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Abstract Most real-world social networks are inherently

dynamic, composed of communities that are constantly

changing in membership. To track these evolving communi-

ties, we need dynamic community detection techniques. This

article evaluates the performance of a set of game-theoretic

approaches for identifying communities in dynamic networks.

Our method, D-GT (Dynamic Game-Theoretic community

detection), models each network node as a rational agent who

periodically plays a community membership game with its

neighbors. During game play, nodes seek to maximize their

local utility by joining or leaving the communities of network

neighbors. The community structure emerges after the game

reaches a Nash equilibrium. Compared to the benchmark

community detection methods, D-GT more accurately pre-

dicts the number of communities and finds community

assignments with a higher normalized mutual information,

while retaining a good modularity.

Keywords Community detection � Dynamic social

networks � Game-theoretic models

1 Introduction

The natural flux of people’s changing social ties and

interests generates a dynamic social network. This invisible

network can be observed by capturing daily or weekly

snapshots of user activities on social media platforms and

massively multiplayer online games (MMOGs). It is

informative to study changes in the network at the com-

munity level, as well as the individual level. Communities

are emergent groups that are created as people form highly

connected subnetworks with their families, co-workers and

friends. Often communities are formed by participants with

the same goals, interests, or a geographic location. For

instance, in MMOGs, network communities may emerge

from guilds of players with common economic interests or

alliances who share strategic goals. As the network chan-

ges, user groups can grow, shrink, or disappear, causing

drastic changes in the total number of network

communities.

Community detection can help us understand the hidden

social structure of the user populations, but the dynamic

aspect of networks can pose problems for standard algo-

rithms. Our method uses stochastic optimization to find the

best community structure, assuming that the nodes are

modeled as rational players who seek to maximize their

personal utility while playing a community membership

game with neighboring nodes. In this game, the active

agent decides to join or leave different communities; agents

receive benefits from being part of the same community as

their network neighbors but are penalized for joining too

many communities. The Nash equilibrium of the current
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game corresponds to the community structure of the cur-

rent snapshot. As the network evolves, agents usually find

it advantageous to modify their community membership

strategy. This article examines the performance of varying

the amount of information propagated from prior snap-

shots. Even in dynamic networks, there are many nodes

that retain the same community membership or rejoin their

former communities. Thus, propagating information from

previous snapshots can provide more favorable initializa-

tion conditions for the stochastic optimization procedure.

Much of the power of the D-GT framework [originally

introduced in Alvari et al. (2014a)] lies in its potential for

customization; however, without guidance, end users can

be overwhelmed by myriad choices. Our aim in this article

is to present a comprehensive analysis of the algorithm’s

performance in common scenarios; while retaining the

same basic game-theoretic model, we evaluate different

variations of our procedure. First, we examine the perfor-

mance of different utility functions, a similarity-based

utility function (Alvari et al. 2011) versus the use of a

personalized modularity function (Chen et al. 2010). Then

we compare different initialization approaches in which the

following information is propagated: (1) no information

(D-GTS); (2) the union of the community membership

information over all snapshots (D-GT); (3) community

membership information from the previous snapshot (D-

GTP); and (4) ground truth information for a small seed set

(D-GTG). Our game-theoretic model is robust to minor

changes in the procedure and most variants outperform the

benchmarks.

Our experiments were conducted on networks created

from different dynamic processes: internet routers (AS-

Oregon Graph, the AS-Internet Routers Graph), shifting

organization structure (Enron Email dataset), citation

graphs from arXiv (hep-ph) and player interactions in

massively multiplayer online games (Travian Messages,

Travian Trades). Results were compared against five other

methods: LabelRankT, iLCD, OSLOM, InfoMap and

Louvain in terms of normalized mutual information (NMI),

modularity and the number of detected communities. The

next section presents an overview of related work on

community detection in dynamic networks. Section 3

describes our problem formulation and our proposed

method (Dynamic Game-Theoretic community detection).

Experimental results are provided in Sect. 4, before we

conclude the article (Sect. 5).

2 Related work

The problem of community detection in static networks has

appeared in multiple disciplines including sociology and

computer science. This has yielded a diverse set of

approaches ranging from traditional network structure-

based algorithms (Girvan and Newman 2002; Newman

2006, 2004), optimization techniques (Alvari et al. 2011;

Chen et al. 2010), label propagation (Raghavan et al.

2007; Xie and Szymanski 2011, 2012), propinquity (Zhang

et al. 2009) and information diffusion (Hajibagheri et al.

2013, 2012). Detecting community structure in dynamic

networks, on the other hand, has attracted less research

attention due to the complexity of the problem and dearth

of good datasets. There are some community detection

algorithms originally designed for static networks that

continue to perform well in dynamic datasets. For instance,

Lancichinetti et al.’s OSLOM (Order Statistics Local

Optimization Method) works on single snapshots but also

benefits from information from previous network parti-

tions. Like D-GT, OSLOM’s optimization procedure can

be initialized with the partition from the previous snapshot;

it aims to optimize cluster significance with respect to a

global null model (Lancichinetti et al. 2011). We use this

method as one of our benchmarks, along with two other

static community detection algorithms: Louvain (Blondel

et al. 2008) and InfoMap (Rosvall and Bergstrom 2008).

