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Abstract Mining topical experts on social media is a

problem that has gained significant attention due to its

wide-ranging applications. Here we present the first study

that combines data from four major social networks—

Twitter, Facebook, Google? and LinkedIn—along with the

Wikipedia graph and Internet webpage text and metadata,

to rank topical experts across the global population of

users. We perform an in-depth analysis of 37 features

derived from various data sources such as message text,

user lists, webpages, social graphs and Wikipedia. This

large-scale study includes more than 12 billion messages

over a 90-day sliding window and 58 billion social graph

edges. Comparison reveals that features derived from

Twitter Lists, Wikipedia, Internet webpages and Twitter

Followers are especially good indicators of expertise. We

train an expertise ranking model using these features on a

large ground-truth dataset containing almost 90,000 labels.

This model is applied within a production system that ranks

over 650 million experts in more than 9000 topical

domains on a daily basis. We provide results and examples

on the effectiveness of our expert ranking system, along

with empirical validation. Finally, we make the topical

expertise data available through open REST APIs for wider

use.

Keywords Social media � Online social networks � Topic
expertise � Large-scale topic mining

1 Introduction

Millions of people use online social networks as platforms

for communication, creating billions of interactions daily.

The data from these social networks provide unique

opportunities to understand the nature of social interac-

tions, at a scale that was not previously possible. While a

large portion of these interactions are casual, some inter-

actions carry useful topical information. There has been a

growing interest in identifying topical experts on social

media using this information (Guy et al. 2013; Cheng et al.

2013; Zhao et al. 2013; Bi et al. 2014). While most studies

focus on identifying the top experts in a topic, an under-

explored area of research is to rank all users by their topical

expertise. Identifying and ranking intermediate topical

experts, in addition to the top experts, can provide great

value to users via applications that involve question

answering, crowd-sourced opinions, recommendation sys-

tems and influencer marketing.

Expertise may manifest itself via different data sources

on different social networks. Leveraging information from

multiple social networks, and combining them with web-

page metadata, can lead to a more complete understanding

of users’ expertise, compared to using any single source.

Additionally, a scalable solution to such a problem must be

able to process hundreds of millions of users and identify

experts for thousands of topics.

Our contributions in this study are as follows:

1. Feature diversity We present a comprehensive set of

37 features that indicate topical expertise on social
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networks and provide an in-depth analysis of their

predictability and coverage. We derive these features

from more than 12 billion message texts, 23 million

Twitter Lists, 58 billion social graph edges, 1

million webpages and 20,000 Wikipedia pages.

2. User and topic coverage We rank over 650 million

experts with varying levels of topical expertise across

9000 topics, including popular as well as niche topics.

3. Multiple networks We incorporate data from four

major social networking platforms: Twitter (TW),

Facebook (FB), Google? (GP) and LinkedIn (LI),

and combine it with data from Wikipedia (WIKI) and

Internet webpage text and metadata.

4. Evaluation We evaluate the features on a ground-truth

dataset containing almost 90,000 labels. As far as we

know, this is one of the largest datasets used for

evaluating topical expertise.

5. Open data We make the rankings for top experts and

expertise topics for a Twitter user available through

open public APIs. We also make the topic ontology

available as an open dataset.

We perform our study and analysis on a full production

system available on the Klout platform. Klout1 is a social

media platform that aggregates and analyzes data from

social networks like Twitter, Facebook, Google? and

LinkedIn.

2 Related work

A growing body of academic as well as industrial research

has focused on mining topical experts (Popescu 2013;

Campbell et al. 2003). In Guy et al. (2013), Kolari et al.

(2008), Ehrlich and Shami (2008), enterprise users were

studied. Among social media platforms, Twitter has been

undoubtedly the most studied due to the large volume and

public nature of its data. The work in Cognos Ghosh et al.

(2012) presented a system utilizing only Twitter-List fea-

tures, and results showed an improvement over Twitter’s

in-house system (Gupta et al. 2013). In our system, we

generate features based on users added to lists as well as on

which lists a user creates or subscribes to. Twitterrank

Weng et al. (2010) presented a system that identifies

topical influencers based on the link structure shared

between users and on the information extracted from the

‘bio’ in the Twitter profile. The work in Pal and Counts

(2011) presents a multi-feature approach toward expert

mining. They use a set of 15 features for characterizing

social media authors based on both nodal and topical

properties and present results across 20 different topics.

