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Abstract In a temporal network, the presence and activity

of nodes and links can change through time. To describe

temporal networks we introduce the notion of temporal

quantities. We define the addition and multiplication of

temporal quantities in a way that can be used for the def-

inition of addition and multiplication of temporal networks.

The corresponding algebraic structures are semirings. The

usual approach to (data) analysis of temporal networks is to

transform the network into a sequence of time slices—

static networks corresponding to selected time intervals

and analyze each of them using standard methods to pro-

duce a sequence of results. The approach proposed in this

paper enables us to compute these results directly. We

developed fast algorithms for the proposed operations.

They are available as an open source Python library TQ

(Temporal Quantities) and a program Ianus. The proposed

approach enables us to treat as temporal quantities also

other network characteristics such as degrees, connectivity

components, centrality measures, Pathfinder skeleton, etc.

To illustrate the developed tools we present some results

from the analysis of Franzosi’s violence network and

Corman’s Reuters terror news network.

Keywords Temporal network � Time slice � Temporal

quantity � Semiring � Algorithm � Network measures �
Python library � Violence � Terror

Mathematics Subject Classification 91D30 � 16Y60 �
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1 Introduction

In a temporal network, the presence and activity of nodes

and links can change through time. In the last two decades,

the interest for the analysis of temporal networks increased

partially motivated by travel-support services and the

analysis of sequences of interaction events (e-mails, news,

phone calls, collaboration, etc.). The approaches and

results were recently surveyed in the book Holme and

Saramäki (2013). See also papers Holme and Saramäki

(2012) and Holme (2015).

Most of temporal social networks data contain the infor-

mation about activity time intervals of their links, sometimes

augmented by the activity intensity. The usual approach to

the (data) analysis of temporal networks is to transform the

network into a sequence of time slices—static networks

corresponding to selected time intervals—see, for example,

Moody et al. (2005), Kim et al. (2012), Gulyás et al. (2013).

Afterward, each time slice is analyzed using the standard

methods for analysis of static networks. Finally, the results

are collected into a temporal sequence of results. In this

paper, we propose an alternative approach, based on the

notion of a temporal quantity, that bypasses explicit con-

struction of time slices. The developed algorithms are

transforming temporal networks directly into results in the

form of temporal quantities, vectors, temporal vectors or

partitions, and temporal networks.

In the paper, we first present the basic notions about

temporal networks. In Sect. 3, we introduce the temporal

quantities and propose an algebraic approach, based on

semirings, to the analysis of temporal networks. In the
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following sections we show that most of the traditional

network analysis concepts and algorithms such as degrees,

clustering coefficient, closeness, betweenness, weak and

strong connectivity, and PathFinder skeleton can be

straightforwardly extended to their temporal versions.

2 Description of temporal networks

For the description of temporal networks we propose an

elaborated version of the approach used in Pajek (de Nooy

et al. 2012). Pajek supports two types of descriptions of

temporal networks based on presence and on events (Pajek

0.47, July 1999). Here, we describe only the approach to

capturing the presence of nodes and links.

A temporal network N T ¼ ðV;L; T ;P;WÞ is obtained
by attaching the time, T , to an ordinary network, where T
is a set of time points, t 2 T . V is the set of nodes, L is the

set of links, P is the set of node properties, andW is the set

of link properties or weights (Batagelj 2009). The time T is

usually either a subset of integers, T � Z, or a subset of

reals, T � R. In Pajek T � N. In a general setting, it could

be any linearly ordered set.

In a temporal network, nodes v 2 V and links l 2 L are

not necessarily present or active at all time points. Let T(v),

T 2 P, be the activity set of time points for the node v; T(l),

T 2 W, the activity set of time points for the link l. The

following consistency condition is imposed: if a link

l(u, v) is active at the time point t then its end-nodes u and

v should be active at the time t. Formally, we express this by

Tðlðu; vÞÞ � TðuÞ \ TðvÞ:

The activity set T(e) of a node/link e is usually described as

a sequence of activity time intervals

ð½si; fiÞÞki¼1;

where si is the starting time and fi is the finishing time.

We denote a network consisting of links and nodes

active at the time t 2 T by NðtÞ and call it the (network)

time slice or footprint of t. Let T 0 � T (for example, a time

interval). The notion of a time slice is extended to T 0 by

NðT 0Þ ¼
[

t2T 0
N ðtÞ:

2.1 Examples

Let us look at some examples of temporal networks.

Citation networks can be obtained from bibliographic

data bases such as Web of Science (Knowledge) and

Scopus. In a citation network N ¼ ðV;L; T ;P;WÞ, its set
of nodes V consists of selected works (papers, books,

reports, patents, etc.). There exists an arc l(u, v) 2 L iff the

work u cites the work v. The time set T is usually an

interval of years ½yearfirst; yearlast� in which the works were

published. The activity set of the work v, T(v), is the

interval ½yearpubðvÞ; yearlast�; the activity set of the arc

l(u, v), T(l), can be set to the interval

½yearpubðuÞ; yearpubðuÞ� (instances approach) or to the

interval ½yearpubðuÞ; yearlast� (cumulative approach). An

example of a property p 2 P is the number of pages or the

number of authors. Other properties, such as work’s

authors and keywords, are usually represented as two-mode

networks.

Project collaboration networks are usually based on

some project data base such as Cordis. The set of nodes V
consists of participating institutions. There is an edge eðu :

vÞ 2 L iff institutions u and v work on a joint project. The

time set T is an interval of dates/days ½dayfirst; daylast� in
which the collaboration data were collected. TðvÞ ¼ T and

TðeÞ ¼ f½s; f � : there exists a project P such that u and v are

partners on P; s is the start and f is the finish date of Pg.
KEDS/WEIS networks are networks registering political

events in critical regions in the world (Middle East,

Balkans, and West Africa) on the basis of daily news.

Originally they were collected by KEDS (Kansas Event

Data System). Currently they are hosted by Parus Analyt-

ical Systems. The set of nodes V contains the involved

actors (states, political groups, international organizations,

etc.). The links are directed and are describing the events:

ðdate; actor1; actor2; actionÞ

on a given date the actor1 made the action on the actor2.

