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Abstract Our goal is to determine the structural differ-

ences between different categories of networks and to use

these differences to predict the network category. Existing

work on this topic has looked at social networks such as

Facebook, Twitter, co-author networks, etc. We, instead,

focus on a novel dataset that we have assembled from a

variety of sources, including law enforcement agencies,

financial institutions, commercial database providers and

other similar organizations. The dataset comprises net-

works of persons of interest with each network belonging

to different categories such as suspected terrorists, con-

victed individuals, etc. We demonstrate that such ‘‘anti-

social’’ networks are qualitatively different from the usual

social networks and that new techniques are required to

identify and learn features of such networks for the pur-

poses of prediction and classification. We propose Cliqster,

a new generative Bernoulli process-based model for

unweighted networks. The generating probabilities are the

result of a decomposition which reflects a network’s

community structure. Using a maximum likelihood solu-

tion for the network inference leads to a least squares

problem. By solving this problem, we are able to present an

efficient algorithm for transforming the network to a new

space which is both concise and discriminative. This new

space preserves the identity of the network as much as

possible. Our algorithm is interpretable and intuitive.

Finally, by comparing our research against the baseline

method (SVD) and against a state-of-the-art Graphlet al-

gorithm, we show the strength of our algorithm in dis-

criminating between different categories of networks.

Keywords Social network analysis � Persons of interest �
Community structure

1 Introduction

1.1 Motivation

The past decade has seen a dramatic growth in the popu-

larity and importance of social networks. Technological

advancements have made it possible to follow the digital

trail of the interactions and connections among individuals.

Much attention has been paid to the question of how the

interaction among individuals contributes to the structure

and evolution of social networks. In this paper, we address

the related question of identifying the category of a net-

work by looking at its structure. To be more specific, the

central problem we tackle is: given a network or a sample
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of nodes (and associated induced edges) from a network

infer the category of the network utilizing only the network

structure. For example given different socializing graphs of

people with different careers, we are interested in identi-

fying career of a group of people in a given network using

only the structural characteristics of their socializing graph.

In a mathematical form, let us assume we are given the

graphs G1;G2; . . .;Gn and another graph Gm. We would

like to find out which graph has the most similar structure

to Gm, and whether Gm can be used to reconstruct any of

those graphs.

Rather than studying individuals through popular social

networks (such as Twitter, Facebook, etc.), the presented

research is based on a new dataset which has been collected

through law enforcement agencies, financial institutions,

commercial databases and other public resources. Our

dataset is a collection of networks of persons of interest.

This approach of building networks from public resources

has been successful because it is often easier to infer the

connections among individuals from widely available

resources than through the private activities of specific

individuals.

1.2 Dataset and problem statement

Our dataset has been gathered from a variety of public and

commercial sources including the United Nations (2013),

World-Check (2013), Interpol (2013), Factiva (2013),

OFAC (2013), Factcheck (2013), RCMP (2013), and var-

ious police websites, as well as other public organizations.

The final dataset was comprised of 700,000 persons of

interest with 3,000,000 connections among them (Persons

of interest dataset 2013).

Except for a few ‘‘mixed’’ networks (a network is a

connected component) almost all the networks belong to

one of the above 5 categories, i.e., all the nodes in the

network belong to one category. Based on our experiments

and analyses, these networks do not demonstrate the

common properties of regular social networks such as the

famed small world phenomenon (David and Jon 2010). As

shown in Table 2 the number of connected components in

each category is large and thus these networks are not small

world.

We extracted some graph structure features from each

individual, such as degree and page rank, then split the

dataset into a training(80 %) and a test (20 %) dataset, and

ran a supervised learning method (multinomial logistic

regression) on the training dataset. After that we compared

the actual values of the test set with the prediction results

of the regression and came up with 46.89 % accuracy for

the page rank and 40.61 % accuracy for the graph degree.

This justifies the quest for new techniques to identify

features in the underlying structure of the networks that

will enable accurate classification of their categories.