The work by LinkedIn Ha-Thuc et al. (2015) has focused

on determining topic experts based on a LinkedIn skills

dataset available to the company internally. Other works

have focused solely on niche topics: Bi et al. (2014) have

focused on mining experts in landscape photography, and

Zhang et al. (2007) analyzed Java forums to identify

experts in the Java community.

Multiple works have proposed applications that utilize a

topic expert list. Cognos and Twitter’s Who To Follow

service focused on services to recommend experts for the

purpose of ‘following.’ Research work Wu et al. (2011)

has also utilized experts as a starting set to study other

social media properties like extent of homophily within

categories, speed of information flow and content lifespan.

Works have been presented that utilize the community

around topics to understand top influences within a topic

(Bi et al. 2014). Topical expertise of popular users has also

been used to mine topics of interest for other users

(Bhattacharya et al. 2014). To understand organizational

experts, work in Fu et al. (2007) proposed using a seed of

already identified top experts and then followed the net-

work graph to identify other potential experts. Many works

have focused on question answering services where an

expert system provided the core platform to route questions

and match experts to askers (Zhao et al. 2013; Liu et al.

2005; Jurczyk and Agichtein 2007; Adamic et al. 2008).

3 Problem setting

We identify experts in topical domains as those users who

produce and share topical information which is recognized

as relevant and reliable by other users in the network. We

aim to capture topical interactions that indicate expertise

and derive features for them. We examine how these fea-

tures from different sources behave across the global

population of users.

To gain insights into the performance of each feature,

we use user in-degrees in the graph as the comparison

metric. Since we are dealing with multiple networks, we

combine degree information of a user on different graphs

into a single quantity that we call connectivity. For a user u,

we define the connectivity, Cu, as:

Cu ¼ jjcujj ð1Þ

where cu ¼ ½c1u; c2u; . . .; cnu� is the connectivity vector and

each element cku is the in-degree for the user in the network

k, e.g., Twitter Followers, Facebook Friends and LinkedIn

Connections. The connectivity may vary from single digit

edges for passive users, to hundreds of millions for

celebrities, capturing the entire gamut of users.

In Fig. 1, we plot the number of users against connec-

tivity. We observe a distribution where a large number of1 Klout platform is a part of Lithium Technologies, Inc.
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users have small connectivity and only a small fraction of

users have very large values of connectivity. Most results

from previous works like Ghosh et al. (2012), Pal and

Counts (2011) that find top experts are mainly applicable to

the head of this distribution. Here we instead aim to rank

experts over the full distribution, i.e., on the head as well as

the long tail of expertise.

3.1 Problem statement

At Klout, topics are represented as entries in a hierarchical

ontology tree, T . The tree structure has three levels: super,

sub and entity, each with 15, 602 and 8551 topics,

respectively. More details are available in our earlier work

(Spasojevic et al. 2014).

We wish to compute an expert score for each user-topic

pair. To begin, we define a feature vector Fðu; tiÞ for a user
u and a topic ti as:

Fðu; tiÞ ¼ ½f1ðu; tiÞ; f2ðu; tiÞ; . . .; fmðu; tiÞ� ð2Þ

where fkðu; tiÞ is the feature value associated with a specific

feature fk. The normalized feature values are denoted by

f̂kðu; tiÞ and the normalized feature vector is represented as:

F̂ ðu; tiÞ ¼ ½f̂1ðu; tiÞ; f̂2ðu; tiÞ; . . .; ^fmðu; tiÞ�:
The expert score for a user-topic pair denoted by Eðu; tiÞ

is computed as the result of the dot product of a weight

vector w and the normalized feature vector, F̂ ðu; tiÞ.

Eðu; tiÞ ¼ w � F̂ ðu; tiÞ ð3Þ

The weight vector is computed with supervised learning

techniques, using labeled ground-truth data.