These algorithms perform well on many static community

detection problems and have the benefit of being fast to

compute on a single network snapshot.

Other network properties have also been used to perform

dynamic community detection; for instance, Hui et al.

(2007) proposed a distributed method for community

detection in which modularity was used as a measure

instead of the objective function. QCA (Quick Community

Adaptation) is a modularity-based approach that focuses

explicitly on the changes in the network structure, rather

than recomputing community structure from scratch at

each time step (Nguyen et al. 2014). In this article, we

evaluate the use of personal modularity as an alternative

gain function to neighborhood similarity.

Some studies have focused on studying the evolution of

communities over time. For instance (Hopcroft et al. 2004)

identified subsets of nodes, ‘‘natural communities,’’ which

were stable to small perturbations of the input data.

Communities detected in later snapshots were matched to

earlier snapshots using the natural community tree struc-

ture. Palla et al. (2009) proposed an innovative method for

detecting communities in dynamic networks based on the

k-clique percolation technique; in their approach, commu-

nities are defined as adjacent k-cliques that share k � 1

nodes.

Machine learning has also been employed to model

changes in community structure; for instance, Takaffoli

et al. (2014) predict transitions in community structure by

learning supervised machine learning classifiers. This

requires data on past transitions to train the classifiers,

which limits its applicability to certain datasets. Sun et al.
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(2007) adopt a data mining approach to detect clusters on

time-evolving graphs; community discovery and change

detection are performed using the minimum description

length (MDL) paradigm.

Rather than independently detecting communities at

each snapshot and matching them, another option is to

make a local decision to add nodes to existing communities

when new edges appear in the network. One of our

benchmarks, iLCD (intrinsic longitudinal community

detection) (Cazabet et al. 2010), updates the community

structure of the network based on time-stamped sets of

edges. Nodes are added to communities if its mean number

of second neighbors and robust second neighbors exceeds

the current average for the community. However, this

model is limited to certain types of network changes and

cannot handle interconnected pairs of nodes being simul-

taneously added or the removal of edges.

Optimization can be used to identify minimum cost

community assignments in dynamic graphs. FacetNet (Lin

et al. 2008) is a framework for analyzing communities in

dynamic networks based on an optimization of snapshot

costs. It is guaranteed to converge to a local optimal

solution; however, its convergence speed is slow, and it

needs to be initialized with the number of communities

which is usually unknown in practice. Folino and Pizzuti

(2014) modeled dynamic community detection as a multi-

objective optimization problem. Their approach is param-

eter free and uses evolutionary clustering to optimize a dual

objective function. The first objective selects for highly

modular structures at the current time step, and the second

minimizes the differences between community structures

in the current and previous time steps. D-GT also uses a

stochastic optimization procedure, but all of the agents

individually optimize their utilities based on local network

information.

The Markov Cluster Algorithm (MCL) (Van Dongen

2000) identifies graph clusters by computing the proba-

bilities of random walks through the graph; flow simula-

tions are performed by alternating expansion (matrix

squaring) with inflation operations (Hadamard powers).

Due to its mathematical simplicity, it is popular for com-

munity detection in many domains but is slow and often

overestimates the number of communities in the dataset.

Regularized MCL (Satuluri and Parthasarathy 2009) is a

variant of MCL that prevents overfitting by taking into

account neighbor flows. It can also be used within a multi-

level framework (Multi-level Regularized MCL) to speed

up computation by executing a sequence of coarsening

operations on the graph before executing R-MCL.

LabelRankT (Xie et al. 2013) shares some similarities

with the MCL techniques described above while improving

upon them in several ways; it is a label propagation

approach in which the inflation operation is applied to the

label distribution matrix rather than to the adjacency

matrix. Each node requires only local information during

propagation, making it more scalable than MCL and

amenable to parallelization. Due to LabelRankT’s strong

performance and good implementation, it was selected as

the best label propagation benchmark for our work.

Our proposed method (D-GT) attempts to simulate the

decision-making process of the individuals creating the

communities, rather than focusing on statistical correla-

tions between labels of neighboring nodes. We believe that

exploiting game theory for dynamic community detection

yields more realistic, fine-grained communities since

intrinsically game theory is a good representation for

expressing the behavior of individuals and strategic inter-

actions among them (Adjeroh and Kandaswamy 2007).

In previous work, we have demonstrated the success of

game-theoretic approaches in static community detection

across several domains, including detecting guilds in

massively multiplayer online games (Alvari et al. 2014b)

and predicting trust between users on e-commerce sites

(Beigi et al. 2014). Many of these domains featured over-

lapping communities in static networks (Alvari et al.

