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Abstract We develop a model in which interactions

between nodes of a dynamic network are counted by non-

homogeneous Poisson processes. In a block modelling

perspective, nodes belong to hidden clusters (whose num-

ber is unknown) and the intensity functions of the counting

processes only depend on the clusters of nodes. In order to

make inference tractable, we move to discrete time by

partitioning the entire time horizon in which interactions

are observed in fixed-length time sub-intervals. First, we

derive an exact integrated classification likelihood criterion

and maximize it relying on a greedy search approach. This

allows to estimate the memberships to clusters and the

number of clusters simultaneously. Then, a maximum

likelihood estimator is developed to estimate nonparamet-

rically the integrated intensities. We discuss the over-fitting

problems of the model and propose a regularized version

solving these issues. Experiments on real and simulated

data are carried out in order to assess the proposed

methodology.

Keywords Dynamic network � Stochastic block model �
Exact ICL � Non-homogeneous Poisson process

1 Introduction

Graph clustering (Schaeffer 2007) is probably one of the

main exploratory tools used in network analysis as it pro-

vides data analysts with a high level summarized view of

complex networks. One of the main paradigms for graph

clustering is community search (Fortunato 2010): a com-

munity is a subset of nodes in a graph that are densely

connected and have relatively few connections to nodes

outside of the community. While this paradigm is very

successful in many applications, it suffers from a main

limitation: it cannot be used to detect other important

structures that arise in graphs, such as bipartite structures,

hubs, authorities and other patterns.

The alternative solution favoured in this paper is pro-

vided by block models (Lorrain and White 1971; White

et al. 1976): in such a model, a cluster consists of nodes

that share the same connectivity patterns to other clusters,

regardless of the pattern itself (community, hub, bipartite,

etc.). A popular probabilistic view on block models is

provided by the stochastic block model (SBM, Holland

et al. 1983; Wang and Wong 1987). The main idea is to

assume that a hidden random variable is attached to each

node. This variable contains the cluster membership

information while connection probabilities between clus-

ters are handled by the parameters of the model. The reader

is send to Goldenberg et al. (2009) for a survey of proba-

bilistic models for graphs and to Wasserman and Faust

(1994), Ch.16, for an overview of the stochastic block

models.

This paper focuses on dynamic graphs in the following

sense: we assume that nodes of the graph are fixed and that

interactions between them are directed and take place at a

specific instant. In other words, we consider a directed

multigraph (two nodes can be connected by more than one

edge) in which each directed edge is labelled with an

occurrence time. We are interested in extending the SBM

to this type of graphs. More precisely, the proposed model

is based on a counting process point of view of the inter-

actions between nodes: we assume that the number of
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interactions between two nodes follows a non-homoge-

neous Poisson counting process (NHPP). As in a standard

SBM, nodes are assumed to belong to clusters that do not

change over time; thus, the temporal aspect is handled only

via the non-homogeneity of the counting processes. Then,

the block model hypothesis takes the following form: the

intensity of the NHPP that counts interactions between two

nodes depends only on the clusters of the nodes. In order to

obtain a tractable inference, a segmentation of the time

interval under study is introduced and the interactions are

aggregated over the sub-intervals of the partition. Follow-

ing Côme and Latouche (2015), the model is adjusted to

the data via the maximization of the integrated classifica-

tion likelihood (ICL Biernacki et al. 2000) in an exact

form. As in Côme and Latouche (2015) (and Wyse et al.

(2014) for latent block models), the maximization is done

via a greedy search. This allows us to choose automatically

the number of clusters in the block model.

When the number of sub-intervals is large, the model

can suffer from a form of over-fitting as the ICL penalizes

only a large number of clusters. Therefore, we introduce a

variant, based on the model developed in Corneli et al.

(2015), in which sub-intervals are clustered into classes of

homogeneous intensities. Those clusters are accounted for

in a new version of the ICL which prevents over-fitting.

This paper is structured as follows: in Sect. 2, we

mention works related to the approach we propose, Sect. 3

presents the proposed temporal extension of the SBM and

Sect. 4 derives the exact ICL for this model and presents

the greedy search algorithm used to maximize the ICL.

Section 5 gathers experimental results on simulated data

and on real-world data. Section 6 concludes the paper.

2 Related works

Numerous extensions of the original SBM have already

been proposed to deal with dynamic graphs. In this context,

both nodes memberships to a cluster and interactions

between nodes can be seen as stochastic processes. In Yang

et al. (2011), for instance, authors introduce a Markov

Chain to obtain the cluster of node in t given its cluster at

time t � 1. Xu and Hero (2013) as well as Xing et al.

(2010) used a state space model to describe temporal

changes at the level of the connectivity pattern. In the

latter, the authors developed a method to retrieve over-

lapping clusters through time. In general, the proposed

temporal variations of the SBM share a similar approach:

the data set consists in a sequence of graphs rather than the

more general structure we assume. Some papers remove

those assumptions by considering continuous time models

in which edges occur at specific instants (for instance,

when someone sends an email). This is the case of e.g.

Dubois et al. (2013) and of Guigourès et al. (2012, 2015).

A temporal stochastic block model, related to the one

presented in this paper, is independently developed by

Matias et al. (2015). They assume that nodes in a network

belong to clusters whose composition do not change over

time and interactions are counted by a non-homogeneous

Poisson process whose intensity only depends on the nodes

clusters. In order to estimate (nonparametrically) the

instantaneous intensity functions of the Poisson processes,

they develop a variational EM algorithm to maximize an

approximation of the likelihood.

3 The model

We consider a fixed set of N nodes, f1; . . .;Ng, that can
interact as frequently as wanted during the time interval

[0, T]. Interactions are directed from one node to another

and are assumed to be instantaneous.1 A natural mathe-

matical model for this type of interactions is provided by

counting processes on [0, T]. Indeed a counting process is a

stochastic process with values that are non-negative inte-

gers increasing through time: the value at time t can be

seen as the number of interactions that took place from 0 to

t. Then, the classical adjacency matrix ðXijÞ1� i;j�N of static

graphs is replaced by a N � N collection of counting pro-

cesses, ðXijðtÞÞ1� i;j�N , where XijðtÞ is the counting process

that gives the number of interactions from node i to node j.