1.3 Our contributions

After performing experiments with decomposition methods

(and their variants) from existing literature, we finally

discovered a novel technique we call Cliqster—based on

decomposing the network into a linear combination of its

maximal cliques, similar to Graphlet decomposition (Azari

Soufiani and Airoldi 2012) of a network. We compare

Cliqster against the traditional singular value decomposi-

tion (SVD) as well as state-of-the-art Graphlet methods.

The most important yardstick of comparison is the dis-

criminating power of the methods. We find that Cliqster is

superior to Graphlet and significantly superior to SVD in

its discriminating power, i.e., in its ability to distinguish

between different categories of persons of interest. Effi-

ciency is another important criterion and comprises both

the speed of the inference algorithm as well as the size of

the resulting representation. Both the algorithm speed as

well as the model size are closely tied to the dimension of

the bases used in the representation. Again, here the

dimension of the Cliqster bases was smaller than the

Graphlet bases in a majority of the categories and sub-

stantially smaller than SVD in all the categories. A third

criterion is the interpretability of the model. Using cliques,

Cliqster naturally captures interactions between groups or

cells of individuals and is thus useful for detecting sub-

versive sets of individuals with the potential to act in

concert.

In summary, we provide a new generative statistical

model for networks with an efficient inference algorithm.

Cliqster is computationally efficient, and intuitive, and

gives interpretable results. We have also created a new and

comprehensive dataset gathered from public and commer-

cial records that has independent value. Our findings val-

idate the promise of statistics-based technologies for

categorizing and drawing inferences about subnetworks of

people entirely through the structure of their network.

The remaining part of the paper is organized as fol-

lows. In Sect. 2, we briefly introduce related work. Sec-

tion 3 presents the core of our argument, describing our

network modeling and the inference procedure. In Sect. 4,

experimental results are presented demonstrating the

effectiveness of our algorithm on finding an appropriate

and discriminating representation of a social network’s

structure. At the end of this section, we present a com-

prehensive discussion of observations regarding the

dataset. Section 5 draws further conclusions based on this

dataset and an introductory note on possible directions for

future work.
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2 Related work

Significant attention has been given to the approach of

studying criminal activity through an analysis of social

networks (Reiss 1980; Glaeser et al. 1996; Patacchini and

Zenou 2008). Reiss (1980) discovered that two-thirds of

criminals commit crimes alongside another person. Glaeser

et al. (1996) demonstrated that charting social interactions

can facilitate an understanding of criminal activity. Patac-

chini and Zenou (2008) investigated the importance of

weak ties to interpret criminal activity.

Statistical network models have also been widely studied

to demonstrate interactions among people in different con-

texts. Such network models have been used to analyze social

relationships, communication networks, publishing activity,

terrorist networks, and protein interaction patterns, as well as

many other huge datasets. Erd}os and Rényi (1959) consid-

ered random graphs with fixed number of vertices and

studied the properties of this model as the number of edges

increases. Gilbert (1959) studied a related version in which

every edge had a fixed probability p for appearing in a net-

work. Exchangeable random graphs (Airoldi 2006) and

exponential random graphs (Robins et al. (2007)) are other

important models. In Bilgic et al. (2006), they created a

toolbox to resolve duplicate nodes in a social network.

The problem of finding roles of a person in a network has

been widely studied. In Barta (2014), they have a link-based

approach to this problem. In Lo et al. (2013), they studied

how to identify a group of vertices that can mutually verify

each other. The relationship between social roles and diffu-

sion process in a social network is studied in Yang et al.

(2014). In Moustafa et al. (2013), they combine the problem

of capturing uncertainty over existence of edges, uncertainty

over attribute values of nodes and identity uncertainty. In

Henderson et al. (2012), they use an unsupervised method to

solve the problemof discovering roles of a node in a network.

In Zhao et al. (2013), they studied how the network char-

acteristic reflect the social situation of users in an online

society. In Rossi and Ahmed (2014), they study the role

discovery problem with an assumption that nodes with

similar structural patterns belong to the same role. The dif-

ference between the works of Henderson et al. (2012), Zhao

et al. (2013), Rossi andAhmed (2014) and similarworks like

Li et al. (2013), Bhagat et al. (2011), Xu et al. (2013) with

our work is that they are interested in the roles of a node in a

specific network, while we are interested in studying the

structural differences among different networks. In this

work, we assume all the nodes in a network has the same role/

job. Despite the various applications of finding the roles of

different subnetworks in a graph, this problem has only

received a limited amount of attention. In this paper, we are

studying the role discovery problem for a network.