Our ground-truth data collection system generates user-

pair labels across multiple topics. For a topic ti, the labeled

data between two users are defined as:

labelðu1; u2; tiÞ ¼
þ1 if u1 is voted up;

�1 if u2 is voted up:

�
ð4Þ

For a topic ti and two users u1 and u2, we define the feature

difference vector as:

F̂Dðu1; u2; tiÞ ¼ F̂ ðu1; tiÞ � F̂ðu2; tiÞ ð5Þ

For a feature fk, the corresponding element in the vector

F̂Dðu1; u2; tiÞ is represented as f̂kDðu1; u2; tiÞ. We can thus

compare the expertise of a user pair by operating on their

feature difference vector F̂Dðu1; u2; tiÞ.

3.2 System details

Figure 2 presents an overview of our production system.

When a user registers on Klout, he connects one or more

social networks and grants permission to Klout to collect

and analyze his data. We use OAuth tokens provided by

registered users to collect data from Facebook, LinkedIn

and Google?. We also collect data about users’ Twitter

graph and list-mentions using OAuth tokens. Klout part-

ners with GNIP to collect public data available via the

Twitter Mention Stream.2 We do not distinguish between

human, organizational and non-human social media

accounts and refer to all accounts as users in the rest of the

paper.

We collect, parse, extract and normalize features for

hundreds of millions of users daily. We use scalable

infrastructure in the form of Hadoop MapReduce and Hive

to bulk process large amounts of data. The daily resource

usage for uncompressed HDFS data reads and writes dur-

ing feature generation is: 55.42 CPU days, 6.66 TB reads,

2.33 TB writes.

4 Ground truth

Ground-truth data were collected in a controlled experi-

ment via trusted internal evaluators. The data collection

tool web UI is shown in Fig. 3.
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Fig. 1 User count distribution versus connectivity

Fig. 2 Topic expertise pipeline

2 http://support.gnip.com/sources/twitter/overview.html.
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All evaluators were given guidelines on how to use the

tool, but no specifics on how to interpret expertise. For a

wide range of topics, evaluators were shown a user list

asked to sort the users in order of expertise. Evaluators also

had the option to mark a user as un-sortable or irrelevant to

the topic. To reduce ambiguity in the data, an evaluator

only judged users whom he or she was familiar with, and a

personalized evaluation dataset was created for each

evaluator. The dataset included selected users from an

evaluator’s outgoing social graph such as Facebook Friends

or Twitter Following; or users with whom the evaluator

had interacted through Facebook comments, Twitter

retweets and so on. Users from the dataset were placed in

an evaluator’s topic list if at least one of their features had a

nonzero value for the given topic. Table 1 presents details

about the collected dataset.

For each topic t and evaluator e with input user list

Uinðe; tÞ, we obtain the sorted list Usortedðe; tÞ, which

excludes the set of un-sortable users. The sorted list is

represented as: Usortedðe; tÞ ¼ ½us1; us2; . . .; usN �. Thus, as per

the evaluator, Eðusi ; tÞ[ Eðusj ; tÞ, for i; j 2 ð1::NÞ; i[ j.

Unique user pairs ðui; ujÞ are created from the quadratic

explosion of Usorted, with i; j 2 ð1::NÞ; i[ j. A label (þ1,

-1) is generated for the pair ðui; ujÞ as described in Eq. 4,

depending on the users’ relative position on the list. The

training and data evaluation are performed on F̂Dðui; ujÞ
for each ðui; ujÞ.

Since our goal is to study the feature distribution for the

entire user population, it is important we collect ground

truth for users with a wide range of connectivity. In Fig. 4,

we plot the connectivity distribution for users in the

ground-truth dataset. The heatmap represents the numbers

of users for a given pair of connectivity. For users with

connectivity between 102 and 107, we observe that we have

a good coverage in the number of evaluations, with the

most evaluations for users between 102 and 104.

Since expertise is somewhat subjective based on eval-

uators’ perception, a strict definition of expertise was not

provided to evaluators. We show the label consensus

among the human evaluators within the ground truth in

Fig. 5a. We define label consensus as the number of voted

up labels for a pair Pðusi ; usj Þ divided by total votes casted

for the pair and topic. One can observe that when two

unique evaluators are asked to order a user pair, in 84 % of

cases, evaluators agree on the ordering. As the number of

casted votes grows, consensus drops to the minimum of

80 % for 5 unique evaluators, after which consensus grows

to about 90 % for 8 evaluators. We can conclude that

humans do not fully agree on exact expertise ordering,

thereby imposing fundamental limitations on supervised

machine learned models.

