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Abstract Probabilistic cascade models consider informa-

tion diffusion as an iterative process in which information

transits between users of a network. The problem of dif-

fusion modeling then comes down to learning transmission

probability distributions, depending on hidden influence

relationships between users, in order to discover the main

diffusion channels of the network. Various learning models

have been proposed in the literature, but we argue that the

diffusion mechanisms defined in most of these models are

not well-adapted to deal with noisy diffusion events

observed from real social networks, where transmissions of

content occur between humans. Classical models usually

have some difficulties for extracting the main regularities

in such real-world settings. In this paper, we propose a

relaxed learning process of the well-known independent

cascade model that, rather than attempting to explain exact

timestamps of users’ infections, focus on infection proba-

bilities knowing sets of previously infected users. Fur-

thermore, we propose a regularized learning scheme that

allows the model to extract more generalizable transmis-

sion probabilities from training social data. Experiments

show the effectiveness of our proposals, by considering the

learned models for real-world prediction tasks.

Keywords Information diffusion � Independent cascade �
Machine learning

1 Introduction

Recently, a huge amount of research has focused on social

networks and social media sites, whose importance contin-

uously grows, as the data they produce become more and

more numerous and valuable. They today stand as ines-

capable sources of social data for several generic problems,

such as community detection, collaborative recommendation

or link prediction. In this context, the study of temporal

content propagation (or information diffusion) corresponds

to a very active topic, which may be useful for several

concrete tasks. It aims at studying how a given content

spreads through the network, via interactions between users,

by the so-called word-of-mouth phenomenon.

The study of such a phenomenon firstly emerged in

epidemiology and social sciences contexts, for predicting

and understanding spreads of diseases or marketing inno-

vations. The emergence of social networks opened a very

large number of new related research directions. Classical

diffusion models, such as the independent cascade model

(IC) (Goldenberg et al. 2001; Saito et al. 2008) or the

linear threshold model (LT) (Kempe et al. 2003), have

been applied to social data for capturing the dynamics of

observed propagation through networks. In the ground of

such general models, many different prediction tasks have

recently emerged, such as Diffusion prediction - predicting

which (or how many) users will be reached by a given

content knowing its initial locations in the network (Kempe

et al. 2003; Ma et al. 2008) -, Buzz detection - estimating

the impact of a content over the network (Romero et al.

2011)-, or Leader identification - identifying most
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influential users of the network (Kempe et al. 2003; Ma

et al. 2008).

In this paper, we focus on cascade models that are at the

heart of the research literature on information diffusion. In

a natural way, these probabilistic models regard the phe-

nomenon of diffusion as an iterative process in which

information transits from users to next ones in the network

(Saito et al. 2008; Yang and Leskovec 2010; Gomez-Ro-

driguez et al. 2011; Ver Steeg and Galstyan 2013). In such

a setting, the problem of diffusion modeling comes down to

learn probability distributions depending on hidden influ-

ence relationships between users, in order to discover the

main communication channels of the network. These iter-

ative models, whose probability learning process consider

sequences of infections rather than only dealing with some

initial and final sets of infected users, usually leads to

discover finer-grained influence relationships, as they

enable to distinguish transitive influences in the network.

Various cascade models have been proposed in the lit-

erature, each inducing its own learning process to explain

some observed diffusion episodes and attempting to extract

relevant probability distributions of content transmission

between users of the social media. The proposed approa-

ches differ on their way of dealing with observed users’

infection timestamps1. Some classical models, such as the

independent cascade model (IC) (Goldenberg et al. 2001),

iterate over successive time-steps to simulate diffusion

episodes. Other models consider asynchronous diffusion

processes, in which timestamps of infections are driven by

some time-delay distributions (Saito et al. 2010; Gomez-

Rodriguez et al. 2011; Du et al. 2013).

We argue that infection delays are in fact sampled at

near random in diffusion on real-world networks, at least

on those where content transmissions occur between

human nodes, and then, time regularities are very difficult

to extract from such temporally linked data. While this is

needed for some applications where dated infection pre-

dictions are required, the consideration of diffusion delays

may greatly disturb the learning process when the main

concern is to extract the transmission relationships of a

social media (e.g., for tasks such as best influencers iden-

tification, buzz detection, final infections prediction, dif-

fusion-based community detection.).

Therefore, we propose to relax the problem of diffusion

by designing a delay-agnostic learning of IC, which does

not consider relative timestamps of infection during its

training phase. We consider a likelihood defined on partial

orders of infections rather than on exact infection time-

steps as classically done in Saito et al. (2008). By focusing

on infection sequences during its learning phase, our De-

lay-Agnostic IC model is able to better extract the regu-

larities of real-world social data and capture the main

diffusion channels of the studied networks.

The paper is organized as follows: Sect. 2 presents our

model and its learning process. Section 3 compares our

model to several baselines on real and artificial datasets.

Section 4 reviews related works. Section 5 concludes the

work.

2 A delay-agnostic diffusion model

2.1 Background and notations

Traditionally, information diffusion in a network is

observed as a set of diffusion episodes

D ¼ ðD1;D2; . . .;DnÞ, where each diffusion episode is a

sequence of related events, associated with their times-

tamps of occurrence. A diffusion episode describes the

diffusion of a given content in the network2. For instance, it

can correspond to a sequence of users’ infections by some

information at different timestamps: A set of users who

‘‘liked’’ a specific YouTube video, posted a given url,

replied to a given message, etc. It describes to whom and

when an item spreads through the network, but not how

diffusion happens: The information of who infected who is

unknown in such observed inputs.

Given a social network composed of a set of N users

U ¼ ðu1; . . .; uNÞ, a diffusion episode D is then defined as a

set of infected users associated with their timestamp of

infection: D ¼ fðu; tDðuÞÞju 2 U ^ tDðuÞ\1g, where tD :
U ! N gives infection timestamps for users infected by

the diffusion in concern, or 1 for non-infected ones.

Timestamps returned by tD are relative timestamps given

the one of the first infected user (i.e., the source of diffu-

sion, for which tD then equals 0). In the following, we note

UD
v the set of users having been infected before user v in

the diffusion D: UD
v ¼ fu 2 UjtDðuÞ\tDðvÞg. We also

note UD
1 the whole set of users that have finally been

infected by D and �UD
1 those that have not.

Cascades are richer structures than diffusion episodes, as

they explain how a given diffusion happened. A cascade

C ¼ ðSC;UC; TCÞ corresponds to a transmission tree start-

ing from sources of diffusion SC � U and reaching a set of

infected users UC � U (with SC � UC), given a set TC of

timestamped transmission events between users from UC.

1 Throughout this paper, we indifferently talk of infection or

contamination to denote the fact that the propagated content has

reached a given user of the network.

2 The extraction of diffusion sequences from the data, which may be

not straightforward with non-binary participations to the diffusion or

in the case of a polymorphic diffused content, is not of our concern

here. We assume diffusion episodes already extracted by a prelim-

inary process.
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Note that, while several transmission events to a same

given destination user might succeed during the diffusion

process, the cascade structure only contains the first

transmission event ðu ! vÞ that succeeded from any user u

to the destination user v (which happens at the infection’s

timestamp of user v, as reported in diffusion episodes). For

a given observed diffusion episode D, the set of possible

cascade structures that generated D is thus given by CD ¼
fC ¼ ðUD

1 ;U
D
1; TCÞj8v 2 ðUD

1 n UD
1 Þ9u 2 UD

v ; ðu ! vÞ 2
TC ^ ð6 9u0 2 U n fug; ðu0 ! vÞ 2 TCÞg, i.e., each infection

is explained by a unique transmission from a previously

infected user. Several different cascade structures are

possible for a given observed sequence of infections.

