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Abstract With the increasing popularity of online social

networks (SNS), many advertisers choose to post their

advertisements (ads) within SNS. Advertising activity on

SNS has grown rapidly and is now a billion-dollar busi-

ness. For example, Facebook has reached more than 1

million active advertisers who contribute 90% of its rev-

enue. In the SNS advertising model, advertisers partici-

pating in a SNS ad campaign benefit from the effects of

viral marketing and network diffusion. Modern SNS serve

as advertising agents and take advantage of the network

diffusion to attract advertisers and charge for the cascading

impressions. The optimal ad allocation task is the problem

of choosing the ad allocation plan that maximizes revenue

for the SNS. Considering that users have diffusion abilities

and limited daily impressions, and advertisers have various

bidding prices and budget concerns, a feasible plan that

obeys the constraints is difficult to find. The solution to this

problem lies in the space of N
jAdsj�jUsersj
0 , which makes

direct optimization unattractive. In this work, we study

SNS advertising business models and formulate the SNS ad

allocation problem. We show the problem is NP-hard and

propose two dimension reduction schemes together with

novel relaxation techniques. Our dimension reduction

technique is formulated based on SNS user profile-based

bidding scenario as well as social influence-based billing

policies. We show the core ideas for dimension reduction

are applicable to generalized assignment problems in

bipartite graphs. We further draw connections between

geometric mapping for complex network and the SNS ad

allocation problem and map the SNS onto 2-D geometric

space in order to relax the problem to geometric region

allocation problems. We develop an optimization frame-

work and solve the relaxed problem as a series of linear

programs. Our proposed method is able to reduce the

dimensionality of the original problem significantly, run

two to four orders of magnitude faster, and reach 95% of

the optimal solution. In addition, we discuss several

extensions of our approach, including shape design in the

geometric space for incorporating domain constraints in

allocation strategies, more comprehensive real-world social

influence models, as well as an alternative relaxation

approach and its application in generalized assignment

problems.

Keywords Social network analysis � Large-scale graph

algorithms � SNS ad allocation � Geometric mapping �
Approximation and optimization � Dimension reduction �
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1 Introduction

Social network sites (SNS) such as Facebook, Google?,

and Twitter have attracted hundreds of millions of daily

users since their appearance. SNS browsing constitutes a

large amount of the time that people spend on the Web,

dominating other online activities (Goel et al. 2012a). In

modern SNS, users expose many personal behaviors and

connect to each other based on real-world relationships,
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which makes SNS ideal for targeted advertising (Bakshy

et al. 2012a). SNS advertising has grown rapidly in the past

years; for example, Facebook has more than 1 million

advertisers and 100 billion hits per day (Facebook 2013b;

Johnson 2010).

The advertising mechanism used by online ad platforms,

including social network Web sites, is essentially large

auctions where advertisers place bids on user impressions

with specified daily or total budgets (Mehta et al. 2007). As

shown in Fig. 1, to perform a marketing campaign in an

SNS such as Facebook or Twitter, advertisers first find an

agent (which typically is the SNS site itself), choose a

target audience by specifying desirable user profiles (for

instance, graduate students in the USA, or female, like

movie), and provide their advertisements (ads) with a

bidding price and a budget. Then, the agent allocates the

ads to the set of users whose profiles match the advertisers’

targeting request. For each impression (page view) of a

user, the agent chooses one or several ads whose target

audience include the user. Now the user can see and engage

with the ad, for example ‘‘like’’ in Facebook, ‘‘?1’’ in

Google?, and ‘‘retweet’’ in Twitter, and then, her friends

may see the ad and further engage. For example, in Fig. 1,

Alice is a graduate student in USA and is allocated for ad1.

Alice and Bob are friends. The ad that Alice liked may be

shown as a sponsored story in Bob’s news feed in Face-

book setting. For SNS advertising campaigns, instead of

keywords, the advertisers bid for a target group of users’

actions, which can be mille impressions (often referred as

cost per thousand impressions or CPM), engagements (e.g.,

click, retweet, comment), or actions (e.g., mobile applica-

tion installation, product purchase). The agents run large

auctions using the bids and charge advertisers by the user

actions. There are associated billing policies, such as pay-

per-mille, pay-per-click, pay-per-action, pay-per-engage-

ment (Facebook 2014b). The pay-per-mille is the default

and most popular policy in Facebook, where the ad agent

receives commission for one thousand user impressions

displaying the ad. We will assume this policy throughout

the paper.

The SNS ad allocation problem, to maximize the agent’s

revenue by allocating ads to user impressions while

respecting the advertisers’ requirements (targeting criteria,

bidding method, and budget constraint), is a central prob-

lem for advertising agents. An important component of the

problem is the concept of paid social influence, which

distinguishes it from standard ad allocation problem

[AdWords (Mehta et al. 2007)] and influence maximiza-

tion problem (Kempe et al. 2003) in complex networks.

Comparing with AdWords, although they have similar

objectives, there are several key differences. First, in the

AdWords problem, advertisers bid on a set of ad hoc search

query keywords, whereas in the SNS ad allocation prob-

lem, advertisers bid on active users. Moreover, as the

substantial role of information diffusion in SNS (Bakshy

et al. 2012b), in SNS ad, the users allocated to a particular

ad is allowed to engage with the ad and diffuse it to her

neighbors, generating more impressions of the ad. The

advertisers pay all the impressions. When using the

AdWords approach directly without considering the paid

social influence, an advertiser’s budget will be easily run

out. On the other hand, note that since the advertisers need

to pay for all the impressions, the problem differs from

influence maximization problem in which one hopes to pay

the best fixed size seed set of users to maximize the final

number of influenced users she can reach by cascading. In

our setting, each advertiser is interested in a user category

satisfying certain search criteria and pays equally for all

users’ impressions including the ones from user engage-

ment. In this paper, we focus on the exact optimization of

the SNS ad allocation, which is often conducted offline.

1.1 SNS ad allocation problem

To formulate this problem, let A denote the set of adver-

tisers, and U be the set of users. Each user u 2 U has a

daily impression Iu, 1-hop friends (neighbors) set Fu, and a

social influence function P(u) which we define in Eq. 2.

Each advertiser Ai 2 A has a target user group xi � U, a

budget bi and bidding price pi.

Example 1 In Fig. 1, the impression of Alice, Iu¼0Alice0 , is

4, shows how many times she views a refreshed Facebook

page per day, while her social influence, Pð0Alice0Þ, is when
she likes an ad shown to her, how many users will see that

eventually. On the other hand, ad1’s target user group xad1
are all graduate students in USA, pad1 ¼ $5, and

bad1 ¼ $200.

In Facebook’s case, there are seven major user attributes

to define the target group xi of ad Ai (Facebook 2014a),

including ‘‘location,’’ ‘‘age,’’ ‘‘gender,’’ ‘‘language,’’ ‘‘in-

terests,’’ and ‘‘more categories’’ (e.g., family status),Fig. 1 SNS ad campaign and allocation

110 Page 2 of 23 Soc. Netw. Anal. Min. (2016) 6:110

123



forming roughly 106 value combinations. When an adver-

tiser bids a selected target group, Facebook shows how

many users satisfying that criteria in its network. If the

number of users for a bid is too small, it is discouraged and

a warning is generated.

Without losing generality, we assume each advertiser

has only one ad, and on a user’s one impression, one ad is

allowed to be displayed in the sponsor pane. Our proposed

method can be extended by adding scalars in practice case.

Notice that in a user’s impression, her friends’ ad

engagement (e.g., liked, retweet, ?1) is treated as common

friends’ updates which are displayed anyway with other

updates in the news feed.

The solution of the allocation problem decides for each

ad what is the initial set of users to be displayed by con-

sidering their influence ability. Let the decision variable be

I 2 N
jAj�jUj
0 . For each u and Ai, one dimension of the

decision variable Iu;i 2 N0 represents how many impres-

sions of u to be assigned to Ai. The optimization problem is

to find the allocation that maximizes the ad agent’s total

revenue, which can be formulated as an integer program

(Gao et al. 2014):

max
I

P

Ai2A
pi

P

u2xi
Iu;ið1þ PðuÞÞ ðrevenueÞ

subjectto pi
P

u2xi
Iu;ið1þ PðuÞÞ� bi 8Ai 2 A ðbudgetÞ
P

Ai2A
Iu;i � Iu 8u 2 U ðimpressionÞ

Iu;i 2 N0

ð1Þ

where the social influence function about the user u is:

PðuÞ ¼
X

m2Fu

wminfIu; Img ð2Þ

with w the expected engagement probability (click-through

rate). The minfIu; Img in Eq. 2 means regardless the engage-

ment probability, the user u’s engagement can be seen by her

friend m 2 Fu, minfIu; Img times. If Iu [ Im, it is bounded by

the daily impression her friend m has. If Iu � Im, the user u at

most engages Iu times. As mentioned earlier, in practice, the

engaged ad will be shown in her friends’ news feed, and we

assume her friend can always see the engagement if it happens

when visiting her news feed. The reasons are twofold: a)

recent Facebook study (Bernstein et al. 2013) shows that of a

user’s individual post can be read by 35% of her friends, and

61% of them cumulatively and b) the news feed is ordered by

proprietary ranking algorithm (Facebook 2013a), which may

treat ads and posts differently. We also assume 1-hop influ-

ence, as w is often small (0.3%) in real SNS and network

cascading is known to be shallow in general (Leskovec et al.

2007; Goel et al. 2012b). With more conditions being con-

sidered, P(u) can be adjusted. We discuss more in Sect. 4.

1.2 Our techniques and results

In our work, to make the offline optimization more tract-

able, we propose an approximation scheme. The key idea

of our method exploits the concept of target group to

combine users and applies geometric mapping for complex

networks to reach novel relaxation scheme to solving the

SNS ad allocation problem efficiently. The geometric

mapping allows us to derive a LP relaxation of SNSAd, and

later, we further discuss the alternative formulation without

geometric mapping for general maximum allocation

problems.

First, notice that in an advertiser Ai’s target group xi, all

users are considered the same by the advertiser, with the

only difference being their different influence capability. If

we can approximate the user impression allocation for Ai

and revenue calculation with influence modeled on the

target group level rather than the user level, we will be able

to eliminate several orders of magnitude dimensions for the

problem. Considering 109 users and 103� 5 categories in a

real-world SNS, we can reduce the dimension around

104� 6, which makes it much more attractive.

Secondly, motivated by Papadopoulos et al.’s study

(2015), we propose to use geometric mapping for SNS in

reducing the dimensionality and complexity of the SNS ad

allocation problem. In brief, by utilizing the tight rela-

tionship between hyperbolic geometry and scale-free

complex networks, Papadopoulos et al. designed a mapping

scheme between hyperbolic space geometric framework

and statistical mechanics of complex networks under the

Poincaré disk model (Papadopoulos et al. 2015). After the

mapping, expected node degree and node density become

well-defined smooth functions about the angular and radial

coordinates in the 2-D Poincaré disk:

qðrÞ ¼ aer ðnode densityÞ
xðrÞ ¼ ce�r=2 ðdegree distributionÞ ð3Þ

where a and c are constants derived from the mapping

process.