Finally, we present the dependency of connectivity

difference between evaluated user pair on consensus in

Fig. 5b. Consensus exhibits an increasing trend from 82 to

Fig. 3 Ground-truth tool web

UI

Table 1 Ground-truth statistics

Labels for ðui; uj; tkÞ 88,995

Unique triplets ðui; uj; tkÞ 84,964

Unique user pairs ðui; ujÞ 66,656

Unique users 4448

Average list length 8.19

Unique topics 746

Number of evaluators 38

Pairwise user connectivity distribution
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Fig. 4 Ground-truth connectivity distribution
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88 % as connectivity difference increases. This is expected

as users with higher connectivities might be more easily

recognized as experts.

5 Feature analysis

We present 37 features here that capture topical expertise

for users from various sources. The textual inputs from

each source are mapped to bags of phrases by matching

against a dictionary of approximately 2 million phrases.

Bags of phrases are then mapped to a topic ontology to

create bags of topics, reducing the dimensionality of the

text from 2 million to more than 9000 topics. These bags of

topics are exploded, and for each user-topic pair ðu; tiÞ, we
build the feature vector Fðu; tiÞ. A more detailed discus-

sion about feature generation is provided in our earlier

work (Spasojevic et al. 2014).

Each element in the feature vector, fkðu; tiÞ, has a

naming convention:

\Network[_\Source[_\Attribution[, which

encodes the following characteristics: (a) the social net-

work of origin, (b) the source data type and (c) the attri-

bution relation of a feature to the user. The networks we

consider include Twitter (TW), Facebook (FB), Google?

(GP), LinkedIn (LI) and Wikipedia (WIKI). Table 2 sum-

marizes the attribution relations and their descriptions.

Below we describe the different source data types

considered:

Message text We derive features as the frequency of

occurrence of topics in text of messages posted by users,

including original posts, comments and replies. These data

sources are named under ‘MSG TEXT’ and provide useful

topical information for all users who are actively posting

and reacting to messages on the network. In the case of FB

Fan Pages, we call this data source ‘PAGE TEXT,’ to

differentiate from message text in personal FB pages. The

feature vectors are thus named as TW_MSG_TEXT_GEN-

ERATED, TW_MSG_TEXT_REACTED, TW_MSG_TEXT_

CREDITED and so on.

We present the number of message texts processed for

each network in Table 3. Since we have to access to the

entirety of Twitter’s public data, the volume of messages

processed from Twitter is significantly more than the

number of messages from Facebook.

User lists One of the most important data sources related

to topical expertise is user lists on Twitter, as previously

explored in Ghosh et al. (2012), Cheng et al. (2013). A

user may be added to topical lists by other users, thereby

marking him or her as an expert. We refer to this data

source simply as ‘LIST.’ In addition, we also derive other

features from the lists a user creates or subscribes to. The

list-based features are derived from over 23 million lists

corresponding to over 7.5 million unique users.
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Table 2 Feature attribution nomenclature

Attribution

GENERATED Originally generated or authored content by the user, including posts, tweets, and profiles

REACTED Content generated by another user (actor), but as a reaction to content originally authored by the user under consideration. This

includes comments, retweets and replies

CREDITED Text that is associated with the user without direct involvement from the user. Examples include tags and lists

GRAPH Topics aggregated and derived from a user’s friends, followers and following users
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Since only a subset of lists per user is available for

collection from Twitter, we estimate this feature as

fkðu; tiÞ � Lcðu; tiÞ � LðuÞ
LcðuÞ where Lcðu; tiÞ is the number of

collected lists for the user on topic ti, LcðuÞ is the total

number of collected lists, and L(u) is the true number of

lists for the user, retrieved from the user’s Twitter profile.

User profile We derive features based on the user-listed

information available in user profiles. For a given user, we

extract the skill and industry information from LinkedIn

profiles to derive topic signals. We assign the number of

followers of a company normalized over the number of

followers for the particular industry as the feature value.