Cascade models usually perform assumptions on these

latent diffusion structures for building their influence

graphs.

Cascade models aim at defining an influence-oriented

graph G ¼ ðU;IÞ, where I corresponds to the set of

influence relationships between users of the network.

Depending to the available data and the task, I can be

restricted to relationships from a given known graph of

possible influences (the graph of the social network for

example), or can be defined as a complete graph allowing

influences between all possible pairs of users (see discus-

sion about this point in Sect. 3). In the following, Predsu
and Succsu, respectively, correspond to the sets of prede-

cessors and successors of a user u w.r.t. relationships in I

(users that can influence or be influenced by u). Iu;v 2 I

then corresponds to the directed influence relationship from

a user u 2 Predsv to a user v 2 Succsu. It is weighted by a

function Pu;v : N ! ½0; 1� defining the probability of

infection Pu;vðtÞ of user v by user u after a time delay

t. Note that we focus here on probabilities that do not

depend on previous attempts of diffusion: Success or fail-

ures of diffusion between users are independent events.

2.2 Delay-agnostic IC

The goal of the learning process of a cascade model is then

to estimate diffusion probability distributions for each

relationship among a given set of users U. As pointed out in

the introduction, two main kinds of models can be found in

the literature to infer these distributions.

On the one hand, time-step-based approaches, such as

those used for learning diffusion probabilities in IC (Saito

et al. 2008), focus on diffusion events belonging to con-

tiguous steps (defining then a probability function that

only returns non-null values when the time-delay argu-

ment t equals 1). This enables to easily define a likelihood

of generating cascades of observed time-steps of infec-

tions, since a user can only be infected by a user from the

previous step (assuming that she has been infected by at

least one user from the previous step and not by users

from preceding ones) (Saito et al. 2008). However,

assuming that infections can only be observed along

contiguous time-steps is a very strong assumption that

does not hold in real-world settings: Influences between

some pairs of users may require more time than between

others without being less likely. Moreover, such a model

is greatly dependent on the step size that is defined to

discretize time and gather infections: With too large steps,

a too large amount of users are gathered together which

greatly biases the model since diffusion is assumed to

only hold between users from two successive steps. With

too short steps on the contrary, the process contains

several empty steps, which induces a large amount of

non-explained infections (infections of users from a step

following an empty one cannot be explained by the

model) and widely reduces the diffusion expectation

(episodes with a possible diffusion along a given rela-

tionship are more rare). Even if empty steps were ignored

during the learning process (empty steps can indeed be

removed to enable more explanations of user’s infections

during the learning of the model), it still remains that a

short step usually reduces the possibilities of latent cas-

cade structures to a unique straight chain of infections.

This greatly limits the ability of learning models that well

explain the observed infections of users. Figure 1 depicts

this dependency with regards to the selected time-step

size (empty steps are ignored in that figure). With average

step sizes, a large variety of latent cascade structures can

be considered to explain the infections. With extreme

values of time-steps however, the variety of possible

latent structures is reduced to a single structure (a chain

with short steps and a single group with long steps). This

greatly reduces the freedom of the learning scheme and

then, the effectiveness of the model to represent the main

communication channels of the network.

On the other hand, approaches such as NetRate

(Gomez-Rodriguez et al. 2011) or the Continuous-Time

Independent Cascade model (CTIC) (Saito et al. 2009)

include time delays in the probability distributions they

define. In that way, the NetRate model defines decreasing

probability functions w.r.t. the time argument t (the

greater interval between current time and the timestamp

of the infection of a given user, the lower her probabili-

ties to diffuse to other users) (Gomez-Rodriguez et al.

2011). The CTIC model learns delay parameters addi-

tionally to diffusion abilities for each pair of users to

define an asynchronous diffusion framework (Saito et al.

2009). Such models overcome the bias induced by the

definition of discrete time-steps. However, regularities

over infection timestamps are very difficult to extract

from real-world social networks: If regularities may exist

regarding the influence of particular users on the activities

of others, whose extraction already corresponds to a
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complex problem, observing tendencies of time delays

between sparse activities of pairs of users appears quasi-

impossible with large social media. In these models, time

delays between infections having a great impact on

learned influence probabilities, prediction performances in

real-world settings may suffer from this great variability

of the influence delays.

We argue that including time information in the learning

process usually leads to difficulties in extracting diffusion

regularities. Moreover, being able to estimate infection

timestamps is not essential for many applications, such as

buzz prediction, opinion leaders identification or predic-

tions tasks of content diffusion where the focus is given to

final infections (who is finally infected, how many users are

finally infected, etc.). Based on these two main observa-

tions, we propose to relax the problem of diffusion by

considering a delay-agnostic model, which exploits infec-

tion orders instead of exact infection timestamps. Assum-

ing that the time delay between activities of two related

users follows a uniform distribution over the observation

window, we consider that the probability of observing the

infection of a given user depends on influences from all of

its previously infected predecessors. It allows us to learn

more about influence tendencies in the network than time

explicit models. Note that, although it does not fully use

infection timestamps information from the data to gain

some generalization ability, our model can still be used to

predict probabilities of infections orders and remains rel-

evant for applications where one may be interested in

which users are the most likely to be impacted by an

advertisement first. Furthermore, time delays can be

learned afterward, in the ground of influence probabilities

extracted by our relaxed model.

Our Delay-Agnostic IC model (DAIC) grounds in the

classical IC model, but uses a learning process which

considers that any previously infected user can explain a

newly observed infection. Considering the same example

of diffusion episode as in Figs. 1, 2 represents the various

possible diffusion cascade structures that could explain the

observed successive infections with our model. This

highlights the greater freedom of our learning process,

which considers each possible structure with equivalent

prior probability.

Our model thus focuses on infection probabilities

knowing sets of all already infected users. Therefore, our

concern is to set time-independent probabilities on rela-

tionships of the graph: A diffusion probability value hu;v
has to be set for each pair of users (u, v) with Iu;v 2 I. It

corresponds to the probability that user u propagates a

given content to user v before the end T of the diffusion

process3: hu;v ¼
R T
tðuÞ Pu;vðtÞ dt. The influence graph can

then be fully described in our model by these pairwise final

transmission probabilities hu;v, whose learning is described

below.