The idea of geometric mapping used in this paper is to

map a complex network (e.g., SNS) G(V, E) to a set of

points and segments in a continuous geometric space where

each node is assigned to a coordinate. If we map the SNS

and target group properly, we can use one or multiple

regions in the mapped geometric area to express the allo-

cation of a subset of users for an ad.

Example 2 In Fig. 2, we show the idea of geometric

mapping using data in Fig. 1. Two shapes on the base area

represent two target groups: the left fan for ‘‘graduate

students in USA,’’ while the right round for ‘‘female, like

movie.’’ Each user is assigned to a coordinate in her group,

e.g., Alice is assigned to the left fan. The influence function
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defines the top surface. Note the impressions define a dif-

ferent surface which is not shown.

In the mapped geometric area, we could approximate the

ad allocation problem as a region allocation problem, and

the revenue collected from an ad Ai can be calculated by

the integral of the user’s influence function over the region

Ri where Ai’s targeting users are mapped to in the geo-

metric space:

X

Ai2A
pi
X

u2xi
Iu;ið1þ PðuÞÞ ffi

X

Ai2A
pi

ZZ

Ri

fiðx; yÞdxdy ð4Þ

where fi is an abstract function corresponding to the inner

summation on the left side of the equation.

The idea of geometric mapping essentially proposes to

approximate the sum over a set of users to an integral

function over an area assigned to an advertiser. If we can

find regular shapes to represent ads’ target groups and

allocation strategies after the geometric mapping scheme,

then the region allocation problem can use very few vari-

ables to describe. As a result, we can reduce dimensions of

the original problem significantly.

However, to derive a geometric mapping algorithm that

fits the problem and allows integration is challenging,

especially for the multiple target group setting where one

needs to map different groups properly to the geometric

space with smooth node density and influence function.

Moreover, geometric shape design, region overlapping and

impression distribution further make it even more difficult.

We present the HYPERCUBEMAP and UNIFORMCUBEMAP

approach and develop an optimization framework to make

the idea mentioned above possible.

1.3 Our contributions

In this paper, we study the SNS advertising pay-per-mille

impression model and formulate the SNS ad allocation

problem. We show its difference from AdWords model via

bidding pattern and potential social influence after alloca-

tion. As is shown later, the problem is NP-hard, and even

the relaxation based on linear programming (LP) ends up

with large complexity. We propose a novel approximation

algorithm to reduce the dimensionality of the original

problem significantly by transforming it to a new form of

LP, at the mean time still reaching around 95% optimality

in large networks. To achieve this, our method draws

connections between geometric mapping of complex net-

works and the SNS ad allocation problem. We propose two

geometric mapping methods as well as an optimization

routine for the region allocation problem. We further dis-

cuss accommodating more domain constraints in our

optimization framework via shape design and introduction

of additional conditions in the formulation, and we con-

sider different models for the social influence function and

its integration into the framework. We discuss the necessity

of geometric mapping, and an alternative approach without

actual mapping beforehand.

The idea of SNS ad allocation based on hyperbolic

embedding was originally proposed in (Gao et al. 2014;

Miao et al. 2015). In addition to a considerably more

detailed description, we substantially extend the preliminary

work in several directions. (a) We generalize the idea of

geometric mapping for complex networks, discuss in detail

about its connection with SNS ad allocation problem and

discuss two geometric methods that both work in the

developed optimization framework. (b) We show in detail

how to reflect and incorporate domain constraints (e.g.,

fairness and priority) via shape design and their implications

toward the overall framework. We also discuss complex

social influence models. (c) We compare the performance of

our geometric mapping-based approach with basic heuris-

tics which are often adopted in solving max budget alloca-

tion problems. As the problem setting is complex, we use

synthetic data to show the optimality and scalability of our

approach. In order to show the advantage of our approach is

not derived from data generation, we compare the key

properties between generated data and real-world networks

first before comparing our newly introduced approach with

simpler and commonly applied heuristics.

The structure of the rest of the paper is as follows. We

first introduce the idea of geometric mapping and discuss

two geometric mapping methods, HYPERCUBEMAP and

UNIFORMCUBEMAP in Sect. 2. We then formally define the

ad allocation problem as a corresponding region allocation

problem via geometric mapping, and discuss our opti-

mization framework in Sect. 3. The novel formulation is

able to reduce the dimensionality of the problem to a large

scale. Section 4 discusses meaningful extensions to our

current framework that can accommodate more complex

conditions and constraints. We show experimental results

and the advantages of our approach in terms of perfor-

mance and optimality in Sect. 5, followed by the conclu-

sion in Sect. 6.

Fig. 2 Geometric mapping example
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2 Geometric mapping for SNS ad allocation

In this section, we develop geometric mapping methods in

order to solve the problem of SNS ad allocation more

efficiently. Before introducing the idea of geometric map-

ping, we first discuss the complexity of the baseline integer

programming (IP) formulation for the problem.

2.1 Complexity analysis of the IP approach for ad

allocation

In the integer program (Eq. 1), the decision variable I 2
N

jAj�jUj
0 lies in high dimensions due to the size of a com-

mon social network and number of bidding advertisers.

Similar to the offline Adwords problem (Mehta et al.

2007), the SNS ad allocation, as described in Eq. 1, is a

maximum budget allocation problem (Chakrabarty and

Goel 2010) with social influence-adjusted cost per

impression. It can be proved that the integer program is

NP-hard to solve via reducing from the 3-partition

problem.

Definition 1 (3-Partition) Given a list of 3t positive

integers S ¼ fx1; x2; . . .; x3tg with
P

xi2S xi ¼ tB, and each

xi, and each xi satisfying B=4\xi\B=2, is there a partition

fS1; . . .; Stg of S, such that each group is of size 3 and sums

to exactly B, i:e:;
P

xi2Sj xi ¼ B; 8j ¼ 1; . . .; t.

Theorem 1 The SNS ad allocation problem is NP-hard.

Proof We first show there’s a polynomial time reduction

from the 3-partition problem to the SNS ad allocation

problem. For 8 3-partition problem, we use the following

mapping to reduce it to the SNS ad allocation program in

Eq. 1:

We map group size t in the 3-partition problem to the

number of advertisers in the SNS ad allocation problem,

i.e., jAj ¼ t. Each advertiser has same budget B and targets

all the users at the same bidding price

(pi ¼ p[ 0; 8Ai 2 A). The set of numbers S ¼
fx1; x2; . . .; x3tg is mapped as the user set in SNS, where

each number xu 2 S represents the social influence-adjusted

value (i.e., pð1þ PðuÞÞ) of user u. In the mapped SNS,

each user has single impression and thus can only be

assigned to at most one ad. As defined in the 3-partition

problem, here the relation between ad budget B and user

values xu is:

B=4\xu\B=2; 8u ¼ 1; . . .; 3t

To make all users’ social influence-adjusted values con-

sistent with user degree distribution, many ‘‘phantom’’

nodes of single degree can be added to the graph as the

neighbor of these 3t nodes mapped from S. For example, if

the mapping leads to 3 users with degrees 2, 3, 4 in the SNS

ad allocation problem, then besides the triangle structure

formed by the three nodes, user 2 will have 1 phantom

neighbor, user 3 will have 2 phantom neighbors, with each

phantom node has degree one and 0 bidding value:

xk ¼ 0; 8xk 2 Sphantom

The final user set Sall in SNS ad allocation is the union of

set S and the set of phantom users Sphantom, i.e.,

Sall ¼ S [ Sphantom.

Based on the mapping, the 3-partition problem stated

above is now reduced to the following integer program:

max
I

P

Ai2A

P

u2Sall
Iu;ixu (revenue)

subject to
P

u2Sall
Iu;ixu �B 8Ai 2 A (budget)

P

Ai2A
Iu;i � 1 8u 2 Sall (impression)

Iu;i 2 N0

ð5Þ

which has the same form as Eq. 1. Here the expression

piIu;ið1þ PðuÞÞ ¼ pIu;ið1þ PðuÞÞ in Eq. 1 is represented

by xu.

This reduction clearly works in polynomial time.

Next we show the optimal solution of the constructed SNS

ad allocation problem (Eq. 5) has an optimal objective value

of tB, if and only if the instance of the 3-partition problem has

a solution. Apparently, if the 3-partition is satisfied, the

objective in Eq. 5 is tB. As all budgets are utilized, it is the

optimal objective value of the SNS ad allocation problem. In

the solution, each ad chooses 3 user impressions with values

corresponding to one of the t sets in the 3-partition result. On

the other hand, given a SNS ad allocation solution which

exploits all the budgets tB, it means each ad is allocated to a

set of users whose bidding values sum to B. As defined in the

reduction process, each real user has bidding value

B=4\xu\B=2; thus, each ad must be allocated to exact 3

users. We can accordingly find a solution for the 3-partition

problem where each set Si contains 3 numbers corresponding

to the user set assigned to Ai.

Via complex linear programming (LP) relaxation, such

type of maximum budgeted allocation problem can be

solved with a solution close to optimum (Chakrabarty and

Goel 2010). However, the complexity with such approach

still lies in OðjUj3jAjÞ. When considering 1 million

advertisers, and billion users daily in Facebook, the direct

optimization is impractical. In order to make it tractable to

solve the optimization problem, relaxation to LP and

dimension reduction are the two major directions.

Inspired by recent work on hyperbolic geometry of

complex networks (Krioukov et al. 2010; Papadopoulos

et al. 2015), in solving the problem of SNS ad allocation,

we propose geometric mapping methods that map the
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social network into a 2-D circle in Euclidean space. Via

geometric mapping, we transform the original problem to a

region allocation problem in the mapped circle, where one

or multiple regions are used to express the allocation of a

subset of users for an ad. Correspondingly, we could

approximate the revenue collected from the ad by calcu-

lating the integral of the user influence function over the

region(s). As we can use very few variables to represent the

set of users with regular shapes, and the region allocation

can be solved by linear programs, we can reduce dimen-

sionality and complexity of the original problem

significantly.

2.2 Requirements for geometric mapping in solving

SNS ad allocation

In SNS ad allocation, the advertisers bid on heterogeneous

user groups customized for their campaigns, and the users

have different impressions and influence capability. Thus,

the geometric mapping of a social network should have the

following properties in accordance with the purpose of

dimension reduction in solving the problem:

• Both node density and degree distribution should be

well defined along coordinates (e.g., angular and radial

axes) to support integrals in areas within the geometric

space.