Feature vectors are thus named as LI_SKILLS_GEN-

ERATED, LI_INDUSTRY_GENERATED.

Social graphs We leverage graph and peer-based infor-

mation to derive topical signals from a user’s connections.

For a given user and topic, we aggregate the topic strength

across all of his connections and scale this with the aggre-

gated strength for the global population. Apart from ‘FOL-

LOWERS,’ these features may come from other graph sets

such as ‘FOLLOWING’ and ‘FRIENDS,’ depending on the

networks. This feature is especially important for the set of

users who may not explicitly talk about certain topics

through messages, but may yet be recognized as experts in

their fields. For example, if a large number of experts in

finance follow Warren Buffett on Twitter, then he can be

identified as an expert in the topic, though he may not post

messages related to finance. The features are derived from

more than 56 billion follower and 2.7 billion following edges

from Twitter and 1.69 billion friend edges from Facebook.

Webpage text and metadata Users often share and react

to URLs on social media that are related to their topics of

expertise. We extract and create features from the content

body of such shared URLs and also from metadata such as

categories associated with the shared URLs. These data

sources, named ‘URL’ and ‘URL META,’ respectively,

provide rich contextual information about the associated

social media message. Inversely, articles that are published

on online publishing platforms often contain useful meta-

data, including social identity information for the authors

through the Open Graph Protocol and Twitter Creator

cards.3 Such URLs and published articles provide a means

of bridging social network information with Internet web-

page data, thereby enabling a richer understanding of

content as it relates to users. We process 1 million such

webpages that were the most shared or reacted over a

90-day rolling window, extracting features for over 50,000

users based on the popularity of the page. In this case, we

derive the feature value as:

fkðu; tiÞ ¼
XN
j¼1

tf ðti;BTSWWW
j Þ � nj

where N is the total number of documents attributed to the

user, tf ðti;BTSWWW
j Þ is the topic frequency in the bag of

topics derived for the jth document, and nj is the number of

times the jth document was reacted upon in the network.

The features from this data source, which we call ‘SOCIAL

WWW,’ are especially important to attribute expertise to

journalists and bloggers who write long-form articles and

can be recognized as topical experts due to their

authorship.

In addition to social networks and webpage text and

metadata, we also consider Wikipedia data4 that provides

information about a user’s expertise. We manually identify

mapping for over 20,000 users from Wikipedia page to the

user’s social network identity. The existence of a Wiki-

pedia page for a user itself may be a strong signal that he is

recognized for his expertise in some topic. However, in

order to eliminate spurious pages, we do not consider

merely the existence of a page to be a signal. Instead, we

compute the inlink-to-outlink ratio for a Wikipedia page,

which indicates the authority of the user’s page. Using

pagerank gives similar results, so we only present results

for the inlink-to-outlink feature. The final feature values

are computed as:

fkðu; tiÞ ¼ tf ðti;BTWIKIðuÞÞ � Lin

Lout

where tf ðti;BTWIKIðuÞÞ is the topic frequency in the bag of

topics derived from the Wikipedia page, and Lin, Lout are

the number of inlinks and outlinks to the page, respec-

tively, in the full Wikipedia graph.

Note that the features described above are applicable for

mining topical interests as well, but here we are focused on

topical expertise. The major difference between the two

problems is in feature normalization, where topical

expertise features are scaled against the global population,

and topical interest features are scaled with respect to the

user. The problem of expertise has to scale to millions of

users per topic, while that of interests has to scale to

hundreds of topics per user.

Table 3 Message text processed

Network Number of message texts

Twitter 11 Billion

Facebook 696 Million

Facebook Pages 1.47 Billion

Google? 22 Million

3 http://ogp.me, https://dev.twitter.com/cards/markup. 4 https://dumps.wikimedia.org/.
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5.1 Feature distribution

In this section, we describe four ways we analyze and

visualize the coverage and predictability of each feature.