We still call X ¼ ðXijðtÞÞ1� i;j�N the adjacency matrix of

this dynamical graph.

We introduce in this section a generative model for

adjacency matrices of dynamical graphs that is inspired by

the classical stochastic block model (SBM).

3.1 Non-homogeneous Poisson counting process

We first chose a simple form for XijðtÞ: we assume that this

process is a non-homogeneous Poisson counting process

(NHPP) with instantaneous intensity given by the function

from [0, T] to R; kij. For s� t� T , it then holds

pðXijðtÞ � XijðsÞjkijÞ ¼
R t
s
kijðuÞdu

� �XijðtÞ�XijðsÞ

ðXijðtÞ � XijðsÞÞ!
exp �

Z t

s

kijðuÞdu
� �

;

ð1Þ

where XijðtÞ � XijðsÞ is the (non-negative) number of

interactions from i to j that took place during [s, t]. (We

assume that Xijð0Þ ¼ 0.)

1 In practice, the starting time of an interaction with a duration will

be considered.
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3.2 Block modelling

The main idea of the SBM (Holland et al. 1983; Wang and

Wong 1987) is to assume that nodes have some (hidden)

characteristics that solely explain their interactions, in a

stochastic sense. In our context, this means that rather than

having pairwise intensity functions kij, those functions are

shared by nodes that have the same characteristics.

In more technical terms, we assume the nodes are

grouped in K clusters (A1; . . .;AK) and introduce a hidden

cluster membership random vector z 2 f1; . . .KgN such

that

zi ¼ k iff i 2 Ak; k�K:

The random component zi is assumed to follow a multi-

nomial distribution with parameter vector x such that

Pfzi ¼ kg ¼ xk with
X

k�K

xk ¼ 1:

In addition, the ðziÞ1� i�N are assumed to be independent

(knowing x) and thus

pðzjx;KÞ ¼
Y

k�K

xjAk j
k ; ð2Þ

where jAkj denotes the cardinal of Ak. Notice that this part

of the model is exactly identical to what is done in the

classical SBM.

In a second step, we assume that given z, the counting

processes XijðtÞ are independent and in addition that the

intensity function kij depends only on zi and zj. In order to

keep notations tight, we denote kzizj the common intensity

function and we will not use directly the pairwise intensity

functions kij. We denote k the matrix valued intensity

function k ¼ ðkkgðtÞÞ1� k;g�K .

Combining all the assumptions, we have for s� t� T

pðXðtÞ � XðsÞjz; kÞ ¼
Y

i6¼j

R t
s
kzizjðuÞdu

� �XijðtÞ�XijðsÞ

ðXijðtÞ � XijðsÞÞ!

� exp �
Z t

s

kzizjðuÞdu
� �

:

ð3Þ

3.3 Discrete time version

In order to make inference tractable, we move from the con-

tinuous time model to a discrete time one. This is done via a

partition of the interval [0, T] based on a set ofU þ 1 instants

0 ¼ t0 � t1 � � � � � tU�1 � tU ¼ T ;

that defines U intervals Iu :¼ ½tu�1; tu½ (with arbitrary length
Du). The purpose of the partition is to aggregate the

interactions. Let us denote

YIu
ij :¼ XijðtuÞ � Xijðtu�1Þ; u 2 f1; . . .;Ug: ð4Þ

In words, YIu
ij measures the increment, over the time

interval Iu, of the Poisson process counting interactions

from i to j. We denote by Yij the random vector

Yij :¼ YI1
ij ; . . .; Y

IU
ij

� �T
:

Thanks to the independence of the increments of a Poisson

process, we get the following joint density:

p Yijjkij
� �

¼
YU

u¼1

R
Iu
kijðsÞds

� �YIu
ij

YIu
ij !

exp �
Z

Iu

kijðsÞds
� �

0

B
@

1

C
A:

ð5Þ

The variations of kij inside an interval Iu have no effect on

the distribution of Yij. This allows us to use the integrated

intensity function K defined on [0, T] by

KijðtÞ :¼
Z t

0

kijðsÞds:

In addition, we denote by pIuij the increment of the inte-

grated intensity function over Iu

pIuij :¼ KijðtuÞ � Kijðtu�1Þ; 8u 2 f1; . . .;Ug:

Then, Eq. (5) becomes

p Yijjpij
� �

¼
YU

u¼1

pIuij
� �YIu

ij

YIu
ij !

exp �pIuij
� �

0

B
@

1

C
A; ð6Þ

with pij :¼ ðpI1ij ; . . .; p
IU
ij Þ

T
.

Using the block model assumptions, we have in addition

p Yijjpzizj ; zi; zj
� �

¼
YU

u¼1

pIuzizj

� �YIu
ij

YIu
ij !

exp �pIuzizj

� �
0

B
@

1

C
A; ð7Þ

where we have used the fact that kij ¼ kzizj (which leads to

Kij ¼ Kzizj , etc.).

Considering the network as a whole, we can introduce two

tensors of order 3. Y is a N � N � U random tensor whose

element (i, j, u) is the random variable YIu
ij and p is the K �

K � U tensorwhose element (k, g, u) ispIukg.Y canbe seenas an

aggregated (or discrete timeversion) of the adjacencyprocessX

while p can be seen as summary of the matrix valued intensity

function k.

The conditional independence assumption of the block

model leads to

p Y jp; zð Þ ¼
YN

i;j

p Yijjpzizj ; zi; zj
� �

: ð8Þ
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To simplify the rest of the paper, we will use the following

notations

Y

i;j

Y

k;g

Y

u

:¼
YN

i¼1

YN

j¼1

YK

k¼1

YK

g¼1

YU

u¼1

Y

zi¼k

Y

zj¼g

 !