Different actions are determining different relations—we

get a multirelational network with a set of links parti-

tioned by actions L ¼ fLa : a 2 Actionsg. The time set is

determined by the observed period T ¼ ½dayfirst; daylast�.
Since most of the actors are existing during all the

observed period their node activity time sets are

TðvÞ ¼ T . Another option is to consider as their node

activity time sets the period of their engagement in the

region. The activity time set T(l) of an arc lðu; vÞ 2 La

contains all dates – intervals ½day; dayþ 1Þ – in which the

actor u made an action a on the actor v. Another possi-

bility is to base the description on a single relation net-

work and store the information about the action a as a

structured value in a triple ðday; dayþ 1; valueÞ value ¼
½ðaction1; count1Þ; ðaction2; count2Þ; . . .; ðactionk; countkÞ�
and introduce an appropriate semiring over such values

(see Sect. 3).

There are many other examples of temporal networks

such as genealogies, contact networks, and networks of

phone calls. In Sect. 4, we shall analyze the Franzosi’s

temporal network on violence in Italy (1919–1922), in
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Sect. 6, we shall apply proposed methods to the temporal

bibliographic network on the stem cell research in Spain

(1997–2012), and in Sect. 13 to the September 11 Reuters

terror news temporal network.

3 Temporal quantities

Besides the presence/absence of nodes and links also their

properties can change through time. For example, in the

World trade flows (1962–2000) temporal network an arc

from a country u to country v contains for each year the

information on the value of export from u to v (Feenstra

et al. 2005).

To describe the changes, we introduce the notion of a

temporal quantity a with the activity set Ta � T

where a0ðtÞ is the value of a at an instant t, and denotes

the value undefined.

We assume that the values of temporal quantities belong

to a set A which is a semiring ðA;�;�; 0; 1Þ for binary

operations � : A� A! A and � : A� A! A (Gondran

and Minoux 2008; Batagelj 1994). This means that

ðA;�; 0Þ is an Abelian monoid—the addition � is asso-

ciative and commutative, and has 0 as its neutral element;

ðA;�; 1Þ is a monoid – the multiplication � is associative

and has 1 as its neutral element. In addition, multiplication

distributes from both sides over the addition. Note that 0

and 1 denote the two elements of A that satisfy the required

properties. In expressions, the precedence of the multipli-

cation � over the addition � is assumed. We can extend

both operations to the set by requiring that

for all it holds

The structure is also a semiring.

The ‘‘default’’ semiring is the combinatorial semiring

ðRþ0 ;þ; �; 0; 1Þ where þ and � are the usual addition and

multiplication of real numbers. In some applications other

semirings are useful.

In applications of semirings in the analysis of graphs and

networks the addition � describes the composition of

values on parallel walks and the multiplication � describes

the composition of values on sequential walks—see Fig. 1.

For the combinatorial semiring these two schemes corre-

spond to basic principles of combinatorics: the Rule of

Sum and the Rule of Product Riordan (1958).

The semiring ðRþ0 ;min;þ;1; 0Þ, Rþ0 ¼ Rþ0 [ f1g, is
suitable to deal with the shortest paths problem in net-

works; the semiring ðf0; 1g;_;^; 0; 1Þ for reachability

problems. The standard references on semirings are Carré

(1979) and Gondran and Minoux (2008).

3.1 Semiring of temporal quantities

Let denote the set of all temporal quantities over

in the time T . To extend the operations to networks

and their matrices, we first define the sum (parallel links)

a� b ¼ s as

ða� bÞðtÞ ¼ aðtÞ � bðtÞ

and Ts ¼ Ta [ Tb; the product (sequential links) a� b ¼ p

as

ða� bÞðtÞ ¼ aðtÞ � bðtÞ

and Tp ¼ Ta \ Tb.

In these definitions and also in the following text, to

avoid the ‘pollution’ with many different symbols, we use

the symbols � and � to denote the semiring operations.

The appropriate semiring can be determined from the

context. For example, in the definition of addition of

temporal quantities the symbol � on the left-hand side of

the equation operates on temporal quantities and the sym-

bol � on the right-hand side denotes the addition in the

basic semiring .

Let us define the temporal quantities 0 and 1 with

requirements and 1ðtÞ ¼ 1 for all t 2 T . It is

easy to verify that the structure is also

a semiring, and therefore so is the set of square matrices of

order n over it for the addition A� B ¼ S

sij ¼ aij � bij

and multiplication A� B ¼ P

pij ¼a
n

h¼1
aih � bhj:

Again, the symbols � and � on the left-hand side operate

on temporal matrices and on the right-hand side in the

semiring of temporal quantities.

Fig. 1 Semiring addition and multiplication in networks
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The matrix multiplication is closely related to traveling

on networks. Consider an entry pij at an instant t

pijðtÞ ¼a
n

h¼1
aihðtÞ � bhjðtÞ:

For a value pijðtÞ to be defined (different from ) there

should exist at the instant t at least one node h such that

both the link (i, h) and the link (h, j) exist—the transition

from the node i to the node j through a node h is possible.

Its contribution is aihðtÞ � bhjðtÞ. This means that the

matrix multiplication is taking into account only the links

inside the time slice NðtÞ.
A construction of semirings for problems on temporal

walks—journeys is a topic for further research (Praprotnik

and Batagelj 2016b).

3.2 Operationalization

In the following, we shall limit our discussion to temporal

quantities that can be described in the form of time inter-

val/value sequences

a ¼ ððIi; viÞÞki¼1
where Ii is a time interval and vi is a value of a on this

interval. The number k denotes the length (number of

terms) of the sequence a. In general, the intervals can be of

different types: 1) ½si; fi�; 2) ½si; fiÞ; 3) ðsi; fi�; 4) ðsi; fiÞ. Also
the value vi can be structured. For example,

vi ¼ ðwi; ci; siÞ—weight, capacity, and transition time; or

vi ¼ ðdi; niÞ—the length of geodesics and the number of

geodesics, etc. We require si	 fi, for i ¼ 1; . . .; k and

si
1\si, for i ¼ 2; . . .; k.
To simplify the exposition we will assume in the fol-

lowing that all the intervals in our descriptions of temporal

quantities are of type 2: ½si; fiÞ and fi
1	 si, for i ¼ 2; . . .; k.
Therefore, we can describe the temporal quantities with

sequences of triples

a ¼ ððsi; fi; viÞÞki¼1:

In the examples we also assume that

T ¼ ½tmin; tmax� � N:

To provide a computational support for the proposed

approach we are developing in Python a library TQ

(Temporal Quantities). In the examples, we will use the

Python notation for temporal quantities.