• The social influence function defined at each point in

the mapped geometric space should be continuous and

integrable.

• The mapping method should embed users within the

same targeting group into connected regions, and the

regions can be represented by regular shapes using

small number of variables.

Note that all these conditions must be satisfied at the same

time; otherwise, a large collection of variables will be

needed to describe the allocation strategy for an ad and the

dimension reduction would not be achieved.

To the best of our knowledge, the existing geometric map-

pingmethods (Papadopoulos et al. 2015)donot obeyall of these

prerequisites. In Papadopoulos et al.’s study (2015), the hyper-

bolic mapping scheme satisfies the first prerequisite, i.e., the

node density and expected node degree are well defined along

coordinates in the unit circle. However, as the target groups,

impression, and social influence are not taken into considera-

tions in the model, it does not meet the rest requirements and

cannot be directly used in solving the SNS ad allocation prob-

lem. Meanwhile, the MLE step used in Papadopoulos et al.’s

study (2015) inarrangingangularcoordinates isnot related to the

problem setting and is computationally expensive, where map-

ping a hundred thousand node network takes days to finish,

which should be avoided in developing geometric mapping

approach for efficient ad allocation in SNS.

In solving the problem of SNS ad allocation, we develop

two geometric mapping methods that maps the social net-

work into a unit circle in 2-D Euclidean space. In Sect. 2.3,

we first show isolated cubes, a technique on reducing

dimensionality by exploiting the homogeneity of users in a

target group. Next in Sect. 2.4, we introduce degree spec-

trum according to users’ social influence potential, in order

to handle heterogeneity in degree distribution among target

groups. It also provides trade-offs between approximity

and scalability. Based on isolated cubes and degree spec-

trum, the geometric mapping methods are developed.

2.3 Isolated cubes

As mentioned in Sect. 1, an advertiser specifies the target

user group for a particular campaign and sets bidding price

and budget. The agent (i.e., Facebook) can only allocate

and charge for the qualified users’ impressions.

To enable this, the agent often provides a set of cate-

gorical filters, each of which has fixed number of options,

for example, location, gender (M/F), age (0/20/30/40?),

language and interests. The target user group of a campaign

is defined by a selection of some or all of the given options,

for instance, male and adult (20/30/40?) users in all states.

The cardinality of option profiles are not very large, e.g.,

Facebook has common option profiles upper bounded by

106 and discourages advertisers from using too fine-grained

filters by warnings during bidding (Facebook 2014a).

Furthermore, users targeted by the different campaigns can

be grouped together and result in many fewer groups for

the matching process.

When mapping, the allocation rule should be consid-

ered; otherwise, the same group of users will separate

apart, so one needs to sum up over all discrete points

representing the qualified users, which does not lead to

dimension reduction. On the other hand, allocating the

users together on the Poincaré disk may break the

requirement on node density mentioned above or leave

complicated shapes which are difficult to calculate in the

optimization.

To capture these aspects of our problem, we propose the

concept of isolated cube to express user similarities and

groupings, and degree spectrum to divide Poincaré disk

into finer and more regular shapes which eases the calcu-

lation and improves the precision, as shown in Fig. 3.

Definition 2 (Isolated cube) An isolated cube is a set of

unit targetable user groups having the same set of

campaigns.

In other words, users in the same isolated cube are

shared by the same set of campaigns. Any two users in an

isolated cube are interchangeable in an allocation solution

to the advertiser. Note the opposite is not true: The
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campaigns sharing an isolated cube are not interchangeable

in the allocation solution, as one campaign can target many

isolated cubes. For instance, assuming we only have two

advertisers, fa; bg, each of which starts a campaign, cam-

paign ca targets on ‘‘graduate student living in USA,,’’ cb
targets on ‘‘all male graduate student.’’ By definition ‘‘male

graduate student in USA’’ is an isolated cube, ic0, and

within this cube, a and b share the impressions, which

introduces necessary decision dimensions in the unknown.

However, ‘‘female graduate student lives in USA’’ (ic1),

‘‘all male graduate student not living in USA’’ (ic2) are

other isolated cubes targeted by each campaign exclu-

sively, which implies one dimension is enough in the

allocation.

As the isolated cubes are related to dimension reduction

performance, the less isolated cubes we have, the better

potential performance we can benefit from the mapping.

The following lemma gives the worst number of isolated

cubes:

Lemma 1 Considering the ad platform that defines F

categorical filters, and each f 2 F has vf distinct options,

there are at most
Q

f2F vf isolated cubes.

As the size of isolated cubes is important in the

dimension reduction performance, we show how to get the

minimal set of isolated cubes given all the advertisers’

target user groups.

Assume the ad platform designs a set of filters F, where

each f 2 F has a set of possible values, v. Each advertiser

Ai selects targeting values ðf ; viÞ for each filter, denoted by

Oi ¼ fðf ; viÞjf 2 Fg, which defines a set of target users

Ti ¼ fujðf ; viÞ 2 Oi; u½f 	 2 vig. Given all advertisers A and

their targeting profiles O, we can cluster targeted users

together and derive the optimal isolated cubes, which gives

the best dimension reduction performance in the hyperbolic

mapping.

Definition 3 (Optimal isolated cubes) The optimal iso-

lated cubes is the smallest set of isolated cubes, s.t. all

targeted users by the same set of advertisers are clustered

together.

In Algorithm 1, we give the clustering method to cal-

culate optimal isolated cubes in OðOÞ time. It first goes

through all possible unit targetable user groups in O bid

by the advertisers A, and groups advertisers by tar-

getable user group. Then, it clusters targetable user groups

together into individual sets if they share the same set of

advertisers.

Algorithm 1 Optimal Isolated Cube
Let uc be an map of isolated cube and its bidding advertisers
for each advertiser (Ai, (f, vi)) ∈ O do

uc(f, vi) ∪ = {Ai}
end for
Let opt ic be an map of hash key and clustered uc
for each ((f, vi), A′) ∈ uc do

opt ic(hash(A′)) ∪ = {(f, vi)}
end for
return all targetable user group sets in opt ic

Lemma 2 Given filter F, advertisers A and their target-

ing profiles O, Algorithm 1 gives the optimal isolated

cubes.

Proof First, Algorithm 1 outputs valid isolated cubes by

definition, all targetable user groups with the same hash

key share the same set of advertisers. Second, since any

subset of different hash key targetable user groups cannot

be merged to be a valid isolated cube, its output is the

smallest set of isolated cubes.

2.4 Degree spectrum

As one can envision, the population in each isolated cube

may vary a lot, not to mention the degree distributions in

each of them. This is difficult to handle in geometric

mapping and the optimization process after the mapping, as

the integral in Eq. 4 may not have a close form. To make

the idea of geometric mapping practical in solving the

problem efficiently and accurately, we introduce the con-

cept of degree spectrum to regularize the shape each iso-

lated cube maps to in the geometric space.

Definition 4 (Degree spectrum) A degree spectrum, K, is
a series of degree ranges in ½0; dmax	 where dmax is the

maximum degree in the social network. Each element k ¼
½ds; deÞ 2 K with boundry at ds and de represents all the

users with degree in the range.

Within each degree range k, isolated cubes are separated

into partitions. Each advertiser Ai targets at a set of isolated

cubes, ICi, each of which has locations in some or all

ranges in the spectrum K; thus, the allocation is represented
by at most jICij � jKj dimensions for Ai comparing with

Fig. 3 Isolated cubes and degree spectrum for geometric mapping
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jfuju 2 xigj dimensions in the baseline formulation (recall

xi � U is Ai’s target user group in Eq. 1).

According to Lemma 1, jICij in practice is no more than

106. Moreover, user groups of different criteria can be

combined together when they are targeted by the same set

of advertisers, which can further reduce the dimensionality

of allocation strategy. On the other hand, jKj is a inde-

pendent tuning parameter of our method, which can be

tuned by fixing the degree range d. In the extreme case,

d ¼ 1, each annulus only contains the users with the same

degree. Thus jKj is very small compared to the user set

size.

2.5 Geometric mapping approaches

Given the isolated cube and degree spectrum, now we

discuss the geometric mapping methods designed for SNS

ad allocation, which essentially assign each node of the

social graph a coordinate in a 2-D geometric space. Via

such mapping methods, each isolate cube in the degree

spectrum, which holds a set of users, will form a corre-

sponding closed region in the mapped space. This allows us

to reformulate the original IP and realize the idea proposed

in Sect. 1.2. It also naturally forms a visualization of bid-

ding profiles and allocation solutions for advertisers and

the ad agent.

In this section, we propose two geometric mapping

methods, HYPERCUBEMAP and UNIFORMCUBEMAP. We also

discuss generalizations to a 1-D geometric mapping for

general max allocation problems in Sect. 4.

By extending Papadopoulos et al.’s study (2015), our

geometric mapping strategy first ensures the node density

and degree distribution are well defined along radical axis.

It further organizes the entire social network into dimen-

sion reduction feasible grids, calculates the minimal num-

ber of groups to boost dimensions reduction effectiveness

(Sects. 2.3, 2.4), and gives the two geometric mapping

methods that satisfy all three prerequisites.

2.5.1 HYPERCUBEMAP: social network mapping

via hyperbolic geometry

The hyperbolic space is continuous, and hyperbolic map-

ping is able to map arbitrary size social network into a fixed

area by assigning each node a coordinate ðr; hÞ. Following
the idea, given the advertiser set A and targeting profile O,

HYPERCUBEMAP places each user u 2 U in a social network

G(U, E) to (ru, hu) in a unit circle based on optimal isolated

cubes and degree spectrum design K. As shown in Fig. 3,

here each degree range k 2 K is an annulus centered at

(0, 0) on the unit circle, and the pair ðrs; reÞ can be used to

represent all the users with degree in the range of

½xðrsÞ;xðreÞÞ. HYPERCUBEMAP is designed carefully to

satisfy the three prerequisites mentioned above. The algo-

rithm is given in Algorithm 2.

In Algorithm 2, it first generates the optimal isolated

cubes opt ic, and then, for each spectrum annulus

kðrs; reÞ, it assign each ic 2 opt ic a range of angular

coordinate ðhs; heÞ. To ensure the uniform node density

along angular axis, the range assignment is proportional

to the ic’s target user size portion in this spectrum

annulus. Then, Algorithm 2 begins to assign users virtual

coordinates in the hyperbolic plane. In order to let the

node density and degree distribution be well defined and

in accordance with the requirements, we modify the

method proposed by Papadoupolous et al. (Papadopoulos

et al. 2015) on the assignment of angular coordinate. To

ensure the same targetable user groups are allocated

together, we assign the angular coordinate of each user

according to its associated isolated cube ic. It is worth

noting f is the parameter related to the curvature of the

hyperbolic plane and is set to be 1 in our model. b is a

mitigating factor determined by the power law exponent c
with b ¼ 1

c; c can be calculated for a given social net-

work. The complexity of this algorithm is linear given a

user set sorted by degree.