2011, 2013); however, in this article, the datasets are

dynamic, but not overlapping. D-GT makes a hard

assignment at the termination of the stochastic optimization

procedure by selecting the community assignment with the

highest utility function. In this article, we investigate the

performance of different gain functions and initialization

procedures, on a variety of evaluation metrics (modularity,

NMI, number of detected communities). The strength of

the D-GT framework is its versatility; our results show that

substantial performance improvements can be achieved by

customizing it for the problem at hand.

3 Method

First, we provide the formal definition of the problem and

the notations used throughout the paper. Given snapshots

T = fTt j 8t; t ¼ 1; :::;Mg of a dynamic network and their

corresponding underlying graphs Gt ¼ ðVt;EtÞ, with nt ¼
jVtj vertices and mt ¼ jEtj edges, where t = 1,...,M, we aim

to detect community structure C=fCt j 8t; t ¼ 1; :::;Mg of

the network. Table 1 shows the symbols and definitions used

throughout the paper.

We leverage a dynamic agent-based model to detect

communities by optimizing each user’s utility through a

stochastic search process (Alvari et al. 2011). In this arti-

cle, we evaluate four different variants of the procedure:

D-GT (Dynamic Game-Theoretic community detection),

D-GTP (D-GT with passing one Previous Snapshot)

D-GTS (D-GT with Separate Runs) and D-GTG (D-GT

with passing Ground Truth).
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3.1 Dynamic Game Theory (D-GT)

In this section, we present the framework for D-GT. We

treat the process of community detection as an iterative

game performed in a dynamic multi-agent environment in

which each node of the underlying graph is a selfish agent

who decides to maximize its total utility ui. Note that

hereafter we use the terms node, user and agent inter-

changeably. The terms pool, list, or set of agents are used

to denote the set of nodes maintained during each game.

During the community formation game, each agent

assesses whether taking an action (join, switch, or leave)

(Table 2) will increase its utility. An agent joins a new

community ct � Ct by adding its label to sti. It then gains

utility utJoin and its community membership changes:

sti  sti [ fctg: ð1Þ

It may leave one of its own communities, say c0t by

removing its label from sti which results in utility utLeave and

changes the community membership as follows:

sti  sti=fc0tg: ð2Þ

The agent can also simultaneously switch communities:

sti  sti=fc0tg; sti  sti [ fctg: ð3Þ

Even though the switch action is not strictly necessary,

having this additional action speeds up the convergence of

the stochastic search process.

The new utility u0ti for this agent is updated as follows:

u0ti  maxfutJoin; utLeave; utSwitch; utnoOpg: ð4Þ

To reduce computation time, only communities containing

the agent’s nearest network neighbors are considered as

candidates for the join/switch operation, and we indepen-

dently identify the best communities for the join and leave

operations. If no action improves the agent’s utility, it does

not change its strategy (no operation).

The set of all communities at the tth snapshot is denoted

by Ct. We define a strategy profile St ¼ ðst1; st2; :::; stnÞ
which represents the set of all strategies of all agents,

where sti � Ct denotes the strategy of agent i, i.e., the set of

its labels at snapshot t. In our framework, for each snap-

shot, the best response strategy of an agent i with respect to

strategies St�i of other agents is calculated as:

argmax
st
i
�Ct

utiðSt�i; stiÞ ð5Þ

Agents are selected randomly, without replacement,

until all the agents have had the opportunity to play the

community formation game in order to guarantee adequate

exploration of the strategy search space. The utility func-

tion for each agent is calculated by combining the benefit

of its community memberships, based on a gain function

and subtracting losses incurred:

utiðSt�i; stiÞ ¼ gtiðSt�i; stiÞ � ltiðSt�i; stiÞ; ð6Þ

We have experimented with two variants on the gain

function for agent i.1 The first gain function is based on

similarity between agents:

gtiðStÞ ¼
1

mt

X

k2st
i

X

j2Ct
k
;j 6¼i

ctij: ð7Þ

Here, we use neighborhood similarity to quantify the

structural equivalence between users at time t:

ctij ¼

wt
ijð1� d

in;t
i d

out;t
j =2mtÞ At

ij ¼ 1;wt
ij [ ¼ 1

wt
ij=n

t At
ij ¼ 0;wt

ij [ ¼ 1

d
in;t
i d

out;t
j =4mt At

ij ¼ 1;wt
ij ¼ 0

�din;ti d
out;t
j =4mt At

ij ¼ 0;wt
ij ¼ 0

8
>>>>><

>>>>>:

ð8Þ

wt
ij is defined as the number of common neighbors pos-

sessed by nodes i and j, where common neighbors are

nodes with direct in-edges from both i and j. d
in;t
i and d

out;t
i

1 We employ the notation for directed graphs, although it is

straightforward to generalize to undirected graphs by ignoring the

in/out superscripts.