The following are two temporal quantities a and b rep-

resented in Python straightforwardly as a list of triples

The temporal quantity a has on the interval [1, 5) (i.e.,

in instances 1, 2, 3, and 4) value 2; on the interval [6, 8)

value 1; on the interval [11, 12) value 3, etc. Outside the

specified intervals its value is undefined, .

The temporal quantities can also be visualized as it is

shown for a and b at the top half of Fig. 2.

For the simplified version of temporal quantities we

wrote procedures sum (Algorithm 1) for the addition and

prod (Algorithm 2) for the multiplication of temporal

quantities over the selected semiring. Because, by

assumption, the triples in a description of a temporal

quantity are ordered by their starting times, we can base

both procedures on the ordered lists merging scheme. The
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basic semiring operations of addition and multiplication are

provided by functions sAdd and sMul.

The function lengthðaÞ returns the length (number of

items) of the list a. The function getðaÞ returns the current
item of the list a and moves to the next item; if the list is

exausted it returns a ‘sentinel’ triple ð1;1; 0Þ. The

statement ðs; f ; vÞ  e describes the unpacking of the item

e into its parts. The statement c:appendðeÞ appends the

item e to the tail of the list c. The function standardðaÞ
joins, in the list a, adjacent time intervals with the same

value into a single interval.

The following are the sum s and the product p of tem-

poral quantities a and b. They are visually displayed at the

bottom half of Fig. 2.

a :
1 5 10 15 20

wMax = 10

b :
1 5 10 15 20

wMax = 10

a ⊕ b :
1 5 10 15 20

wMax = 10

a � b :
1 5 10 15 20

wMax = 10

Fig. 2 Addition and

multiplication of temporal

quantities
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Let la ¼ lengthðaÞ and lb ¼ lengthðbÞ. Then, assuming

that the semiring operations take constant time each, the

time complexity of both algorithms is Oðla þ lbÞ. The

example in Fig. 3 shows that in extreme cases the sum can

be almost four times longer than each of its arguments, and

the product almost twice as long as the arguments. If T ¼
½tmin; tmax� � N the length of a list describing a temporal

quantity can not exceed L ¼ 1þ tmax 
 tmin.

3.3 The aggregated value

In some applications over the combinatorial semiring we

shall use the aggregated value of a temporal quantity

a ¼ ððsi; fi; viÞÞki¼1. It is defined as

Ra ¼
Xk

i¼1
fi 
 sið Þ � vi

and is computed using the procedure totalðaÞ. For example

Ra ¼ 23 and Rb ¼ 30. Note that Raþ Rb ¼ Rðaþ bÞ.

3.4 Temporal partitions

The description of temporal partitions has the same form as

the description of temporal quantities

a ¼ ððsi; fi; viÞÞki¼1:

They differ only in the interpretation of values vi 2 N. In

case of partitions vi ¼ j means that the unit described with

a belongs to a class j in the time interval ½si; fiÞ. We shall

use temporal partitions to describe connectivity compo-

nents in Sect. 10.

We obtain a more adequate description of temporal net-

works using vectors of temporal quantities (temporal vectors

and temporal partitions) for describing properties of nodes

and making also link weights into temporal quantities. In the

current version of the library TQ,we use a representation of a

network N with its matrix A ¼ ½auv�

where w(u, v) is a temporal weight attached to a link (u, v).

3.5 Products of a temporal matrix and a temporal

vector

In some applications the product of a temporal matrix with

a temporal vector is useful. There are two products—left

and right.

Let A be a temporal matrix of size n� m, v a temporal

vector of size n, and u a temporal vector of size m. The

product from left of A with v, denoted by u ¼ v � A, is
defined by

uj ¼a
n

i¼1
vi � aij; j ¼ 1; . . .;m

and the product from right of A with u, denoted by

v ¼ A � u, is defined by

vi ¼a
m

j¼1
aij � uj; i ¼ 1; . . .; n:

a :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

b :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

a ⊕ b :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

a � b :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 3 Addition and multiplication of temporal quantities—growth of size
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In the TQ library both products are implemented as func-

tions MatVecMulLðA; vÞ and MatVecMulRðA; vÞ.
If a vector v of size n is considered as a column vector –

an n� 1 matrix – it holds v � A ¼ ðvT � AÞT and

A � u ¼ A� u. The symbol T denotes the matrix trans-

position operation.

4 Node activities

In this section, we show how we can use the proposed

operations with temporal quantities (the addition) for a

simple analysis of temporal networks.

Assume that the values in temporal quantities auv from a

temporal network matrix A are positive real numbers

measuring the intensity of the activity of the node u on the

node v. We define the activity of a group of nodes V1 on a

group V2 (using the combinatorial semiring) as

actðV1;V2Þ ¼
X

u2V1

X

v2V2
auv:

To illustrate the notion of activity, we applied it on Fran-

zosi’s violence temporal network (Franzosi 1997). Roberto

Franzosi collected from the journal news in the period

January 1919–December 1922 information about the dif-

ferent types of interactions between political parties and

other groups of people in Italy. The violence network

contains only the data about violent actions and counts the

number of interactions per month.

We determined the temporal quantities

pol ¼ actðf police g;VÞ þ actðV; f police gÞ;
fas ¼ actðffascistsg;VÞ þ actðV; ffascistsgÞ; and
all ¼ actðV;VÞ:

They are presented in Fig. 4. Comparing the intensity

charts of police and fascists activity with overall activity,

we see that most of the violent activities in the first two

years 1919 and 1920 were related to the police. In the next

two years (1921 and 1922) they were taken over by the

fascists.

5 Temporal degrees

For an ordinary graph with a (binary) adjacency matrix A

we can compute the corresponding indegree, i, and out-

degree, o, vectors using (over the combinatorial semiring)

the relations

i ¼ e � A and o ¼ A � e;

where e is a column vector of size n ¼ jVj with all its

entries equal to 1. The same holds for temporal networks.

In this case, the vector e contains as values the temporal

unit 1 ¼ ½ð0;1; 1Þ�.
For a temporal network presented in Fig. 5, the corre-

sponding temporal indegrees and outdegrees are given in

Table 1. For example, the node 5 has in the time interval

[1, 5) outdegree 2. Because the arc (5, 7) disappears at the

time point 5, the outdegree of the node 5 diminishes to 1 in

the interval [5, 9).