2.3 Influence learning

As we stated that time intervals between successive

infections should not be considered during influence rela-

tionships learning, we focus on infections (or non-infec-

tions) of users knowing previously infected users in

training diffusion episodes. In our setting, as in the clas-

sical IC, a newly infected user has a unique chance to infect

each of her non-infected successors. However, we consider

here that each of these infection events can happen at

anytime in the future (before the end of the observation

window T) rather than at the next time-step only. Then, in a

similar way as in Saito et al. (2008) but without restricting

to influences from users whose infection time-stamp falls

in a previous contiguous arbitrarily sized time-step, we

consider that the infection of each user in a diffusion

Fig. 1 Possible cascade

structures for the ICmodel w.r.t.

step size for a given diffusion

episode (empty steps are

removed for low step sizes)

Fig. 2 Possible cascade structures for a given episode with our delay-

agnostic model

3 The ending time of diffusion T is arbitrarily set to the infection

time-stamp tDðuÞ of the latest contaminated user u in the longest

diffusion episode D.
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episode is due to at least one transmission success from a

previously infected user. Given a set of potentially influ-

ential users I � U (a set of previously infected users), the

probability P(v|I) of observing the infection of a user v

knowing this set is therefore defined as:

PðvjIÞ ¼ 1�
Y

u2I\Predsv
ð1� hu;vÞ ð1Þ

Then, rather than attempting to explain all observed time-

stamps of infection, our proposal is to only consider partial

orders of infection during influence learning. Considering

the pairwise transmission probabilities hu;v as the set of

parameters h of the model, we define PðUD
1jhÞ as the

probability of observing:

• The infection of each user v infected in the diffusion

episode D, knowing the infection configuration of all

users at its time-stamp of infection tDðvÞ;
• The non-infection of each user that does not belong to

the set of infected users in the diffusion episode D,

knowing all finally infected users UD
1 in D.

Therefore, PðUD
1jhÞ is defined as:

PðUD
1jhÞ ¼

Y

v2UD
1

PðvjUD
v Þ
Y

v2 �UD
1

ð1� PðvjUD
1ÞÞ ð2Þ

Also, we consider the following log-likelihood Lðh;DÞ of
the parameters h for all diffusion episodes from the training

set D:

Lðh;DÞ¼
X

D2D
logðPðUD

1jhÞÞ

¼
X

D2D

X

v2UD
1

logðPD
v Þþ

X

v2 �UD
1

X

u2UD
1\Predsv

logð1�hu;vÞ

ð3Þ

where PD
v is a shortcut for PðvjUD

v Þ. This log-likelihood is,

however, very difficult to optimize directly, due to the

definition of PD
v as given by formula 1. Nevertheless, if we

knew which attempts of infection succeeded in the

observed diffusion process, the optimization problem

would become much more easier. Success or failures of

influence attempts thus stand as latent factors of the

problem. Therefore, following a similar learning method-

ology as described in Saito et al. (2008), we propose to

employ an expectation–maximization (EM) algorithm

considering the following expectation function4:

QðhjĥÞ ¼
X

D2D
UDðhjĥÞ þ

X

v2 �UD
1

X

u2UD
1\Predsv

logð1� hu;vÞ

ð4Þ

where UDðhjĥÞ corresponds to the expected value, for a

given diffusion episode D, of the first term of the log-

likelihood function, which stands for the log-likelihood

computed on infected users only. It is computed with

respect to the conditional probabilities of success of dif-

fusion between users under the current estimate of the

parameters ĥ. Knowing that a user v is infected with an

estimated probability P̂D
v (which is computed via formula 1

with current estimations of transmission probabilities ĥ),

the conditional probability P̂D
u!v that the diffusion from a

given previously infected user u 2 Predsv succeeded is

given by:

P̂D
u!v ¼

ĥu;v

1�
Q

u02UD
v \Predsv

ð1� ĥu0;vÞ
¼ ĥu;v

P̂D
v

ð5Þ

Then, we can formulate the expectation UDðhjĥÞ as:

UDðhjĥÞ ¼
X

v2UD
1

X

u2UD
v \Predsv

ĥu;v
P̂D
v

logðhu;vÞ

þ 1� ĥu;v
P̂D
v

 !

logð1� hu;vÞ
ð6Þ

Canceling the derivative of QðhjĥÞ w.r.t. parameters h
allows us to easily maximize it at each step of the EM

algorithm. For each Iu;v 2 I, we get:

hu;v ¼

P

D2Dþ
u;v

ĥu;v
P̂D
v

jDþ
u;vj þ jD�

u;vj
ð7Þ

This update formula is similar to the one of Saito et al.

(2008) but with different definitions of positive and nega-

tive sets of diffusion episodes for a pair of user (u, v):

Dþ
u;v ¼fD 2 DjtDðuÞ\tDðvÞ ^ tDðvÞ\1g ð8Þ

D�
u;v ¼fD 2 DjtDðuÞ\1^ tDðvÞ ¼ 1g ð9Þ

While Dþ
u;v corresponds to the set of positive examples

of diffusion between user u and user v (diffusion epi-

sodes in which an influence can have occurred between

user u and user v since they are both infected and the

infection of u precedes the one of v), D�
u;v contains

diffusion episodes corresponding to examples of no

diffusion (or negative examples of diffusion) between

these two users (u is infected, v is not). Such sets defi-

nition allows our model to be more realistic by assuming

influences between all ordered pairs of infected users in

a diffusion episode, while avoiding difficulties induced

by low time-related regularities in cascade models such

as NetRate or CTIC.

4 Note that the second term of formula 3 remains unchanged since

this part does not depend on any latent factor and can be considered as

it in the optimization process.
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2.4 Improving robustness with priors

In our learning model, assumptions are performed on who

influenced whom in the observed diffusion episodes. This

is done by considering at each step that at least one pre-

vious user infected the newly infected one and then, the

probability that a diffusion attempt succeeded from user u

to user v depends on all diffusion probabilities hu0;v from

users u0 2 Predsv infected before v. This is induced for

each diffusion episode D and each pair of users (u, v) by

the ratio ðĥu;v=P̂D
v Þ used in Eq. 6 (see previous section).

While this setting appears rather realistic, it leads to biases

resulting from imbalanced representations of users in the

training episodes set. Indeed, it is easy to see that,

employing the update formula 7, rare examples of diffusion

without (or with few) counter-examples5 in the training set

may hide other positive examples on some episodes, even

those corresponding to more frequent and therefore more

reliable observations. To illustrate this, with PDðiÞ
v the esti-

mation of the infection probability of v in episode D (-

computed using formula 1) at the i-th iteration of the

learning process, let us consider the following proposition:

Proposition 1 For every diffusion D 2 D and every user

v 2 UD
1, if it exists at least one user u 2 UD

v \ Predsv such

that jD�
u;vj ¼ 0, then we have:

lim
n!þ1

PDðnÞ

v ¼ 1

The demonstration of this proposition is given in

Appendix 1. It represents a situation where some infec-

tions clearly hide others in the training set D: It suffices

that at least one relationship Iu;v to any user v has no

counter-example in the training set for getting the prob-

ability of the infection of v converge to 1 for each dif-

fusion episode where u is infected before v. In that case,

the infection of user u is enough to fully explain the

infection of v. Looking at the update formula (Eq. 7), it

follows that no other relationship to v can benefit from

having its source infected before v in such episodes. Such

positive examples of potential influence are lost for the

learning of their transmission probability. Going deeper in

the analysis of such a problematic case, with hðnÞu;v the

transmission probability from user u to user v at the i-th

iteration of the learning process, the following proposition

can be stated:

Proposition 2 For every relationship Iu;v 2 I such that

jD�
u;vj[ 0, if it exists in each D 2 Dþ

u;v at least one user

u0 2 UD
v \ Predsv such that jD�

u0;vj ¼ 0, then we have:

lim
n!þ1

hðnÞu;v ¼ 0

The demonstration of this proposition is given in

Appendix 2. It indicates that, if a pair of users (u, v) gets at

least one negative example of diffusion (i.e., D�
u;v is not

empty), any other users with no counter-example of dif-

fusion to v can make the transmission likelihood hu;v con-
verge to 0. This can be easily deduced from the previous

proposition and the update formula (Eq. 7).

