different functional forms of XðtÞ can be

provided by the user. The consequences of this selection are explored

in Sect. 3.3

4 Page 8 of 13 Soc. Netw. Anal. Min. (2017) 7:4

123

http://hashkat.org

rebroadcast messages. If using the preferential attachment

model (Twitter suggest) with rebroadcasts, 100s of 1000s

of agents is ideal. If creating a dynamic random graph with

no rebroadcasting, tens of millions of agents is

manageable.

Hashkat has many features, but there are some limita-

tions which can be improved in future development. One

limitation of the software is the limited amount of mathe-

matical functions that are accessible to a user for defining

the agent add and agent follow rates. Currently, the func-

tions that can be defined in the configuration file are either

constant or linear functions. For scenarios where the cre-

ation of agents is not linear or constant, hashkat cannot

support it without modifying source code.

To produce a network where agents connect via the

preferential attachment model, the software must keep

track of the in-degree of every agent in the network. Within

hashkat, agents are binned together by their in-degree.

Prior to a simulation, a user may specify the criteria in

which agents are aggregated together. Currently, the bins

can be spaced linearly, quadratically, or cubically. The

maximum, minimum, and increment value can also be set.

If a user would like to bin agents differently, source code

must be modified to accommodate the new functionality.

Although hashkat can have an unlimited number of

languages, message types (i.e., humorous, ideological,

musical), regions, ideologies, and preference classes, a user

should be cautious when modifying the number of each

feature. The number of each of these features is static

constants in the header file ‘‘config_static.h’’ which must

be updated when modifying the input file. Currently, the

language and message types are also set in this header file,

which should directly map to the languages and message

types set in the input file.

In hashkat, agents cannot be removed from the networks

during a simulation. In real-life online social networks,

users have the ability to delete their account and therefore

remove themselves from the network. Future development

work includes building this feature into hashkat.

The most significant approximation in hashkat is that

agent preferences are static in time. Although it is possible

to vary certain rates (e.g., the tweet rate) for any class of

agents, their language, political ideology, musical tastes,

and sense of humor does not change over the course of a

simulation. Irrespective of the information (i.e., messages)

an agent is exposed to, they will not change their ‘‘opin-

ions.’’ In a real-world scenario, compelling messages or

connections to persuasive individuals can alter a person’s

worldview and behavior. Agents in hashkat always behave

according to their user-defined initialization personality

Standard Celebrity Organization Bot

Language I Language II

Language III

Fig. 8 Hashkat is compatible

with common network

visualization and analysis tools

(e.g., Gephi). On the left, we

show a random graph with

different agent types (described

in Sect. 2.4). On the right, we

show a random graph with one

agent type where we have

introduced three languages,

causing three separate networks

to emerge

Original Tweeter

Retweeters

Non-retweeters

Fig. 9 Visualization of the most rebroadcasted tweet. To create this

visualization, hashkat tracks the tweet that has been most rebroad-

casted within the simulation. Once the simulation concludes, all

possible paths are drawn from the original broadcaster (largest node)

down to all the rebroadcasters (medium sized nodes) and viewers

(smallest nodes) of the original tweet

Soc. Netw. Anal. Min. (2017) 7:4 Page 9 of 13 4

123

(although we intend to remove this limitation in future

work).

Another limitation of the model is that agents are only

able to communicate with one another publicly. Almost all

major online social networks offer some form of private

communication, be it in the form of member-only groups

or direct messages. In its current implementation, all

messages generated by an agent in hashkat are visible to its

entire subscriber list.

A final limitation of the code is that currently it only can

take advantage of multi-core architectures in the trivial,

seed-parallelism sense. Like all Monte Carlo-based simu-

lations, it is important to generate several independent

trajectories (with different random seeds) in order to negate

the impact of initial conditions and provide a realistic

sampling of possible outcomes. In our work, we have used

between 10 and 100 parallel seeds (depending on the size

of the network). Making effective use of more than 100

CPU cores is not currently possible within the framework.

3 Test cases

3.1 Analytical graph models

We now use hashkat to firstly generate networks with

topologies matching existing theoretical graph models.