We will use the simple temporal network from Fig. 5

also for the illustration of some other algorithms because it

allows the users to manually check the presented results.

6 Temporal co-occurrence networks

Let the binary matrix A ¼ ½aep� describe a two-mode net-

work on the set of events E and the set of participants P:

aep ¼
1 p participated in the event e

0 otherwise

�
:

The function d : E! T assigns to each event e the date

d(e) when it happened. T ¼ ½first; last�. Using these data

we can construct two temporal affiliation matrices:

– instantaneous Ai ¼ ½aiep�, where

– cumulative Ac ¼ ½acep�, where

In Python, the value is represented as ½ �.
Using the multiplication of temporal matrices over the

combinatorial semiring we get the corresponding instan-

taneous and cumulative co-occurrence matrices

Ci ¼ AiT � Ai and Cc ¼ AcT � Ac:

A typical example of such a matrix is the papers’ author-

ship matrix where E is the set of papers, P is the set of

authors, and d is the publication year (Batagelj and Cer-

inšek 2013).

The triple (s, f, v) in a temporal quantity cipq tells that in

the time interval [s, f) there were v events in which both

p and q took part.
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The triple (s, f, v) in a temporal quantity ccpq tells that in

the time interval [s, f) there were in total v accumulated

events in which both p and q took part.

The diagonal matrix entries cipp and ccpp contain the

temporal quantities counting the number of events in the

time intervals in which the participant p took part.

For example, in a data set on the stem cell research

during 1997–2012 in Spain collected by Gisela Cantos-

Mateos (Cantos-Mateos et al. 2014), we get from the basic

two-mode network, where E is the set of papers and P is

the set of institutions, for selected two institutions (HCL/B

¼ University Hospital Clı́nic de Barcelona, Barcelona and

IDI/B ¼ Institut d’Investigacions Biomé-diques August Pi i

Sunyer, Barcelona) the collaboration temporal quantities

presented in Table 2.

The first column in the table contains the yearly col-

laboration (co-authorship) data and the second column

contains the cumulative collaboration data. Let us read the

table:

police :

Jan−19 Jul−19 Jan−20 Jul−20 Jan−21 Jul−21 Jan−22 Jul−22 Jan−23
wMax = 410

fascists :

Jan−19 Jul−19 Jan−20 Jul−20 Jan−21 Jul−21 Jan−22 Jul−22 Jan−23
wMax = 410

all :

Jan−19 Jul−19 Jan−20 Jul−20 Jan−21 Jul−21 Jan−22 Jul−22 Jan−23
wMax = 410

Fig. 4 Intensity of violent activities of police, fascists, and all
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ci½IDI=B; HCL=B�ð2005; 2006Þ ¼ 3—in the year 2005

researchers from both institutions published three joint

papers;

ci½IDI=B; HCL=B�ð2011; 2013Þ ¼ 18—in the years 2011

and 2012 researchers from both institutions published 18

joint papers each year;

ci½HCL=B; HCL=B�ð2010; 2011Þ ¼ 78—in the year 2010

researchers from the institution HCL/B published 78

papers;

cc½IDI=B; HCL=B�ð2008; 2009Þ ¼ 16—till the year 2008

(included) researchers from both institutions published

16 joint papers.

Note that the violence network from Sect. 4 is essen-

tially a co-occurrence network that could be obtained from

the more primitive instantaneous two-mode network about

violent actions reported in journal articles and the involved

political actors.

7 Clustering coefficients

Let us assume that the network N is based on a simple

directed graph G ¼ ðV;AÞ without loops. From a simple

undirected graph we obtain the corresponding simple

directed graph by replacing each edge with a pair of

opposite arcs. In such a graph the clustering coefficient,

C(v), of the node v is defined as the proportion between the

number of realized arcs among the node’s neighbors and

the number of all possible arcs among the node’s neighbors

N(v), that is

[(3, 9, 1)]

[(1
, 5

, 1
)]

[(7
, 9

, 1
)]

[(2, 8, 1)]

[(2
, 8

, 1
)]

[(2
, 8

, 1
)]

1

2

3

4 5

6

7

8

910

11

12

13

14

15

Fig. 5 First example network. All unlabeled links have a value of

[(1, 9, 1)]

Table 1 Temporal indegrees and outdegrees for the first example

network

Table 2 Temporal collaboration
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CðvÞ ¼ jAðNðvÞÞj
kðk 
 1Þ

where k is the number of neighbors of the node v. For a

node v without neighbors or with a single neighbor we set

CðvÞ ¼ 0.

The clustering coefficient measures a local density of the

node’s neighborhood. A problem with its applications in

network analysis is that the identified densest neighbor-

hoods are mostly very small. For this reason we provided in

Pajek the corrected clustering coefficient,

C0ðvÞ ¼ jAðNðvÞÞj
Dðk 
 1Þ

where D is the maximum number of neighbors in the

network.

To count the number of realized arcs among the node’s

neighbors, we use the observation that each arc from

AðNðvÞÞ forms a triangle with links from its end-nodes to the

node v; and that the number of triangles in a simple undi-

rected graph can be obtained as the diagonal value in the third

power of the graphmatrix (over the combinatorial semiring).

For simple directed graphs the counting of triangles is

slightly more complicated. Let us denote T ¼ AT and

S ¼ Aþ T. From Fig. 6 we see that each triangle (deter-

mined with a link opposite to the dark node) appears

exactly once in

AAAþ AATþ TATþ TAA ¼
¼ AASþ TAS ¼ SAS:

This gives us a simple way to count the triangles which is

used in Algorithm 4 (see ‘‘Appendix’’). Its time complexity

is Oðn3 � LÞ.

In Tables 3 and 4, the ordinary and the corrected clus-

tering coefficients are presented for the example network

from Fig. 5 and its undirected skeleton.