:¼
Y

i :

zi ¼ k

Y

j :

zj ¼ g

0

B
B
B
B
B
@

1

C
C
C
C
C
A
:

The joint distribution of Y, given z and p, is

p Y jz; pð Þ ¼
Y

i;j

Y

u

pIuzizj

� �YIu
ij

YIu
ij !

exp �pIuzizj

� �
0

B
@

1

C
A

¼
Y

k;g

Y

u

pIuk;g

� �Skgu

Pkgu

exp �jAkjjAgjpIukg
� �

0

B
@

1

C
A;

ð9Þ

where

Skgu ¼
X

zi ¼ k

X

zj ¼ g

YIu
ij ;

is the total number of interactions from cluster k to cluster

g (possibly equal to k) and with

Pkgu ¼
Y

zi ¼ k

Y

zj¼g

YIu
ij !:

3.4 A constrained version

As will be shown in Sect. 4.4, the model presented thus far

is prone to over-fitting when the number of sub-intervals U

is large compared to N. Additional constraints on the

intensity functions fKkgðtÞgk;g�K are needed in this

situation.

Let us consider a fixed pair of clusters (k, g). So far, the

increments fpIukggu�U are allowed to differ on each Iu over

the considered partition. A constraint can be introduced by

assigning the time intervals ðI1; . . .IUÞ to different time

clusters and assuming that increments are identical for all

the intervals belonging to the same time cluster. Formally,

we introduce D clusters (C1; . . .; CD) and a hidden random

vector y 2 f0; 1gU , labelling memberships

yu ¼ d iff Iu 2 Cd:

Each yu is assume to follow a multinomial distribution

depending on parameter q

Pfyu ¼ dg ¼ qd with
X

d�D

qd ¼ 1;

and in addition, the yu are assumed to be independent,

leading to

pðyjq;DÞ ¼
Y

d�D

qjCd jd : ð10Þ

The random variable YIu
ij is now assumed to follow the

conditional distribution

p YIu
ij jz; y

� �
¼

pyuzizj

� �YIu
ij

YIu
ij !

exp �pyuzizj

� �
: ð11Þ

Notice that the new Poisson parameter pyuzizj replaces p
Iu
zizj

in

the unconstrained version. The joint distribution of Y, given

z and y, can easily be obtained

p Y jz;y;pð Þ ¼
Y

k;g

Y

d

pdkg

� �Skgd

Pkgd

exp �jAkjjAgjjCdjpdkg
� �

0

B
@

1

C
A;

ð12Þ

where

Skgd ¼
X

zi ¼ k

X

zj ¼ g

X

yu¼d

YIu
ij ; Pkgd ¼

Y

zi ¼ k

Y

zj¼g

Y

yu¼d

YIu
ij !:

Remark 1 The introduction of this hidden vector y is not

the only way to impose regularity constraints to the inte-

grated function KkgðtÞ. For example, a segmentation con-

straint could be imposed by forcing each temporal cluster

to contain only adjacent time intervals.

3.4.1 Summary

We have defined two generative models:

Model A the model has two meta-parameters, K the

number of clusters and x the parameters of a

multinomial distribution on f1; . . .;Kg. The
hidden variable z is generated by the

multivariate multinomial distribution of

Eq. (2). Then, the model has a K � K � U

tensor of parameters p. Given z and p, the
model generates a tensor of interaction counts

Y using Eq. (9).

55 Page 4 of 14 Soc. Netw. Anal. Min. (2016) 6:55

123



Model B is a constrained version of model A. In addition

to the meta-parameters K and x of model A, it

has two meta-parameters, D the number of

clusters of time sub-intervals and q the

parameters of a multinomial distribution on

f1; . . .;Dg. The hidden variable y is generated

by the multivariate multinomial distribution of

Eq. (10). Model B has a K � K � D tensor of

parameters p. Given z; y and p, the model

generates a tensor of interaction counts Y using

Eq. (12).

Unless specified otherwise ‘‘the model’’ is used for

model A.

4 Estimation

4.1 Nonparametric estimation of integrated

intensities

In this section, we assume that z is known. No hypothesis

has been formulated about the shape of the functions

fKkgðtÞgfk;g�K;t�Tg and the increments of these functions

over the partition introduced can be estimated by maximum

likelihood (ML), thanks to Eq. (9)

logL pjY ; zð Þ ¼
X

k;g

X

u

Skgu log pIukg

� �
� jAkjjAgjpIukg þ c

h i
;

where c denotes those terms not depending on p. It

immediately follows

p̂Iukg ¼
Skgu

jAkjjAgj
; 8ðk; gÞ; ð13Þ

where p̂Iukg denotes the ML estimator of pIukg. In words,

KkgðtuÞ � Kkgðtu�1Þ can be estimated by ML as the total

number of interactions on the sub-graph corresponding to

the connections from cluster Ak to cluster Ag, over the time

interval Iu, divided by the number of nodes on this sub-

graph. Once the tensor p has been estimated, we have a

pointwise, nonparametric estimator of KkgðtuÞ, for every

u�U, defined by

K̂kgðtuÞ ¼
Xu

l¼1

p̂Ilkg; 8ðk; gÞ: ð14Þ

Thanks to the properties of the ML estimator, together with

the linearity of (14), we know that K̂kgðtuÞ is an unbiased

and convergent estimator of KkgðtuÞ.

Remark 2 Estimator (14) at times ftugu�U , can be viewed

as an extension to random graphs and mixture models of

the nonparametric estimator proposed in Leemis (1991). In

that article, N-trajectories of independent NHPPs, sharing

the same intensity function, are observed and the proposed

estimator is basically obtained via method of moments.

In all the experiments, we consider the following step-

wise linear estimator of KkgðtÞ

K̂kgðtÞ ¼
XU

u¼1

K̂kgðtu�1Þ þ
K̂kgðtuÞ � K̂kgðtu�1Þ

tu � tu�1

ðt � tu�1Þ
" #

1½tu�1;tu½ðtÞ;

ð15Þ

which is a linear combination of estimators in Eq. (14) on

the interval [0, T]. This is a consistent and unbiased esti-

mator of KkgðtÞ at times ftugu�U only.