Algorithm 2 HyperCubeMap
Let opt ic be the Optimal Isolated Cube output by Alg. 1
Let each annulus λ(rs, re) ∈ Λ and its user size be Na

θs = 0
for each λ(rs, re) ∈ Λ do

for each ic ∈ opt ic do
Let isolated cube ic’s user size be ic.na

θe = θs + 2π · ic.na/Na

Let ic’s angular range icang[λ] = (θs, θe)
θs = θe

end for
end for
Sort U by degree in descending order d1 > d2 > · · · > dn and break ties
arbitrarily. Let u’s degree be du

Let r1 = 0, and θ1 is chosen randomly in [0, 2π]
for u from 1 to n − 1 do
Let ru = β 2

ζ log u + (1 − β) 2ζ log n

Find spectrum λ′(rs, re), satisfying ru ∈ λ′(rs, re)
Find isolated cube ic satisfying u[f ] ∈ vic, ∀(f, vic) ∈ ic
Let u’s angular coordinate θu be chosen randomly from icang[λ′]

end for

HYPERCUBEMAP produces one type of geometric map-

ping that satisfies our prerequisites. In the unit circle, the

degree distribution and node density are well defined with

expected degree xðrÞ ¼ ce�r=2 and node density

qðrÞ ¼ aer, r 2 ½0; 1Þ. Meanwhile, the same targeting

group users are mapped into connected regions. By using a

continuous social influence function definition, we can use

the output of this algorithm to reformulate the SNS ad

allocation problem to a region allocation problem with

much reduced dimensions for the decision variable.
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2.5.2 UNIFORMCUBEMAP: geometric mapping for uniform

node density

From Algorithm 2, we notice that the inner area of the unit

circle is very sparse due to the exponential node density along

the radius, which may impact the optimality of the corre-

sponding region allocation approximation, making it difficult

for parameter tuning and allocation scheme design. Corre-

sponding to our application scenario, we propose another

geometric mapping method, UNIFORMCUBEMAP, based on

isolated cubes and degree spectrum. UNIFORMCUBEMAP still

maps the whole social network into a unit circle, but the node

density is uniform along the radius after such geometric

mapping, and the degree distribution can be calculated

accordingly. After UNIFORMCUBEMAP, the node density and

expected degree distribution function at ðr0; hÞ are:

q0ðr0Þ ¼ 2aðeR � 1Þ
R2

(node density)

x0ðr0Þ ¼ cR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02eR � r02 þ R

p (degree distribution)
ð6Þ

where a and c are both constants dependent on the social

network used in mapping, and the constant R is the

boundary of the unit circle.

UNIFORMCUBEMAP, which yields uniform node density in

the unit circle after the geometric mapping, can be con-

nected to HYPERCUBEMAP via node density functions.

Suppose for a previous point at ðr; hÞ in the unit circle by

HYPERCUBEMAP, its new coordinate is ðr0; hÞ by UNI-

FORMCUBEMAP; then, according to the connection via

cumulative distribution functions CDFuðr0Þ and CDFhðrÞ:

CDFuðr0Þ ¼
pr02ð2aðe� 1ÞÞ
pR2ð2aðe� 1ÞÞ

¼ CDFhðrÞ ¼
R r

0

R 2p
0

aesdhds
R R

0

R 2p
0

aesdhds
¼ er � 1

eR � 1

ð7Þ

the mapping between r and r0 is:

r0 ¼ wðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � ðe
r � 1Þ

ðeR � 1Þ

s

¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
er � 1

eR � 1

r

ð8Þ

and

r ¼ w�1ðr0Þ ¼ lnðr02eR � r02 þ R2Þ � 2 lnðRÞ ð9Þ

The distribution functions after two mappings are

transformable:

q0ðr0Þ ¼ qðrÞjr¼wðr0Þ ¼ 2aðe� 1Þ

x0ðr0Þ ¼ xðrÞjr¼wðr0Þ ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02e� r02 þ 1

p ð10Þ

With the uniform node density offer by UNIFORMCUBEMAP,

the expected degree along the radius is still well defined.

We can use the new node density and corresponding degree

distribution to formulate the region allocation problem

mentioned above in a similar way.

3 SNS ad allocation as 2-D region allocation

Given a concrete 2D geometric mapping method, we show

the reformulation of the original SNS ad allocation problem.

Corresponding to the concept of target user groups, each

advertiser Ai 2 A bids on a set of isolated cubes

Ti ¼ fic1; ic2; . . .; icng, where jTij is the number of Ai’s

isolated cubes. T ¼ [Ti is the set of all the optimal isolated

cubes (opt icÞ generated by Algorithm 1. Given the degree

spectrum K, the allocation profile for Ai is defined as

Si ¼ fSk;ci jk 2 K; c 2 Tg, where k denotes the annulus in the
degree spectrum, c specifies the isolated cube.

Using a geometric mapping for the social network (e.g.,

HYPERCUBEMAP), we can reformulate the ad allocation

problem as a region allocation problem on the 2D area that

the social network is mapped to. In other words, each S
k;c
i

in the allocation profile Si for Ai specifies a set of users

mapped in the particular cube in the 2-D area determined

by ðk; cÞ. We can then cast the optimal SNS ad allocation

problem as follows:

Problem 1 (Optimal region allocation) On a 2-D area

(e.g., Poincaré disk) with interior representing the users

mapped into the area via a certain geometric mapping

method (such as HYPERCUBEMAP algorithm), each user u 2
U is placed at (ru, hu) in polar coordinates, with expected

degree du ¼ xðruÞ ¼ ce�ru=2 and impression Iu 2 I. In the

advertiser set A, each Ai 2 A has a budget bi and bidding

price pi on target users (its isolated cubes Ti). The ad agent

designs an allocation profile Si for each Ai. Si is a set of

areas fðSk;ci Þg, each of which describes how to allocate

users in an isolated cube c in a degree spectrum annulus k
(i.e., ick;c). The optimal region allocation is to derive an

allocation profile S for A to maximize the revenue of the

agent and, at the same time, respect the budget and

impression constraints:

max
S

P

Ai2A
pifiðS; IÞ

subject to Si 
 Ti 8Ai 2 A

fiðS; IÞ� 0 8Ai 2 A

pifiðS; IÞ� bi 8Ai 2 A

/uðS; IÞ ¼
P

Si2S
/uðSi; IÞ� Iu 8u 2 U

S
k;c
i 
 ick;c 8Ai 2 A; c 2 T ; k 2 K

ð11Þ

where fiðS; IÞ is Ai’s actual sum of impressions considering

social influence. /uðSi; IÞ is the amount user u’s
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impressions assigned to Ai. T is the set of optimal isolated

cubes, and Ti is the target set of Ai. K is the degree

spectrum.

Note that so far the shape of allocated regions is not

specified, so the last constraint in Eq. 11 is defined in a

general way to avoid over-allocation. By specifying the

allocation region shape as fan shape as shown in Fig. 3, S
k;c
i

can be determined by the start angle hk;ci;s and the end angle

hk;ci;e , and Si is a set of fan-shaped areas that can be repre-

sented by the set fðhk;ci;s ; h
k;c
i;e Þg 2 R2jKj�jT j. Correspond-

ingly, the last condition in Eq. 11 can be reformulated as

constraints on allocated areas:

hk;ci;s � hk;cs 8c 2 T; k 2 K

hk;ci;e � hk;ce 8c 2 T; k 2 K
ð12Þ

3.1 Challenges in formulating the region allocation

problem

From Eqs. 11 and 12, we can see, comparing with the orig-

inal optimization problem described in Eq. 1, now a set of

users is mapped to a fan shape on the circle, which reduces

the dimensions significantly. In addition, angular coordi-

nates are continuous values instead of integer optimization

variables in the baseline formulation. If we can give closed

forms for each advertiser Ai’s assigned impression fiðS; IÞ
and each user u’s allocated impression /uðS; IÞ within the

mapped area, then the explicit form of the corresponding

region allocation problem can be reached. In order to do so,

we need to specify how to incorporate with social influence

and address two major challenges:

• Uncorrelated impressions Function fiðS; IÞ not only

depends on S but also depends on user impressions

I. However, it is important to note that in a social

network, user impression and their influence are in two

different dimensions and uncorrelated. For example,

President Obama who has about 40 million followers

on Facebook may visit SNS seldom, while a teenager

having moderate number of friends uses SNS heavily

everyday. Geometric mapping can only offer well-

defined degree distribution and node density, with the

distribution of user impressions still unknown. Without

introducing strong assumptions, it requires optimizing

over the combinations of users’ impressions in the

corresponding isolated cube in T, which significantly

increases the dimensions.

• Overlapping allocation areas The allocation areas of

different ads may overlap, as a user could be assigned

to different advertisers. Because one user often has

multiple impressions, fans assigned to different

advertisers inevitably have intersection regions in the

Poincaré disk, which makes the fiðS; IÞ calculation and

the overall optimization problem more difficult.

The first issue prevents us to apply integral, while the

second issue makes the optimization problem much more

complicated. In the rest of the section, we concretize the

problem and develop an optimization framework to solve

the region allocation problem.

3.2 Incorporating social influence

As is defined above, fiðS; IÞ is the sum of actual impres-

sions assigned to advertiser Ai. The actual impressions

resulted from user u is different from Iu due to her social

influence in the network. All exposed qualified impressions

will have a cost; thus, actual profit that the Ad agent can get

from allocating the advertisement Ai at a user u is:

pi � Iu � ð1þ PðuÞÞ ð13Þ

where P(u) is the function describing the influence of user

u due to her engagement of the campaign (Sect. 1.1).

Assuming P(u) is proportional to her 1-hop degree, then

Eq. 13 can be rewritten as:

pi � Iu � ð1þ w � duÞ ð14Þ

where du is the degree of node u, and w is a constant

presenting the engagement rate. For example, after map-

ping the SNS using HYPERCUBEMAP, its expected degree at

ðru; huÞ is:

du ¼ xðruÞ ¼ ce�ru=2 ð15Þ

and the influence function of user u is:

PðuÞ ¼ Pðru; huÞ ¼ w � ce�ru=2 ð16Þ

Under uniform node density, the influence function is:

P0ðuÞ ¼ Pðr0u; h
0
uÞ ¼ w � cR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02eR � r02 þ R2

p ð17Þ

Equations 16 and 17 are both continuous functions and can

be used in integral to express fiðS; IÞ in the circle after

geometric mapping.