Then, users participating to a unique diffusion episode may

highly perturb the learning process: All infections happening

after theirs can be fully explained by transmissions from them

if the corresponding relationships exist in I. For instance,

imagine a blog where a user v posted a message after u in 99

discussion flows, but missed one discussion in which u par-

ticipated. Now, consider also that in each one of these 99

positive episodes, another different user, who only appears in

this episode, posted a message before v. Then, although

owning 99 positive examples over 100, the transmission

probability hu;v converges to 0, since all the benefits that

could have been extracted from these positive examples have

been canceled by very rare, and therefore very poorly reliable,

participations of users. Figure 3 depicts such a situation with

four diffusion episodes starting from the black user. While the

gray user is present in 3 over 4 episodes after the black user,

the influence probability from the black user to the gray one

converges to 0, since all of their positive examples of diffu-

sion can be explained by isolated users.

While the Proposition 2 presented above depicts an

extreme case (while rather frequent in real datasets), that do

not cover every problematic situation related to imbalanced

representations of users in the training set, it is representative

of over-training problems induced by the fact of considering

an infection probability such as the one defined in 1. This

problem can be also observed in the learning of classical IC as

Fig. 3 Influence probabilities learned by our delay-agnostic IC from

a set of four diffusion episodes. The influence probability from the

black user to the gray one converges to 0, although several positive

examples of diffusion have been observed between these two users

5 In our setting, a counter-example of diffusion from user u to user v

is an episode contained in D�
u;v (see formula 9): an episode where u is

infected but v is not.
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defined in Saito et al. (2008). It is increased here since users’

participations to a diffusion episode impact the whole infor-

mation one can extract from this episode rather than only

having an impact on the corresponding time-steps as it would

be the case with the classical IC.

To cope with this identified problem, we propose to

consider prior distributions of the transmission probabili-

ties we define, leading then the model to focus on more

reliable diffusion channels. Our optimization problem thus

becomes a maximum a posteriori estimation, where the

estimator is given by:

h�ðDÞ ¼ argmax
h

Y

D2D
PðUD

1jhÞ
Y

hu;v2h
f ðhu;vÞ ð10Þ

¼ argmax
h

Lðh;DÞ þ
X

hu;v2h
logðf ðhu;vÞÞ ð11Þ

where f ðhÞ stands for the prior applied to the transmission

probabilities h of the model. As various prior distribution

functions could be considered, an exponential distribution

appears a relevant choice since it favors sparse sets of

parameters, which well fits with our task of extracting the

main communication channels of the network: In proportion

w.r.t. the total number of directed edges between users in the

network, the set of relationships with high transmission rates

is usually very sparse. With an exponential distribution

function f, the maximization problem given by formula 11

can be easily simplified to the following formulation:

h�ðDÞ ¼ argmax
h

Lðh;DÞ � k
X

hu;v2h
hu;v ð12Þ

where k corresponds to the parameter of the considered

exponential distribution function. Such maximization

allows us to cancel the bias mentioned above w.r.t.

imbalanced user occurrences in the training set, as it

enforces the model to focus on the main diffusion channels

by favoring sparse parameter schemes. Following the

optimization methodology detailed in the previous section,

we get the following second degree polynomial to solve at

each maximization step of the EM algorithm for each

update of parameter hu;v according to current parameters ĥ:

kh2u;v � bhu;v þ c ¼ 0 ð13Þ

where b ¼ ðjD�
u;vj þ jDþ

u;vj þ kÞ, c ¼
P

D2Dþ
u;v

ĥu;v
P̂D
v

and

whose discriminant D is equal to: b2 � 4kc. Since

jDþ
u;vj � c, we get:

D�ðjD�
u;vj þ jDþ

u;vj þ kÞ2 � 4kjDþ
u;vj

¼ ðjD�
u;vj � jDþ

u;vj þ kÞ2 þ 4jD�
u;vjjDþ

u;vj
� 0

Then, the polynomial in formula 13 has always at least one

solution:

hu;v ¼
b�

ffiffiffiffi
D

p

2k
ð14Þ

which can be used at each maximization step of the EM

algorithm, to find the estimator given by formula (12).

Proposition 3 Solution given by formula (14) is a con-

sistent probability lying in [0, 1], which can be used as an

update rule at each maximization step of formula (12).

Following Proposition 3, whose demonstration can be

found in Appendix 3, we use the new update formula at

each maximization step of the learning process. However,

while the use of a prior distribution on parameters to be

learned allows us to avoid the convergence of transmission

probabilities for rare users to high values, it leads to low-

ering the diffusion expectation of any information through

the network. Therefore, we propose to end the learning

process by a classical update (with formula 7), which

allows us to benefit from an unbiased basis, resulting from

successive updates with priors (with formula 14), while

determining influence probabilities that lead to as impor-

tant spreads of diffusion as observed in the training set of

episodes.

3 Experiments

This section aims at evaluating the proposed model DAIC,

by comparing it with related state of the art approaches.

3.1 Baselines

The following baselines are considered in our experiments:

• IC The classic independent cascade model our works

grounds in. Weights are learned as defined in Saito

et al. (2008).

• Netrate As IC, Netrate (Gomez-Rodriguez et al. 2011)

is a cascade model which defines influence probability

distributions on the network to model information

propagation. It nevertheless considers time-dependent

distributions rather than defining static influence prob-

abilities: Influence weights used to parametrize prob-

ability laws are learned to fit observed infection

timestamps. Note that we only report here results

obtained with the exponential version of the NetRate

model, as other distributions laws proposed in Gomez-

Rodriguez et al. (2011) (i.e., power and rayleigh laws)

lead us to similar results.

• CTIC As defined in Saito et al. (2009), CTIC is a

continuous-time version of the IC model. As NetRate, it
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uses exponential distributions to model delays of

diffusion between users, but rather than a single

parameter for each relationship, delays and influence

factors are considered as separated parameters, which

leads to more freedom w.r.t. observed diffusion

tendencies. Delays and influence parameters are learned

conjointly by an EM-like algorithm.

While most of the cascade approaches, such as IC or CTIC,

make the assumption that the graph onwhich the propagation

occurs is known, the social graph defined by an online social

network (friends, followers, subscriptions...) is often

incomplete, irrelevant (Ver Steeg and Galstyan 2013) or

unknown. Nevertheless, most of graph-based models (in-

cluding all our baselines) remain valid if we consider com-

plete graphs of the set of users. All of our experiments

reported in the following are therefore obtained with com-

plete graph structures. During the learning process however,

it is possible to drastically reduce computational require-

ments by only considering relations that own at least one

positive example of diffusion in the training set6.

3.2 Diffusion prediction task

As by nature, diffusion probabilities between users are

hidden in real-world data, and the evaluation of the proposed

model cannot be directly done by comparing inferred

communication channels (or estimated probabilities in our

case) with exact ones, as it is done in several studies with

artificial data (see Saito et al. 2008 for instance). Therefore,

we propose to assess the performances of our proposals on

real-world data by considering a related prediction task, in

which the diffusion models are used to predict final infec-

tions from initial observed ones. This corresponds to the

natural task of predicting the spread, over a network, of a

diffusion starting from a set of source users. More specifi-

cally, the goal is to know which users are likely to be

infected at the end of an observation time window.