5.1.1 Feature distribution

The first column in Fig. 6 shows the population feature

distribution for selected features. The distributions are

plotted on the log–log scale, where the number of users is

plotted on the y-axis against the raw feature values on the

x-axis. Features such as Wikipedia and Google? URLs are

present for less than 105 users, while the other two features

are present for a much greater number of users. We observe

that when plotted on the log–log scale, the number of users

has an almost linear relationship to the feature values. The

plots suggest that most features could be modeled as power

law distributions over the population of users under con-

sideration. We therefore rescale the features by trans-

forming them as follows:

f̂kðu; tiÞ ¼
logðfkðu; tiÞÞ

max
ui2U

logðfkðui; tiÞÞ ð6Þ

5.1.2 Feature connectivity distribution

The second column in Fig. 6 plots the number of users who

possess the specified feature against the connectivity of the

users. The Twitter List feature is present over the entire

range of users, but Wikipedia is present only for users with

high connectivity. The URL feature for Google? on the

other hand is present for only a small number of users with

low-to-medium connectivity. These differences in cover-

age highlight the need to have features that can capture

information for different sections of the population.

5.1.3 Ground-truth distribution

Figure 6 also shows the ground-truth distribution for the

features in the third column. In this case, the number of

labels in the ground truth is plotted against the normal-

ized feature difference values between user pairs. The

labels plotted had at least one user in the pair possessing

a nonzero feature value. For a user pair ðu1; u2Þ; we plot

f̂kDðu1; u2; tiÞ and f̂kDðu2; u1; tiÞ, allowing us to symmetri-

cally visualize the differentiating nature of the feature

over the ground truth. We observe that for Wikipedia,

Feature Distribution Connectivity Coverage Ground Truth Distribution Predictability Heatmap
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Fig. 6 Feature distribution (FD), connectivity coverage (CC), ground-truth distribution (GTD), predictability heatmap (PH) for selected features
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Twitter Lists and Google? URLs, the curves show

greater separation compared to Facebook message text,

which has almost overlapping curves. This shows that

the former features have a higher ability to identify

experts compared to the features derived from Facebook

message text.

Table 4 Feature catalog
Precision (P), recall(R), F1

score, coverage [% of corpus]

(C), feature distribution (FD),

connectivity coverage (CC),

ground-truth distribution

(GTD), predictability heatmap

(.). The axes for feature

distribution, connectivity

coverage, ground-truth

distribution and predictability

heatmap are equivalent to the

axes in Fig. 6
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5.1.4 Predictability heatmap

In the final column of Fig. 6, we observe feature pre-

dictability with respect to user connectivity, visualized as a

heatmap. For the labeled pairs in the ground truth, we plot

the average feature value difference for the instances when

the feature correctly predicted the greater expert in the pair.

The coordinates of each point are the connectivities of the

first and the second user in a pair, and the brightness of the

point indicates the average absolute value of the feature

difference.

We observe that the Wikipedia and Twitter List features

show a high ability to predict when the connectivity dif-

ference between the users is high. For Twitter Lists, con-

nectivity coverage in the second plot of the same row

shows that a majority of users have connectivity of less

than 105, but the heatmap shows low predictability for this

cohort of users. Twitter Lists thus have weaker pre-

dictability in the long tail of the global population distri-

bution, but still provide significant coverage to scale our

systems and are good predictors for top experts.

For moderately connected users and users with similar

connectivities, Google? URLs feature is a good predictor

and behaves in a complementary manner to Twitter Lists

and Wikipedia. Facebook messages show poor pre-

dictability, which may be because Facebook messages are

more conversational and not very indicative of topical

expertise. Note that other Facebook features do have better

predictability, but here we highlight this feature for con-

trast and comparison.

5.2 Feature catalog

Table 4 shows the precision, recall, F1 scores and the

population coverage percentage for the full list of features

used. The features are evaluated over the ground-truth data,

where the prediction by a feature fk is correct when the

following relation holds:

labelðu1; u2; tiÞ � sgnðf̂kDðu1; u2; tiÞÞ[ 0; ð7Þ

where sgn(x) is the signum function.

We observe from Table 4 that the Twitter List-based

features have some of the highest precision values on the

ground-truth data. This corroborates the approach used in

Ghosh et al. (2012), where Twitter Lists are used to iden-

tify experts. The SOCIAL WWW and Facebook Pages

features show similar behavior to Twitter Lists, with high

precision and F1 scores, but low coverage and recall val-

ues. Other features such as those derived from ‘Credited’

message texts and hashtags, and those derived from the

followers of a user, prove to have high precision, F1 score

and population coverage.