In Eq. 14, we essentially assume that the cascading is up

to 1-hop of u. As mentioned in Sect. 1.1, diffusion is

shallow (Goel et al. 2012b; Leskovec et al. 2007) and

driven by simple contagion via social influence (Bakshy

et al. 2012b), and the engagement rate w is small in prac-

tice (0:3%) (Salesforce 2013), so the effect of multi-hop

cascading is negligible and we argue it is a reasonable

assumption. In general, as long as the approximate influ-

ence function is continuous about ðru; huÞ, our method can

be used. We discuss it in Sect. 4.2.
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3.3 Unit impression decomposition

As discussed in Sect. 3.1, the unknown user impression

distribution over the circle area after geometric mapping of

the SNS significantly affects our formulation. Complex

region intersection may not have an analytical expression

or convexity, and no well-defined form for impression

forces us to discretize fi and inevitably increase the

complexity.

To address the issues mentioned above, we propose a

novel decomposition method called unit impression

decomposition which preserves the advantages of geo-

metric mapping and at the same time derives an optimal

solution without introducing strong assumptions or con-

straints of high complexity (e.g., disallow overlapping,

enforce well-defined impression distributions).

We first introduce the unit impression graph and then

develop our optimization algorithm based on the decom-

position method.

Definition 5 (Unit impression graph) Given a social

network graph G(U, E), where U represents users, E shows

relationships between users. Each u 2 U has an impression

Iu. G is called a unit impression graph, if 8u 2 U; Iu ¼ 1.

Given a SNS, we can induce a set of unit impression

graphs. For example, if a user visits SNS 3 times a day (i.e.,

3 impressions, or 3 chances to engage with a campaign),

she can appear in 3 different graphs of unit impression,

which means her impressions can be potentially assigned to

3 advertisers. The number of impressions in each unit

impression graph now is 1, and there cannot be any inter-

sections (i.e., one impression cannot be shared by adver-

tisers). A sub-step optimization problem can be conducted

with a unit impression graph by adding a non-overlap

constraint, and more importantly fiðS; IÞ can be formulated

as fiðSiÞ, as the volume (impressions) assigned to Ai is

independent from others.

Example 3 Following the example shown in Fig. 1, each

graph in Fig. 4 is a unit impression graph decomposed one

by one from the original graph. The red number besides the

vertex shows the residual impressions of a user. As Gð1Þ is a
unit impression graph, all its node have impression 1. An

optimization is performed in Gð1Þ. Assuming all users are

allocated, Gð2Þ shows the next unit impression graph. The

residual impressions are updated by subtracting 1 from

each node. Notice that v5 has 0 impression, it is not

included in the graph Gð2Þ. In other words, if a user does

not have impressions anymore, her friend’s engaged cam-

paign will not influence her any more on that day. In Gð3Þ,
v3 and v6 is removed. The decomposition and optimization

process end at Gð4Þ, as no one in the network has impres-

sions any more.

Corresponding to Fig. 4, the general algorithm for unit

impression decomposition is shown in Algorithm 3.

With the unit impression decomposition, we can solve

the original problem using a multi-stage optimization

process. It finishes when all impressions are allocated or all

budgets are used. In the mth stage, given the unit impres-

sion graph GðmÞ, we apply HYPERCUBEMAP to embed GðmÞ

in the hyperbolic space. For each advertiser Ai 2 AðmÞ

whose budget b
ðmÞ
i [ 0, the sub-step of the optimization

problem is given in Eq. 18.

max
SðmÞ

P

Ai2A
pifiðSðmÞi Þ

subject to S
ðmÞ
i 
 T

ðmÞ
i 8Ai 2 AðmÞ

fiðSðmÞi Þ� 0 8Ai 2 AðmÞ

pifiðSðmÞi Þ� b
ðmÞ
i 8Ai 2 AðmÞ

S
ðmÞ
i \ S

ðmÞ
j ¼ ; 8Ai;Aj 2 AðmÞ ^ i 6¼ j

SAðmÞ

Ai

S
k;cðmÞ
i � Sk;cðmÞ 8c 2 T ðmÞ; k 2 KðmÞ

ð18Þ

We then solve the non-overlapping problem stated in

Eq. 18 and record its optimal solution SðmÞ� and optimal

value
P

Ai2A fiðS
ðmÞ�
i Þ. If all advertisers’ budgets are

reached, the whole optimization ends. Otherwise, the

budget vector is updated as b
ðmþ1Þ
i ¼ b

ðmÞ
i � pi � fiðSðmÞ�i Þ.

Then, the mþ 1th graph is generated with residual

impressions and removing users with no impression left. It

ends when all advertisers’ budgets are used, or all the

impressions are exploited.

Algorithm 3 Unit Impression Decomposition
Put users with impressions into the first graph G(1).
Let the maximum impression in the network be Imax.
for k from 2 to Imax do
Decrement impressions of all users in G(k−1) by one.
for each u ∈ U (k−1) do

if the impression of u, Iu > 0 then
Add u into G(k)

end if
end for

end for
return {G(k)|k ∈ {1, ..., Imax}}

The unit impression decomposition process largely

simplifies the optimization problem in each stage. The

original problem of solving multiple-location Ad allocation
Fig. 4 Unit impression graph transformation
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with overlapping can be transformed to a multi-stage ad

allocation problem without overlapping.

3.4 Optimal ad allocation strategy via region

allocation in mapped area

As mentioned above, the area S
k;c
i that is assigned to ad Ai

in an isolated cube c in a degree spectrum annulus k can be

described by ðhk;ci;s ; h
k;c
i;e Þ. With well-defined node density

and degree distribution, the allocation fiðSk;ci Þ is now:

fiðSk;ci Þ ¼ fiðhk;ci;s ; h
k;c
i;e Þ

¼
Z rke

rks

Z hk;c
i;e

hk;c
i;s

qðsÞð1þ Pðs; hÞÞdhds ð19Þ

Based on Eqs. 3 and 16, if we use HYPERCUBEMAP as the

geometric mapping method, the final form for fiðSk;ci Þ can
be calculated as:

fiðSk;ci Þ ¼ a

Z rke

rks

esð1þ wce�
s
2Þ
Z hk;c

i;e

hk;c
i;s

dhds

¼ aðhk;ci;e � hk;ci;s Þð2wce
rke
2 � 2wce

rks
2 þ er

k
e � er

k
s Þ

¼ Dkh
k;c
i ð20Þ

where Dk ¼ að2wce
rke
2 � 2wce

rks
2 þ er

k
e � er

k
s Þ is a constant

related to the annulus k on the degree spectrum K, and

hk;ci ¼ hk;ci;e � hk;ci;s is the angle range of the region S
k;c
i . From

Eq. 19, we notice that the function fiðSk;ci Þ is actually a

linear function of hk;ci , irrelevant to its start and end angles.

If we apply the uniform node density transform, then via

variable substitution with s ¼ wðs0Þ using Eq. 9, the

expression for fiðSk;ci Þ is:

fiðSk;ci Þ ¼ a

Z w�1ðr0ke Þ

w�1ðr0ks Þ
esð1þ wce�

s
2Þ
Z hk;c

i;e

hk;c
i;s

dhds

¼ aðhk;ci;e � hk;ci;s Þð2wce
w�1ðr0ke Þ

2 � 2wce
w�1ðr0ks Þ

2

þ ew
�1ðr0ke Þ � ew

�1ðr0ks ÞÞ
¼ D0

kh
k;c
i ð21Þ

where D0
k ¼ að2wce

w�1ðr0ke Þ
2 � 2wce

w�1ðr0ks Þ
2 þ ew

�1ðr0ke Þ�
ew

�1ðr0ks ÞÞ; which is still a constant related to the annulus k
on the degree spectrum K.

Combining the newly introduced impression decompo-

sition and fan-shaped allocation strategy into the hyper-

bolic mapping, we can elaborate the optimal region

allocation problem in Eq. 18 as follows:

max
HðmÞ

P

Ai2AðmÞ
pi

P

k2KðmÞ
Dk

P

c2T ðmÞ
i

hk;cðmÞi

subjectto hk;cðmÞi � 0

pi
P

k2KðmÞ
Dk

P

c2T
hk;cðmÞi � b

ðmÞ
i

P

Ai2AðmÞ
hk;cðmÞi � hk;cðmÞe � hk;cðmÞs

8Ai 2 AðmÞ; c 2 T
ðmÞ
i ; k 2 KðmÞ

ð22Þ

where the decision variable H 2 RjAj�jKj�jT j, pi is the bid-

ding price and b
ðmÞ
i is the budget of Ai at stage m. Dk is the

constant related to annulus a in Eq. 19. The uniform node

density setting can be derived accordingly by replacing Dk

to D0
k (shown in Eq. 21).

3.5 Summary

With the unit impression decomposition under fan-based

allocation strategy, the optimization problem is a series of

linear programs like Eq. 22. If the optimization is stopped

after n stages, then the allocation of advertiser Ai is the

aggregation of optimal solutions: [n
k¼1S

ðkÞ�
i . It is worth

pointing out while in one iteration, there are no overlaps,

the final aggregated regions do have overlaps among ads,

as each iteration is conducted on a different unit impression

graph. This framework simplifies the optimization without

strong assumptions.

On the other hand, the decomposition is easy to

produce and finite, because the expected impression Iu
of each user u is known beforehand and Iu is upper

bounded (due to limited time, a normal user can spend

on social Web sites). It is also computationally efficient

as the geometric mapping methods proposed in this

work, i.e., HYPERCUBEMAP and UNIFORMCUBEMAP are

linear to the size of users (Sect. 2.5). With careful

algorithm design, it supports parallel decomposition,

which further improves the efficiency of the algorithm

(Sect. 5).

Comparing with the original formulation introduced

in Sect. 1, the dimensionality of unknown H in our

formulation in the worst case is jAj � jKj � jTj
dimensions, which is the number of campaigns multi-

plied by the degree spectrum and the optimal isolated

cubes, while the original optimization problem has

jAj � jUj dimensions which equal to the product of

campaigns and users. This improvement is significant

as |A| is around one million (Hof 2013), but |U| is in

billions.
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4 Extensions and discussion

To incorporate more real-world requirements and demon-

strate the generality of our framework, we discuss two

important extensions of our method. We first discuss the

implications of different shape designs and compare with

the fan shape we use in the optimization framework. We

show how to formulate the fairness constraints using dif-

ferent allocation shapes in the geometric mapping area.

Next, we discuss how to handle more complex social

influence requirements with respect to P(u). We extend it to

multi-hop cases, as well as handling selectivity constraints

on the users according to real-world billing policies.

4.1 Accommodating domain constraints via shape

design

Within the ad platform, there may be additional domain

constraints besides the basic ones introduced in Eq. 22.

Among all these domain constraints, fairness is an impor-

tant one (Karande et al. 2013; Clemons 2009). In SNS, the

ad agent may want to distinguish between different

advertisers and assign set of users with different impression

quality. The impression quality of a user set can be rep-

resented by its degree demographics. Intuitively in an

allocation strategy, assigning an ad to one user with 1M

friends is different from assigning it to 1M users all with

one friend. When the ad platform wants to keep the game

fair, the user sets assigned to different ads can admit

similar distribution of user impression quality.