Defining final infection probabilities for every user of

the network is rather complex with cascade models, as their

iterative process requires, for computing infection proba-

bilities at a given step, to consider every possible infection

distributions on the previous step, which induces an

intractable complexity. Therefore, evaluations are per-

formed on results of monte carlo simulations of diffusion

following the process of the cascade model in concern:

• IC At each time-step (of the same size that was used for

learning), each newly infected user attempts to

contaminate each not infected one. The success of a

contamination depends on the probability set for the

relationship between both corresponding users. The

process stops when no new contamination has been

observed at a given time-step or when or the observa-

tion window is exceeded.

• CTICSimulations forCTICare performed in a similarway

as for IC, except that new infections do not occur between

consecutive time-steps: For each infection success, a

continuous time delay is sampled from an exponential

distribution, parametrized during the learning step for the

specific relationship between users in concern.

• NetRate NetRate discretizes the observation window in

different time-steps (100 in our experiments) and, for

each of them, samples infections according to the

probabilities for users to be infected at this time-step

knowing preceding infections and time-dependent dis-

tributions defined on the corresponding relationships.

• DAIC The approach proposed in this paper, which is

detached from any temporal consideration, performs

diffusion simulation same manner as IC, but without

associating timestamps to infections. What is iteratively

built here is simply a set of infected users, with newly

infected ones having the possibility of contaminating

every other one in the network.

Results obtained from diffusion simulations are evaluated

by classical recall (Rec) and precision (Prec) measures,

where the recall considers the ratio of users infected in a

test episode that have been retrieved as infected in the

simulation and the precision renders the ratio of correct

infection predictions. Finally, for each simulation, we

consider a F1 evaluation measure that proposes a com-

promise between precision and recall:

F1 ¼ 2� Prec� Rec

Precþ Rec
ð15Þ

3.3 Experiments on synthetic data

In order to well understand performances of the different

approaches, we first performed a preliminary set of

experiments on artificial datasets with known properties.

Contrary to experiments on real-world data, considering

artificial data allows us to assess the ability of the models to

extract correct diffusion distributions, since the probabili-

ties of diffusion that have been used to draw the data are

known. With such data, comparisons between true h�u;v and

inferred hu;v probabilities of diffusion for pairs of users

(u, v) are then possible by the mean of a given distance

measure. We propose to consider a measure of the mean

squared error (MSE) computed over every pair of users of

the network:

6 Relation u, v is considered only if there exists at least one diffusion

episode in the training set where u is infected before v. With all

approaches studied hereafter, relationships with no positive example

would obtain a null weight anyway. They can therefore be ignored

during the learning step.
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MSE ¼ 1

jUj � ðjUj � 1Þ
X

ðu;vÞ2U2;u 6¼v

ðh�u;v � hu;vÞ2 ð16Þ

This section first introduces the synthetic data used in these

experiments and then presents some experimental results on

these data, for both influence probabilities extraction (in term

of MSE) and diffusion prediction tasks (in term of F1).

Synthetic Datasets Our concern in this section is to

understand how behave the different approaches w.r.t. the

variability over the delays between successive infections.

Starting from a scale-free network of 100 users obtained

from the Barabási-Albert algorithm (with each new created

node connected to 2 existing ones), influence probabilities

are uniformly sampled on these connections between users

to obtain an influence graph that can be managed by the IC

model. Then, we uniformly sampled source users for each

diffusion episode to built (1–3 source users per diffusion)

and performed a diffusion simulation. Note that other set-

tings for data generation have been considered for the

construction of the network (including using real-world

networks) and the sampling of the diffusion episodes (in-

cluding using influence probabilities resulting from real-

world diffusion observations, obtained by using probability

learning schemes proposed by the baseline diffusion

models presented above). However, no significant differ-

ence has been observed in the results, since what differs

between the models is their way of time consideration. We

therefore focus on the impact of the variance of time delays

on the performances of the approaches.

Following IC, each newly infected user attempts to

contaminate all its successors in the network according to

the probability set on the corresponding relationship. If the

contamination attempt succeeds, a delay is chosen to

determine the timestamp of the infection in concern. The

delay dDu;v is chosen for the relationship u, v and the dif-

fusion episode D in concern:

dDu;v ¼ 1þ cu;v þ nDu;v ð17Þ

where cu;v corresponds to the min delay for any diffusion

from u to v and nDu;v stands for an additional delay that can

vary for this relationship over the different considered

episodes D. These two delays are sampled from exponen-

tial distributions:

cu;v 	
1

l
e
�
x

l nDu;v 	
1

r
e
�
x

r ð18Þ

with l the mean minimal delay for any relationship of the

network and r the mean additional delay over any rela-

tionship u, v and any diffusion episode D. While l allows

us to control the variability of the delays over the different

relationships, r permits to manage the variability of the

delays of any diffusion over the various considered epi-

sodes and then, enables the evaluation of the approaches

for different temporal regularity settings. Note lastly that

infections occurring outside of the observation window

(i.e., with a timestamp exceeding 1000 in our experiments)

are not included in the datasets.

Results Figure 4 presents MSE results for models IC,

NetRate, CTIC and DAIC on artificial datasets built with

different settings of infection delay sampling (see formula

17). Curves on the left plot MSE scores w.r.t. the l
parameter that controls the variation of delays between

relationships. For these curves, we set r ¼ 10�5, which
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Fig. 4 MSE of the learned diffusion probabilities w.r.t. true distributions, for the experimented models on artificial diffusion data drawn with

different delay parameters l (on the left) and r (on the right)
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leads, for every relationship, to a very stable delay over the

generated diffusion episodes. Curves on the right plot MSE

scores w.r.t. r which controls the variation of delays over

relationships and diffusion episodes. For these curves, we

set l ¼ 10�5, which leads to minimal delays for low values

of r. Plotted results are average scores considering 10

datasets for each setting, each containing 1000 episodes for

training the models and 1000 other ones for measuring the

performances.

When bothl and r tend to 0 (starting point of both figures),
every delay is equal to 1. That is, infections occur between

consecutive timestamps, which corresponds to the setting of

the classical independent cascade model. For this setting, we

can indeed observe that IC performs rather well, as its more

restrictive process allows it to obtain better results than our

proposal (DAIC) which has to perform influence assumptions

over many more relationships. It nevertheless appears that

time-dependent cascade models such as CTIC or NetRate

perform better than IC in that cases, due to their better gen-

eralization abilities (classical IC considers very fewer rela-

tionships during training than other approaches).Our proposal

DAIC,which considers that infections canbe explainedbyany

previous infection independently from its age, is notwell fitted

for this setting and therefore infers less accurate probabilities

than other approaches, which favors explanations by recent

previous infections. As expected, performance of IC, how-

ever, collapses when infections can occur between non-suc-

cessive timestamps (see on every figure, when l or r
increases), since such long-term influences are not considered

by its learning process.

From the curves on the left, it may be noticed that CTIC

behaves better than NetRate w.r.t. variations of delays over

the different relationships. Its independent consideration of

time delays and influence rates allows it to still set good

influence levels even for relationships with long delay

tendencies (which cannot be done with NetRate). As it can

be observed from the curves on the right, this also allows it

to be more robust w.r.t. variations of delays on each rela-

tionship over the different diffusion episodes.

However, from both sets of curves, as values of l and r
increase, our proposal DAIC appears to behave better than

these two state of the art approaches. Its effectiveness level

is more stable, as delay variations have, by the nature of the

model, no effect on it. The increase in all error MSE scores

with values of l or r [ 100 may be partly explained by

the fact that corresponding diffusion episodes contain less

infections, as longer delays induce less infections included

in the observation window, and then less positive examples

of diffusion are available for learning the models. Never-

theless, another reason is that with such values, delays can

cover the whole observation window and then, every

observed infection may have been induced by any other

previous one, independently from delays between them.