Table 1 Definition of symbols

Symbol Definition

T Set of snapshots

C Set of communities

G t Graph of tth snapshot with no self-edges

Ct Community structure of tth snapshot

Ct
k kth Community in Ct

mt, nt Number of edges and vertices of Gt

At Adjacency matrix of Gt

St Profile of strategies of tth snapshot

sti ith Agent’s strategy in tth snapshot

gti ith Agent’s gain function in tth snapshot

lti ith Agent’s loss function in tth snapshot

uti ith Agent’s utility function in tth snapshot

ctij Similarity between ith and jth agents in the tth Snapshot

Table 2 Definition of possible actions

Action Definition

Join Add a new label to sti

Leave Remove a label from sti

Switch Remove a label from sti and add a new one

No operation No action is performed
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are the in- and out-degrees of node i at snapshot t. mt and nt

are the number of edges and nodes, respectively, and pri-

marily serve as normalization constants. Note that ctij
assumes its highest value when two nodes have at least one

common neighbor and are also directly connected, i.e.,

At
ij ¼ 1. Hence, agents playing the community formation

game benefit from joining communities containing con-

nected nodes with many common neighbors.

The second gain function measures the personalized

modularity of the ith agent:

gtiðStÞ ¼
1

2mt

X

k2st
i

X

j2Ct
k
;j 6¼i

X

k02st
j

ðAt
ijdði; jÞ �

d
in;t
i d

out;t
j

2mt
jk \ k0jÞ;

ð9Þ

where k 2 sti and k0 2 stj refer to the community labels at

snapshot t that agent i and j belong to, respectively; dði; jÞ
is an indicator function that is 1 when i and j are members

of the same community. More intuitively, this gain func-

tion explains how well the ith agent fits the communities it

belongs to, compared to a randomly assigned community.

Similar to what happens in real life, we also consider the

loss function lti for each agent, which is linear in the

number of labels each agent has. This can be used to model

the intrinsic communication overhead belonging to multi-

ple communities and prevents the agents from indiscrimi-

nately joining every available community. Therefore, we

define the following loss function for agent i:

ltiðSt�i; stiÞ ¼
jstij
mt

: ð10Þ

Here sti ¼ f1; 2; :::; kg is the set of labels at snapshot

t which agent i belongs to.

In our framework, the best response strategy of the agent

i with respect to strategies St�i of other agents is calculated

by:

arg max
s0t
i
�Ct

gtiðSt�i; s0ti Þ � ltiðSt�i; s0ti Þ: ð11Þ

The strategy profile St forms a pure Nash equilibrium of

the community formation game if no agent can unilaterally

improve its own utility by changing its strategy:

8i; s0ti 6¼ sti; utiðSt�i; s0ti Þ� utiðSt�i; stiÞ: ð12Þ

A local equilibrium is reached if all agents play their

local optimal strategies:

8i; s0ti 2 lsðstiÞ; utiðSt�i; s0ti Þ� utiðSt�i; stiÞ: ð13Þ

Here lsðstiÞ refers to local strategy space of agent i,

which is the set of possible label sets it can obtain by

performing the actions defined earlier.

3.2 Existence of equilibria

The evolving community structure present in dynamic

networks is accounted for by propagating strategies from

prior snapshots. D-GT uses the same community formation

game described in Alvari et al. (2013). Since strategy

propagation only changes the initialization conditions, the

same proof of the existence of Nash equilibria in the

community formation game applies to D-GT as well; we

summarize the argument below.

To see when a certain game has Nash equilibria, recall

that potential games are a general class of games that

permit pure Nash equilibria (Nisan et al. 2007). For any

finite game, there exists a potential function H defined on

the strategy profile S of the agents that maps this profile to

some real values. This function must validate the following

condition:

8i; HðStÞ �HðSt�i; s0ti Þ ¼ utiðSt�i; s0ti Þ � utiðStÞ: ð14Þ

Equivalently, if the current strategy profile of the game

is St and the agent i switches from strategy sti to s0ti , the

potential function exactly mirrors the changes in the agent

utility. It is not hard to see that a game has at most one

potential function. A game that does possess a potential

function is called a potential game. Consequently we have

the following theorem:

Theorem 1 Every potential game has at least one pure

Nash equilibrium, namely the strategy profile S that mini-

mizes HðSÞ (Nisan et al. 2007).

Proof Let H be a potential function for this game and let

S be a pure strategy profile minimizing HðSÞ. Consider any
action performed by player i that results in a new strategy

profile S0. By assumption, HðS0Þ �HðSÞ and by the defi-

nition of a potential function,

uiðS0Þ � uiðSÞ ¼ HðSÞ �HðS0Þ. Thus, the utility of agent i

cannot increase from this move and hence S is stable (Chen

et al. 2010). h

Now we provide a sufficient condition to prove our

community formation game as a potential game and thus

address the existence of the Nash equilibrium. First we

have the following definition (Chen et al. 2010):

Definition (Locally linear function) A set of functions

ffi; 1� i� ng is locally linear with locality factor q if for

every strategy profile S, the following condition holds:

8i; fiðS�i; s0iÞ � fiðSÞ ¼ qðf ðS�iÞ � f ðSÞÞ: ð15Þ
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where f ð:Þ ¼
P

i2½n� fið:Þ. According to Theorem 2, if we

show that our gain and loss functions are locally linear,

then we can prove the existence of Nash equilibrium in our

framework.