To formulate the concept of fairness, we classify the

fairness-related domain constraints into three major cate-

gories, namely fairness model, priority model and partial

fairness model based on the differences of allocated user

influence demographics among ads.

1. Fairness model Fairness model requires the user

influences (degree) demographics among advertisers

to be similar. Formally, the constraint for fairness

model over the allocation strategy S in the optimization

problem can be expressed as:

varð/ðSÞÞ� g ð23Þ

where /ðSÞ ¼ ð/ðS1Þ; . . .;/ðSjAjÞÞ is the fairness

measure of user demography over the vector of optimal

allocation; greater /ð�Þ corresponds to higher ratio of

influential users. Here we use variance to reflect the

demography difference, with g as the threshold.

2. Priority model Contrary to the fairness model, the

priority model requires more influential users allocated

to advertisers of higher priority (e.g., with higher bids).

The allocation constraint for the priority model can be

described as:

/ðSiÞ�/ðSjÞ 8Ai;Aj 2 A; qi � qj ð24Þ

where qj is ad Aj’s priority, and greater value repre-

sents higher priority.

3. Partial Fairness model (Hybrid model) Partial Fairness

model (Hybrid model) is between the two extremes

mentioned above. If we want both fairness and priority to

coexist in advertisement allocation (i.e., low bid adver-

tiser is allowed to have some higher influence users), then

the allocation strategy should consider both sides:

varð/ðSÞÞ 2 ½g; g	
/ðSiÞ�/ðSjÞ 8Ai;Aj 2 A; qi � qj

ð25Þ

where g and g are the lower and upper bounds for the

variance.

In the geometric mapping-based optimization framework

discussed in Sect. 3, there is no restriction onwhichannulus or

isolated cube an ad should be assigned, so the optimal solution

admits no difference between areas in the hyperbolic space

that correspond to isolated cubes in different annuli. Thus,

fairness constraints are not reflected in such setting.

In this section, we show the connection between the

fairness constraints discussed above and different shape

designs. We discuss Fan, Ring, Circle, and other general

shapes. We analyze the impact of different allocation

strategies w.r.t. convexity, efficiency, and fairness. For ease

of discussion and without loss of generality, we look at a

simplified setting where all the ads target the whole social

network and illustrate how to incorporate fairness con-

straints. We consider this problem on a unit impression

graph reached via impression decomposition; thus, there is

no intersection between regions allocated to different ads.

4.1.1 Fan

We propose the Fan-shaped ad allocation strategy for the

fairness model discussed above, where each ad is assigned a

fan area, as shown in Fig. 5a. The allocation area Si for ad

Ai is a fan (or pie) of angle hi in the circle that the social

network is mapped to. Such allocation strategy reflects the

fairness model described in Eq. 23, as the user degree dis-

tributions (i.e., influence demographics) are similar among

fan areas assigned to ads due to uniform expected degree

distribution in the circle along angular axis. Similar to

Eq. 19, the corresponding volume function fiðSiÞ is:

fiðSiÞ ¼ fiðhiÞ ¼ a

Z R

0

es
Z hi

0

ð1þ w � dðsÞÞÞdads

¼ a � hið2wcðe
R
2 � 1Þ þ eR � 1Þ ¼ a � hi

ð26Þ

with a ¼ að2wcðeR=2 � 1Þ þ eR � 1Þ a constant. Integrating
the unit impression decomposition and fan-shaped
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allocation strategy, the optimization problem in Eq. 18 can

be reformulated as a linear programming problem like

Eq. 22.

Via the Fan-shaped allocation strategy, the fairness

model is well supported, since all the areas allocated to ads

have similar demography due to well-defined node density

and expected degree distribution. In Eq. 26, fi is a linear

function of hi and leads the optimization problem a linear

programming (LP) one, which is another advantage of such

allocation strategy. Additionally, fans of different ads can

be arranged tightly close to each other and impressions can

be completely utilized in each round of optimization with

enough budgets; thus, number of iterations are minimized.

Furthermore, residual graphs can be generated indepen-

dently; thus, all iterations can run in parallel with careful

budget arrangement.

4.1.2 Ring

When considering the priority model (i.e., Eq. 24) by

assigning more influential users to higher priority bidders,

we propose to use the ring-shaped allocation strategy

(Fig. 5b). Let ri;s and ri;e be the starting and ending radius,

and qi be the priority value of Ai, the expression for fi over

the ring ½ri;s; ri;eÞ in geometric mapping is a function of ri;s
and ri;e. Taking HYPERCUBEMAP as an example, the

expression for fi can then be written as:

fiðSiÞ ¼ fiðri;s; ri;eÞ ¼ a

Z ri;e

ri;s

es
Z 2p

0

ð1þ w � dðsÞÞÞdads

¼ 2pa ð2wc � e
ri;e
2 � 2wc � e

ri;s
2 � eri;s þ eri;eÞ

ð27Þ

And the corresponding optimization can be formulated as:

max
S

PjAj

i¼1

pifiðri;s; ri;eÞ

s:t: pifiðri;s; ri;eÞ� bi 8i 2 f1; 2; . . .; jAjg
0� ri;s � ri;e �R 8i 2 f1; 2; . . .; jAjg
ri;e � rj;s 8qj � qi

ð28Þ

The last constraint in Eq. 28 abstracts the priority model

that ads of higher priority are arranged in inner areas. The

decision variable of the optimization problem is

ððr1;s; r1;eÞ; . . .; ðrjAj;s; rjAj;eÞÞ 2 R2jAj.

Ring-shaped allocation strategy represents the priority

model, in the sense that ads of different priorities have different

demographical population in terms of social influence. As we

can see in Eq. 27, the volume function fiðri;s; ri;eÞ for the ring-
shaped allocation strategy is nonlinear in ri;e and ri;s. Similar to

the fan-shaped case, rings of different ads can be arranged

tightly and impressions can be completely utilized in each

round of optimization; thus, sub-step iterations are minimized.

4.1.3 Circle

Using circle as the allocation region, as shown in Fig. 5(c),

is a potential solution to incorporate the partial fairness

model mentioned above. The circle allocation strategy for

Ai can be represented using center position and radius

ðxi; hi; riÞ, and fiðSiÞ can be written as:

fiðSiÞ ¼ fiðxi; hi; riÞ ¼ a

Z ri

0

es
Z 2p

0

ð1þ w � dðdisðxi; s; aÞÞÞdads

ð29Þ

where disðxi; s; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2 þ s2 � 2xiscosðaÞ

p
is the dis-

tance between a point ðs; aÞ from xi and the disk center.

Accordingly, the optimization problem can be written as:

max
x;h;r

PjAj

i¼1

fiðxi; hi; riÞ

s:t: fiðxi; hi; riÞ� bi; 8i 2 f1; 2; . . .; jAjg
0� xi; rj �R; 8i 2 f1; 2; . . .; jAjg
xi þ ri �R; 8i 2 f1; 2; . . .; jAjg
ðxiÞ2 þ ðxjÞ2 � 2xixjcosðhj � hiÞ

� ðrðkÞi þ r
ðkÞ
j Þ2 8i; j 2 f1; 2; . . .; jAjg

ð30Þ

The circle allocation strategy can reflect the partial fair-

ness model, since circles of similar sizes and similar

Fig. 5 Different allocation

strategies. a Fan allocation,

b ring allocation, c circle

allocation
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distances to the center have similar influence demography,

while circles at different positions with different radii have

different demography. It can be tuned by adding size and

position constraints. From Eq. 29, we can see that fi is not

convex in hi. As for efficiency, impressions cannot be fully

utilized in each iteration; thus, more iterations are needed.

4.1.4 General allocation strategies

As shown in previous sections, shape design is a powerful

and intuitive way to represent domain constraints, such as

fairness. Table 1 summarizes the characteristics w.r.t.

convexity, efficiency, and corresponding fairness constraint

of different shape-based ad allocation strategies. In addi-

tion, it is worth discussing the general allocation strategy to

incorporate with other domain constraints and show the

limitation of our method.

(a) Convexity: Convex problems have prominent advan-

tages in solvability, reliability, and efficiency. To

have convexity, we can design shapes of convex

volumes about radial coordinate r and angular

coordinate h. Non-convex volume expressions have

many local optima and require advanced optimiza-

tion frameworks.

(b) Efficiency: Another important factor of runtime is

the number of unit impression graphs, which implies

the number of sub-step optimization routines. The

less unallocated area in one iteration, the fewer

iterations needed. In a shape design, all areas can be

allocated in each iteration; then, we can generate all

unit impression graphs regardless of the optimization

result, which makes it possible to execute in parallel

with careful budget arrangement.

(c) Domain constraint: As we showed above, the

fairness constraint is defined over the user influence

demography. Because it is well defined over the

Poincaré disk, we are allowed to use fan, ring, and

circle to specify different fairness models. Other

business rules that have well-defined metrics over

the graph’s degree also have the potential to apply in

our framework.

4.1.5 Extension to heterogeneous target groups

If we extend the idea discussed above to the general setting

where there are multiple target groups within the SNS, the

domain constraints can be imposed into the optimization

framework by introducing additional constraint functions

in a similar way.

For fairness model, we can combine the areas that cor-

respond to the same isolated cube at all annuli:

Dc ¼
X

k

Dkðhk;ce � hk;cs Þ ð31Þ

where Dk is same as the one in Eq. 19. Then, the opti-

mization can be re-formulated as:

max
C

P

Ai2A
pi

P

c2T
i

Dccci

subject to cci � 0

pi
P

c2T
i

Dccci � bi
P

Ai2A
cci � 1

8Ai 2 A; c 2 Ti

ð32Þ

the optimization variable cci is the proportion of area on the
isolated cube c assigned to ad Ai.

For the priority model, similar to the last constraint in

Eq. 28, we can add one more constraint function in Eq. 22

requiring that the annuli assigned to ads of higher priority

should be inner than those of lower priority:

min fkjhk;ci [ 0g�min fkjhk;cj [ 0g
8qi � qj;Ai 2 A; c 2 Ti

ð33Þ

4.2 Extension on social influence models

4.2.1 Multi-hop influence

In previous sections, we mainly consider 1-hop neighbors

and model it as a linear function of engagement rate and

degree, by assuming the influence is shallow (Karande

et al. 2013). In real world, different ad format may have

different influence impact and more complex influence

functions may be needed. For example, recent work (Dow

et al. 2013) shows the cascading of popular photographs in

SNS may not be shallow. When the click-through rate is

too high to neglect the influence of a user’s activities (e.g.,

clicking an ad) over her multiple-hop friends (e.g., 2-hop

ones), the social influence function P(u) is required to be

modified to reflection the multi-hop influence.

