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Abstract The rise in the use of social networks in the

recent years has resulted in an abundance of information on

different aspects of everyday social activities that is

available online, with the most prominent and timely

source of such information being Twitter. This has resulted

in a proliferation of tools and applications that can help end

users and large-scale event organizers to better plan and

manage their activities. In this process of analysis of the

information originating from social networks, an important

aspect is that of the geographic coordinates, i.e., geolo-

calization, of the relevant information, which is necessary

for several applications (e.g., on trending venues, traffic

jams). Unfortunately, only a very small percentage of the

twitter posts are geotagged, which significantly restricts the

applicability and utility of such applications. In this work,

we address this problem by proposing a framework for

geolocating tweets that are not geotagged. Our solution is

general and estimates the location from which a post was

generated by exploiting the similarities in the content

between this post and a set of geotagged tweets, as well as

their time-evolution characteristics. Contrary to previous

approaches, our framework aims at providing accurate

geolocation estimates at fine grain (i.e., within a city). The

experimental evaluation with real data demonstrates the

efficiency and effectiveness of our approach.

Keywords Geotag � Geolocation � Twitter � Social
networks

1 Introduction

Several social networks have emerged during the last

decade. Social networks, such as Twitter, Facebook and

Google?, give users the opportunity to express themselves

and report details about their everyday social activities.

The combination of this behavior with the widespread use

of mobile smartphones and tablets led to a very interesting

phenomenon, where the activities reported within social

networks are happening in real time, with individual users

adding reports from several different locations (not just

from their homes or workplaces).

The above observation means that we now have access

to datasets containing important information for the better

and more detailed understanding of social activities. To

that effect, several studies (Tsytsarau and Palpanas 2012),

including applications (Sakaki et al. 2010; Mathioudakis

and Koudas 2010; Tsytsarau et al. 2010; Frias-Martinez

et al. 2012; Balduini et al. 2013; Crooks et al. 2013; Bal-

duini et al. 2014; Tsytsarau and Palpanas 2014; Zafarani

and Liu 2015) and techniques (Tsytsarau et al.

2011, 2013, 2014; Paraskevopoulos et al. 2013), have been

developed that analyze datasets created through the use of

social networks, in order to provide benefits to end users,

businesses, civil authorities, and scientists alike (Par-

askevopoulos et al. 2016).

Note that several of these applications depend on the

knowledge of the user location at the time of the posting.

For example, this knowledge is necessary for applications

that target to characterize an urban landscape, or to opti-

mize urban planning (Frias-Martinez et al. 2012), to
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identify and report natural disasters, such as earth-

quakes (Sakaki et al. 2010; Crooks et al. 2013), and to

monitor and track mobility and traffic (Balduini et al.

2013). Such applications, which represent an increasingly

wide range of domains, are restricted to the use of geo-

tagged data,1 that is, posts in social networks containing the

geographic coordinates of the user at the time of posting.

Evidently, the availability of geotagged data determines

not only the possibility to use such applications, but also

their quality performance characteristics: The more geo-

tagged data posts are available, the better the quality of the

results will be (more accurately: the higher the probability

for being able to produce better quality results). Never-

theless, the availability of geotagged data is rather limited.

In Twitter, which is the focus of our study, the number of

geotagged tweets is a mere 1.5–3 % of the total number of

tweets (Leetaru et al. 2013; Murdock 2011; Han et al.

2014). As a result, the amount of useful data for these

applications to analyze is small, which in turn limits the

utility of the applications.

In this study, we address this problem by describing a

method for geolocalizing tweets that are non-geotagged.

Even though previous works have recognized the

importance and have studied this problem (Chang et al.

2012; Kinsella et al. 2011) (for a comprehensive dis-

cussion of this problem, refer to Han et al. (2014)), their

goal was to produce a coarse-grained estimate of the

location of a set of non-geotagged tweets (e.g., those

originating from a single user). The algorithms they

propose operate at the level of postal zip codes, cities,

and geographic areas larger than cities. In contrast, we

study this problem at a much finer granularity, providing

location estimates for individual tweets first at the level

of cities and then at the level of city neighborhoods, thus

enabling a new range of applications that require

detailed geolocalized data.

We illustrate and motivate some of these ideas in Fig. 1.

Figure 1a depicts the number of tweets posted from the

neighborhood in which the ‘‘San Siro Stadium’’ is located

and from a neighborhood located in the center of the Milan

(Italy), while Fig. 1b shows the number of appearances of

the keywords concert (in English and Italian) and stadium/

siro in these neighborhoods. As these graphs show, the

‘‘San Siro’’ geolocation exhibits an unusually high activity

during the time intervals that coincide with the concerts

that took place in this stadium. Furthermore, during these

concerts, the words concert(o) and stadium / siro originate

from the ‘‘San Siro’’ geolocation much more frequently

than a random geolocation in the city.

There are two main challenges that emerge when the

granularity level becomes fine: first, to maintain high

accuracy despite the wider range of possible locations

available to the prediction algorithm, and second, to

achieve high time performance despite the increased size

of the search space of the algorithm. The framework we

describe for the fine-grained geolocalization of non-

geotagged tweets is based on the careful evaluation of

the similarities in the content between a new, non-geo-

tagged tweet and a training set of geotagged tweets. The

solutions we propose for this similarity evaluation make

use of efficient-to-compute information retrieval and

statistical measures, namely Tf-Idf among the tweet

contents, and correlation among the time series repre-

senting the volume of tweets in different candidate

locations. The advantages of these measures are that

they can effectively capture the most significant pieces

of information needed to solve the problem and that they

have low time complexity.

Fig. 1 Data generated from different neighborhoods (i.e., squares with side 1000 m) in Milan (Italy), for time intervals of 4 h, between June 20

and July 23, 2014

1 For the rest of this paper, we will use the terms geotagged and

geolocalized interchangeably.
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The contributions we make in this paper can be sum-

marized as follows.

• We describe and define the problem of fine-grained

geolocalization of non-geotagged tweets, which aims to

operate on individual tweets, at the level of city

neighborhoods. We argue that the efficient solution of

this problem will enable a multitude of applications that

require detailed location information.

• We propose a framework for the solution of the above

problem, which is based on the content similarities of

tweets, as well as their time-evolution characteristics.