When considering model B, Eqs. (13) and (14) are

replaced by

p̂dkg ¼
Skgd

jAkjjAgjjCdj
ð16Þ

K̂kgðtuÞ ¼
Xu

l¼1

p̂ylkg: ð17Þ

Equation (15) remains unchanged, but an important dif-

ference between the constrained model and the uncon-

strained one should be understood: in the former, each

interval Iu corresponds to a different slope for the function

K̂kgðtÞ, whereas in the latter we only have D different

slopes, one for each time cluster.

4.2 ICL

Since the vector z, as well as the number of clusters K are

unknown, estimator (13) cannot be used directly. Hence,

we propose a two step procedure consisting in

1. providing estimates of z and K,

2. using these estimates to implement (13) and (14).

To accomplish the first task, the same approach followed in

Côme and Latouche (2015) is adopted: we directly maxi-

mize the joint integrated log likelihood of complete data

(ICL), relying on a greedy search over the labels and

number of clusters. To perform such a maximization, we

need the ICL to have an explicit form. This can be achieved

by introducing conjugated prior distributions on the model

parameters. The ICL can be written as

ICLðz;KÞ :¼ logðpðY ; zjKÞÞ ¼ logðpðY jz;KÞÞ þ logðpðzjKÞÞ:
ð18Þ

This exact quantity is approximated by the well-known

ICL criterion (Biernacki et al. 2000). This criterion,

obtained through Laplace and Stirling approximations of

the joint density on the left-hand side of Eq. (18), is used as

a model selection tool, since it penalizes models with a
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high number of parameters. In the following, we refer to

the joint log density in Eq. (18) as to the exact ICL to

differentiate it from the ICL criterion.

We are now going to study in detail the two quantities

on the r.h.s. of the above equation. The first probability

density is obtained by integrating out the parameter p

pðY jz;KÞ ¼
Z

pðY ; pjz;KÞdp:

In order to have an explicit formula for this term, we

impose the following Gamma prior conjugated density

over the tensor p:

pðpja; bÞ ¼
Y

k;g;u

ba

CðaÞ p
a�1
kgu e

�bpkgu ;

where the hyper-parameters of the Gamma prior distribu-

tion have been set constant to a and b for simplicity.2 By

using the Bayes rule

pðY ; pjzÞ ¼ pðYjp; zÞpðpja; bÞ;

we get:

pðY ; pjzÞ ¼
Y

k;g;u

ba

CðaÞPkgu

pSkguþa�1

kgu

� exp �pkgu jAkjjAgj þ b
� 	� �

;

which can be integrated with respect to p to obtain

pðY jz;KÞ ¼
Y

k;g;u

ba

CðaÞPkgu

C½Skgu þ a�
jAkjjAgj þ b
� 	ðSkguþaÞ

" #

: ð19Þ

We now focus on the second density on the right-hand side

pðzjKÞ ¼
Z

pðz;xjKÞdx:

A Dirichlet prior distribution can be attached to w in order

to get an explicit formula, in a similar fashion of what we

did with p:

mðxjKÞ ¼ DirKðx; a; . . .; aÞ:

The integrated density pðzjKÞ can be proven to reduce to

pðzjKÞ ¼ CðaKÞ
CðaÞK

Q
k�K CðjAkj þ aÞ
CðN þ aKÞ ð20Þ

4.3 Model B

When considering the constrained framework described at

the end of the previous section, the ICL is defined

ICLðz; y;K;DÞ :¼ logðpðY ; z; yjK;DÞÞ
¼ logðpðY jz; yÞÞ þ logðpðzjKÞÞ þ logðpðyjDÞÞ

and it is maximized to provide estimates of z; y;K andD. The

first density on the right-hand side is obtained by integrating

out the hyper-parameter p. This integration can be done

explicitly by attaching top the following prior density function

mðpja; bÞ ¼
Y

k;g

Y

d

ba

CðaÞ p
a�1
kgd e

�bpkgd :

The second integrated density on the right-hand side can be

read in (20) and the third is obtained by integrating out the

parameter q, whose prior density function is assumed to be

mðqjDÞ ¼ DirDðq; b; . . .; bÞ:

The exact ICL is finally obtained by taking the logarithm of

pðY ; z; yjK;DÞ ¼
Y

k;g;d

ba

CðaÞPkgd

C½Skgd þ a�
jAkjjAgjjCdj þ b
� 	ðSkgdþaÞ

� CðaKÞ
CðaÞK

Q
k�K CðjAkj þ aÞ
CðN þ aKÞ

� CðbDÞ
CðbÞD

Q
d�D CðjCdj þ bÞ
CðU þ bDÞ :

ð21Þ

4.4 Greedy search

By setting conjugated prior distributions over the model

parameters, we obtained an ICL (Eq. (18)) in an explicit

form. Nonetheless, explicit formulas to maximize it, with

respect to z and K, do not exist. We then rely on a greedy

search algorithm, which has been used to maximize the

exact ICL, in the context of a standard SBM, by Côme

and Latouche (2015). This algorithm basically works as

follows:

1. An initial configuration for both z and K is set

(standard clustering algorithms like k-means or hier-

archical clustering can be used).

2. Labels switches leading to the highest increase in the

exact ICL are repeatedly made. A label switch consists

in a merge of two clusters or in a node switch from one

cluster to another.

Remark 3 The greedy algorithm described in this section,

makes thebest choice locally.Aconvergence towards theglobal

optimum in not guaranteed and often this optimum can only be

approximated by a local optimum reached by the algorithm.