For a user u of degree du in the network, if we consider

the k-hop influence within the network in the IP

Table 1 Features of the three

shapes discussed
Shape Convexity Efficiency Fairness constraints

Fan Linear Full space utilization Fairness model

Ring Nonlinear Full space utilization Priority model

Circle Non-convex White space between circles Partial fairness model
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formulation, the expression needs to consider the influence

over all k-hop neighbors:

PðuÞ ¼ w
X

v12Fu

ðminfIu; Iv1g þ Pðu; v1ÞÞ

Pðu; v1Þ ¼ w
X

v22Fv1

ðminfIu; Iv1 ; Iv2g þ Pðu; v1; v2ÞÞ

� � �
Pðu; v1; . . .; vk�1Þ ¼ w

X

vk2Fvk�1

minfIu; Iv1 ; . . .; Ivkg

ð34Þ

As an approximation, in the LP formulation, we can use the

expected multi-hop neighbor set size of an isolated cube in

each annulus to represent the value of a certain user in the

cube to make the social influence expression integrable.

PðuÞ ¼ Pðru; huÞ ¼ w � ce�ru=2 þ
Xk

l¼2

ðwlnk;lÞ ð35Þ

where nk;l is the expected l-hop neighbor size of the iso-

lated cube in annulus k that u belongs to:

nk;l ¼ Ev2ick ½nv;l	
�
�
�
u2ick



P

v2ick nv;l

jickj

�
�
�
�
u2ick

ð36Þ

Note that since the second part in Eq. 35 is a constant,

putting Eq. 35 into Eq. 22, the optimization is still a linear

program.

4.2.2 Effectiveness in billing models

In real-world SNS ad billing models, there is a concept of

effectiveness in users’ social influences. For example, for a

user in an isolated cube, her neighbors are not necessary

having the same target group w.r.t. the current isolated cube.

If a billing policy enforces to charge only for the influences

over the same target group, the way to calculate the budget in

both formulations need to be updated. Our framework can

easily be extended to handle this case. To incorporate this, we

introduce the selectivity as a measure of effectiveness within

an isolated cube, which can be defined as the probability that

users an ad reaches via social influences are still in the same

target group. Figure 6 is an illustration of selectivity of multi-

hop neighbors (friends) in the SNS graph.

In order to introduce selectivity into current optimiza-

tion framework, we can use wk;c;k to denote the k-hop

selectivity of the isolated cube c in annulus k, which can be

calculated via the proportion of k-hop neighbors of the

isolated cube that is still in the cube. By such definition, the

linearity of the social influence function is well kept:

PðuÞ ¼ Pðru; huÞ ¼ w � ce�ru=2wk;c þ
Xk

l¼2

ðwlnk;lwk;c;lÞ

ð37Þ

where wk;c ¼ wk;c;1 the selectivity of 1-hop neighbors.

Placing Eq. 37 into Eq. 22, we can adjust our LP for-

mulation to handle this type of billing constraints, and the

modified formulation is still a LP.

4.3 An alternative relaxation without 2-D geometric

mapping

Based on the dimension reduction ideas, i.e., optimal iso-

late cubes and degree spectrum, we introduced two geo-

metric mapping methods, HYPERCUBEMAP and

UNIFORMCUBEMAPin Sect. 2. Both methods use the degree

distribution found in the network to map each user to a

coordinate in Euclidean space. Thus, related region allo-

cation problems are derived, and visualizations of the

bidding and allocation are present.

In this section, we discuss an alternative formulation

without using geometric mapping by utilizing the dimension

reduction components developed earlier. For each set of

users Sk;c that belong to an optimal isolated cube c in degree

range k ¼ ½ds; deÞ, the total influence-adjusted values of the

users in Sk;c is lk;c ¼
P

u2Sk;cð1þ PðuÞÞ. The average value

over the population ak;c ¼ lk;c=jSk;cj is considered as a

constant within the isolated cube. For each advertiser

Ai 2 A, the optimization decides in each degree k 2 K and

each optimal isolated cube c, how much proportion l
k;c
i of

the user set Sk;c (i.e., how many users of ‘‘average’’ social

influence value ak;c) will be allocated to each advertiser. The
constraints are on ad budget and total user set influence-

adjusted value. Correspondingly, the optimization problem

can be formulated as the following LP:

max
L

P

Ai2A
pi

P

k2K

P

c2Ti
ak;clk;ci

subjectto l
k;c
i � 0

pi
P

k2K

P

c2T
ak;clk;ci � bi ðbudget constraintÞ

P

Ai2A
ak;clk;ci � lk;c ðsegment length constraintÞ

8Ai 2 A; c 2 Ti; k 2 K

ð38Þ

The computation complexity of the optimization formula-

tion here is essentially the same as the one based on the

2-D geometric mapping routines (Eq. 22), as both are LPs

and have similar format with the same size of optimization

variables, which is jAj � jKj � jT j. The unit decomposition

optimization framework can be used as well to address the

uncorrelated impression issue. Once the optimal solution

L is derived, the users allocated to each ad in each ðk; cÞ are
calculated based on average influence capability lk;c=ak;c.
The users with degree in k are chosen randomly to the

advertiser.
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4.3.1 Application and limitation

The alternative formulation without 2-D geometric map-

ping can be applied in solving a group of generalized

assignment problems, because the structural properties of

the underlying graph are not used. It is also efficient in the

case when someone only cares about the allocation value

rather actual allocated users. It enjoys the advantage of

both dimension reduction components and does not require

an geometric mapping algorithm before the optimization.

On the other hand, different from the 2-D geometric

mapping methods where the allocation strategy can be

visualized once getting a solution, the alternative formula-

tion without mapping can only calculate the optimized total

revenue, and the detailed allocation strategy is unresolved

until running an additional randomized or constrained user

allocation algorithm based on the optimization results.

Additionally, domain constraints like fairness with region

design in HYPERCUBEMAP and UNIFORMCUBEMAP are not

intuitive to formulate, and extra algorithm components need

to be introduced for the allocated user sets.

5 Evaluation

In order to show advantages of our geometric mapping-

based LP formulations over the original IP formulation, we

conduct a series of experiments for both single and

multiple target group scenarios on synthetic data using

IBM CPLEX optimizer (version 12.6). We implement two

geometric mapping methods, HYPERCUBEMAP and UNI-

FORMCUBEMAP, mentioned in Sect. 2.5, as well as the

optimization routine in unit impression graph in Algo-

rithm 3. We discuss the experimental results regarding the

geometric mapping-based optimization framework and

compare our approach with two heuristics in Sect. 5.2,

followed by the discussion on fairness constraints in a

simplified setting of single target user group (Sect. 5.3).

5.1 Dataset generation and description

In order to evaluate our approach and compare with the

baseline IP formulation in different scales and illustrate its

advantage in complexity reduction, we construct datasets

of various sizes. The datasets are generated based on dis-

tributions observed from public available real-world

advertising datasets.

On the advertiser side, we look at keyword bidding and

budget distributions from the Yahoo! Webscope dataset A1

(Yahoo! 2005) and open advertising dataset collected from

Google AdWords used in (Yuan and Wang 2012). We find

that campaign bidding prices fit well with lognormal dis-

tribution, and the advertiser budget follows Zipfian distri-

bution approximately.

On the social network side, we use the graph generator

in the Stanford Network Analysis Package (SNAP)

Fig. 6 Selectivity of multi-hop

friends. a Selectivity for a single
user, b selectivity for a target

group
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(Leskovec 2009) to generate social networks of various

sizes. It has been observed that many complex networks,

like SNS, are scale-free with power law degree distribution

(Newman 2003; Mislove et al. 2007). In our model, we do

not have assumptions on network characteristics other than

power law degree distribution. Considering our research

scope, the specific model we use for network generation is

the power law random graph model (Hernandez et al.

2007), even though not all network characteristics are

captured by the model (Schlauch et al. 2015). By specify

the power law degree exponent a and number of nodes in

the network (n), a corresponding power law random graph

of the given size can be generated. According to Faloutsos

et al. (1999), we set a ¼ 2:2 and generated social networks

of 9 different sizes varying from 10K to 100M.

In addition to constructing social networks, we also need

to assign daily impression to each node. The real impres-

sion distribution of well-known SNS is not available to the

public to the best of our knowledge. To generate it, we

argue a real user’s SNS usage is bounded by her daily time;

thus, we model user impressions using a Poisson distribu-

tion, which is also reported in real advertising network

study (Braun and Moe 2012). To cluster users with dif-

ferent profiles into targetable user groups of different sizes,

we use |GR| to represent the group/user ratio, and use a

Dirichlet prior to generate a multinomial distribution over

group size. When applying HYPERCUBEMAP and UNI-

FORMCUBEMAP to map the generated network, we choose

the default spectrum width to be d ¼ 10.

Finally, to generate bidding from campaigns to users, we

use |AR| as the advertiser/user ratio and use bipartite pref-

erential attachment with two Zipfian distributions to rep-

resent the nodes popularity. The list of parameters and the

default values are shown in Table 2. Then, we apply

Algorithm 1 to derive the optimal isolate cubes for social

networks of different sizes and summarize the data in

Table 3. All data and codes are available online.1

It is worth pointing out that in real-world situation, the

correlation of category, user impression and degree, as well

as ad bidding behaviors may exist. As the correlation

information is not public and is hard to model or quantify,

in order to keep the problem generic and representative, we

do not introduce additional assumption on their correla-

tions and the data are generated independently.

5.1.1 Synthetic social network data versus real-world SNS

As the smooth power law degree distribution is an

important assumption in our geometric mapping method,

we justify the representativeness of our synthetic dataset by

comparing its degree distribution with the one drawn from

real-world SNS. We plot the node degree distribution of

real-world social networks, including Facebook (konect

2016; Kunegis 2013) (as shown in Fig. 7a) and Google?

(McAuley and Leskovec 2012) (Fig. 7b). Comparing to the

synthetic graphs that we generated at different scales

(Fig. 7(c) for the 50K graph and Fig. 7d for the 5M graph,

respectively), we can notice that following the power law,

the degree distributions are quite smooth in real-world

social networks, and the synthetic dataset degree distribu-

tion mimics well with the real-world ones.