These models include the random graph and the preferen-

tial attachment graph. These models are important because

both have been solved analytically. As a result, their cor-

responding degree distributions can be expressed in closed

form. This makes them an ideal test case for validating

hashkat. For a random graph (Erdös and Rényi 1959), the

degree distribution is known to be the binomial distribution

PðkÞ ¼
n� 1

k

� �
pkð1� pÞn�1�k; ð4Þ

where P(k) is the probability of finding a node with degree

k. As n (the total number of nodes) gets large, P(k) can be

approximated by the Poisson distribution

PðkÞ ¼ kke�k

k!
; ð5Þ

where k ¼ hki. When constructing a preferential attach-

ment graph, the probability of creating a connection with a

node i is given by

PðkiÞ ¼
kiPN
j¼1 kj

; ð6Þ

where ki is the degree of node i. In this model, the more

connections a node has, the more probable the node is to

obtain another connection. This is analogous to the concept

of ‘‘the rich get richer.’’ Albert et al. (1999) have shown

that the degree distributions for these graphs are

PðkÞ � k�c; ð7Þ

where c ¼ 3 for large graphs. In Figs. 10 and 11, we

compare our numerical results for both models with the

corresponding analytical degree distribution. This form of

validation is a strong indication that hashkat is performing

as designed. Note that the degree distributions with which

we compare are not input to the simulation.

3.2 Reciprocal connections

Recently, a large-scale study of Twitter user profiles

(Gleeson et al. 2014) indicated that despite the fact that

the service is a directional graph, many of the relation-

0 1 2 3 4 5 6
log[k]

-14

-12

-10

-8

-6

-4

-2

0

lo
g[

P(
k)

]

Simulation
Theoretical

Fig. 10 Comparison of the analytic degree distribution of the

preferential attachment model to numerical results generated from

hashkat. The points in the bottom right of the graph are a result of

noise in the distribution

120 140 160 180 200 220 240 260 280
k

0.005

0.01

0.015

0.02

0.025

0.03

P(
k)

Simulation - 100,000 Agents
Simulation - 10,000 Agents
Theoretical

Fig. 11 Comparison of the analytic degree distribution of a random

graph to numerical results generated from hashkat

4 Page 10 of 13 Soc. Netw. Anal. Min. (2017) 7:4

123

ships are in fact reciprocal. Frequently, when one user

subscribes to another, there is a high probability of

‘‘followback.’’ For Twitter, as many as 44% of links are

reciprocal. For demonstration purposes, we considered

the impact that such a behavior has on a preferential

attachment network (i.e., where agents have the ability

to see the global user list and preferentially follow high-

degree users). Hashkat can straightforwardly address this

problem. We considered three cases: no followback,

50% followback, and 100% followback. All simulations

were run using a constant agent add rate (to a total of

90,000 agents). The results shown in Fig. 12 are based

on averages over 100 random initial seeds. As expected,

the case of 0% followback results in preferential

attachment degree distribution. The 100% results give a

distribution which is nonzero only for even numbered

degree. This is intuitive, as every subscription will

necessarily generate a reciprocal link. The 50% case

(close to the real-world Twitter observation) can be

understood in terms of these two extremes. Overall the

distribution appears to be a preferential attachment one,

but with the modification that the fraction of users with

odd degree is less, whereas agents with even degree are

enhanced. The shift of the curves is due to the follow-

back process. For a traditional preferential attachment

network, the average cumulative degree is 2. When

introducing a 50% followback, the average cumulative

degree shifts to 3 and then shifts to 4 for 100% fol-

lowback. The shifting of the curves is due to the increase

in connections from reciprocal links. By considering a

controlled system where the followback probability can

be arbitrarily varied, it is possible to quantitatively

observe the effect such user behavior can have on net-

work structure and time evolution. Note that this

approach is substantially more straightforward than

developing an extension to the analytic solution for the

preferential attachment model, or attempting to gain this

insight from experimental data directly, where only one

realization of possible parameters can be observed.

3.3 Viral content

Online social networks provide a medium for information

to propagate. Information diffusion within these networks

is of great interest in the literature (Gleeson et al. 2014;

Brach et al. 2014; Myers and Leskovec 2014; Doerr et al.

2011). An interesting phenomenon that emerges in large

social networks is the concept of messages ‘‘going viral.’’

This is a piece of information that is rebroadcast by many

users over a short period of time. From Eq. 3, there are

three variables that contribute to viral messages. Firstly, if

an agent has many subscribers, the number of other agents

who view their information is large. The content has a

greater probability of being transmitted due to the audience

size. Secondly, if the transmission probability is low, the

message lifetime will be short. This is true even for agents

with a large number of subscribers. The last determining

factor is the probability density function giving the likeli-

hood of a rebroadcast at some time after a message was

broadcast. Initially, a message has a greater probability of

being rebroadcast as it appears on the top of a user’s

message board (the feed). At some later time, the message

gets pushed further and further down the feed due to newer

messages decreasing the rebroadcast probability.