The solution we describe is general and essentially

parameter free.

• Finally, we perform a detailed experimental evaluation

of our approach, using real data from Twitter. The

results demonstrate the efficiency and effectiveness of

the proposed approach when compared to various

alternatives.

The rest of the paper2 is organized as follows. In Sect. 2,

we present the related work. Section 3 formalizes the

problem, and Sect. 4 describes our solution. We present

our experimental evaluation in Sect. 5 and conclude in

Sect. 6.

2 State of the art

Several works have studied the problem of geotagged tweet

analysis. Balduini et al. (2013) studied the movement of

people by analyzing geotagged tweets. The authors ana-

lyzed tweets originating from London and more precisely

close to the Olympic stadium during the Olympic games.

The results show that they could identify and track the

movement of the crowd, especially during the opening

ceremony. Some studies focus on the extraction of local

events by analyzing the text in the tweets (Earle et al.

2012). A recent study describes an approach of how to use

social media data (including Twitter), in order to better

understand and manage city-scale events, part of which

involves the extraction of location information for

tweets (Balduini et al. 2014). However, this is only done

for tweets that are already geotagged, or tweets that men-

tion the venue and/or event of interest, for a predefined set

of venues and events. On the other hand, our framework is

able to estimate the location of tweets regardless of the use

of hashtags, or any other entity reference in the content,

leading to a general solution that is effective even in cases

where of tweets referring to an unforeseen event (e.g., an

accident), or tweets that do not explicitly mention the

venue.

Abdelhaq et al. (2013) use both geotagged and non-

geotagged tweets for identifying keywords that best

describe events. Then they keep only the geotagged tweets

in order to extract the local events. Twitter posts have also

been studied in order to identify the location of earth-

quakes (Sakaki et al. 2010) or fine-grained details on user

activities (such as drinking alcohol) (Hossain et al. 2016).

We note that in all the above studies, the tweets that are

analyzed are already geotagged. In contrast, our focus is on

non-geotagged tweets.

The identification of points of interest (POIs) with

temporal awareness is the focus of a recent study (Li and

Sun 2014). The authors are analyzing tweets posted by

Singaporean users, while using Foursquare check-ins

referred in the tweets. Another study proposed a framework

that can automatically recognize POIs by correlating geo-

tagged tweets with geotagged data deriving from

Flickr (Van Canneyt et al. 2012). The goal is to identify

places, such as restaurants and hotels, that are not already

part of databases such as LinkedGeoData, GeoNames,

Google Places, or Foursquare. The combination of data

from Foursquare and the logs of executed applications on a

smartphone has been used in order to predict the next

location of the users (Malmi et al. 2013).

The problem of using tweets in order to identify the

location of a user or the place that an event took place has

been studied in the past. The ‘‘who, where, what, when’’

attributes extracted from a user’s profile can be used to

create spatiotemporal profiles of users and ultimately lead

to identification of mobility patterns (Yuan et al.

2013). Cheng et al. (2010) create location profiles based on

idiomatic keywords and unique phrases mentioned in the

tweets of users who have declared those locations as their

origins.

The similarity between user profiles and location pro-

files has also been used in Chang et al. (2012). In this

approach, they create user profiles for the active users and

extract the keywords that are characteristic of specific

locations (i.e., they usually appear in some location and not

in the rest of locations). For the extraction of these key-

words, they initially assign weights using the Geometric-

Localness (GL) method and then prune them using a pre-

defined keyword-weight threshold. This leads to a set of

representative keywords for each location, which allows

the algorithm to compute the probability that a given user

comes from that location. A recent study evaluates the GL

method and compares it to other methods that solve the

same problem. The experimental evaluation shows that the

GL method achieves the best results (Han et al. 2014).

Two studies that target to geotag tweets are presented

in Eisenstein et al. (2010) and Paradesi (2011). These two

2 This paper extends and improves on our earlier results (Paraske-

vopoulos and Palpanas 2015).
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methods create chains of words that represent a location by

using Latent Dirichlet Allocation (LDA) (Blei et al. 2003).

The latter study takes in addition into consideration the

location a user has recorded as their home location. A study

that predicts both a user’s location and the place a tweet

was generated from is presented in Kinsella et al. (2011).

In this study, the authors construct language models by

using Bayesian inversion, achieving good results for the

country- and state-level identification tasks. Finally, Ser-

dyukov et al. (2009) presented a method for identifying the

geolocation of photographs by using the textual annota-

tions of these photographs.

Even though some of these studies are closely related to

our work (e.g., Chang et al. 2012; Kinsella et al. 2011,

which we further discuss in the experimental section

evaluation section), we observe that they operate at a very

different time and space scale. The profiles they create

involve the tweets generated over a long period of time (up

to several months), and the location that has to be estimated

is the location of origin of the user, rather than the location

from where a particular tweet was posted. Moreover, the

space granularity used in these studies ranges from postal

zip codes to areas larger than a city. On the contrary, in our

work we predict the location of individual tweets, at the

level of city neighborhoods.

Two studies that target to geotag unique tweets are

presented in Ikawa et al. (2012) and Schulz et al. (2013).

The first method trains a model using past messages

associated with locations, by extracting keywords that are

connected to this location. In the latter study, the authors

develop a multi-indicator approach that combines infor-

mation from the user’s profile and the tweets’ message for

estimating both the location of a unique tweet and a user’s

residence location. The main difference to our approach is

that these methods rely on users that post many tweets in a

time interval t or on data from the user’s profile. In con-

trast, we target to geotag tweets even from users that have

never posted before or do not provide any profile data (such

as their home location).

A recent survey presents methods relevant to location

inference (Ajao et al. 2015).

3 Problem formulation

The problem we want to solve in this work is the estimation

of the geographic location of individual, non-geotagged

posts in social networks.

Problem 1 Given a set of geotagged posts Pl1
tj ; . . .;P

li
tj ,

t1 � tj � t2, where li is the location the post was generated

from and tj is the time interval during which the post was

generated at, and a non-geotagged post Qtq , t1 � tq � t2, we

wish to identify the location l from which Q was generated.

The timestamps t1 and t2 represent the start and end

times, respectively, of the time interval we are interested in.