Recently, researchers have become interested in stochastic

block-modeling and latent graph models (Nowicki and Sni-

jders 2001; Airoldi et al. 2008; Karrer and Newman 2011).

These methods attempt to analyze the latent community

structure behind interactions. Instead of modeling the com-

munity structure of the network directly, we propose a simple

stochastic process based on a Bernoulli trial for generating

networks. We implicitly consider the community structure in

the network generating model through a decomposition and

projection to the space of baseline communities (cliques in our

model). For a comprehensive review of statistical network

models,we refer interested readers toGoldenberg et al. (2009).

Formerly, Singular Value Decomposition was used for

the decomposition of a network (Chung 1997; Hoff 2009;

Kim and Leskovec 2012). However, since SVD basis ele-

ments are not interpretable in terms of community struc-

ture, it cannot capture the notion of social information we

are interested in quantifying. Azari Soufiani and Airoldi

(2012) introduced the Graphlet decomposition of a

weighted network; by abandoning the orthogonality con-

straint they were able to gain interpretability. The resulting

method works with weighted graphs; however, alternate

techniques, such as power graphs (which involve powering

the adjacency matrix of a graph to obtain a weighted

graph), need to be used to apply this method to unweighted

graphs such as (most) social networks.

3 Statistical network modeling

3.1 Model

Let us assume we have n nodes in the network (for example

n ¼ 10 in Fig. 1). Consider Y as a n� n matrix repre-

senting the connectivity in the network. Yðr; sÞ ¼ 1 if node

r is connected to node s, and 0 otherwise.

5
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4

Fig. 1 Network of ten people
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In Cliqster, the generative model for the network is:

Y ¼ BernoulliðZÞ ð1Þ

which means Yðr; sÞ ¼ Yðs; rÞ ¼ 1 with probability Z(r, s),

and Yðr; sÞ ¼ Yðs; rÞ ¼ 0 with probability 1� Zðr; sÞ for

all r[ s. Since the graph is undirected the matrix Z is

lower triangular.

Inspired by PCA and SVD, in Cliqster we choose to rep-

resent Z in a new space (Chung 1997; Kim and Leskovec

2012). Community structure is a key factor to understand and

analyze a network, and because of this we are motivated to

choose bases in a way that reflects the community structure

(Hoff 2009). Consequently, we decided to factorize Z as

Z ¼
XK

k¼1

lkBk ð2Þ

where K is the number of maximal cliques (bases), and Bk is

kth lower triangular basis matrix that represents the kth

maximal clique, and lk is its contribution to the network. In
Sect. 3.4, we elaborate on this basis selection process. From

this point forward, we consider these bases as cliques of a

network.We also represent a network in this new space. Each

network is parameterized by the coefficients and the bases

which construct the Z, the network’s generating matrix.

3.2 Inference

When given a network Y of people and their connections,

our goal is to infer the parameters generating this network.

We must first assume the bases are selected as baseline

cliques. The likelihood of the network parameters (coeffi-

cients) given the observation is:

Lðl1:KÞ ¼
Y

r[ s:Yðr;sÞ¼1

Zðr; sÞ
Y

r[ s:Yðr;sÞ¼0

ð1� Zðr; sÞÞ

We estimate these parameters by maximizing their likeli-

hood under the constraint 0� Zðr; sÞ� 1 for all r[ s.

One can easily see the likelihood is maximized when

Zðr; sÞ ¼ 1 if Yðr; sÞ ¼ 1 and Zðr; sÞ ¼ 0 if Yðr; sÞ ¼ 0.

Therefore,

Y ¼
XK

k¼1

lkBk ð3Þ

should be used for the lower triangle of Y.