Since this matches with the setting of our proposal, we can

observe that our delay-agnostic learning of IC better resists

with great variations of delays than CTIC and NetRate,

which greatly suffer from their time-dependent learning

process in such cases. Note that, while CTIC is able to set

quasi-uniform delay distributions when required, its pro-

cess still tends to converge toward models favoring

explanations by more recent infections.

Figure 5 presents F1 results obtained by diffusion sim-

ulations performed by IC, NetRate, CTIC and DAIC on the

same datasets as for MSE curves. Models are also learned
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Fig. 5 F1 scores for the experimented models on artificial diffusion data drawn with different delay parameters l (on the left) and r (on the

right)
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and experimented on two distinct sets of 1000 diffusion

episodes for each dataset. It is interesting to observe the

strong correlation between observations that can be done

from these curves compared to those from Fig. 4, corre-

sponding to MSE errors w.r.t. ground truth diffusion

probabilities. This validates that experimental results

obtained for a task of diffusion prediction well render the

accuracy of the diffusion probabilities extracted by the

models: While CTIC is quite more robust w.r.t. variations

of delays than other existing approaches, our proposal

DAIC catches up, and then overcomes, the prediction

accuracy levels of this state of the art model when values of

l and r increase.

To summarize, while CTIC performs better with regular

delays, our delay-agnostic proposal leads to better effec-

tiveness results when delays between infections tend to be

drawn from uniform distributions. This corresponds to

what we expected to observe on well formatted artificial

data. Let’s see now what happens on real-world data.

3.4 Experiments on real-world data

3.4.1 Real-world datasets

Five real-world datasets are considered in our experiments:

• Digg The Digg collaborative news portal allows users

to post links to stories (articles, blog posts, videos, etc.).

Other users can then ‘‘digg’’ these stories. Stories

appear or not on the front page of Digg, on the basis of

the amount of ‘‘diggs’’ they have. We use stories as

propagated content in diffusion episodes, each ‘‘digg’’

given by a user being considered as a user contamina-

tion. We used the Digg stream API to collect the

complete Digg history (every single story posted, all

diggs, and all comments) during a one month time

window.

• ICWSM The International AAAI Conference on

Weblogs and Social Media 2009 (ICWSM) published

a corpus containing 44 millions blog posts collected

over a 1-year period (Burton et al. 2009). Diffusion

episodes are composed of sets of posts which cite a

same source blog. A diffusion episode then corresponds

to a set of users (authors of the corresponding posts)

associated with their infection timestamps (timestamps

of the posts).

• Enron The well-known Enron corpus gathers emails

from about 150 persons, mostly senior managers of the

Enron American corporation. Various mail addresses

are often used for a same person in this corpus. For

simplicity, we consider different addresses as different

users in the following. The corpus initially contains a

total of about 500000 messages. From these, we define

diffusion episodes as proposed in Klimt and Yang

(2004), by considering sequences of messages that form

a conversation about a particular topic. These conver-

sations are extracted by selecting messages that contain

at least two common words and whose sender corre-

sponds to a recipient of a previous message in the

sequence.

• Twitter This corpus has been built by collecting

messages from the streaming API of the online social

network Twitter. First, we collected 5000 users that

posted tweets with words ‘‘Obama’’ or ‘‘Romney’’.

Then, we followed all their posts during 2 weeks of the

US presidential elections (the two weeks before the

election day). Diffusion episodes are formed by con-

sidering tweets containing the same hashtags. Diffusion

episodes with \5 users are finally removed to only

keep significantly propagated hashtags.

• Memetracker The Memetracker corpus, described in

Leskovec et al. (2009), contains diffusion episodes of

short phrases (memes) extracted from news websites and

blogs collected during the 2008USpresidential campaign.

Table 1 gives some statistics about the datasets. In this

table, jUj, jIj and jDj, respectively, correspond to the

number of users, the number of relationships and the

number of diffusion episodes. The last column corresponds

to the average episode size (number of infections). Note

that episodes of Twitter and Memetracker corpora contain

much more users than those of others.

3.4.2 Results

Table 2 reports F1 results obtained on real datasets with the

different approaches. Each result corresponds to an average

score obtained over a set of 1000 diffusion episodes that

were not used for learning. We note DAICk our approach of

delay-agnostic IC, with k the parameter of the exponential

prior distribution used in the update formula 14.

In order to learn the parameters of IC, a step size has to

be chosen to fit with sequences of infections observed in

the datasets. This time-step size is difficult to determine

with real-world datasets: If too short, it leads to a lot of

Table 1 Some statistics about our real datasets

jUj jIj jDj P
D2D

jUD
1j

jDj

Digg 4587 689414 20172 8.26

ICWSM 2270 4773 20027 2.21

Enron 1557 2628 1867 3.30

Twitter 4165 2267310 4815 22.54

Memetracker 30907 1298787 6724 20.21
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empty infection ties, and if too long, most users are gath-

ered in the same time-steps. In both cases, this results in a

very low amount of positive examples of diffusion. In our

experiments, we set the step size of IC for each dataset as

the average delay between two consecutive infections in

the training set. This heuristic usually allows one to obtain

a reasonable amount of positive examples of diffusion IC

can ground in. Nevertheless, we observe from Table 2 that

a classical learning of IC presents important difficulties in

determining correct infection probabilities in real-world

settings, the F1 scores it obtained being greatly lower than

those of every other approach for each dataset. It even

tends to scores close to 0 for Twitter and Memetracker

datasets, which means that for these datasets nearly not any

correct infection could be predicted, partly due to the

impossibility to find a step size that fits well for a sufficient

amount of training diffusion episodes (no regularities in

infection time delays).

Except on the Twitter dataset, our proposal of delay-

agnostic learning obtains significantly better results than

other approaches. It confirms our claim that real-world time

delays of infection should be considered to follow an

uniform distribution, an infection at the end of an episode

being as likely resulting from an influence by an early

infected user as by a recent one. Whereas models such as

CTIC could be regarded as more realistic, since favoring

short delay transmissions, such a setting usually leads to

over-fitted distributions, as observed delays in the training

set rarely hold for prediction. Moreover, rare users have a

strong negative impact on the learned probabilities, as they

induce unconstrained infection explanations. While our

proposal cannot be used to predict time-stamps of infection

(which is, from our point of view, quasi-impossible in

general settings with real-world data), it leads to a better

identification of the main channels of influence of the

network. By only considering partial orders of infections

during the learning process rather than attempting to

explain full diffusion episodes with exact infection time-

stamps, it focuses on who infected whom by emitting dif-

fusion assumptions without favoring any source according

to its infection time.

On the Twitter dataset however, it appears that the

benefit resulting from this possibility for any infection to be

explained by any previously infected user is greatly limited

by the unbalanced observations bias mentioned in Sect. 2.4.