8 Closures in temporal networks

When the basic semiring ðA;�;�; 0; 1Þ is closed—an

unary closure operation H with the property

aH ¼ 1� a� aH ¼ 1� aH � a; for all a 2 A;

is defined in it – this property can be extended also to the

corresponding matrix semiring. When it exists, a standard

closure is obtained as

aH ¼a
1

i¼0
ai:

In some semirings different closures can exist. For

computing the matrix closure we can apply the

Fletcher’s algorithm (Fletcher , 1980). The entry cuv in

the matrix C ¼ AH is equal to the sum of values of all

walks from the node u to the node v. In most of the

semirings, except the combinatorial, for which we are

interested in determining the closures, also the absorp-

tion law holds

AAA
TTT

TTT
AAA

AAT
ATT

ATT
AAT

TAT
ATA

ATA
TAT

TAA
TTA

TTA
TAA

Fig. 6 Counting triangles

Table 3 Clustering coefficients for the first example network
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1� a ¼ 1; for all a 2 A:

In these semirings aH ¼ 1, for all a 2 A, and therefore the

Fletcher’s algorithm can be simplified and performed in

place as implemented in Algorithm 3.

For a temporal quantity a over a closed semiring it holds

TaH ¼ T .
The time complexity of Algorithm 3 is Oðn3 � LÞ.

9 Temporal node partitions

In the previous sections, the nodes of temporal networks

were considered as being present all the time. We can

describe the presence of nodes through time using a temporal

binary (single valued) node partition

TðuÞ ¼ ððsi; fi; 1ÞÞki¼1; for u 2 V;

specifying that a node u is present in time intervals

½si; fiÞ; i ¼ 1; . . .; k:

The node partition TMin determined from the temporal

network links by

TMinðuÞ ¼
[

l2L:u2extðlÞ
binaryðalÞ;

for u 2 V, is the smallest temporal partition of nodes that

satisfies the consistency condition from Sect. 2. The term

ext ðlÞ denotes the set of end-nodes of the link l, al is the

temporal quantity assigned to the link l, and the function

binary sets all values in a given temporal quantity to 1. In

the library TQ, the partition TMin can be computed using

the function minTime.

A temporal node partition q can also be used to extract a

corresponding subnetwork from the given temporal network

described with amatrixA. The subnetwork contains only the

nodes active in the partition q and the active links satisfying

the consistency condition with respect to q.

To formalize the described procedure we first define the

procedure extractðp; aÞ ¼ b, where p is a binary temporal

quantity and a is a temporal quantity, as

Let B be a temporal matrix describing the links of the

subnetwork determined by the partition q. Its entries for

lðu; vÞ 2 L are determined by

bl ¼ extractðqðuÞ \ qðvÞ; alÞ:

In TQ this operation is implemented as a procedure

MatExtractðq;AÞ.

10 Temporal reachability and weak and strong
connectivity

For a temporal network represented with a binary matrix A

its transitive closure AH (over the reachability semirings

based on the semiring ðf0; 1g;_;^; 0; 1Þ) determines its

Table 4 Clustering coefficients for the skeleton of the first example

network
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reachability relation matrix. We obtain its weak connec-

tivity temporal matrix W as

W ¼ ðA [ ATÞH

and its strong connectivity temporal matrix S as

S ¼ AH \ ðAHÞT :

The use of the strict transitive closure instead of a transitive

closure in these relations preserves the inactivity value 0 on

the diagonal for all isolated nodes.

10.1 Reachability degrees

Let R ¼ A ¼ A� AH be the strict reachability relation of

a given network. Then the temporal vectors inReach ¼
inDegðRÞ and outReach ¼ outDegðRÞ contain temporal

quantities counting the number of nodes: from which a

given node v is reachable ðinReach½v�Þ / which are reach-

able from the node v ðoutReach½v�Þ. The results for our

example network are presented in Table 5. For example, 8

nodes f4; 5; 6; 7; 8; 9; 10; 11g are reachable from node 6 in

the time interval [1, 5), and 3 nodes f4; 5; 6g are reachable
in the time interval [5, 9).

10.2 Temporal weak connectivity

The function weakConnMatðAÞ for a given temporal net-

work matrix A determines the corresponding temporal

weak connectivity matrix W. Every time slice NðtÞ, t 2 T ,
of the matrix W is an equivalence relation that can be

compactly described with the corresponding partition.

To transform the temporal equivalence matrix E into

the corresponding temporal partition p, we use in the

function eqMat2Part (see Algorithm 5) the fact that on

a given time interval equivalent (in our case weakly

connected) nodes get the same value on this interval in

the product of the matrix E with a vector computed

over the combinatorial semiring ðN;þ; �; 0; 1Þ. We take

for the vector values randomly shuffled integers from

the interval 1 : n. With a very high probability, the

values belonging to different equivalence classes are

different.

The classes of the obtained temporal partition are finally

renumbered with consecutive numbers using the function

renumPart(p) (see Algorithm 6).

For our first example network, we obtain the temporal

weak partition presented in Table 6.

10.3 Temporal strong connectivity

The procedure strongConnMatðAÞ for a given temporal

network matrix A determines the corresponding temporal

strong connectivity matrix S. To determine the intersection

of temporal network binary matrices A and B we use the

function MatInterðA;BÞ. Again, to get the strong

Table 5 Temporal input and output reachability degrees for the first

example network

Table 6 Temporal weak and strong connectivity partitions for the

first example network
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connectivity partition we have to apply the function

eqMat2Part to the strong connectivity matrix.

The time complexity of algorithms for temporal weak

and strong connectivity partitions is Oðn3 � LÞ.
For our first example network, we obtain the temporal

strong partition presented in Table 6. In the library TQ both

matrices andpartitions are based on the strict transitive closure.

11 Temporal closeness and betweenness

Closeness and betweenness are among the traditional social

network analysis indices measuring the importance of

nodes (Freeman 1978). They are somehow problematic

when applied to non-(strongly) connected graphs. In this

section, we will not consider these questions. We will only

show how to compute them for non-problematic temporal

graphs.

11.1 Temporal closeness

The output closeness of the node v is defined as

oclðvÞ ¼ n
 1X

u2Vnfvg
dvu

:

To determine the closeness, we first need to compute the

matrix D ¼ ½duv� of geodetic distances duv between the

nodes u and v. It can be obtained as a closure of the net-

work matrix A over the shortest paths semiring

ðRþ0 ;min;þ;1; 0Þ. Note that the values in the matrix A

can be any nonnegative real numbers.

In Fig. 7, we present our second example temporal

network which is an extended version of the example given

in Fig. 3 from Batagelj (1994).

Because a complete strict closure matrix D is too large

to be listed, we present only some of its selected entries:

To compute the vector of closeness coefficients of

nodes, we have to sum the temporal distances to other

nodes over the combinatorial semiring. See Algorithm 7 in

the ‘‘Appendix’’. The time complexity of this algorithm is

Oðn3 � LÞ.
The temporal closeness coefficients for our second

example network are given in Table 7.