Features based on URLs, URL META and message

text from Google? have higher precision and F1 scores

than Facebook and some Twitter features. One reason for

this could be that users tend to post messages of greater

length on Google? compared to other networks (Spaso-

jevic et al. 2014). For LinkedIn, though the precision and

recall values are low, we observe from the heatmaps that

they have high predictability for users with low connec-

tivity, indicated by the bright spots near the lower left

corners. Therefore, they are still useful in identifying

experts in the long tail. Finally, since well-known per-

sonalities with Wikipedia pages are already recognized as

experts in their domains, Wikipedia features have high

precision and F1 scores.

To conclude, the best features for topical expertise in

terms of F1 scores are Twitter Lists, Wikipedia pages,

Social WWW, Facebook Fan Page text and URL metadata

features. Graph and text-based features provide long tail

coverage, though they are less predictive.

5.3 Connectivity analysis

As described in Sect. 4, our ground-truth dataset contains

pairwise comparisons for users with varying amounts of

connectivity. To study feature behavior across the spectrum of

users, we plot the average feature difference in a user pair

against the connectivity difference, for a few selected features

in Fig. 7. This is effectively a lower-dimensional version of

the predictability heatmaps that reveal new insights.

We observe that a few features shown have high pre-

dictability when the connectivity difference is low. This

indicates that even when user network sizes are similar, their

expertise can be differentiated with these features. The pre-

dictability for Twitter follower feature increases monotoni-

cally with connectivity difference. Finally, the SOCIAL

WWW and Wikipedia features suffer from significant dips in

the mid-range and perform the best when comparing users

with network size difference of 105 and above.
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Fig. 7 Feature versus connectivity
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6 Expertise score

The features described above are combined into a feature

vector for each user. The ground-truth dataset is split into

training and test sets. The labels for the pairs in the training

set are fit against the feature difference vectors

F̂Dðu1; u2; tiÞ using nonnegative least squares (NNLS)

regression. We constrain the weights to be nonnegative

because the features contributing to the score are designed

to be directly proportional to expertise.

Model building is performed in a two-step process.

In the first step, we build network-level models, based

on the disjoint sets of features for each given network.

In the second step we build a global model treating the

network expertise scores obtained in the first step as

features. Weighted network models are generated by

multiplying the network-level weights with their cor-

responding weight from the global model. These

weighted network models are then combined by con-

catenation into a single weight vector w. This two-step

process enables representation of sparse features

derived from low population networks. The final

expertise score for a user is computed by applying the

weight vector to the user’s normalized feature vector

F̂ ðu; tiÞ as shown in Eq. 3.

The F measure for the expertise score is 0.70, covering

75 % of users across all networks. Table 4 shows addi-

tional performance metrics. Given that the human evalua-

tor consensus is close to 84 %, this F measure is reasonably

high.

6.1 Super-topics distribution

In Table 5, we examine the characteristics of topic exper-

tise aggregated across users on different networks. We roll

up entities and sub-topics to super-topics to aid the visu-

alization and reduce the topic dimension space from 9000

topical domains to 15. We plot percentage breakdown of

super-topics on each network for the users on that network

and also across all networks combined. We observe that

users in each network have distinct topical expertise dis-

tribution. On Twitter and Google?, the super-topic ‘tech-

nology’ is the most represented one, whereas

‘entertainment’ is the most represented super-topic on

Facebook. Facebook users are also experts in ‘technology,’

‘lifestyle’ and ‘food-and-drink.’ On LinkedIn, most users

are expert in ‘business’ and ‘technology’ and the repre-

sentation of other super-topics drops off significantly. This

is expected as LinkedIn is a professional networking plat-

form. The leftmost column shows the distribution of

expertise when all the network features are combined to

build the combined expertise for users. The most repre-

sented topics are ‘business,’ ‘entertainment’ and ‘technol-

ogy.’ We also observe that due to our multi-network

approach, topical distribution across the users is not as

skewed as the distribution for individual networks.