Remark 4 The exact ICL (as well as the ICL criterion)

penalizes the number of parameters. Since the tensor p has

dimension K � K � U, when U, which is fixed, is very

2 The model can easily be extended to the more general framework:

p pkgujakgu; bkgu
� �

¼ Gammaðpkgujakgu; bkguÞ:
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hight, the ICL will take its maximum for K ¼ 1. In other

words, the only way the ICL has to make the model more

parsimonious is to reduce K up to one. By doing so, any

community (or other) structure will not be detected. This

over-fitting problem has nothing to see with the possible

limitations of the greedy search algorithm and it can be

solved by switching to model B.

Once Kmax has been fixed, together with an initial value

of z, a shuffled sequence of all the nodes in the graph is

created. Each node in the sequence is moved to the cluster,

leading to the highest increase in the ICL, if any. This

procedure is repeated until no further increase in the ICL is

still possible. Henceforth, we refer to this step as to Greedy

Exchange (G E). When maximizing the modularity score

to detect communities, the G E usually is a final refinement

step to be adopted after repeatedly merging clusters of

nodes. In that context, moreover, the number of clusters is

initialized to U and each node is alone in its own cluster.

See, for example Noack and Rotta (2008). Here, we follow

a different approach, proposed by Côme and Latouche

(2015) and Blondel et al. (2008): after running the GE , we

try to merge the remaining clusters of nodes in the attempt

to increase the ICL. In this final step (henceforth G M), all

the possible merges are tested and the best one is retained.

The ICL does not have to be computed before and after

each swap/merge: possible increases can be assessed

directly. When switching one node (say i) from cluster Ak0

to Al, with k0 6¼ l, the change in the ICL is given by3

Dk0!l ¼ ICLðz�;KÞ � ICLðz;KÞ:

The only statistics not simplifying are those involving k0

and l; hence, the equation above can be read as follows

Dk0!l :¼ log
C jAk0 j � 1þ að ÞC jAlj þ 1þ að Þ

C jAk0 j þ að ÞC jAlj þ að Þ

� �

þ
X

g�K

X

u�U

log L�k0gu

� �
þ
X

g�K

X

u�U

log L�lgu

� �

þ
X

k�K

X

u�U

log L�kk0u
� �

þ
X

k�K

X

u�U

log L�klu
� �

�
X

u

log L�k0k0u
� �

þ log L�k0lu
� �

þ log L�lk0u
� �

þ log L�llu
� �� �

�
X

g�K

X

u�U

log Lk0gu
� �

�
X

g�K

X

u�U

log Llgu
� �

�
X

k�K

X

u�U

log Lkk0uð Þ �
X

k�K

X

u�U

log Lkluð Þ

þ
X

u

log Lk0k0uð Þ þ log Lk0luð Þ þ log Llk0uð Þ þ log Llluð Þð Þ;

ð22Þ

where Lkgu is the term inside the product on the right-hand

side of Eq. (19) and z�, and L�kdu refer to new configuration

where the node i in in Al.

When merging clusters Ak0 and Al into the cluster Al,

the change in the ICL can be expressed as follows:

Dk0!l :¼ ICL z�;K � 1ð Þ � ICL z;Kð Þ

¼ log
p z�jK � 1ð Þ

p zjKð Þ

� �

þ
X

g�K

X

u�U

log L�lgu

� �
þ log L�klu

� �� �
�
X

u

log L�llu
� �

�
X

g�K

X

u�U

log Lk0gu
� �

�
X

g�K

X

u�U

log Llgu
� �

�
X

k�K

X

u�U

log Lkk0uð Þ �
X

k�K

X

u�U

log Lkluð Þ

þ
X

u

log Lk0k0uð Þ þ log Lk0luð Þ þ log Llk0uð Þ þ log Llluð Þð Þ:

ð23Þ

When working with model B, we need to initialize Dmax

and y. Then, a shuffled sequence of time intervals I1; . . .; IU
is considered and each interval is swapped to the time

cluster, leading to the highest increase in the ICL (G E for

time intervals). When no further increase in the ICL is

possible, we look for possible merges between time clus-

ters in the attempt to increase the ICL (G M for time

intervals). Formulas to directly assess the increase in the

ICL can be obtained, similar to those for nodes swaps and

merges. In case of model B, different strategies are possible

to optimize the ICL:

1. G E ? G M for nodes at first and then for times (we

will call this strategy T N, henceforth).

2. G E ? G M for time intervals at first and then for

nodes (N T strategy).

3. An hybrid strategy, involving alternate switching of

nodes and time intervals (M strategy).

We will provide details about the chosen strategy case by

case in the following.

5 Experiments

In this section, experiments on both synthetic and real

data are provided. All running times are measured on a

twelve cores Intel Xeon server with 92 GB of main

memory running a GNU Linux operating system, the

greedy algorithm described in Sect. 4.4 being imple-

mented in C??. A Euclidean hierarchical clustering

algorithm was used to initialize the labels, and Kmax was

set to N/2.3 Hereafter, the ‘‘*’’ notation refers to the statistics after switching/

merging.
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In the following, we call TSBM the temporal SBM we

propose and we refer to the optimization algorithm

described in the previous section as greedy ICL.

5.1 Simulated data

5.1.1 First scenario

We start by investigating how the proposed approach can

be used to efficiently estimate the vector z of labels in sit-

uations where the standard SBM fails. Thus, we simulate

interactions between 50 (N) nodes, grouped in two hidden

clusters A1 and A2, over 100 (U) time intervals of unitary

length. The generative model considered for the simula-

tions depends on two time clusters C1 and C2 containing a

certain number of time intervals I1; . . .IU . If Iu is in C1, then
YIu
ij is drawn from a Poisson distribution PðPzizjÞ. Other-

wise, YIu
ij is drawn from a Poisson distribution PðQzizjÞ. The

matrices P and Q are given by

P ¼
w 1

1 w

� �

and Q ¼
1 w

w 1

� �

;

where w is a free parameter in ½1;1Þ. When this parameter

is equal to 1, we are in a degenerate case and there is not

any structure to detect: all the nodes are placed in the same,

unique cluster. The higher w, the stronger the contrast

between the interactions pattern inside and outside the

cluster. In this paragraph, w is set equal to 2 and the pro-

portions of the clusters are set equal (x ¼ ð1=2; 1=2Þ). The
number of time intervals assigned to each time cluster is

assumed to be equal to U/2. In the following, we consider

C1 :¼ fI1; . . .; I25g [ fI51; . . .; I75g;
C2 :¼ fI26; . . .; I50g [ fI76; . . .; I100g:

This generative model defines two integrated intensity

functions (IIFs), say K1ðtÞ and K2ðtÞ. The former is the IIF

of the Poisson processes counting interactions between

nodes sharing the same cluster, the latter is the IIF of the

Poisson processes counting interactions between vertices in

different clusters. These IIFs are shown in Fig. 1a.