Unfolding the above equation results in,

Yð2; 1Þ ¼ l1B1ð2; 1Þ þ � � � þ lKBKð2; 1Þ
Yð3; 1Þ ¼ l1B1ð3; 1Þ þ � � � þ lKBKð3; 1Þ
Yð3; 2Þ ¼ l1B1ð3; 2Þ þ � � � þ lKBKð3; 2Þ
..
.

Yðn; n� 1Þ ¼ l1B1ðn; n� 1Þ þ � � � þ lKBKðn; n� 1Þ

We define two vectors,

l ¼ ðl1; . . .;lKÞ>

brs ¼ ðB1ðr; sÞ; . . .;BKðr; sÞÞ>
ð4Þ

So the new objective function can be written as,

J ¼
X

r[ s

ðl>brs � Yðr; sÞÞ2 ð5Þ

J is convex with respect to l under the following con-

straints 0� l>brs � 1. This is essentially a constrained least

squares problem, which can be solved through existing

efficient algorithms (Lawson and Hanson 1974; Boyd and

Vandenberghe 2004). Through this formula, the represen-

tation parameters l1:K are thus computed easily and we are

done with the inference procedure.

We turn our attention to the new representation and try

to find an algorithm which can produce a more inter-

pretable result. The exact generating parameters are no

longer needed in our application. Therefore, by relaxing the

constraints, we will be able to present it with a simple and

very efficient algorithm. In addition, the solution to this

unconstrained problem provides us with an intuitive

understanding of what is happening behind this inference

procedure. To determine the optimal parameters, we must

take the derivative with respect to l:

oJ

ol
¼ 2

X

r[ s

brs brs>l� Yðr; sÞ
� �

ð6Þ

By equating the above derivative to zero and doing a

simple mathematical procedure, we are presented with the

solution

l ¼ A�1d ð7Þ

where

A ¼
X

r[ s

brsbrs>

d ¼
X

r[ s

Yðr; sÞbrs
ð8Þ

A is a K � K matrix and d is a K � 1 vector. Thus, while

we still have a very small least squares problem, it has been

significantly reduced from the original equation in which

there were Oðn2Þ constraints. Despite this fact, we obtain

very good results, and we will soon explain why this

happens.

Our novel decomposition method finds l which is used

to represent a network, and which could stand-in for a

network in network analysis applications. This represen-

tation is used in the next section to discriminate between

different types of networks.

The results from the decomposition of the network

presented in Fig. 1 are demonstrated in Table 1.
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3.3 Interpretation

In general, it is not an easy task to interpret the Eigen-

vectors of an SVD. In our model, however, all the values of

A and d give you an intuition about the network. For further

insight into this process, consider a matrix A. Every entry

of this matrix is equal to the number of edges shared by the

two corresponding cliques. This matrix encodes the power

relationships between baseline clusters, as a part of net-

work reconstruction. The intersection between two bases

shows how much one basis can overpower another basis as

they are reconstructing a network. In contrast, d presents

the commonalities between a given network and its base-

line communities. Through this equation, a community’s

contribution to a network is encoded.

With the interpretation of this data in mind, the equation

Al ¼ d is now more meaningful for understanding the

significance of our new representation of a network. Con-

sider multiplying the first row of the matrix by the vector l,

which should be equal to d1. To solve this equation, we

have chosen our coefficients in such a way that when the

intersection of cluster 1 and other clusters is multiplied by

their corresponding coefficients and added together, the

result is a clearer understanding of the first cluster’s con-

tribution to the network construction.

3.4 Basis selection

Users in persons of interest network usually form associ-

ations in particular ways, thus, community structure is a

good distinguishing factor for different networks. There are

different structures that form a community. One of the

interesting structures that forms a community is the max-

imal cliques of that community. We use them as the basis

of our method. There are so many ways to compute the

maximal cliques of a network. We use the Bron–Kerbosch

algorithm (Bron and Kerbosch 1973) for identifying our

network’s communities. As mentioned in Azari Soufiani

and Airoldi (2012), this is one of the most efficient algo-

rithms for identifying all of the maximal cliques in an

undirected network. After applying the Bron–Kerbosch

algorithm to Fig. 1, we identify the communities that are

represented in Table 2. The Bron–Kerbosch algorithm is

described in the Algorithm 1.