In the context of this work, we concentrate on fine-

grained location predictions: We wish to estimate the

location of a post at the level of a city neighborhood (which

is usually much smaller than a postal zip code). Further-

more, we focus on twitter posts, whose particular charac-

teristics are the very small size (i.e., up to 140 characters

long), and the heavy use of abbreviations and jargon

language.

4 Proposed approach

In this section, we describe our solution to the problem of

fine-grained geolocalization of non-geotagged tweets.

We provide a high-level description of our approach in

Algorithm 1. Our method is based on the creation of vec-

tors describing the Twitter activity in terms of important

keywords for each geolocation we have data from, and for

Algorithm 1 Tweet Geotagging Algorithm
INPUT: A training set of timestamped and geotagged tweets, a timestamped query-tweet
(Qt) that is not geotagged.
OUTPUT: The most eligible candidate location.
1: for all i ∈ {candidate geolocations: Geolocs} do � process training dataset, for all

locations
2: for all t ∈ {time intervals} do � and for all time intervals
3: Docit ← all tweets in location i at time interval t
4: kwV ectorit ← create vector of Docit keywords and their weights
5: kwV ectorQt ← create vector of Qt keywords and their weights � process

non-geotagged tweet Qt

6: location ← argmaxi∈Geolocs{similarity between kwV ectorit and kwV ectorQt} �
identify location of tweet Qt

7: return location

89 Page 4 of 16 Soc. Netw. Anal. Min. (2016) 6:89

123



the period of time we are interested in. The geolocations

correspond to fine-grained spatial regions (in our study,

they are squares with side length of 1000 m). The time

intervals correspond to brief time segments, during which

posts on the same or related topics may be observed (in our

study, they are 4-h intervals). The vectors represent the

weights of each keyword and are stored in kwVector for

each geolocation and time interval. There are several ways

to compute these weights: We consider the number of

appearances of a keyword in a given geolocation and the

significance of a keyword, measured using Tf-Idf, for a

given geolocation and the entire dataset.

In order to identify the geolocation for a non-geotagged

tweet, Q, we compute the similarity between the vector of

Q and the vector of each candidate geolocation. When

calculating this similarity, we can additionally take into

account the correlation between the local and the global

activity time series, i.e., the evolution over time of the

number of tweets in a given geolocation and all the

geolocations, respectively. Finally, the algorithm returns

the geolocation with the highest similarity value.

In the following sections, we elaborate on the methods

discussed above.

4.1 Grouping the posts and extracting important

keywords

We start by processing the training set of geotagged posts.

We group these posts according to the geolocation that they

were generated from, and the time interval they belong to.

After this grouping step, we calculate the concordance of

the keywords in each group: the dictionary containing the

number of appearances of each keyword in a geolocation.

At the end, we have for each geolocation and time interval

a vector of the important keywords, along with the corre-

sponding weights. We call the algorithm that uses this

method for generating the keyword vectors TG (Tweet

Geotagging).

We observe that concordance is a simple measure that

only accounts for the frequencies of keywords, but fails to

take into account their relative significance. Therefore, we

also employ the Tf-Idf model: idfkeyword ¼ logðn
k
Þ, where n

is the number of documents, k is the number of documents

that keyword appears in, and tfidfi;keyword ¼ count
l

� idfkeyword,
where l is the total number of keywords in document i.

Using Tf-Idf, we can calculate the significance of each

keyword in our training dataset (according to the former

equation above) and set the weight for a keyword in some

geolocation, depending on the number of its appearances at

this geolocation (according to the latter equation). This

method leads to high weights for the keywords that appear

at a small number of geolocations. As a final step, we sort

the keywords according to their weight and prune the

keywords with low weights, and therefore only keep the

significant keywords for each geolocation, which corre-

spond to the keywords that best characterize the activity of

the given geolocation at a particular time interval. We call

the algorithm that uses this method for generating the

keyword vectors TG-TI (Tweet Geotagging Tf-Idf).

In order to create the keyword vector for the non-geo-

tagged tweet, Q, we wish to geolocalize, we follow the

same process as before.

4.2 Similarity calculation and best match extraction

Our next target is to calculate the similarity between the

keyword vector of Q and the keyword vector of each one of

the candidate geolocations.

We follow the steps presented in Algorithm 2. The

magnitude, mag, is the Euclidean Norm, computed over all

the keywords that appear in the vector. We calculate the

magnitude of the Q vector, magQt
, and of each one of the
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candidate geolocations i, magit , for a given time interval

t. We denote with kwVector[j] the weight of the jth term of

the vector. The similarity is computed using the formula

shown in line 5 (over all the keywords that appear in both

the vector Q and the vector of the geolocation i). The

algorithm stores in a sorted list the similarity values for

each candidate geolocation. It then normalizes these values

over the sum of all similarities, giving us the probability

that each candidate geolocation produced Q. Transforming

these values into a probability distribution gives us more

flexibility: For example, as we discuss next, we can readily

combine this similarity measure with similarities computed

using other methods. Furthermore, we can use the proba-

bility values in order to produce geolocation predictions

only in the cases where we are confident (i.e., these prob-

abilities are high). At the end, the algorithm returns the

geolocation(s) with the highest probability(ies).

In our approach, this similarity calculation happens in

two phases (using for both the same general method pre-

sented above). First, we determine the city with the highest

probability for having generated Q, and then the neigh-

borhood (i.e., square with side 1000 m) within that city,

with the highest probability. This solution has the added

benefit that it can be effective even in the presence of small

training datasets (i.e., few geotagged posts), which would

not normally be adequate to directly train models with a

very large number of candidate geolocations, as in our

problem.

Therefore, when we change granularity, from the city to

the neighborhood level, we add one more step to our

method: Probit ;Qt
¼ Probcityjt ;Qt

� Probjt ;Qt
, where cityjt

ranges over all the candidate cities, and jt ranges over all

the candidate neighborhoods within a city, cityjt . The

probability that a candidate neighborhood in a specific city

(Probit ;Qt
) is the correct geolocation for Qt is computed by

multiplying the probability that a candidate city is the

correct one (Probcityjt ;Qt
) by the probability that a given

neighborhood within that city is the correct location

(Probjt ;Qt
).