Using hashkat, we experimentally investigated the pre-

viously mentioned variables. To do so, we constructed

dynamic random graphs with 1000 agents and varied the

transmission probability (0:001� a� 0:05) as well as the

probability density distribution XðtÞ. For XðtÞ, we used the

functions XðtÞ ¼ a expð�tÞ and XðtÞ ¼ at�1 where a was

chosen such that the functions were normalized. These

functions were then integrated over the interval

1� t� 600 min. For each value of a (Da ¼ 0:001) ten

simulations were run (with different seeds) and were

averaged over. The agents in the simulations followed

other agents at a constant rate until the total number of

follows reached 90,000. Five hundred different simulations

were run to produce the contour plots. By increasing the

number of follows in the network, the average audience

2 4 6 8
k

0.1

0.2

0.3

0.4

0.5

0.6

P(
k)

0% followback
50% followback
100% followback

0 1 2 3 4 5 6
log[k]

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g[

P(
k)

]

0% followback
50% followback
100% followback

Fig. 12 Cumulative degree distributions (left) and log–log plots of the cumulative degree distributions (right) for three different simulations

where the follow back probabilities were altered from 0 to 1 to show the effects of reciprocal links in a preferential attachment graph

Soc. Netw. Anal. Min. (2017) 7:4 Page 11 of 13 4

123

size increases. This allows for more rebroadcasts to occur.

With a larger transmission probability, content becomes

more likely to be passed on from one agent to another,

increasing the effective lifetime of a message within the

network. Looking at Fig. 13, we notice a ‘‘phase transi-

tion’’ in the contour plots. When a� 0:01 or the total

number of follows B20,000, no retweets occur. When

a[0:01 or the total number of follows[20,000, we see a

transition in the contour plots. Traveling along the transi-

tion curve, the retweet rate in the network remains constant

while the transmission probability and average degree

varies. Any value of a or number of total follows above the

transition curve allows for retweets to occur. When

XðtÞ ¼ at�1, more retweets occur as you move upward and

to the right of the transition curve. When XðtÞ ¼ a expð�tÞ,
this is not the case. The exponential function approaches 0

quickly, meaning the probability of a retweet occurring at a

time tretweet [ttweet is much less than when XðtÞ ¼ at�1.

Despite this difference, the structure of the plots is similar

for both probability density functions. Again, hashkat can

straightforwardly and quantitatively explore information

propagation while maintaining complexity.

4 Conclusion

Hashkat is a modern software tool designed for the study

and simulation of online social networks. It is an agent-

based model with a diverse set of features and capabilities.

Hashkat treats network growth and information flow

simultaneously, allowing for users to study the interactions

between these two phenomena. The kinetic Monte Carlo

engine ensures an accurate time evolution of the system

and requires only rates as an input. The tool is fully cross-

platform (available on Linux, OS X, and Windows 10 via

the Linux subsystem) and requires no commercial libraries

or tools. Hashkat produces output which is compatible with

existing social network analysis packages. The code can

run on a wide variety of computing platforms. It can be

used to accurately simulate networks ranging from simple

random graphs to multi-million agent worlds with a variety

of geographical regions, distinct languages, political views,

and content preferences. The code is fully open source

(GPL v3) and is freely available at the project homepage

(http://hashkat.org). In addition to the source code and

build instructions, the homepage has extensive documen-

tation, sample visualizations, tutorials, and a Web-based

tool to produce sample input files. Hashkat is the most

advanced simulation tool for online social networks in

existence and is designed to enable fundamental research in

this emerging platform of human interactions.

Acknowledgements The authors would like to thank the National

Sciences and Engineering Research Council of Canada (NSERC) for

funding as well as Compute Canada for computational resources.

References

Albert R, Jeong H, Barabási AL (1999) Internet: diameter of the

world-wide web. Nature 401(6749):130

Bastian M, Heymann S, Jacomy M et al (2009) Gephi: an open source

software for exploring and manipulating networks. ICWSM

8:361

Brach P, Epasto A, Panconesi A, Sankowski P (2014) Spreading

rumours without the network. In: Proceedings of the second

ACM conference on online social networks (ACM), pp 107–118

Csardi G, Nepusz T (2006) The igraph software package for complex

network research. InterJ Complex Syst 1695(5):1

de C Gatti MA, Appel AP, dos Santos CN, Pinhanez CS, Cavalin PR,

Neto SB (2013) A simulation-based approach to analyze the

information diffusion in microblogging online social network.