Theorem 2 Let fgi; 1� i� ng and fli; 1� i� ng be the

sets of gain and loss functions of a community formation

game. If these sets are locally linear functions with linear

factors qG and qL, then the community formation game is a
potential game (Nisan et al. 2007).

Proof We define a potential function as HðStÞ ¼ qllðStÞ �
qggðStÞ and assume that agent iwho changes its strategy from

sti to s
0t
i . Based on the definitions of locally linear functions and

the utility functions utið:Þ, we have HðStÞ �H
ðSt�i; s0ti Þ ¼ utiðSt�i; s0ti Þ � utiðStÞ. Therefore, the community

formation game is a potential game (Chen et al. 2010). h

3.3 Algorithm

An overview of the D-GT framework is shown in Algo-

rithm 1. For every snapshot of the network, a set of agents,

one representing each node in the graph, is created to play

the community formation game. The community structure

is initialized either with a set of singleton communities or

with communities passed from previous snapshots. During

game play, an agent is randomly selected (without

replacement) from the pool; it selects an action (join, leave,

switch, or no op) by calculating the strategy that yields the

highest utility. After the agent plays, the community

structure is updated.

The game is played until the number of agents changing

their play strategy between permutations falls below the

threshold, or the maximum iteration is reached. Empiri-

cally, we have discovered that 8n is a good iteration limit

with a threshold of 5 %. Thus, if there are 1000 nodes in a

network snapshot, the community formation game is

played until fewer than 50 nodes change strategies or to the

maximum of 8000 games. Figure 1 shows an example of

the convergence in utility vs. iteration. The outer loop of

the algorithm requires iterating over M graph snapshots,

and the inner loop requires performing a maximum of 8n

iterations of the community formation game that, in the

worst case, requires considering n community choices.

Thus, the overall time complexity of D-GT is OðMn2Þ.
D-GT maintains a candidate set of multiple community

assignments per agent until the last iteration and then

selects the assignment with the highest utility function as

the final disjoint partition. In this article, we evaluate

several different variants of the procedure:

• D-GTS (D-GT with Separate runs): This version does

not employ any information from previous runs and

hence is equivalent to a static community detection

procedure.

• D-GTP (D-GT passing one Previous Snapshot): Rather

than passing strategy profiles from all previous snap-

shots, we only initialize the community formation game

with the structure from a single previous time slice. For

each snapshot Tk, we initialized communities and

agents to the existing information from Tk�1.
• D-GTG (D-GT with passing Ground Truth): D-GTG

leverages some ground truth information. A select seed

group of ground truth communities with predefined size

is used to initialize communities for snapshot Tk;

however, we do not pass any discovered community

structure to the following snapshots (similar to D-GTS).

This variation cannot be used unless some of the

agents’ community membership is known in advance.

4 Experimental results

Algorithm 1 D-GT Community Formation Game
1: Input: Snapshots T = {T 1, T 2, . . . , TM}
2: Output: Communities C = {C1, C2, . . . , CM}
3: for all T t ∈ T do
4: Initialize p ← 0
5: repeat
6: Initialize q ← 0
7: for all agents in randomized order do
8: Select best action a using Eqn. 5
9: if a = “No operation” then
10: q ← q + 1
11: else
12: Update Ct according to a
13: end if
14: end for
15: p ← p + 1
16: until p > 8 or q > threshold θ
17: end for

Fig. 1 Change in average utility summed over all nodes vs. iteration

for the Travian Trades dataset (one snapshot with 964 nodes). The

algorithm converges after 6680 iterations which requires 2.8 s to

complete
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Algorithms were evaluated together on a system with

12G of RAM and Intel CPU 2.53 GHz, and all reported

results were averaged over ten repetitions. We compare

D-GT with the following community detection baselines:

• LabelRankT2 (Xie et al. 2013). LabelRankT functions

according to the generalized LabelRank, in which each

node requires only local information during label

propagation processing. Several parameters must be

set before running the algorithm on the data; we used

the best performing values reported in the original

paper.

• iLCD3 (Cazabet et al. 2010). iLCD is another well-

known community detection approach for dynamic

social networks which works by first adding edges and

then merging the similar ones. It takes the dynamics of

the network into account.

• OSLOM4 (Lancichinetti et al. 2011). The Order Statis-

tics Local Optimization Method (OSLOM) is a versa-

tile community detection algorithm that can handle

most types of graph properties including edge direc-

tions and weights, overlapping communities, hierar-

chies and community dynamics. It is based on the local

optimization of a fitness function expressing the

statistical significance of clusters with respect to

random fluctuations.