4.3 Similarity based on correlation of activity time

series

The similarity measure discussed earlier is based entirely

on the contents of the relevant posts, but ignores other

useful characteristics of the data. In what follows, we

describe a method that exploits the time-evolution behavior

in order to derive an additional similarity measure.

This method is based on the activity time series, which

record the number of posts generated by a given geoloca-

tion over time. We call these series local activity time

series. We also compute the global activity time series,

where we record the sum of the number of posts for all

geolocations over time. The similarity is then expressed as

the correlation value between the local activities of a

candidate geolocation with the global activity. The intu-

ition is that posts about an important event will signifi-

cantly change the local activity and influence in the same

way the global activity.

A straightforward idea is to compute the Pearson’s

correlation between the local and the global activities.

Since we are only interested in similar behavior between

local and global activity, we can only keep the positive

correlations and then normalize them over the sum of all

correlation values to produce a probability distribution.

More specifically, we can construct the global activity time

series, Gtsi, for a coarse-grained geolocation (e.g., a city i),

as well as the local activity time series, Ltsj, for all the fine-

grained geolocations within the coarse-grained one (e.g.,

the neighborhoods j inside the city i). Finally, we can

compute the correlation between these time series using the

Pearson’s correlation.

The above idea proved to be somewhat useful, but with

limited benefits [refer to algorithms TG-C and TG-TI-C,

described in Paraskevopoulos and Palpanas (2015)]. The

reason is that this method employs the correlation measure

irrespective of the trend exhibited by the local and global

activities. For example, these activities can be positively

correlated, but have a negative trend (i.e., activity is

diminishing). Evidently, in such cases, the correlation does

not help and should not be taken into account.

We now describe a new technique that addresses this

problem. More specifically, we consider a location as a

candidate location only if both the local and the global

activities increase. As we demonstrate later, this modifi-

cation on the usage of the correlation measure leads to a

significantly better result.

This new correlation-based technique is shown in

Algorithm 3.

Initially, we construct the global activity time series,

Gtsi, for a coarse-grained geolocation (e.g., a city g), as

well as the local activity time series, LtsCL, for all the fine-

grained geolocations within the coarse-grained one (e.g.,

the neighborhoods j inside the city i). Since we are only

interested in similar behavior between local and global

activities only in the case where we have an increasing

trend, we use the linear regression line in order to test this

trend. In particular, we use the k parameter of the equation

representing the linear regression line, y ¼ k � xþ b (refer

to line 4). If k is positive, we assume that the time series

has a positive slope (lines 5–6 and 12–13). In this process,

we use smaller sliding sub-windows of size n / 2 (lines 3

and 10), sliding them across the original window. As a

result, we have a sub-window that slides n / 2 times on the
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original n-timeslot window, counting the number of the

slides that result in positive linear regressions for both time

series describing the local and the global activities.

After having calculated all the k for each candidate

locations, we calculate the Pearson correlation between the

time series describing the local and the global activities and

add 1 to this value, in order to shift the range of values

between [0,2] (line 14). This has the desirable effect that

we avoid negative similarities (that would result from

negative correlations). Note that candidate locations that

correspond to positive correlation receive a bonus (they get

multiplied by a number in the range (1,2]), while those that

correspond to a negative correlation get penalized [they get

multiplied by a number in [0,1)]. Finally, we set a threshold

thLR, and we check whether the number of the sliding

windows for each location that have positive k is greater

than thLR (line 7 and 16).

If the number of the sliding sub-windows that have

positive k exceeds thLR, then this location is considered as a
candidate location, and we assign to the location its cor-

relation and the value True for exceeding the threshold

(line 17); otherwise, we assign to the location its correla-

tion and the value False (line 19). Finally, the algorithm

returns the final set of candidate locations, CL, which

includes for each location its correlation value and the

attribute that indicates whether the location exceeds the

thLR threshold (line 22).

We can then combine this method with the TG

algorithm, by multiplying the two similarity measures

(concordance similarity and correlation), to obtain the

TG-CLR (Tweet Geotagging with activity Correlation

with Linear Regression). When we do the same with the

TG-TI algorithm, we get the TG-TI-CLR (Tweet Geo-

tagging with Tf-Idf and activity Correlation with Linear

regression) algorithm. If the candidate location that has

the greatest similarity with the non-geotagged tweet Q

does not exceed the thLR threshold (i.e., it has been

assigned the value False), then we do not match Q to

any location.

4.4 Sliding windows

We observe that previous methods use all past data in order

to build their models. Methods such as Kinsella et al. (2011)

and Chang et al. (2012) start building their models taking

into consideration all available data. However, this may lead

to situations where some local events may be mishandled.

For example, consider the case, where a concert takes place

in a city, followed by a second concert the following day.

Then, a model that is based on all the data (and in the
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absence of specific and detailed keywords) is likely to assign

the tweets relevant to the second concert to the location of

the first concert, for which more data are available.

In order to avoid similar problems, we can use a tum-

bling window model (Paraskevopoulos and Palpanas

2015). Although this helps to address the problem men-

tioned above, tumbling windows may still mis-assign

tweets that are generated at the beginning, or at the end of

the window, and are connected to an event that is outside

the window period.

A better idea is to use sliding windows, which we

exploit in this work. In this case, a particular timeslot can

be part of n � 1 windows, where n is the length of the

window. If a timeslot is at the beginning of an event (the

latest in the window), the new timeslots to be inserted later

are going to be more relevant. As a result, the timeslot is

going to be in n � 1 windows, the majority of which will

be relevant.

Using the sliding window idea, we can now take

advantage of the already extracted models of each location

and incrementally update them for every slide, reducing

dramatically the time needed for the contraction of the

keyword vectors. In order to achieve this, we do not

recalculate the concordance of each word for each location

across the window. Instead, we extract the concordance

across the window only for the first model created, and for

every slide, we update the concordances of each word by

subtracting the concordance of the words in the data

removed and adding those in the data added to our dataset.

We can see the steps of the incremental update of the

vectors in Algorithm 4.

Furthermore, due to the incremental update that we

achieve at our concordance kwVectors, we prove that our

method can be applied in streaming manner. Unfortunately,

the incremental update is not straight applicable on the Tf-

Idf kwVectors, but still Tf-Idf methods get advantage on

the incremental update of the concordances.