11.2 Temporal betweenness

The betweenness of a node v is defined as

bðvÞ ¼ 1

ðn
 1Þðn
 2Þ
X

u;w 2 V
jfv; u;wgj ¼ 3

nu;wðvÞ
nu;w

where nu;w is the number of u-w geodesics (shortest paths)

and nu;wðvÞ is the number of u-w geodesics passing through

the node v.

Suppose that we know the matrix

C ¼ ½ðdu;v; nu;vÞ�

where du;v is the length of u-v geodesics. Then it is also

easy to determine the quantity nu;wðvÞ:

nu;wðvÞ ¼
nu;v � nv;w du;v þ dv;w ¼ du;w

0 otherwise

�
:

This gives the following scheme of procedure for com-

puting the nontemporal betweenness coefficients b

[(5, 9, 1)]

[(1, 4, 1), (6, 9, 1)]

[(3, 7, 1)]

1

2

3

4

5

6

7

8

Fig. 7 Second example network. All unlabeled arcs have the value

[(1, 9, 1)]

Table 7 Output closeness for the second example network
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In Batagelj (1994), it is shown that the matrix C can be

obtained by computing the closure of the network matrix

over the geodetic semiring

ðN2
;�;�; ð1; 0Þ; ð0; 1ÞÞ;

where N ¼ N [ f1g and we define addition � with

ða; iÞ � ðb; jÞ ¼ ðminða; bÞ;
i a\b

iþ j a ¼ b

j a[ b

8
><

>:
Þ

and multiplication � with:

ða; iÞ � ðb; jÞ ¼ ðaþ b; i � jÞ:

To compute the geodetic closure, we first transform the

network temporal adjacency matrix A to a matrix G ¼
½ðd; nÞu;v� which has for entries pairs defined by

where d is the length of a geodesic and n is the number of

geodesics from u to v. In temporal networks, the distance

d and the counter n are temporal quantities.

The presented scheme adapted for computing the tem-

poral betweenness vector is implemented in TQ as the

function betweennessðAÞ. First we compute the strict

geodetic closure C of the matrix A over the geodetic

semiring. We present selected entries of the temporal

matrix C for our second example network:

For example, the value C½4; 6� reflects the facts that an

arc exists from node 4 to node 6 in time intervals [1, 4) and

[6, 9); in the time interval [4, 6) they are connected with 3

geodesics of length 5: (4, 7, 8, 2, 5, 6), (4, 7, 1, 3, 5, 6),

(4, 7, 1, 2, 5, 6).

We continue and using the combinatorial semiring we

compute the temporal betweenness vector b. The speci-

ficity of temporal quantities d[u, v] and n[u, v] is consid-

ered in the auxiliary function between that implements the

temporal version of the statement

if d½u;w� ¼ d½u; v� þ d½v;w� then
r  r þ n½u; v� � n½v;w�=n½u;w�

from the basic betweenness algorithm. Again, we apply the

merging scheme. The time complexity of the procedure

betweenness is Oðn3 � LÞ.
The temporal betweenness coefficients for our second

example network are presented in Table 8.

12 Temporal PathFinder

The Pathfinder algorithm was proposed in the 80s (Sch-

vaneveldt 1990) for the simplification of weighted net-

works—it removes from the network all links that do not

satisfy the (generalized) triangle inequality—if for a

weighted link there exists a shorter path connecting its end-

nodes then the link is removed. The basic idea of the

Pathfinder algorithm is simple. It produces a network

PFnet ðW; r; qÞ ¼ ðV;LPFÞ determined by the following

scheme of procedure

Table 8 Betweenness for the second example network
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where W is a network dissimilarity matrix and WðqÞ ¼
a

q

i¼1W
i ¼ ð1�WÞq is the matrix of the values of all

walks of length at most q computed over the Pathfinder

semiring with and

a� b ¼ minða; bÞ. The value of wuvðqÞ in the matrix WðqÞ

is equal to the value of all walks of length at most q from

the node u to the node v.

The scheme of Pathfinder is implemented as the function

pathFinder (Algorithm 8 in the ‘‘Appendix’’). The time

complexity of Algorithms 8 ? 9 is OðL � n3 � log qÞ
(Guerrero-Bote et al 2006).

The bottom network in Fig. 8 presents the Pathfinder

skeleton PFnet ðN ; 1;1Þ of a network N presented in the

top part of the same figure. Because r ¼ 1, a link e is

removed if there exists a path, connecting its initial node to

its terminal node, with the value (sum of link values)

smaller than the value of the link e. The arc (1, 2) is

removed because 3 ¼ vð1; 2Þ[ vð1; 3Þ þ vð3; 2Þ ¼ 2. The

arc (1, 6) is removed in the time interval [5, 9) because in

this interval 5 ¼ vð1; 6Þ[ vð1; 3Þ þ vð3; 4Þ þ vð4; 5Þ
þvð5; 6Þ ¼ 4.

13 September 11 Reuters terror news

The Reuters terror news network was obtained from the

CRA (Centering Resonance Analysis) networks produced

by Steve Corman and Kevin Dooley at Arizona State

University. The network is based on all the stories released

during 66 consecutive days by the news agency Reuters

concerning the September 11 attack on the U.S., beginning

at 9:00 AM EST 9/11/01. The nodes of this network are

important words (terms). There is an edge between two

words iff they appear in the same utterance [for details see

the paper Corman et al. (2002)]. The weight of an edge is

its frequency. The network has n ¼ 13332 nodes (different

words in the news) and m ¼ 243447 edges, 50859 with

value larger than 1. There are no loops in the network.

The Reuters terror news network was used as a case

network for the Viszards visualization session on the

Sunbelt XXII International Sunbelt Social Network Con-

ference, New Orleans, USA, 13-17. February 2002.

We transformed the Pajek version of the network into

the Ianus format used in TQ. To identify important terms,

we computed their aggregated frequencies and extracted

the subnetwork of the 50 most frequently used (during 66

days) nodes. They are listed in Table 9.

Trying to draw this subnetwork, it turns out to be almost

a complete graph. To obtain something readable, we

removed all temporal edges with the aggregated value

smaller than 10. The corresponding underlying graph is

presented in Fig. 9. The isolated nodes were removed.