• InfoMap5 (Rosvall and Bergstrom 2008). InfoMap is a

static community detection method that calculates the

probability flow of random walks and decomposes the

network into modules by compressing a description of

the flows. Since this is a static algorithm, we run it

separately on each snapshot.

• Louvain6 (Blondel et al. 2008). The Louvain method is

a static community detection approach designed to

optimize modularity using heuristics. Small communi-

ties are found by optimizing modularity locally for all

nodes. Then each community is grouped into a single

node, and the first step is repeated. We run this

algorithm separately on every network snapshot.

4.1 Datasets

To illustrate the strength and effectiveness of our approach,

we selected some communication networks from the

SNAP7 graph library as well as two networks (messages

and trades) from a well-known multiplayer online game.

Statistics for the datasets are provided in Table 3, and

description of the datasets is as follows:

AS-Oregon Graph (Leskovec et al. 2005). The dataset

contains 9 graphs of autonomous systems (AS) peering

information inferred from Oregon route-views between

March 31, 2001, and May 26, 2001. These 9 graphs are

different snapshots from the data with a minimum of 10,670

and maximum of 11,174 nodes. The number of edges ranges

from 21,999 in the snapshot of April 07, 2001, to 23,409 in

May 26, 2001. Figure 2 shows the number of edges added

and deleted, as well as the number of nodes involved in the

changes for the AS-Oregon dataset.

AS-Internet Routers Graph (Leskovec et al. 2005). Sim-

ilar to AS-Oregon, this is a communication network of who-

talks-to-whom from the Border Gateway Protocol logs of

routers in the Internet. The dataset contains 733 daily snap-

shots for 785 days from November 8, 1997, to January 2,

2000. The number of nodes in the largest snapshot is 6477

(with 13,233 edges). Figure 3 illustrates that the structure of

the graph can change dramatically at each snapshot.

Enron Email (Sun et al. 2007). The Enron Email network

contains e-mail message data from 150 users, mostly senior

management of Enron Inc., from January 1999 to July 2002.

Each e-mail address is represented by an unique ID in the

dataset, and each link corresponds to a message between the

sender and the receiver. After a data refinement process, we

simulate the network evolution via a series of 12 growing

snapshots from January 2000 to December 2000. Enron

network changes are shown in Fig. 4.

Travian8 (Hajibagheri et al. 2015) Travian is a popular

browser-based real-time strategy game with more than 5

million users. Players seek to improve their production

capacity and construct military units in order to expand

their territory through a combination of colonization and

conquest. Each game cycle lasts a fixed period (a few

months) during which time the players vie to complete

construction on one of the Wonders of the World. To do

this, they form alliances of up to 60 members under a

leader or a leadership team; in this article, these alliances

are used as the ground truth for evaluating the community

detection procedure.

Travian has an in-game messaging system (IGM) for

player communication which was used to create our mes-

sages network. Each player can submit a request to trade a

specific resource. If another player finds this request

interesting, he/she can accept it and the trade will occur;

these data were used to build the Trade network. About

70 % of messages are exchanged between users in the

same alliance (community), making it more predictive of

community structure than the Trades network since only

30 % of edges in this network represent trades occurred

2 https://sites.google.com/site/communitydetectionslpa.
3 http://www.cazabetremy.fr/iLCD.html.
4 http://www.oslom.org/software.htm.
5 http://www.mapequation.org/code.html.
6 https://sites.google.com/site/findcommunities.
7 http://snap.stanford.edu/. 8 http://ial.eecs.ucf.edu/travian.php.
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between players within the same alliance. The structural

changes in both Travian datasets are shown in Figs. 5

and 6.

HEP-PH Citation Graph (Leskovec et al. 2005). The

HEPPH (high-energy physics theory) citation graph from

the e-print arXiv covers all the citations within a dataset of

n ¼ 29; 555 papers with e ¼ 352; 807 edges. If a paper

i cites paper j, the graph contains a directed edge from i to

j. If a paper cites, or is cited by, a paper outside the dataset,

the graph does not contain any information about this.

These data cover papers in the period from January 1993 to

March 2002. There are ten snapshots where each snapshot

includes data from twelve months except the last snapshot

which only contains edges from the first three months of

2002 (Fig. 7).

4.2 Metrics

We evaluated the performance of all methods using the

following metrics.