5 Experimental evaluation

5.1 Experimental setup

We performed the experiments on a server running on

Ubuntu 14.04.2 LTS, with 64 GB RAM, and an

Intel(R) Xeon(R) CPU E5506 @ 2.13 GHz processor. For

the implementation of our methods and the reimplemen-

tation of the QL and KL, we used Python 2.7.

5.2 Datasets

For the evaluation of our approach, we use 3 datasets con-

taining geotagged3 posts from Twitter, generated in Italy,

Germany, and the Netherlands. In particular, we have data

from 6 of the largest Italian cities, namely Rome, Milan,

Naples, Bologna, Venice, and Turin, and from the capital of

Germany, Berlin, and the capital of Netherlands, Amster-

dam. The tweets from Italy were generated between June 20

and July 23, 2014, while the tweets from Germany and the

Netherlands were generated between August 10 and

September 11, 2014. The granularity of the neighborhood

level we use for every city is a square with side of 1000 m.

The number of tweets is 543.295 for Italy (219.681 origi-

nated from Rome, 137.622 fromMilan, 60.065 fromNaples,

49.434 from Bologna, 46.982 from Turin, and 29.511 from

Venice), 77.179 for Berlin and 136.189 for Amsterdam. The

time windows we use have a duration of 4 h (which can

effectively capture an important event, as well as the start

and the aftermath of this event), while also keeping the

detailed aggregated information for every 15-min time

interval. As mentioned in Sect. 4.4, we use the sliding

window model. We experimented sliding the window by 1

and 2 time intervals, getting almost the same results; thus, we

chose to slide our window by 2 time intervals per slide (30

min), which led to faster execution times. Finally, the default

grid we use in this study is 20 by 20 squares.

3 Earlier studies have shown that techniques and models built for

geotagged data indeed generalize to non-geotagged data, since

geotagged and non-geotagged tweets have similar data characteris-

tics (Han et al. 2014).
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5.3 Algorithms

We experimentally evaluate the six algorithms we descri-

bed in Sect. 4, namely TG, TG-TI, TG-C, TG-TI-C, TG-

CLR, and TG-TI-CLR (the last two only for the neigh-

borhood level). As baselines, we implemented the QL and

KL methods (Kinsella et al. 2011), which aim to solve a

similar problem. In order to choose the value for the l
parameter, we followed the same methodology as in the

original paper (Kinsella et al. 2011): We experimented

with several values for the l parameter, in the range [100,

10,000]), and verified that l ¼ 10; 000 gave the best results

in our setting, as well.

5.4 Evaluation measures

We study the time performance, as well as the effective-

ness of each approach using the precision and recall mea-

sures: Precision ¼ cgTweets
gTweets

and Recall ¼ cgTweets
aTweets

, where

cgTweets is the number of the correctly geolocalized

tweets, gTweets is the number of tweets we geolocalized,

and aTweets is the number of all tweets in the test set. In

the case of the city level, where we predict the geolocation

for all the tweets in the test set, the above precision and

recall measures coincide, and we use the term accuracy

instead. For the neighborhood level though, we do not

predict the geolocation of tweets for which all our candi-

date locations have a similarity of 0. Thus, we report results

for both precision and recall. We also report the balanced

F1 measure, F1 ¼ 2 � Precision�Recall
PrecisionþRecall

. Following previous

work (Kinsella et al. 2011), we report the results when we

consider the top-1 (@Top1), top-3 (@Top3), and top-5

(@Top5; only for neighborhood level) predicted geoloca-

tions, as well as the results when considering as correct the

prediction of the exact geolocation (@0-Step), or of any

geolocation at distance 1 (@1-Step; exact and its eight

immediate neighbors), or 2 (@2-Step; exact and its 24

closest neighbors) from the exact. In all our experiments,

we randomly divided the dataset into 80 % training and

20 % testing, repeated each experiment 30 times, and

reported the mean values in the results.

5.5 City-level results

We start our analysis by running our method on city level.

We extract the geotagged tweets from the 6 cities,

removing the duplicated posts in order to avoid spam. We

record the activity every 15 min, and we consider time

intervals of 4 h, leading to 181 timeslots (due to technical

problems, some of the timeslots were empty, and we

excluded those from our analysis).

In this case, we extracted the similarities between the test

tweets and the 6 cities, and we also evaluated our approach

using the correlation of the activity time series (refer to

Sect. 4.3): We use the Pearson’s correlation between the

activity time series of the 6 cities and the activity time series

of Italy. The results (@Top1 and @0-Step) are presented in

Fig. 2a. As we can see in this plot, the accuracy for the city

level is increased compared to the accuracy before the cor-

relation. More precisely, we get the maximum number of

matches in all four cases when we keep 100 % of the key-

words. The accuracy of TG and TG-C is almost identical, at

45 %. For TG-TI we get 58 % accuracy, while when using

TG-TI-C we get 59 % (though, our t test analysis revealed

that this difference is not statistically significant). After

further analyzing the results of these two algorithms, we

found that for 134windows TG-TI-C has better accuracy, for

4 windows TG-TI and TG-TI-C have the same accuracy, and

for the rest 43 windows TG-TI performs better. We note that

the accuracy of the random algorithm is 17 %.

After evaluating the algorithms using the most similar

candidate geolocation (@Top1), we also evaluated them

using the 3 most similar candidates (@Top3). As we can

see in Fig. 2b, when using only a small percentage of the

keywords we get better results with the TG and TG-C

algorithms. In contrast, when we use more than 70 % of the

keywords, the Tf-Idf-based algorithms, TG-TI and TG-TI-

C, result in better accuracy. The accuracy is increasing

when the percentage of the keywords used increases.

5.6 Neighborhood-level results

In this subsection, we present the results for the neigh-

borhood-level evaluation, for which we used data from four

different European cities: Milan, Rome, Berlin and Ams-

terdam. As we have already mentioned, we created a grid

of 400 squares (20 by 20) for each city. For the city of

Rome, we additionally ran some experiments using a grid

of 900 squares (30 by 30).