In this corpus indeed, a lot of diffusion episodes contain

very rare users (some of them participating only once in the

training set), which induces a loss of generalization ability

of the model. Using an exponential prior on transmission

probabilities, as proposed in the update formula 14, allows

us to cope with this bias and to obtain good results despite

great disparities in user’s infection frequencies. On datasets

with long diffusion episodes, such as the Twitter and

Memetracker corpora, considering an exponential prior on

the preliminary steps of the learning process (as described

in Sect. 2.4) allows one to significantly improve the pre-

diction accuracy. On such datasets with important spreads

of diffusion, the observation of infections of rare users is

more likely (which induce some noise for the learning

process). Our regularization proposal appears to greatly

reduce their impact on the prediction accuracy perfor-

mances. Note at last that the optimal regularization

parameter k to use in the exponential prior distribution may

vary over each dataset: for instance, best performances are

obtained on Twitter with k ¼ 10, while on Memetracker

k ¼ 5 performs better. It can nevertheless be easily tuned

by a cross-validation process, by selecting the k value that

allows the best generalization ability on a validation set of

diffusion episodes.

4 Related work

The recent development of online social networks enabled

researchers to suggest methods to explain observations of

diffusion across networks. Most of the proposed iterative

models ground in the two fundamental models independent

cascade (IC) (Goldenberg et al. 2001) and linear threshold

(LT) (Granovetter 1978). Both are modeling a user-to-user

contamination process : While IC models the spread of

diffusion as cascades of infections over the network, LT

determines infections of users according to thresholds of

the influence pressure incoming from the neighborhood of

each user. We focus in this paper on IC-like approaches,

which appear better fitted to reproduce realistic temporal

diffusion dynamics. While parameters of these models

(transmission probabilities) initially needed to be set

manually, Gruhl et al. (2004) defined a first attempt to

automatically learn them. A few years later, Saito et al.

(2008) proposed the learning methodology we ground in

here, which appeared to be an improvement of the one of

Gruhl et al. (2004), since it replaces the former ‘‘exactly

one influencer’’ assumption by a more realistic ‘‘at least

one influencer’’ one.

Table 2 F1 results

Digg ICWSM Enron Twitter Memetracker

IC 0.036 0.097 0.033 0.013 0.012

NetRate 0.102 0.358 0.105 0.027 0.048

CTIC 0.119 0.482 0.132 0.032 0.061

DAIC0 0.127 0.665 0.162 0.026 0.073

DAIC5 0.128 0.665 0.164 0.035 0.087

DAIC10 0.127 0.665 0.164 0.044 0.082

Scores in bold are significantly greater than CTIC ones (99% Student

t test)

93 Page 12 of 16 Soc. Netw. Anal. Min. (2016) 6:93

123



Thanks to its simplicity and its ability to explain diffu-

sion data, at least artificial ones with regular timestamps,

IC has served as a baseline for a large amount of studies in

the last decade. It has also been the basis of a lot of

approaches that proposed extensions for improving its

effectiveness or for including richer information about the

context of the modeled diffusion. Saito et al. (2011), Wang

et al. (2012), Guille and Hacid (2012) or Lagnier et al.

(2013) are instances of extensions including user profiles

and information content to extract diffusion probabilities.

NetInf (Gomez et al. 2010) and then CONNIE (Myers and

Leskovec 2010) use greedy algorithms to find subsets of

links between users that maximize the likelihood of

observed diffusions under IC-like diffusion hypothesis. As

discussed above, various extensions have also addressed

temporal issues, by proposing models that deal with delays

between observed infections, such as CTIC (Saito et al.

2009) or NetRate (Gomez-Rodriguez et al. 2011).

Nevertheless, as widely discussed in this paper, tempo-

ral regularities are difficult to observe and attempting to

capture them may lead to lower effectiveness for extracting

main influence channels of the network. Then, recently

various works turned away from such iterative models,

making use of classical statistical learning instead of

grounding in graph-based approaches. For instance, Szabo

and Huberman (2010) performs extrapolations grounded in

relations between the number of infected users after a short

period of time and after a longer one to predict the final

volume of infections. Yang and Leskovec (2010) infers the

volume of diffusion based on infection timestamps of

specifically selected subsets of users. Wang et al. (2012)

proposed a logistic model that considers the density of

influenced users at a given distance of the source after a

given time of diffusion. Bourigault et al. (2014) followed a

similar idea by projecting the network in a continuous

space where information diffusion can be modeled as a

heat diffusion process.

Our proposal leads to reconsider the use of cascade models

for diffusion predictions on real-world networks, since using a

temporally relaxed framework while keeping the finer-

grained modelization of the cascade models. Note that a close

‘‘untemporal’’ version of IC has also been considered in

Mathioudakis et al. (2011), but in a different context and

without experimenting its benefits for influence extraction

from real-world social data. We also defined a useful exten-

sion to cope with biases related to the usual presence of

infrequent users in the training diffusion episodes.

5 Conclusion

In this paper, our contribution is twofold:

• We proposed to use a relaxed learning scheme for the

well-known independent cascade model, whose

parameters are learned by considering partial contam-

ination orders rather than exact observed infection

time-stamps. This shows better performances for the

prediction of the spread of diffusion on real social

networks than greatly more complex time-dependent

approaches.

• We introduced a regularization mechanism for IC (that

can be applied as well with the classical learning

scheme as with our delay-agnostic version) that leads to

more robust models with great effectiveness improve-

ments on large social networks.

This work enables to reconsider cascade models, and

more generally iterative approaches, that lead to finer-

grained diffusion explanations and simulations than static

models that recently emerged to overcome difficulties of

time consideration. Promising effectiveness results

obtained with delay-agnostic IC let us expect various

further developments of the proposed approach. For

instance, we are currently working on an embedded ver-

sion of our delay-agnostic IC, which is expected to benefit

from geometric constraints related to continuous projec-

tion spaces to better capture influence regularities in the

networks. Furthermore, as the nature of the propagated

information may have a great impact on its spread of

diffusion, we are also currently considering mixtures of

delay-agnostic IC models that depend on the diffused

content.
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Appendix

Proof of Proposition 1

Let us denote hðiÞu;v the transmission probability from user u

to user v at the i-th iteration of the learning process.

Let also denote PDðiÞ

v the estimation of the infection prob-

ability of v in the episode D (computed using formula 1

using current transmission probabilities) at the i-th iteration

of the learning process.

First, with Au;v ¼
jDþ

u;vj
jDþ

u;vjþjD�
u;vj
, let us consider the following

Lemma:

Lemma 1

8i 2 N; 8Iu;v 2 I : hðiÞu;v 
Au;v

� �
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Proof Lemma 1 can be easily deduced from the update

formula applied at each step of the learning process (Eq. 7),

since we know from (Eq. 1) that
hðiÞu;v

PDðiÞ
v


 1 for all Iu;v 2 I at

every iteration i[ 0 of the process. Note that, without loss

of generality, for getting the lemma valid for i ¼ 0, we

assume that the probabilities h are all initialized such that

for all Iu;v 2 I : hð0Þu;v 2 ½0;Au;v�. h

Let’s now consider the following lemma:

Lemma 2

8Iu;v 2 I : ðjD�
u;vj ¼ 0)8i 2 N : ðhðiþ1Þ

u;v � hðiÞu;vÞÞ

Proof If jD�
u;vj ¼ 0, we get, from formula 7:

hðiþ1Þ
u;v

hðiÞu;v
¼ 1

jDþ
u;vj

X

D2Dþ
u;v

1

PDðiÞ
j

� 1

jDþ
u;vj

X

D2Dþ
u;v

1 ¼ 1

where we used the fact that PDðiÞ
j is included in ]0; 1[. h

For simplicity, let us now state IDv ¼ ðUD
v \ PredsvÞ. For

every episode D 2 D and every user v 2 UD
1, we have at

any iteration i of the process:

PDðiÞ

v ¼1�
Y

u2IDv

ð1� hðiÞu;vÞ

¼1�
Y

u2IDv ;jD�
u;vj[ 0

ð1� hðiÞu;vÞ
Y

u2IDv ;jD�
u;vj¼0

ð1� hðiÞu;vÞ


 1�
Y

u2IDv ;jD�
u;vj[ 0

ð1� Au;vÞ
Y

u2IDv ;jD�
u;vj¼0

ð1� hðiÞu;vÞ

Let state BD
v ¼

Q

u2IDv ;jD�
u;vj[ 0

ð1� Au;vÞ. Note that BD
v is a

constant over the whole learning process. Now, let’s con-

sider the case of the proposition, where it exists at least one

user u 2 IDj such that jD�
u;vj ¼ 0. In that case, we can

rewrite the inequality as :

PDðiÞ

v 
1�BD
v ð1�hðiÞu;vÞ

Y

u02IDv nfug;jD�
u0 ;vj¼0

ð1�hðiÞu0;vÞ


1�BD
v ð1�hðiÞu;vÞ 1� max

u02IDv nfug;jD�
u0 ;vj¼0

hðiÞu0;v

 !jfu02IDv nfug;jD�
u0 ;vj¼0gj

ð19Þ

Now, let us consider the sequence V defined as:

Vn ¼ 1� max
u02IDv nfug;jD�

u0 ;vj¼0
hðnÞu0;v

 !jfu02IDv nfug;jD�
u0 ;vj¼0gj

From Lemma 2, we know that V is decreasing, since any

component of the max function does not own any counter-

example in the training set. Moreover, This sequence is

lower-bounded by 0. Then, V converges toward its fixed

point, which we denote as l. From this, two possibilities:

either l equals 0 or is strictly [ 0.

If l ¼ 0, then we know that:

lim
n!1

max
u02IDv nfug;jD�

u0 ;vj¼0
hðnÞu0;v ¼ 1

Now, the formula 1 leads to know that, at every iteration i,

8u0 2 IDv : PDðiÞ

v � hðiÞu0;v. Therefore, at every iteration i, we

have: PDðiÞ

v � max
u02IDv nfug;jD�

u0 ;vj¼0
hðiÞu0;v. Since we know that PDðiÞ

v

is also upper-bounded by 1 at every iteration i, we can state

that, in that case, lim
n!1

PDðnÞ
v ¼ 1.

Else, we have at every iteration i:

1� max
u02IDv nfug;jD�

u0 ;vj¼0
hðiÞu0;v

 !jfu02IDv nfug;jD�
u0 ;vj¼0gj

� l

Plugging this in inequality (19), we get for every i:

PDðiÞ

v 
 1� lBD
j ð1� hðiÞu;vÞ
 1� kþ khðiÞu;v

with k ¼ lBD
v . Then, we can rewrite the update formula 7 as:

hðiþ1Þ
u;v ¼

P
D02Dþ

u;vnD
hðiÞu;v

PD0ðiÞ
v

þ hðiÞu;v

PDðnÞ
v

jDþ
u;vj

�
ðjDþ

u;vj � 1ÞhðiÞu;vþ
hðiÞu;v

1�kþkhu;v

jDþ
u;vj

ð20Þ

Let us consider now the sequence W such that:

W0 ¼ hð0Þu;v

Wnþ1 ¼
ðjDþ

u;vj � 1ÞWn þ
Wn

1� kþ kWn

jDþ
u;vj

8
>>><

>>>:

Then, since W takes its values in ]0; 1[, and that k is also in

]0; 1[, we can state that:

Wnþ1

Wn

¼
jDþ

u;vj � 1þ 1
1�kþkWn

jDþ
u;vj

[ 1

The sequence is thus strictly increasing. Since it is upper-

bounded by its fixed point 1, we know that it converges to

1. Now, since we know that, from inequality (20),

8n : hðnÞu;v �Wn, we can get that lim
n!1

hðnÞu;v ¼ 1. This con-

cludes the proof since therefore: lim
n!1

PDðnÞ
v ¼ 1.

Proof of Proposition 2

If, for a given relationship Iu;v 2 I such that jD�
u;vj[ 0, it

exists in each D 2 Dþ
u;v at least one user u0 2 UD

v \ Predsv

such that jD�
u0;vj ¼ 0, we can deduce from Proposition 1 that:
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8D 2 Dþ
u;v : lim

n!þ1
PDðnÞ

v ¼ 1

In that case, we can state that, after a given iteration m, it

exists a value x 2�Au;v; 1½ such that 8D 2 Dþ
u;v : P

DðnÞ

v [ x.

Then, we know that: 8n[m; hðnþ1Þ
u;v \hðnÞu;v

Au;v

x
¼ chðnÞu;v , with

c ¼ Au;v

x
. Note that c 2�0; 1½ since x[Au;v. Let us consider

now the following sequence V:

V0 ¼ hð0Þu;v

Vnþ1 ¼ cVn

(

This sequence converges to its unique fixed point 0 since

c 2�0; 1½. Since we know that: 8n[m; hðnÞu;v 
Vn and that

hðnÞu;v is lower-bounded by 0, then we get: lim
n!þ1

hðnÞu;v ¼ 0.

Proof of Proposition 3

Proving that the solution given by (14), denoted hereafter

h�u;v, is nonnegative is straightforward. Inequality h�u;v � 0

can indeed be transformed into b�
ffiffiffiffi
D

p
whose both sides

are nonnegative terms and which can thus be verified by

considering its square: as D� b2 ¼ �4kc
 0, b2 �D is

always true.

Proving that h�u;v 
 1 requires showing that

b�
ffiffiffiffi
D

p

 2k, which is equivalent to b� 2k


ffiffiffiffi
D

p
. If

k�ðjD�
u;vj þ jDþ

u;vjÞ, the verification of the latter is direct

since in that case b� 2k
 0 (and we know that
ffiffiffiffi
D

p
� 0).

In the opposite case, both sides of the inequality are non-

negative. It is then possible to consider the square of the

inequality: ðb� 2kÞ2 
D is equivalent to

jD�
u;vj þ jDþ

u;vj � c� 0, that is always true since we know

that jDþ
u;vj � c. Then, h�u;v always lies in [0, 1].

Proving that the solution given by (14) can be used as an

update rule at each maximization step for solving the

estimator of formula (12) implies to show that it maxi-

mizes, for any pair (u, v), the quantity

Q ¼ QðhjĥÞ � k
P

hu;v2h hu;v. Since we already know that

h�u;v corresponds to one of the two possible solutions of the

cancellation of the derivative of Q from Eq. (13), it suffices

to show that it corresponds to a maximum. This can be

easily verified by considering the second derivative of Q

w.r.t. hu;v, which equals:

oQ

oh2u;v
¼ �

X

D2Dþ
u;v

ĥDu!v

h2u;v
þ ð1� ĥDu!vÞ

ð1� hu;vÞ2

 !

�
X

D2D�
u;v

1

ð1� hu;vÞ2

where ĥDu!v is a shortcut for
ĥu;v
P̂D
v

. From this formulation, it is

easy to see that the second derivative of Q w.r.t. hu;v is

always negative on ]0; 1[, which concludes the proof:

taking h�u;v as an update of hu;v allows us to maximize Q at

each step of the EM algorithm.
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