A tensor Y, with dimensions N � N � U, is drawn. Its

(i, j, u) component is the sampled number of interactions

from node i to node j over the time interval Iu. Moreover,

sampled interactions are aggregated over the whole time

horizon to obtain an adjacency matrix. In other words,

each tensor is integrated over its third dimension. We

compared the greedy ICL algorithm with the Gibbs

sampling approach introduced by Nouedoui and Latouche

(2013). The former was run on the tensor Y (providing

estimates in 11.86 s on average) the latter on the corre-

sponding adjacency matrix. This experiment was repeated

50 times, and estimates of random vector z were provided

at each iteration. Each estimate ẑ is compared with the

true z and an adjusted rand index (ARI Rand 1971) is

computed. This index takes values between zero and one,

where one corresponds to the perfect clustering (up to

label switching).

Remark 5 The true structure is always recovered by the

TSBM: 50 unitary values of the ARI are obtained. Con-

versely, the standard SBM never succeeds in recovering

any hidden structures present in the data (50 null ARIs are

obtained). This can easily be explained since the time

clusters have opposite interaction patterns, making them

hard to uncover when aggregating over time.

Relying on an efficient estimate of z, the two integrated

intensity functions can be estimated through the estimator

in Eq. (15). Results are shown in Fig. 1b, where the esti-

mated functions (coloured dots) overlap the real

functions 1a.

Over-fitting We now illustrate how the model discussed

so far fails in recovering the true vector z when the number

of time intervals (and hence of free parameters) grows. We

consider the same generative model of the previous para-

graph, with a lower w:

P ¼
1:4 1

1 1:4

� �

and Q ¼
1 1:4

1:4 1

� �

:

Despite the lower contrast (from 2 to 1.4 in P and Q), with

U ¼ 100 and time sub-intervals of unitary length, the

TSBM model still always recovers the true vector z. Now,

we consider a finer partition of [0, 100] by setting U ¼
1000 and Du ¼ 0:1 as well as scaling the intensity matrices

as follows

~P :¼
0:14 0:1

0:1 0:14

� �

and ~Q ¼
0:1 0:14

0:14 0:1

� �

:

Moreover, we set

C1 :¼ fI1; . . .; I250g [ fI501; . . .; I750g

and C2 is the complement of C1, as previously. Finally, we
sampled 50 dynamic graphs over the interval [0, 100] from

the corresponding generative model. Thus, each graph is

characterized by a sampled tensor Y.

Unfortunately, the model is not robust to such changes.

Indeed, when running the greedy ICL algorithm on each

sampled tensor Y, the algorithm does not see any com-

munity structure and all nodes are placed in the same

cluster. This leads to a null ARI, for each estimation. As

mentioned in Sect. 4.4, the ICL penalizes the number of

parameters and since the tensor p has dimension

K � K � U, for a fixed K, when moving from the larger

decomposition (U ¼ 100) to the finer one (U ¼ 1000), the

number of free parameters in the model is
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approximatively4 multiplied by 10. The increase we

observe in the likelihood, when increasing the number of

clusters of nodes from K ¼ 1 to K ¼ 2, is not sufficient to

compensate the penalty due to the high number of

parameters, and hence, the ICL decreases. Therefore, the

maximum is taken for K ¼ 1 and a single cluster is

detected.

Model B allows to tackle this issue. When allowing the

integrated intensity functions K1ðtÞ and K2ðtÞ to grow at

the same rate on each interval Iu belonging to the same

time cluster Cd, we basically reduce the third dimension of

the tensor p from U to D.

The greedy ICL algorithm for Model B was run on each

sampled tensor Y, providing estimates of z and y in

2.38 min, on average. A hierarchical clustering algorithm

was used to initialize the time labels y, and the initial

number of time clusters was set to Dmax ¼
ffiffiffiffi
U

p
. In an

attempt to avoid convergence to local maxima, ten esti-

mates are built for each tensor, and the estimate leading to

the best ICL is finally retained. The adjusted rand index is

used to evaluate the clustering, as previously, and the

results are presented as box plots in Fig. 2. Note that the

results were obtained through the optimization strategy

T N. The other two strategies described in Sect. 4.4,

namely the N T strategy and the M strategy, led to similar

results in terms of final ICL and ARIs.

5.1.2 Second scenario

Since the node clusters are fixed over time, the TSBM

model can be seen as an alternative to a standard SBM to

estimate the label vector z. The previous scenario shows

that the TSBM can recover the true vector z in situations

where the SBM fails. In this paragraph, we show how the

TSBM and the SBM can sometimes have similar

performances.

We considered dynamic graphs with 50 (N) nodes and

50 (U) time intervals

I1; . . .; I50:

These time intervals are grouped in two time clusters C1
and C2, the former containing the first 25 time intervals, the

latter the last 25 time intervals. If Iu is in C1, then YIu
ij is

drawn from a Poisson distribution PðPzizjÞ. Otherwise, YIu
ij

is drawn from a Poisson distribution Pð2PzizjÞ. The P

matrix is given by

P ¼
w 2

2 w

� �

and w is a free parameter in ½2;þ1Þ. Hence, we have two

different integrated intensity functions, say K1ðtÞ and K2ðtÞ
with the same roles as in the previous section. These two

functions are plotted in Fig. 3a, for a value of w ¼ 4.