4.2.1 Normalized mutual information

One way to measure the performance of a community

detection algorithm is to determine how similar the parti-

tion delivered by the algorithm is to the desired partition,

Table 3 Dataset summary
Data Oregon Internet Enron Travian (Messages) Travian (Trades) Hep-ph

Min # of nodes 10,670 2948 101 1373 964 12,711

Max # of nodes 11,174 6477 137 2100 1336 34,401

Min # of edges 21,999 3386 1432 8511 8080 39,981

Max # of edges 23,409 13,233 5015 19,242 10,221 51,485

# of snapshots 9 733 12 30 30 10

Fig. 2 The structural changes in the AS-Oregon dataset over 9

snapshots including the number of edges deleted ðE�Þ and added

ðEþÞ, as well as the number of nodes involved in changes ðNþ�Þ. The

community detection problem becomes more challenging when there

are significant structural changes between snapshots

Fig. 3 The structural changes in the AS-Internet dataset over 733 snapshots

Fig. 4 The structural changes in the Enron dataset over 12 snapshots
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assuming ground truth information about the community

membership exists. Out of several existing mea-

sures (Fortunato 2010), we selected the standard version of

normalized mutual information (NMI) (Danon et al. 2005),

which is computed as follows:

InormðX; YÞ ¼
2IðX; YÞ

HðXÞ þ HðYÞ ; ð16Þ

where I(X, Y) is mutual information between two random

variables X and Y (i.e., two community parti-

tions) (MacKay 2003):

IðX;YÞ ¼
X

x

X

y

Pðx; yÞ log Pðx; yÞ
PðxÞPðyÞ ; ð17Þ

Here P(x) indicates the probability that X ¼ x and joint

probability P(x, y) equals to PðX ¼ x; Y ¼ yÞ. H(X) and

H(Y) are the entropies of X and Y, respectively. NMI lies in

the range [0,1], equaling one when two partitions X and

Y are exactly identical and zero when they are totally

independent. Code to calculate NMI can be downloaded at:

https://sites.google.com/site/andrealancichinetti/software.

4.2.2 Modularity

Modularity measures the difference between the number of

intra-community edges for a given community partition

versus a random distribution of edges; it is the most pop-

ular qualitative measure in detecting communities in social

networks. However, it has been shown that modularity has

drawbacks and becomes unreliable when networks are too

sparse (Fortunato and Barthelemy 2007). It is also useful to

examine the number of detected communities in conjunc-

tion with modularity to ensure that the algorithm is not

being overly aggressive about combining small communi-

ties in order to maximize overall network modularity.

Standard modularity Q is usually defined as follows:

Q ¼ 1

2m

X

ij

Aij �
didj

2m

� �
dci;cj ð18Þ

where Aij is an element of the adjacency matrix, dij is the
Kronecker delta symbol, and ci is the label of the com-

munity to which vertex i is assigned. However, modularity

can be slightly different for directed networks (Leicht and

Newman 2008) and can then be reformulated as:

Q ¼ 1

m

X

ij

Aij �
dini d

out
j

m

" #
dci;cj ð19Þ

where Aij is defined in the conventional manner to be 1 if

there is an edge from i to j and zero otherwise. Here, the

probability of the existence of an edge from vertex i to

vertex j has the probability dini d
out
j =m, where dini and doutj

are the in- and out-degrees of the vertices, respectively.

4.3 Evaluation

In this article, we examine four research questions:

1. how does the gain function influence community

detection performance?

2. does the initialization procedure affect the perfor-

mance of dynamic community detection?

3. how does D-GT perform vs. the competitor methods?

4. in cases where the community membership of a small

number of the agents is known, can it be used to

improve D-GT’s performance?

Fig. 5 The structural changes in the Travian Trades dataset over 30 snapshots

Fig. 6 The structural changes in the Travian messages dataset over 30 snapshots
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We analyze the performance of the D-GT variants vs.

LabelRankT, iLCD, OSLOM, InfoMap and Louvain on the

two metrics, normalized mutual information (NMI) and

modularity. We hypothesize that D-GT with the modularity

gain function will perform well on the modularity evalua-

tion metric, since its stochastic search process essentially

optimizes local modularity. Also D-GT’s initialization

procedure will not necessarily help the modularity opti-

mization process since it can be performed effectively

without considering community evolution through time.

This suggests that D-GTS is a good candidate for the

modularity evaluation metric.

However, in most real-world communities, prior com-

munity membership is a good predictor of future mem-

bership. Thus, we believe that D-GT is more effective at

discovering the real community structure as measured by

the normalized mutual information (NMI) evaluation

metric. Our previous work (Alvari et al. 2011) has shown

that the neighborhood similarity function is a good gain

function for recovering the true community structure so we

hypothesize that D-GT (similarity) is the best choice for

NMI.

Figure 8 shows the average performance of all the D-GT

variants with the similarity gain function versus OSLOM,

LabelRankT, iLCD, InfoMap and Louvain. Note that it is

not possible to calculate the NMI performance on the AS-

Internet, AS-Oregon, Enron and hep-ph datasets since we

do not have ground truth community structure; for the

Travian datasets, we use the alliance membership to cal-

culate the NMI. D-GT (similarity) outperforms all other

methods (p\0:01) on this metric.

In D-GT, each node’s community membership vector is

initialized as the superset of all communities that it has

been a member of at any time step. If most of the nodes

have remained within the same communities, the correct

structure is quickly discovered. In cases where there are

cyclic temporal patterns, there is clearly some value in

considering earlier community assignments.