5.2 Performance of geometric mapping-based

formulations

In the following, we refer EXPMAP to the linear program in

Eq. 22 based on HYPERCUBEMAP (Eq. 20) and UNIMAP to

the one that uses UNIFORMCUBEMAP (Eq. 21). As geometric

mapping is essentially an approximation method for

dimension reduction, our experiments aim at showing its

advantages over the original IP formulation in terms of

runtime, scalability, and optimality. We also show the

degree spectrum parameter d tuning to trade-off between

runtime and optimality. All experiments were run on a

Linux server with two 2.66 GHz 6-core Xeon X5650 CPUs

and 128G memory. The CPLEX optimizer is configured to

Table 2 Parameters of dataset generation

Name Default Description

|NU| 10,000,000 Number of user

|AR| 0.001 Advertiser/user ratio

|GR| 0.0005 Isolate cube/user ratio

d 10 Spectrum degree width

w 0.003 Click-through rate

k 10 Poisson for user impression

ðK; aÞ (jNUj � jGRj, 1) Dirichlet prior for isolate cube size

ðl;rÞ ð�1; 1Þ Lognormal for advertiser bid

a 1.2 Pareto I for advertiser budget

Table 3 Summary of datasets

|NU| Edge |A| ic optic
P

u Iu

10K 2.6M 10 50 42 100K

50K 2.6M 50 100 70 500K

100K 260K 100 100 81 1M

500K 2.6M 500 500 189 5M

1M 2.6M 1000 500 342 10M

5M 13.1M 5000 2500 1462 50M

10M 26.8M 10K 5000 2722 100M

50M 137.0M 50K 25K 11308 500M

100M 276.2M 100K 50K 21063 1B

1 http://www.cs.umd.edu/*hui/code/hypercubemap.
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utilize all 24 threads; for the IP, we fix the MIPSearch

parameter to use the branch and cut. The time metric is in

seconds and collected via CPLEX timer representing actual

CPU time used in the optimization.

5.2.1 Experimental results

We first show the runtime performance by varying network

size in Fig. 8a. In general, geometric mapping-based

methods EXPMAP and UNIMAP finish the optimization

process two to four orders of magnitude faster than the

baseline SNSIP. In the 10M networks, SNSIP took 7 to 8

CPU hours on average to finish, while EXPMAP and UNIMAP

use less than 100 CPU seconds in the optimization.

EXPMAP and UNIMAP runtime performance is similar, even

in real-world size networks (100M). Besides runtime,

geometric mapping-based methods require much less

memory than the IP model. Network 50M and 100M

cannot run under SNSIP, and they run out of memory, while

EXPMAP and UNIMAP only use 2G memory for network

100M, due to the dimension reduction.

Next in Fig. 8b, we show the optimality result using

approximation factor P, for instance, in EXPMAP case:

PExpMap ¼
Pmax iter

i¼1 OPTExpMap

OPTSnsIP
ð39Þ

As IP cannot run on 50M and 100M network, we omit

those SNSIP data points. The solutions of EXPMAP and

UNIMAP reach about 90% of the original IP solution on

average, and when network size increases, the two linear

programs have better solutions. In our experiments, the

minimum value of P is 85.97%, while the maximum is

96:07%. Also UNIMAP always performs better than EXPMAP

with little cost. The exponential node density distribution

makes the parameters less accurate in central regions,

where the users have higher influence. If the engagement

rate w becomes larger, the difference between PExpMap and

PUniMap will become larger as well.

Fig. 7 Degree distributions in real-world SNS and synthetic datasets. a Facebook network, b Google? network, c synthetic social network

(50K), d synthetic social network (5M)
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In Fig. 9a, we show the accumulated revenue and time

in the unit decomposition optimization process in the

UNIMAP experiment on 100M network; EXPMAP has very

similar performance. The left y-axis in red is accumulated

time percentage, and the right y-axis in blue is accumulated

optimal objective value. Our optimization process spends

most time on the early iterations which also contribute

similar percentage in revenue. This observation has prac-

tical meaning when the advertiser demand is high: We can

decompose the whole graph into small number of sub-unit

impression graphs without deducting the budgets in the

optimization sequence. These early iteration graphs can be

prepared and run in parallel, and the aggregates are good

enough to use as an estimate of optimal solution.

Next we show the parameter tuning of our geometric

mapping-based approaches. The degree spectrum width d

effects dimensions reduction directly and is independent

from the SNS itself. We vary d in

f1; 5; 10; 50; 100; 500; 1000g to see its impact with respect

to runtime speedup and the approximation factor P. In the

extreme case, d ¼ 1, each annulus only contains the users

with the same degree. As shown in Fig. 9b, increasing d

reduces more dimensions; thus, the speedup (left y-axis)

increases, and EXPMAP and UNIMAP have similar benefit.

On the other hand, the approximation becomes less accu-

rate. The approximation factor decreases. As expected, it is

easier to tune d in UNIMAP than EXPMAP. And it is worth

pointing out when d ¼ 1, PUniMap is greater than 1. From

speedup and approximation factor aspects, we suggest to

set d around 10, which is where the two curves intersect.

As shown in the experimental results, the new formulation

based on geometric mapping methods (e.g., HYPERCUBEMAP

andUNIFORMCUBEMAP) has prominent advantage in efficiency

while reaching solutions close to the optimal values.

5.2.2 Comparison with random and greedy heuristics

In order to further show the advantage of our geometric

mapping-based approach, we compare it with two heuris-

tics, namely random allocation and online AdWords-like

greedy approach (Mehta et al. 2007, 2013). We show the

results in Table 4, where the degree spectrum width is 10

by default.

For a user impression, the random approach randomly

chooses a bidding ad targeting on the user profile, while in the

greedy allocationmethod, the highest available bid for the user

profile is chosen and assigned. Both algorithms stop when all

impressions are assigned or all ads use up their budgets.

In Table 4, we can see that our approach not only out-

performs both heuristics, but also shows consistent per-

formance in optimality.

5.3 Experimental results on fairness constraints

In this section, we evaluate the performance of our

extensions on fairness constraints, aiming to compare the

Fig. 8 Performance of

HYPERCUBEMAP in scalability

and optimality. a Run time by

varying problem size,

b approximation factor

Fig. 9 Degree spectrum

parameter tuning.

a Accumulated time and

revenue, b effect of tuning

degree spectrum width d
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impacts of additional fairness constraints toward the opti-

mization results.

We used SNAP 2.2 to generated graphs of power law

degree distribution and sizes to be 1000, 10,000 and

100,000. User impressions follow a Poisson distribution

with mean k ¼ 10. As shown in Table 5, we fixed the

number of ads to be 10, each aj bids pj �Nð0:1; 0:01Þ. For
the three graphs, we generated the budgets of ads from

normal distributions Nð15; 25Þ, Nð150; 2500Þ,
Nð1; 500; 2:5� 105Þ accordingly. Both baseline IP and

our novel approach are based on the same impression

decomposition procedure. Without loss of generality, we

compare both models via the optimization over the first

graph Gð1Þ after the impression decomposition operation.

To model the fairness constraints in the IP formulation,

we added the following constraints in Eq. 1:

1. Fairness model: We define the linear constraint as:
P

u2Si du

jSij
� dV

�
�
�
�

�
�
�
�� g; 8Ai 2 A ð40Þ

where du is the degree of u, dV is the average degree of

the whole network graph, g is the threshold to measure

the deviation of the user influence demography.

2. Priority model: We define the linear constraint as:

du � dv; 8u 2 Si; v 2 Sj;Ai;Aj 2 A; s:t:qi � qj

ð41Þ

where qi is the quantized priority of ad Ai. The con-

straint enforces advertisers with higher bid have the

users with higher influence (i.e., larger degree) in the

model.

3. Partial fairness model: The partial fairness model can

be formulated as a combination of the first two models

described in Eq. 40 and Eq. 41.
X

u2Si
du �

X

v2Sj
dv; 8Ai;Aj 2 A; s:t: qi � qj

j
P

u2Si du

jSij
� dV j � g; 8Ai 2 A

ð42Þ

Other models can formulate constraints accordingly.

In order to explore the influence of additional fairness

constraints in optimization, we compare the optimal values

reached by the baseline IP formulations with or without

additional fairness constraints and the fan-shaped alloca-

tion under various network sizes. The results are shown in

Table 6, from which we notice the followings:

• Different fairness constraints lead to different optimal

solutions, but they reach similar optimal values, i.e., the

maximum profit that the ad agent can earn via ad

allocation. This result is corresponding to the pay-per-

mille model applied in the optimization setting, where

impressions are charged instead of clicks.

• The approximation approach has good performance in

approaching the optimal value. This is consistent with

the results shown in Sect. 5.2, that the geometric

mapping-based LP formulation can reach solutions

close to the optimal values.

6 Conclusions

In this paper, we develop a novel formulation and dimen-

sion reduction method for the SNS ad allocation problem

via geometric mapping. We introduce two geometric

mapping algorithms, HYPERCUBEMAP and UNI-

FORMCUBEMAP, which extend previous methods and

address the requirements of SNS ad allocation. We propose

corresponding optimization framework that handles the

challenges such as uncorrelated impression distribution and

region overlapping issues in the mapping. With geometric

mapping and unit impression decomposition process over

the social graph, the original integer program can be

approximated by a series of linear programs for optimal

Table 4 Approximation factor

results of different approaches
Approach 10K 50K 100K 500K 1M Average

Random 49:93% 57:84% 42:79% 53:51% 52:90% 51:39%

Greedy 63:29% 77:05% 67:16% 80:81% 78:43% 73:35%

UNIMAP 88:28% 86:33% 90:23% 91:56% 93:88% 90:06%

Table 5 Summary of datasets

|NU| |A| ad bids distribution ad budgets distribution

1k 10 Nð0:1; 0:01Þ N ð15; 25Þ
10k 10 Nð0:1; 0:01Þ N ð150; 2500Þ
100k 10 Nð0:1; 0:01Þ N ð1; 500; 250kÞ

Table 6 Optimal value of different approaches

Network size 1000 10,000 100,000

Revenue Baseline IP 108 1157 11703

Baseline IP (Priority) 108 1157 11700

Baseline IP (fairness) 108 1157 11703

Fan-shaped allocation 108 1156 11669
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region allocation in the 2-D area after geometric mapping,

which successfully reduces the dimensionality and com-

plexity of the optimization problem and enables application

in real-world SNS with billion users.

We further propose extensions to the geometric map-

ping-based optimization framework. First we discuss how

to incorporate the fairness constraints using different shape

designs and their algorithmic complexities. As after the

geometric mapping process (either HYPERCUBEMAP or

UNIFORMCUBEMAP), the influence surface is uniform along

angular axis, different influence domain constraints such as

fair or prioritized assignment strategies among advertisers

can be represented using different shapes on the isolated

cubes of different annuli (layers) to the ads. Furthermore,

in addition to the 1-hop model applied in the formulation,

we show multi-hop models for the social influence function

P(u) and possible approximations, in order to incorporate

non-shallow cascading ad format in real-world applica-

tions. In general, geometric mapping-based approach

works well with minor modifications. We also discuss an

alternative formulation without mapping ahead in solving

the problem and show our dimension reduction techniques

(isolate cubes and degree spectrums) as well as the asso-

ciated approximation idea can be applied to a broader

range of similar allocation problems. We leave the detailed

discussion and implementation of our methods for other

applicable problems as future work.
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