5.7 Setting the parameters

We first identify the best threshold to use for the LR

parameter. As we mentioned at the beginning of this sec-

tion, we use a window of 16 timeslots and sub-windows of

size nsub�window = nwindow/2 = 8 (refer to Sect. 4.3). Fur-

thermore, the maximum LR equals to the number of slides,

which is 8, as well. We experimented by setting the LR

threshold equal to f1; 2; 4; 6g and depicted the results in

Fig. 3 (precision and recall for algorithms not using Tf-

Idf), Fig. 4 (precision and recall for algorithms using Tf-

Idf), and Fig. 5 (F1 measure for all algorithms). For
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brevity, we only report the results for the city of Milan;

results for the other cities are similar.

In this experiment, we had 3264 15-min timeslots,

resulting in 1624 window slides. For each method, we

extracted the mean precision, recall and F1 scores among

all windows, while varying the percentage of the keywords

used. We observe that the best mean precision is 48 %,

which is achieved by TG-TI-CLR1 when using 100 % of

the keywords (Fig. 4a), while the maximum recall for this

method is 32 %, when using 40 % of the keywords

(Fig. 4b). Note that the same method without the use of the

trends, that is, TG-TI-C, has maximum precision and recall

40 and 39 %, respectively. Regarding the TG-CLR1

algorithm, we get maximum precision 33 % and maximum

recall 21 %, both when using 100 % of the keywords. Due

to these, and after finding out that the F1 score of the CLR1

methods is not too different compared to those not using

linear regression, we concluded that for the rest of the

experimental part, we are going to use only the CLR1

methods.

5.8 Evaluating the correlation-based methods

In the following experiments, we compare the CLR

methods to those that do not use correlation. In Fig. 6, we

present the mean precision and recall that our algorithms

have for the city of Milan among all windows, when

varying the percentage of the keywords used. As before,

we only consider the first answer given by each algorithm

(i.e., @Top1). The best precision is 48 % and is achieved

by TG-TI-CLR1 using 100 % of the keywords. The max-

imum recall is 38 % achieved by TG-TI when using 30 %

of the keywords. According to the F1 measure, TG-TI

achieves its best using 30 % of the keywords, with F1

equal to 39 %. TG-TI-CLR1 achieves best F1 score 3 %

when using 50 % of the keywords. The second best pre-

cision is 39 %, achieved by TG-TI when using 30 %. The

best precision achieved by TG is 27 %, while its best recall

is 26 %. TG-CLR1 reached up to 33 % precision and 21 %

recall (both achieved when using 100 % of the keywords).

The mean accuracy of the random algorithm, which was

choosing one square at random only among that had data at

the train datasets, was less than 2 %.

We note that the best precision is always observed when

we use the TG-TI-CLR1 algorithm. This means that the

correlation between the city and square activities is bene-

ficial, when using the linear regression parameter that

prunes activities with negative trends. As a result, we do

not estimate the location of tweets that would probably be

wrongly predicted, leading to a small penalty in recall, but

increased precision.

We now report the results of the same experiment for

the cities of Rome (in Fig. 7), Berlin (in Fig. 8), and

Amsterdam (in Fig. 9). The best precision we observed for

the city of Rome was 48 % and was achieved by TG-TI-

CLR1, using 100 % of keywords, while the best recall was

achieved when using TG-TI method, using 40 % of key-

words. The same methods also resulted in the highest

precision and recall for Berlin. In particular, TG-TI-CLR1

achieved a precision of 58 %, for a recall of 40 %. The best

recall for Berlin was 47 %, achieved by TG-TI, which also

led to the second best precision, 51 %. Regarding the city

of Amsterdam, we achieve the highest precision of 44 %

with TG-TI-CLR1, while the best recall of 38 % is

achieved by TG-TI.

The results show that the behavior of the algorithms is

similar across cities, while their relative performance

remains the same. An interesting observation is the fact

that the precision and recall for Berlin are much higher

than the rest of the cities. This is due to the distribution of

the keywords among the squares, which resulted in more

representative keyword sets for each square.

Fig. 3 TG-CLR for different LR parameters (@Top1 and @0-Step)

Fig. 2 Accuracy for city level when using TG, TG-C, TG-TI, and

TG-TI-C (@0-Step)
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5.9 Comparing to baselines

In this set of experiments, we compare our approach to the

QL and KL baseline algorithms. We use the same spatial

and temporal granularities for all algorithms. Similarly to

our methods, we only consider tweets for which there

exists at least one candidate location with similarity greater

than 0. The results of this comparison are illustrated in

Fig. 10a.

We observe that TG-TI-CLR1 achieves up to 18 %

better recall than the QL algorithm4 and up to 22 % better

F1 score. This difference in performance can be explained

by the different focus of the QL algorithm, which was

developed to operate at much bigger spatial (in the order of

zip codes, or cities) and temporal granularities (in the order

of weeks or months) (Kinsella et al. 2011). We also note

that (for the same reasons) the results between QL and KL

are almost the same. Therefore, in our plots, we only report

the F1 score for QL.

In terms of time performance, we measured the mean

execution time needed per 4-h window for the entire pro-

cess: training the models and extracting the similarities

between the query tweets and the candidate locations.

Figure 10b depicts the execution time needed for each

algorithm.

As we can see in the graph, TG is the fastest algorithm.

This is natural, since this algorithm does not spend time

calculating the Tf-Idf, the correlations, or the linear

regressions. The QL algorithm has a consistently high

execution time of around 90 s, independent of the number

of keywords considered. TG-TI-CLR1 performs in the

middle. The interesting point is that although this algorithm

has to calculate the Tf-Idf, the correlations and the linear

regressions, the total time needed for each square, when

using 10–70 % of the keywords is smaller than the time

needed for TG-CLR1. The reason is the search space

pruning. When compared to TG-CLR1, the TG-TI-CLR1

algorithm prunes stopwords and, thus, eliminates the can-

didate locations that do not share any keyword with the

tweet under examination. We also observe that when TG-

TI-CLR1 achieves its best F1 score, i.e., when using 50 %

of the keywords, it is significantly faster than the QL

algorithm.

Finally, we note that the KL algorithm performs very

similar to QL, but requiring at all cases a bit higher time

when compared to QL (around 0.8 secs more).