As predicted, it outperforms the more myopic D-GTS

(that uses no prior information) and D-GTP (one previous

snapshot); paired t test comparisons on the two Travian

datasets are significant at the p\0:01 level. Figure 9 shows

that D-GT (similarity) is more successful than the other

D-GT variants at correctly predicting the number of com-

munities, as measured by summed absolute difference

between predicted and actual community numbers (lower

is better). Note that it is possible to do acceptably well on

the NMI metric while still incorrectly estimating the actual

number of communities in the dataset. OSLOM also per-

forms well on both metrics (NMI and number of

communities).

It is also useful to look at how the number of predicted

communities varies between consecutive snapshots. In

most cases, the number of communities should remain

relatively stable, since the structure of real-world com-

munities rarely changes completely in short period of time.

This is definitely true in Travian, where the number of

alliances changes relatively slowly. Figure 10 shows the

number of predicted communities vs. time on the Travian

(Trades) dataset; all of the methods make more consistent

predictions over time than LabelRankT.

Table 4 shows the average performance of all the D-GT

variants vs. OSLOM, LabelRankT, iLCD, InfoMap and

Louvain at optimizing modularity. Bold font shows the

absolute best performing algorithm, with italics marking

the best performing D-GT variant. All D-GT variants are

competitive at optimizing modularity, but none are

exceptional. They outperform the other dynamic algo-

rithms (iLCD, LabelRankT) but rarely the static commu-

nity detection algorithms (Louvain and InfoMap). This is

unsurprising since the modularity metric does not intrin-

sically reward preserving continuity between snapshots.

D-GT (similarity) continues to perform well, as does

D-GTS (modularity).

In some scenarios, it is plausible that the community

membership of a small number of agents is known in

advance, and the community detection procedure should

leverage this information. For instance, MMOG game

alliances often have a leadership council that is publicly

known. To handle this problem, we developed a variant (D-

GTG: D-GT with passing Ground Truth). Figure 11 shows

the performance improvements from increasing the size of

the seed groups from 0–20 % of the total number of agents

for the Travian (Messages) dataset, and Fig. 12 shows the

performance increase for Travian (Trades). Note that

extracting community membership information from the

Fig. 7 The structural changes in hep-ph dataset over 10 snapshots
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network structure of Travian (Trades) is a difficult problem

because only 30 % of the edges in Travian (Trades) occur

between players within the same alliance (community).

Also the dataset has a high number of isolated nodes; about

50 % of the nodes do not belong to any alliance.

Table 5 shows the running time of all algorithms on our

largest datasets, the AS-Internet dataset (with the highest

number of snapshots) and hep-ph (with the highest number

of nodes). Overall, the running times provided by all

algorithms were quite reasonable, as there are 733 snap-

shots in the Internet dataset and over 10,000 and 30,000

nodes in Oregon and hep-ph, respectively. InfoMap is the

fastest algorithm on two datasets (Internet and hep-ph) and

performs almost as well as OSLOM on third one (Oregon).

All of the algorithms are sufficiently fast to run on large

datasets.

5 Conclusion

This article analyzes the performance of our game-theo-

retic community detection algorithm, D-GT, on dynamic

social networks. These social networks are very common in

massively multiplayer online games, such as Travian,

where players self-organize into rapidly changing guilds

and alliances. We show that D-GT’s initialization proce-

dure in combination with the similarity gain function is

very effective at recovering the true community structure

Fig. 8 Normalized mutual

information (NMI) evaluation

metric on the two Travian

datasets with ground truth

community membership

information; results are

averaged over all snapshots. The

variants of D-GT are colored in

purple, LabelRankT (red),

OSLOM (Indian red), iLCD

(yellow), InfoMap (gray) and

Louvain (blue)

Fig. 9 Absolute difference

between the predicted number

of communities and the actual

number for the two Travian

datasets. D-GT (with the

similarity gain function) and

OSLOM achieve the best

performance overall at correctly

predicting the number of

alliances. (Since this serves a

prediction error measurement,

lower is better.)

Fig. 10 Number of predicted communities versus time for the

Travian (Trades) dataset. LabelRankT’s (red) predicted number of

communities varies drastically between time steps, whereas all other

algorithms make more consistent predictions
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of the network, both in terms of predicting the number of

communities and the players’ community membership

vectors. It outperforms other dynamic community detection

methods including LabelRankT, iLCD and OSLOM. In

cases where the communities of a small number of players

(e.g., the guild leadership) is known, D-GT can leverage

the information to improve the NMI performance. When

simply optimizing modularity, considering earlier com-

munity membership is less important and static community

detection algorithms (InfoMap and Louvain) perform well

at this task, but all variants of D-GT offer competitive

performance.

One nice aspect of D-GT is that it is an easily extensible

framework. In future work, we plan to experiment with

other utility functions, loss functions and update rules; for

instance, Q-learning could be used as the update rule for

the agents instead of the community membership game.

We also believe that it is feasible to reduce the runtime of

D-GT by creating approximate versions of the gain func-

tion that can be calculated based on local edge updates.
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