We investigated six values for the parameter w

f2:1; 2:2; 2:3; 2:4; 2:5; 2:6g:

For each value of w, we sampled 50 tensors Y, of dimen-

sion ð50� 50� 50Þ, according to the generative model

considered. Interactions are aggregated over the time

interval [0, 50] to obtain adjacency matrices. We ran the

greedy ICL algorithm on each tensor and the Gibbs sam-

pling (SBM) algorithm on each adjacency matrix. For the

greedy ICL algorithm, estimates of vector z were obtained

in a mean running time of 5.52 s. As previously, to avoid
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0
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( t)

time
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Fig. 1 Real (a) and estimated (b) integrated intensity functions (IIFs) according to the considered generative model (w ¼ 2). In blue we have

K1ðtÞ, for w ¼ 4, in red K2ðtÞ (colour figure online)

4 The dimension of the vector x does not change.
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convergence to local maxima, ten different estimates are

built for each tensor, the one leading to the highest ICL

being retained. The results are presented as box plots in

Fig. 4. Although the SBM leads to slightly better clustering

results for small values of w (2.2, 2.3) and the TSBM for

higher values of w (2.5, 2.6), we observe that the two

models have quite similar performances (in terms of

accuracy) in this scenario.

To provide some intuitions about the scalability (see

next paragraph) of the proposed approach we repeated the

previous experiment by setting K ¼ 3 clusters, corre-

sponding to the following connectivity matrix:

P ¼
w 2 2

2 w 2

2 2 w

0

B
@

1

C
A:

The assignment of the time intervals to the time clusters is

unchanged as well as the connectivity pattern on each time

cluster are unchanged. The contrast parameter w takes

values in the set f2; 2:5; 2:10; . . .; 2:8g and 50 dynamic

graphs were sampled, according to the described settings,

for each value of w. We ran the TSBM on each dynamic

graph obtaining 50 estimates of the labels vector z (one for

each w) and box and whiskers plots for each group of ARIs

are shown in Fig. 5. By comparing this figure with Fig. 4a,

we can see that the model needs a slight higher contrast to

fully recover the true structure. Actually, when increasing

the number of clusters without increasing the number of

nodes, the size of each cluster decreases (on average) and

since the estimator of z we are using is related to the ML

estimator, we can imagine a slower convergence to the true

value of z.

5.1.3 Scalability

A full scalability analysis of the proposed algorithm as well

as the convergence properties of the proposed estimators

are outside the scope of this paper. Nonetheless, in ‘‘Ap-

pendix’’ we provide details about the computational com-

plexity of the greedy ICL algorithm. Future works could

certainly be devoted to improve both the algorithm effi-

ciency and scalability through the use of more sophisti-

cated data structures.

5.2 Real data

The data set used in this section was collected during the

ACM Hypertext conference held in Turin, from 29 June

2009 to 1 July 2009. We focus on the first conference day

(24 h) and consider a dynamic network with 113 (N) nodes

(conference attendees) and 96 (U) time intervals (the

consecutive quarter-hours in the period: 8 a.m. of June

29th–7.59 a.m. of June 30th). The network edges are the

proximity face to face interactions between the conference

attendees. An interaction is monitored when two attendees

are face to face, nearer than 1.5 m for a time period of at

least 20 s.5 The data set we considered consists of several

lines similar to the following one

ID1 ID2 Time interval (15 min) Number of interactions

52 26 5 16

It means that conference attendees 52 and 26, between

9 a.m. and 9.15 a.m., have spoken for 16� 20 s �
5min 30 s.

We set Kmax ¼ 20 and the vector z was initialized ran-

domly: each node was assigned to a cluster following a

multinomial distribution. The greedy algorithm was run ten

times on the considered dataset, each time with a different

initialization and estimates of z and K were provided in

13.81 s, on average. The final values of the ICL can be

observed as box plots in Fig. 6.

The estimates associated with the highest ICL corre-

spond to 5 node clusters. In Fig. 7, we focus on the cluster

A4, containing 48 nodes. In Fig. 7a, we plotted the time

cumulated interactions inside the cluster. As it can be seen

that the connectivity pattern for this cluster is very repre-

sentative of the entire graph: between 13 p.m. and 14 p.m.

and 18 p.m. and 19.30 p.m. there are significant increases

0.
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Fig. 2 Box plots for both clusterings of nodes and time intervals: 50

dynamic graphs are sampled according to the considered generative

model, estimates of z and y are provided by the greedy ICL (model B)

5 More informations about the way the data were collected can be

found in Isella et al. (2011) or visiting the website http://www.

sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/.
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in the interactions intensity. The estimated integrated

intensity function (IIF) for interactions inside this cluster is

shown in Fig. 7b. The function has a higher slope on those

time intervals where attendees in the cluster are more likely

to have interactions. The vertical red lines delimit two

important times of social gathering:6

• 13.00–15.00—lunch break.

• 18.00–19.00—wine and cheese reception.

We conclude this section by illustrating how Model B can

be used to assign time intervals on which interactions have

similar intensity to the same time cluster. We run the

greedy ICL algorithm for Model B on the data set by using

the optimization strategy M described at the end of

Sect. 4.4 (other strategies lead in this case to similar

results) and Dmax was set equal to 20. The time clustering

provided by the greedy ICL algorithm is shown in Fig. 8.

On the left-hand side, the aggregated interactions for each

quarter-hour during the first day are reported. On the right-

hand side, interactions taking place into those time inter-

vals assigned to the same time cluster have the same for-

m/colour. Two important things should be noticed:

1. The obtained clustering seems meaningful: the three

time intervals with the highest interactions level are

placed in the same cluster (blue), apart from all the

others. More in general, each cluster is associated with

a certain intensity level, so time intervals in the same
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Fig. 3 Real (a) and estimated (b) integrated intensity functions (IIFs) according to the considered generative model. In blue we have K1ðtÞ, for
w ¼ 4, in red K2ðtÞ (colour figure online)
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Fig. 4 Box plots of ARIs for different levels of contrast (w). We compare the proposed model with a standard SBM. a ARIs obtained by greedy

ICL and b ARIs obtained with the Gibbs sampling procedure for SBM

6 More informations at http://www.ht2009.org/program.php.
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cluster, not necessarily adjacent, share the same global

interactivity pattern.