In: 2013 winter simulations conference (WSC) (IEEE),

pp 1685–1696

Doerr B, Fouz M, Friedrich T (2011) Social networks spread rumors

in sublogarithmic time. In: Proceedings of the 43rd annual ACM

symposium on theory of computing (ACM), pp 21–30

Erdös P, Rényi A (1959) On random graphs, I. Publ Math 6:290

Fig. 13 Contour plots showing distinct phases of content rebroadcast behavior. The left plot has the probability density distribution (Eq. 3)

XðtÞ ¼ t�1, and the right has XðtÞ ¼ expð�tÞ

4 Page 12 of 13 Soc. Netw. Anal. Min. (2017) 7:4

123

http://hashkat.org

Gleeson JP, Ward JA, O’sullivan KP, Lee WT (2014) Competition-

induced criticality in a model of meme popularity. Phys Rev Lett

112(4):048701

Hagberg A, Schult D, Swart P, Conway D, Séguin-Charbonneau L,

Ellison C, Edwards B, Torrents J (2013) Networkx. High

productivity software for complex networks. Webová strá nka.

https://networkx.github.io. Accessed 2 Feb 2017

Java A, Song X, Finin T, Tseng B (2007) Why we twitter:

understanding microblogging usage and communities. In: Pro-

ceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop

on Web mining and social network analysis (ACM), pp 56–65

Klügl F, Puppe F (1998) The multi-agent simulation environment

sesam. In: Proceedings des workshops simulation in knowledge-

based systems, vol tr-ri-98-194 of Reihe Informatik, Paderborn

(Citeseer)

Li X, Mao W, Zeng D, Wang FY (2008) Agent-based social

simulation and modeling in social computing. In: International

conference on intelligence and security informatics. Springer,

Berlin, pp 401–412

Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B

(2007) Measurement and analysis of online social networks. In:

Proceedings of the 7th ACM SIGCOMM conference on internet

measurement (ACM), pp 29–42

Myers SA, Leskovec J (2014) The bursty dynamics of the twitter

information network. In: Proceedings of the 23rd international

conference on world wide web (ACM), pp 913–924

Pastor-Satorras R, Castellano C, Van Mieghem P, Vespignani A

(2015) Epidemic processes in complex networks. Rev Mod Phys

87(3):925

Schulze TP (2008) Efficient kinetic Monte Carlo simulation. J Comput

Phys 227(4):2455

Silverstein C (2010) Google sparsehash package. https://github.com/

sparsehash/sparsehash. Accessed 2 Feb 2017

Stadtfeld C (2013) NetSim: a social networks simulation tool in R.

http://www.christoph-stadtfeld.com/netsim/. Accessed 2 Feb

2017

Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of

the facebook social graph. arXiv preprint arXiv:1111.4503

Voter AF (2007) Introduction to the kinetic Monte Carlo method. In:

Sickafus KE, Kotomin EA, Uberuaga BP (eds) Radiation effects

in solids. Springer, Berlin, pp 1–23

Wolfram S et al (1986) Theory and applications of cellular automata,

vol 1. World Scientific, Singapore

Zeng R, Sheng QZ, Yao L (2015) A simulation method for social

networks. Soc Netw Anal Min 5(1):1. doi:10.1007/s13278-015-

0246-4

Soc. Netw. Anal. Min. (2017) 7:4 Page 13 of 13 4

123

https://networkx.github.io
https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
http://www.christoph-stadtfeld.com/netsim/
http://arxiv.org/abs/1111.4503
http://dx.doi.org/10.1007/s13278-015-0246-4
http://dx.doi.org/10.1007/s13278-015-0246-4

	Hashkat: large-scale simulations of online social networks
	Abstract
	Introduction
	Algorithms, design, and features of hashkat
	Engine
	Program structure
	Simulation workflow
	Agents
	Trending topics
	Adding agents
	Connecting agents
	Information propagation
	Visualization
	Compatibility and performance
	Limitations of the software

	Test cases
	Analytical graph models
	Reciprocal connections
	Viral content

	Conclusion
	Acknowledgements
	References