For each of the 50 nodes we determined its temporal

activity and drew it. By visual inspection we identified 6

typical activity patterns—types of terms (see Fig. 10). For

all charts in the figure the displayed values are in the

interval [0, 200]—the largest activity value for the term

Wednesday is larger than 200. The timescale contains 66

days from September 11 to November 15.

The primary terms are the terms with a very high fre-

quency of appearance in the first week after September 11

and smaller, slowly declining values in the following per-

iod. The representative of this group in Fig. 10 is hijack

and other members are: airport, american, attack, city, day,

flight, nation, New York, official, Pentagon, people, plane,

police, president Bush, security, tower, United States,

Washington, world, World Trade center. These are the

terms describing the event.

The secondary terms are a reaction to the event. There

are no big changes in their values. We identified three

subgroups: (a) slowly declining represented with bin

Laden (country, foreign, government, military, minister,

new, Pakistan, tell, terrorism, terrorist, time, war, week);

(b) stationary represented with taliban (afghan, Afghani-

stan, force, group, leader); (c) occasional with several

[(1
, 9

, 3
)]

[(1, 9, 1)]

[(1, 9, 5)]

[(1, 9, 1)]

[(1, 9, 3)]

[(1, 9, 7)]

[(1
, 9

, 1
)]

[(1, 5, 3), (5, 9, 1)]

[(1, 9, 5)]

[(1
, 9, 1)]

[(1, 9, 3)]

[(1, 4, 2), (4, 9, 1)]

[(1, 9, 4)]

[(1
, 9

, 2
)]

1

2

3
4

5

6

7

[(1, 9, 1)]

[(1, 5, 5)]

[(1, 9, 1)]

[(1
, 9

, 1
)]

[(5, 9, 1)]

[(1, 4, 5)]

[(1
, 9, 1)]

[(1, 4, 3)]

[(1, 4, 2), (4, 9, 1)]

[(1, 4, 4)]

[(1
, 9

, 2
)]

1

2

3
4

5

6

7

Fig. 8 Pathfinder example
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peaks, represented with bomb (air, building, office, strike,

worker).

There are three special patterns—two periodic Wed-

nesday and Tuesday; one episodic anthrax.

To consider in a measure of importance of the node

u 2 V also the node’s position in the network, we con-

structed the attraction coefficient att ðuÞ.
Let A ¼ ½auv� be a network matrix of temporal quantities

with positive real values. We define the node activity actðuÞ
as (see Sect. 4)

actðuÞ ¼ act fug;V n fugð Þ ¼
X

v2Vnfug
auv:

Then the attraction of the node u is defined as

attðuÞ ¼ 1

D

X

v2Vnfug

avu

actðvÞ :

Note that the fraction avu
act ðvÞ is measuring the proportion of

the activity of the node v that is shared with the node u.

From 0	 avu
act ðvÞ 	 1 and degðvÞ ¼ 0) avu ¼ 0 it fol-

lows that
X

v2Vnfug

avu

act ðvÞ 	 degðuÞ	D

where D denotes the maximum degree. Therefore, we have

0	 att ðuÞ	 1, for all u 2 V.
The maximum possible attraction value 1 is attained

exactly for nodes: (a) in an undirected network: that are the

root of a star; (b) in a directed network: that are the only

united_states

attack

taliban

people

afghanistan

bin_laden

new_york

pres_bush
washington

official

anthrax

military

plane

world_trade_ctr

security

american

country

city

war

tuesday

pentagon

government

leader

world

terrorism

week

office

group

air minister

hijack

strike

flight

terrorist

airport

pakistan

tower

bomb

new

buildng

wednesday

nation

foreign

Fig. 9 September 11,

subnetwork of the most

frequently used words

Table 9 50 most frequent terms in the Terror news network

n Term Rfreq n Term RFreq

1 United_states 15000 26 Terrorism 2212

2 Attack 10348 27 Day 2128

3 Taliban 6266 28 Week 2017

4 People 5286 29 Worker 1983

5 Afghanistan 5176 30 Office 1967

6 Bin_laden 4885 31 Group 1966

7 New_york 4832 32 Air 1962

8 Pres_bush 4506 33 Minister 1919

9 Washington 4047 34 Time 1898

10 Official 3902 35 Hijack 1884

11 Anthrax 3563 36 Strike 1818

12 Military 3394 37 Afghan 1775

13 Plane 3078 38 Flight 1775

14 World_trade_ctr 3006 39 Tell 1746

15 Security 2906 40 Terrorist 1745

16 American 2825 41 Airport 1741

17 Country 2794 42 Pakistan 1714

18 City 2689 43 Tower 1685

19 War 2679 44 Bomb 1674

20 Tuesday 2635 45 New 1650

21 Pentagon 2620 46 Building 1634

22 Force 2516 47 Wednesday 1593

23 Government 2380 48 Nation 1589

24 Leader 2375 49 Police 1587

25 World 2213 50 Foreign 1558
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hijack :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

bin Laden :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

taliban :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16

wMax = 200

bomb :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

Wednesday :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

anthrax :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 200

Fig. 10 Types of activity
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out-neighbors of their in-neighbors—the root of a directed

in-star.

We computed the temporal attraction and the corre-

sponding aggregated attraction values for all the nodes in

our network. We selected 30 nodes with the largest

aggregated attraction values. They are listed in Table 10.

Again, we visually explored them. In Fig. 11, we present

temporal attraction coefficients for the six selected terms.

For all charts in the figure the displayed attraction values

are in the interval [0, 0.2].

Comparing on the common terms (Taliban, bomb,

anthrax) the activity charts in Fig. 10 with the corre-

sponding attraction charts in Fig. 11, we see that they are

‘‘correlated’’ (obviously actða; tÞ ¼ 0 implies attða; tÞ ¼ 0)

but different in details.

For example, the terms Taliban and bomb have small

attraction values at the beginning of the time window—the

terms were disguised by the primary terms. On the other

hand, the terms Taliban and Kabul get increased attraction

towards the end of the time window.

14 Conclusions

In the paper, we proposed an algebraic approach to the

‘‘deterministic’’ analysis of temporal networks based on

temporal quantities and presented algorithms for the tem-

poral variants of basic network analysis measures and

concepts. We expect that the support for temporal variants

of many other network analysis notions can be developed

in similar ways. Our results on temporal variants of eigen

value-/vector-based indices (Katz, Bonacich, hubs and

authorities, page rank) are presented in a separate paper

(Praprotnik and Batagelj 2016a).