Fig. 6 Trade-off between precision and recall for neighborhood level

(Milan, @Top1 and @0-Step)

Fig. 4 TG-TI-CLR for different LR parameters (@Top1 and @0-

Step)

Fig. 5 F1 for TG-CLR and TG-TI-CLR for different LR parameters

(@Top1 and @0-Step)

4 We note that the QL results reported here are much better than

those reported in our earlier study (Paraskevopoulos and Palpanas

2015). This is due to the different experimental setup (i.e., sliding

windows) that we now use for all algorithms, which resulted in an

increased number of windows with a high number of tweets, leading

to higher execution times and better models.
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5.10 Focusing on precision

We now examine the behavior of our algorithms when we

want to achieve high precision, which is useful for several

applications.

In the first set of experiments, we employ a dynamic

similarity threshold that determines whether the algorithm

will make a prediction for the geolocation. The thresholds

we use are automatically set, based on the results of the

same timeslots of the previous days: They are computed as

the mean of the similarities of the correctly identified

geolocations, averaged over the corresponding timeslots of

the previous days. We have 48 (dynamic) thresholds, one

per half-hour slide. Evidently, these thresholds lead to

fewer predictions of tweet geolocations, reducing the

recall, but increasing the precision.

In Fig. 11, we present the precisions and the recalls after

the introduction of the thresholds for the method TG-TI,

while in Fig. 12 we present the precision and recall for TG-

TI-CLR1. We run experiments by using the exact dynamic

threshold, the exact threshold ?-10 % and the exact

threshold ?-20 %. Furthermore, in order to evaluate the

results, we use again the balanced F1 score. The F1 score

for the two methods presented before is depicted in Fig. 13.

After evaluating our methods using the first most similar

answer, we analyzed the results when taking under con-

sideration the first 3 (Top3) and the first 5 (Top5) most

similar candidates. In Figs. 14 and 15, we can see depicted

mean precisions and recalls when using 10–100 % of the

keywords for both cases. The results show that both pre-

cision and recall are benefiting, with the F1 scores

increasing from around 35 % to around 55 % (Fig. 16).

Finally, we study the performance of our methods in the

case where we relax the definition of the correct answer to

include answers that are 1 square (1-Step) or 2 squares (2-

Steps) away from the exact answer. That is, we consider the

Fig. 10 Trade-off between F1 score and execution time for the city of

Milan (@Top1 and @0-Step)

Fig. 9 Precision and recall for the city of Amsterdam (@Top1 and

@0-Step)

Fig. 7 Precision and recall for the city of Rome (@Top1 and @0-

Step)

Fig. 8 Precision and recall for the city of Berlin (@Top1 and @0-

Step)
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Fig. 12 Precision and recall on neighborhood level for TG-TI-CLR1

when using dynamic thresholds (Th) (@Top1 and @0-Step)

Fig. 13 F1 measure for neighborhood level with threshold (Th)

(@Top1 and @0-Step)

Fig. 14 Precision and recall for TG-TI (@0-Step)

Fig. 15 Precision and recall for TG-TI-CLR1 (@0-Step)

Fig. 16 F1 Score for TG-TI and TG-TI-CLR1 (@0-Step)

Fig. 11 Precision and recall on neighborhood level for TG-TI when

using dynamic thresholds (Th) (@Top1 and @0-Step)
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near neighbors of the exact answer to be correct answers, as

well. The results of this evaluation are depicted in Figs. 17

and 18 (we report the results for the city of Milan).

When using the 1-Step evaluation, we observe an

increase of up to 6 % for precision and up to 4 % for recall.

The additional benefit for 2 Steps is diminishing, exhibiting

an increase of up to 4 % for precision and up to 2 % for

recall. This effect of diminishing returns is due to the fact

that immediately neighboring squares tend to share the

same topic, while the topic dilutes and differs more when

we move further away. In all cases, TG-TI-CLR1 accounts

for the best mean precision. The second best precision in

the one is achieved by TG-TI, while the third best is

achieved by TG-CLR1.

Finally, we run experiments modifying at the same time

all the three parameters presented before, namely the

similarity threshold, the @Step and the TopK. In Fig. 19,

we illustrate the precision and recall of the TG-TI-CLR1

method. The results show that we can achieve a significant

increase in precision, but only a modest increase in recall.

We note that precision hovers above the 75 %, therefore

making the proposed approach attractive for applications

that need access to the geolocations of tweets.

5.11 Size of search space

In order to evaluate our method with larger search spaces,

we created a bigger grid for the city of Rome, and we ran

experiments on this new dataset. In particular, we created a

grid of 900 squares (30 by 30), while keeping the rest of the

setup parameters the same. The size of each square is the

same as before: 1 km. In Fig. 20, we compare the precision

and recall of the Tf-Idf methods for the 20 by 20 and the 30

by 30 grids.

The best precision for the 30 by 30 grid is 45 % and is

achieved by TG-TI-CLR1 when using 100 % of keywords,

while the best recall is 37 % and achieved by TG-TI when

using 40 % of the keywords. As expected due to the higher

search space, the precision and recall achieved by each

method are lower than those for the smaller grid: They

Fig. 17 Precision for neighborhood level (@Top1) Fig. 18 Recall for neighborhood level (@Top1)
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were up to 4 % lower for both algorithms, when the search

space increased by 225 %. These results demonstrate that

the effect of the increase in the search space on the pro-

posed algorithms is relatively small.

5.12 Discussion

Overall, our results show that using correlation between

local and global activities has the potential (when properly

employed) to lead to significantly better accuracy.

We also observe that, contrary to previous work, the

time needed to train and test our models depends on the

percentage of keywords used. This allows us to achieve a

trade-off between execution time and accuracy. An inter-

esting point regarding this trade-off is the fact that the

increase in the execution time that the CLR methods

exhibit when using higher percentage of keywords does not

pay off with a proportional increase in precision and/or

recall.

For the @Top1 case, the Tf-Idf-based algorithms are the

winners, providing better results than the simpler algo-

rithms based on concordance. Furthermore, when using the

Tf-Idf-based algorithms, the best result is achieved when

pruning some of the keywords. This is due to the fact that

pruning the keywords with the lowest weight, we primarily

remove stopwords, which has a positive impact on accu-

racy. This is also true for TG-TI-CLR1, when considering

the F1 score.