7 Applications

7.1 Application validation

To validate the expertise system, we developed an appli-

cation5 where users could ask questions pertaining to their

topics of interest. The questions were then routed to topical

experts who could presumably answer the questions. The

topical experts then could choose to respond to the ques-

tions posed to them, through a direct conversation with the

Table 5 Super-topic user

distribution across different

networks

5 Cinch App from Klout, http://tnw.to/t3FtH.
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user asking the question. An example of such an interaction

in the application is shown in Fig. 8a.

The application generated over 30,000 such conversa-

tions, with more than 13,000 topical experts responding to

questions asked. Figure 8b shows the connectivity distri-

bution for the responding experts. We observe that a

majority of experts who responded fell within the con-

nectivity range of 500 to 5000, whereas top experts with

connectivity values of more than 1,000,000 were rarely

responsive. This shows the value of ranking users who are

not necessarily the top experts in their fields while building

applications used by the average population.

7.2 Expert examples

In Table 6, we present user examples with feature values

for selected Twitter features and topics, along with their

user population counts. For a topic such as ‘technology,’ in

a typical top-k approach, users like Google and TechReview

(MIT Technology Review) may be regarded as the top

experts. But by ranking the full population, users like Tim

O’Reilly and Arrington with lower feature values can also

be identified as experts in the topic.

The effectiveness of a multi-source approach is evident

in the examples of ‘politics’ and ‘machine learning.’ For

‘politics,’ BarackObama has the highest feature values for

the Twitter follower graph feature, due to the large number

of users who follow President Obama on Twitter. However,

Politico and NYTimes have high feature values for other

features such as URL and SOCIAL WWW, enabling their

identification as experts. As a niche topic, ‘machine

learning’ attracts a relatively small community of users on

the social platforms. For the most socially engaging

accounts like KDnuggets and Kaggle, we observe that

many nonzero features exist and it is relatively simple to

identify these accounts as top experts. However, for passive

users such as ylecun, the small individual feature values

add up to recognize him as an expert.

In terms of coverage, the system scores 224K users for a

niche topic like ‘machine learning,’ and approximately 3

million users for ‘San Francisco,’ a number that is close to

half of the bay area’s population. Finally, Fig. 9 shows a

screen shot of the top ranked users for a few selected

topics.

8 Open API

We have opened the results of this paper via two REST

API endpoints. The first endpoint returns the top experts for

a specified topic. The second returns the expertise topics

for a specified user. The documentation for using the REST

APIs to retrieve these results is available at http://klout.

com/s/developers/research. The results are provided in

JSON format. The ontology of the 9000 topics used is

available at https://github.com/klout/opendata.
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Table 6 Examples for Twitter Normalized Features
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An example of the API response for top experts in

‘politics’ is provided in Listing 1.

Listing 2 presents an example response for the expertise

topics for ‘@washingtonpost.’ The score associated with a

topic in the result is the percentile based on the expertise

scores within the topic.

9 Conclusion and future work

In this study, we derive and examine a variety of features

that predict online topical expertise for the full spectrum of

users on multiple social networks. We evaluate these fea-

tures on a large ground-truth dataset containing almost

90,000 labels. We train models and derive an expertise

scores for over 650 million users, and make the lists of top

experts available via APIs for more than 9000 topics.

We find that features that are derived from Twitter Lists,

Facebook Fan Pages, Wikipedia and webpage text and

metadata are able to predict expertise very well. Other

features with higher coverage such as those derived from

Facebook Message Text and the Twitter Follower graph

enable us to find experts in the long tail. We also found that

combining social network information with Wikipedia and

webpage data can prove to be very valuable for expert

mining. Thus, a combination of multiple features that

complement each other in terms of predictability and

coverage yields the best results.

Further studies in this direction could unify cross-

platform online expertise information, in addition to

other data sources such as Freebase and IMDB. Another

area that could be explored in the future is the overlap

and differences in the dual problems of topical expertise

and topical interest mining. To conclude, we provide an

in-depth comparison of topical data sources and features

in this study, which we hope will prove valuable to the

community when building comprehensive expert

systems.

Fig. 9 Top ranked experts by topic; Snapshot on July 12, 2015
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