The proposed approach is an alternative to the tradi-

tional cross-sectional approach based on time slices. Its

main advantages are:

– The data and the results are expressed using temporal

quantities that are natural descriptions of properties

changing through time;

– The user does not need to be careful about the intervals

on which the time slices are determined—exactly the

right intervals are selected by the merging (sub)oper-

ations. This also improves, on average, the efficiency of

the proposed algorithms.

All the described algorithms (and some others) are imple-

mented in a Python library TQ (Temporal Quantities)

available at http://vladowiki.fmf.uni-lj.si/doku.php?id=tq.

We started to develop a program Ianus that will provide

a user-friendly (Pajek like) access to the capabilities of the

TQ library.

The main goal of the paper was to show: it can be

done. Therefore, we based the current version of the

library TQ on a matrix representation of temporal net-

works as it is presented in the paper. For this represen-

tation most of the network algorithms have the time

complexity of Oðn3 � LÞ and the space complexity of

Oðn2 � LÞ. This implies that their application is limited to

networks of moderate size (up to some thousands of

nodes). Large networks are usually sparse. On this

assumption, more efficient algorithms can be developed

based on a graph (sparse matrix) representation—one of

the directions of our future research.

In a description of a temporal network N we can con-

sider also a transition time or latency s 2 W: sðl; tÞ is equal
to the time needed to traverse the link l starting at the

instant t. Problems considering latency are typical for

operations research but could be important, when such data

are available, also in social network analysis (Moody 2002;

Xuan et al. 2003; George et al. 2007; Casteigts et al. 2012;

Kontoleon et al. 2013). The analysis of temporal networks

considering also the latency seems a much harder task—for

example, in such temporal networks the strongly connected

components problem is NP-complete (Bhadra and Ferreira

2003).

The results obtained from temporal procedures are rel-

atively large. To identify interesting elements, we used in

the paper the aggregated values and the visualization of

Table 10 30 most attractive terms in the Terror news network

n Term Ratt n Term Ratt

1 United_states 12.216 16 War 2.758

2 Taliban 7.096 17 Force 2.596

3 Attack 7.070 18 New_york 2.590

4 Afghanistan 5.142 19 Government 2.496

5 People 5.023 20 Day 2.338

6 Bin_laden 4.660 21 Leader 2.305

7 Anthrax 4.601 22 Terrorism 2.202

8 Pres_bush 4.374 23 Time 2.182

9 Country 3.317 24 Group 2.072

10 Washington 3.067 25 Afghan 2.040

11 Security 2.939 26 World 1.995

12 American 2.922 27 Week 1.961

13 Official 2.831 28 Pakistan 1.943

14 City 2.798 29 Letter 1.866

15 Military 2.793 30 New 1.851

28 Page 18 of 22 Soc. Netw. Anal. Min. (2016) 6:28

123

http://vladowiki.fmf.uni-lj.si/doku.php?id=tq


pres Bush :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

Pakistan :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

taliban :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

Kabul :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

bomb :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

anthrax :

sep−11 sep−16 sep−23 sep−30 oct−7 oct−14 oct−21 oct−28 nov−4 nov−11 Nov−16
wMax = 0.2

Fig. 11 Attraction patterns
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selected elements. Additional tools for browsing and pre-

senting the results should be developed.
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Appendix: Algorithms

Clustering coefficient

Algorithm 4 presents an algorithm for computing different

types of temporal clustering coefficient. The function

nRowsðAÞ returns the size (number of rows) of matrix A.

The function VecConstðn; vÞ constructs a temporal vector

of size n filled with the temporal quantity v. The function

MatBinðAÞ transforms all values in the triples in the matrix

A to 1. The function MatSetDiagðA; cÞ sets all the diagonal
entries of the matrix A to the temporal quantity c. The

function MatSymðAÞ makes the transformation

S ¼ A� AT .

Functions VecSum and VecProd implement a compo-

nent wise composition of temporal vectors:

VecSumða; bÞ ¼ ½ai � bi; i ¼ 1; . . .; n�

and

VecProdða; bÞ ¼ ½ai � bi; i ¼ 1; . . .; n�:

Similarly VecInvðaÞ ¼ ½invertðaiÞ; i ¼ 1; . . .; n� in the

combinatorial semiring; where

invertðaÞ ¼ ½ðs; f ; 1=vÞ for ðs; f ; vÞ 2 a�:

The function MatProdðA;BÞ determines the product

A� B. Since we need only the diagonal values of the

matrix SAS we applied a special function MatProdDiag

that determines only the diagonal vector of the product

A� B. Afterward, to get the clustering coefficient, we have

to normalize the obtained counts. The number of neighbors

of the node v is determined as its degree in the corre-

sponding undirected temporal skeleton graph (in which an

edge e ¼ ðv : uÞ exists iff there is at least one arc between

the nodes v and u). The maximum number of neighbors D
can be considered either for a selected time point

(type ¼ 2) or for the complete time window (type ¼ 3).

Note that to determine the temporal D we used summing of

temporal degrees over the maxmin semiring

ðR;max;min;
1;1Þ.

Equivalences

The transformation of the temporal equivalence matrix E

into the corresponding temporal partition p is implemented

as a procedure eqMat2PartðEÞ (see Algorithm 5). Maybe

in the future implementations we shall add a loop with the

check of the injectivity of this mapping. The classes of the

obtained temporal partition are finally renumbered with

consecutive numbers using the function renumPart(p) (see

Algorithm 6). The variable C in the description of the

function renumPart is a dictionary (data structure).
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Temporal closeness

To compute the vector of closeness coefficients of nodes

we have to sum the temporal distances to other nodes over

the combinatorial semiring, see Algorithm 7. While sum-

ming, we replace gaps (inactivity intervals inside T ) with
time intervals with the value infinity, using the procedure

fillGaps.

Temporal PathFinder

The scheme of Pathfinder is implemented (see Algorithm

8) as the function pathFinder. The temporal version of the

statement

if WðqÞ½u; v� ¼W½u; v� then LPF :¼ LPF [ feg
is implemented in the function PFcheck (Algoritm 9) using

the merging scheme.

The function MatPowerðA; kÞ computes the kth power

of the matrix A.
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