Regarding the difference in precision and recall between

our approach and the baselines, we believe that it is due to

the very different granularity requirements of the problems,

especially the temporal granularity. Even though the

baselines provide good results for identifying the charac-

teristic topics of a location (when there are enough data),

our approach has an advantage for geolocalizing tweets

referring to time-focused events, especially those with a

relatively short time span (e.g., concerts).

6 Conclusions

The extended use of social networks has resulted in an

abundance of information on different aspects of everyday

social activities and has led to a proliferation of tools and

applications that can help end users and large-scale event

organizers to better plan and manage their activities.

Several of these applications are based on the knowledge

of the geolocation of the relevant information. However,

in Twitter, only a small percentage of the posts are

geotagged.

In this work, we address the problem of geolocalizing

non-geotagged tweets. We have proposed a framework that

allows the estimation of the location from which a post was

generated, by exploiting the similarities in the content

between this post and a set of geotagged tweets. Contrary

to previous approaches, our framework provides geoloca-

tion estimates at a fine grain, thus supporting a range of

applications that require this detailed knowledge. The

experimental evaluation with real data demonstrates the

efficiency and effectiveness of our approach, which when

coupled with the right visualizations (Paraskevopoulos

et al. 2016) can become a powerful analysis tool. In our

future work, we plan to study the use of more elaborate

models for the representation of the keywords in a tweet.

The challenge here is to identify the right abstraction, given

the short length of tweets.

Acknowledgments This work was supported by a fellowship from

Telecom Italia.

Fig. 19 Precision and recall for TG-TI-CLR1 for varying similarity

threshold, TopK, and @Step

Fig. 20 Precision and recall comparison for the city of Rome (grids

20 � 20 and 30 � 30, @Top1 and @0-Step)

Soc. Netw. Anal. Min. (2016) 6:89 Page 15 of 16 89

123



References

Abdelhaq H, Sengstock C, Gertz M (2013) Eventweet: online

localized event detection from twitter. In: Proceedings of the

VLDB Endowment , vol 6, no 12

Ajao O, Hong J, Liu W (2015) A survey of location inference

techniques on twitter. J Inf Sci 41(6):855–864

Balduini M, Bocconi, S, Bozzon A, Della Valle E, Huang Y,

Oosterman J, Palpanas T, Tsytsarau M (2014) A case study of

active, continuous and predictive social media analytics for

smart city. In: ISWC workshop on semantics for smarter cities

(S4SC)

Balduini M, Della Valle E, DellAglio D, Tsytsarau M, Palpanas T,

Confalonieri C (2013) Social listening of city scale events using

the streaming linked data framework. In: ISWC

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation.

J Mach Learn Res 3:993–1022

Chang Hw, Lee D, Eltaher M, Lee J (2012) @ phillies tweeting from

philly? Predicting twitter user locations with spatial word usage.

In: ASONAM

Cheng Z, Caverlee J, Lee K (2010) You are where you tweet: a

content-based approach to geo-locating twitter users. In: CIKM

Crooks A, Croitoru A, Stefanidis A, Radzikowski J (2013) #

Earthquake: Twitter as a distributed sensor system. Trans GIS

17(1):124–147

Earle PS, Bowden DC, Guy M (2012) Twitter earthquake detection:

earthquake monitoring in a social world. Ann Geophys

54(6):708–715

Eisenstein J, O’Connor B, Smith NA, Xing EP (2010) A latent

variable model for geographic lexical variation. In: EMNLP

Facebook. https://www.facebook.com/

Frias-Martinez V, Soto V, Hohwald H, Frias-Martinez E (2012)

Characterizing urban landscapes using geolocated tweets. In:

SocialCom-PASSAT

Google?. https://plus.google.com

Han B, Cook P, Baldwin T (2014) Text-based twitter user geolocation

prediction. J Artif Intell Res 49:451–500

Hossain N, Hu T, Feizi R, Zheng D, White AM, Luo J, Kautz H

(2016) Precise localization of homes and activities: detecting

drinking-while-tweeting patterns in communities. In: Tenth

international AAAI conference on web and social media,

Cologne, Germany, May 17-20, 2016, pp 587–590

Ikawa Y, Enoki M, Tatsubori M (2012) Location inference using

microblog messages. In: Proceedings of the 21st international

conference companion on World Wide Web. ACM, pp 687–690

Kinsella S, Murdock V, O’Hare N (2011) I’m eating a sandwich in

glasgow: modeling locations with tweets. In: SMUC

Leetaru K, Wang S, Cao G, Padmanabhan A, Shook E (2013)

Mapping the global twitter heartbeat: the geography of twitter.

First Monday 18(5). doi:10.5210/fm.v18i5.4366

Li C, Sun A (2014) Fine-grained location extraction from tweets with

temporal awareness. In: SIGIR

Malmi E, Do TMT, Gatica-Perez D (2013) From foursquare to my

square: learning check-in behavior from multiple sources. In:

ICWSM

Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection

over the twitter stream. In: SIGMOD

Murdock V (2011) Your mileage may vary: on the limits of social

media. SIGSPATIAL Spec 3:62–66

Paradesi SM (2011) Geotagging tweets using their content. In:

FLAIRS conference

Paraskevopoulos P, Dinh TC, Dashdorj Z, Palpanas T, Serafini L

(2013) Identification and characterization of human behavior

patterns from mobile phone data. In: NetMob

Paraskevopoulos P, Palpanas T (2015) Fine-grained geolocalisation of

non-geotagged tweets. In: Proceedings of the 2015 IEEE/ACM

international conference on advances in social networks analysis

and mining 2015. ACM, pp 105–112

Paraskevopoulos P, Pellegrini G, Palpanas T (2016) When a tweet

finds its place: fine-grained tweet geolocalisation. In: Interna-

tional workshop on data science for social good (SoGood), in

conjunction with the European conference on machine learning

and principles and practice of knowledge discovery (ECML

PKDD)

Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter

users: real-time event detection by social sensors. In: WWW

Schulz A, Hadjakos A, Paulheim H, Nachtwey J, Mühlhäuser M
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