2. There are not constraints on the number of abruptly

changes connected with these five time clusters. In

other words, time clusters do not need to be adjacent

and this is the real difference between the approach

considered in this paper (time clustering) and a pure

segmentation one.

6 Conclusion

We proposed a non-stationary extension of the stochastic

block model (SBM) allowing us to cluster nodes of a

network is situations where the classical SBM fails. The

approach we chose consists in partitioning the time interval

over which interactions are studied into sub-intervals of

fixed length. Those intervals provide aggregated interaction

counts that are increments of non-homogeneous Poisson

processes (NHPPs). In a SBM inspired perspective, nodes

are clustered in such a way that aggregated interaction

counts are homogeneous over clusters. We derived an exact

integrated classification likelihood (ICL) for such a model

and proposed to maximize it through a greedy search

strategy. Finally, a nonparametric maximum likelihood

estimator was developed to estimate the integrated inten-

sity functions of the NHPPs counting interactions between

nodes. The experiments we carried out on artificial and

real-world networks highlight the capacity of the model to

capture non-stationary structures in dynamic graphs.
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Fig. 5 Box plots of ARIs for different levels of contrast (w). Data
have been sampled by non-homogeneous Poisson processes counting

interactions in a dynamic graph whose nodes are grouped in three

clusters and interactivity patterns vary across two time clusters
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Fig. 6 Box plot of the ten final values of the ICL produced by the
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Fig. 7 a Cumulated aggregated connections for each time interval for cluster A4. b The estimated IIF for interactions inside cluster A4. Vertical

red lines delimit the lunch break and the wine and cheese reception (colour figure online)
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Appendix: Computational complexity

In this section, we provide details about the computational

complexity of the main model presented in this paper,

namely the model A. Assuming that the gamma function

can be computed in constant time (see Press et al. 2007),

we focus on the three statistics appearing in Eq. (9),

namely

1. Skgu :¼
P

zi¼k

P
zj¼g Y

Iu
ij ,

2. Pkgu :¼
Q

zi¼k

Q
zj¼g Y

Iu
ij !,

3. Rkg :¼ jAkjjAgj.
The whole computation task consists in evaluating the

increase in ICL induced by nodes exchanges and merges.

Those computations involves the three quantities listed

above. The tensor fSkgugk;g�K;u�U is stored in a three-

dimensional array, never resized, occupying a OðK2
maxUÞ

memory space. Hence, at any time during the algorithm its

elements can be accessed and modified in constant time.

The tensor fPkgugk;g�K;u�U is handled similarly and

clusters sizes (we recall that jAkj corresponds to the size of

clusterAk) are also stored in arrays. In order to evaluate the

ICL changes, induced by an operation, we need to maintain

aggregated interaction counts for each node: for a node i

we have, e.g.

Sigu :¼
X

zj¼g

YIu
ij ;

the number of interactions from node i to cluster Ag inside

the time interval Iu. Similarly

S0igu :¼
X

zj¼g

YIu
ji

denotes the number of interactions from cluster Ag to node

i inside the time interval Iu. Other related quantities are

considered. These structures occupy a memory space of

OðN2UÞ.

Exchanges

In order to evaluate the ICL increase induced by the switch

of a node (say i) from cluster Ak0 to cluster Al, we perform

the following operations:

• Sk0gu (respectively, Sgk0u) is reduced by Sigu (S0igu) and

Slgu (Sglu) is increased by the same amount;

• Pk0gu (respectively, Pg0ku) is reduced by Pigu (P0
igu) and

Plgu (Pglu) is increased by the same amount;

• Ak0 (Al) is reduced (increased) by one.

Although these operations are in constant time, they are

involved in a sum with (KU) elements (this can be seen in

Eq. (22)), so that the total cost of the test is O(KU). Since

node i can be switched to K � 1 remaining clusters and the

graph has N nodes, the cost of a full exchange routine is

OðNK2UÞ.

Remark 6 When a node is actually switched from its

cluster to another one, all data structures are updated, but

the update cost is dominated by the cost of the testing phase

described above.

Notice that we have evaluated the total cost of one full

exchange routine, i.e. in the case where all nodes are

considered once. Reductions in the number of clusters

(very likely to be induced by exchanges in case Kmax is

high) are not taken into account.
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Fig. 8 a Aggregated connections for each time interval for the whole network.b Interactions of the same form/colour take place on time intervals

assigned to the same cluster (model B) (colour figure online)
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Merges

The entire merge routine, consisting in a test phase and an

actual merge, has a computational cost that is dominated by

the cost of exchanges. Consider a cluster Ak0 . We first look

for the cluster (say Al), leading to the best merge (highest

increase in the ICL) with Ak0 . This operation has a cost of

OðK2UÞ: for each Al the evaluation of the increase in ICL

has a cost of O(KU) (see Eq. (23)) and l can take K � 1

possible values. Since we look for the best merge for all

k0 2 f1; . . .;Kg, the computational cost for a merge of two

nodes clusters is OðK3UÞ, where we recall that D�N.

Total cost

The worst case complexity for one iteration of the algo-

rithm, with each node considered once, is OðNK2UÞ.
However, it is difficult to evaluate the actual complexity of

the whole algorithm for two reasons. Firstly, we have no

way to estimate the number of exchanges needed in the

exchange phase. Secondly, nodes exchanges are very likely

to reduce the number of clusters, especially at the begin-

ning of the algorithm, when Kmax is relatively high. Thus,

the individual cost of an exchange reduces very quickly,

leading to a vast overestimation of its cost using the pro-

posed bounds. A detailed evaluation of the behaviour of the

proposed algorithm, although outside the scope of the this

paper, would be necessary to assess its use on large data

sets.
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