Algorithm 1 Bron-Kerbosch algorithm
1: C = ∅ � We keep the maximal clique in C
2: I = V (G) � The set of vertices that can be added to C
3: X = ∅ � The set of vertices that are connected to C but are excluded from it
4: procedure Enumerate(C, I, X)
5: if I == ∅ and X == ∅ then
6: C is maximal clique
7: else
8: for each vertex v in I do
9: Enumerate(C ∪ {v}, I

⋂
N(v), X

⋂
N(v))

10: I ← I {v}
11: X ← X ∪ {v}

The Bron–Kerbosch algorithm has many different ver-

sions. We use the version introduced in Eppstein and Strash

(2011).

One of the most successful aspects of this algorithm is

that it provides a multi-resolution perspective of the net-

work. This algorithm identifies communities through a

variety of scales, which, we will see, allows us to locate the

most natural and representative set of coefficients and

bases.

3.5 Complexity

The aforementioned inference equation requires A and d to

be computed, which can be done in Oðmþ nÞ time where

m is the number of edges and n is the number of nodes in

the network. The least square solution requires OðK3Þ
operations. A graph’s degeneracy measures its sparsity and

is the smallest value f such that every nonempty induced

subgraph of that graph contains a vertex of degree at most f

(Lick and White 1970). In Eppstein and Strash (2011), they

proposed a variation of the Bron–Kerbosch algorithm,

which runs in Oðfn3f=3Þ where f is a network’s degeneracy

number. This is close to the best possible running time

since the largest possible number of maximal cliques in an

n-vertex graph with degeneracy f is ðn� f Þ3f=3 (Eppstein

and Strash 2011).

A power law graph is a graph in which the number of

vertices with degree d is proportional to xa where 1� a� 3.

When 1\a� 2 we have f ¼ Oðn1=2aÞ, and when 2\a\3

Table 1 l within each cluster
Cluster members l

{8, 9, 10} 1.00

{5, 6, 7} 0.75

{4, 5, 7} 0.75

{1, 2, 3} 1.00

{6, 10} 1.00

{3, 9} 1.00

{3, 6} 1.00

Table 2 Table of categories and corresponding sizes plus number of

connected components and density of each category

Category Members Components Density

Suspicious individuals 316,990 77,811 0.0000180

Convicted individuals 165,411 35,517 0.0000427

Lawyers/legal professionals 3723 1492 0.0006220

Politically exposed persons 13,776 4947 0.0001533

Suspected terrorists 31,817 5016 0.0002068
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we have f ¼ Oðnð3�aÞ=4Þ (Buchanan et al. 2013). Com-

bining with the running time, Oðfn3f=3Þ of the Bron–Ker-

bosch variant (Eppstein and Strash 2011), we find that the

running time for finding all maximal cliques in a power law

graph to be 2Oð
ffiffi
n

p
Þ.

However, the maximum number of cliques in graphs

based on real-world networks is typically Oðlog nÞ (Azari

Soufiani and Airoldi 2012).

4 Results

In this section, we investigate the properties of the new

features we have learned about the network in question.

First, we introduce the new dataset we have built. Our

experiments attempt to prove two claims:

1. the new representation is concise, and

2. it can discriminate between different network types.

We will now compare our results with SVD decomposition

and Graphlet decomposition algorithms (Azari Soufiani

and Airoldi 2012).

4.1 Dataset

We have gathered a dataset by gathering and fusing

information from a variety of public and commercial

sources. Our final dataset was comprised around 750,000

persons of interest with 3,000,000 connections among

them. We then filtered this dataset to slightly less than

550,000 individuals who fell into one of the following 5

categories:

1. Suspicious individuals: Persons who have appeared on

sanctioned lists, been arrested or detained, but not been

convicted of a crime.

2. Convicted individuals: Persons who have been

indicted, tried and convicted in a court of law.

3. Lawyers/legal professionals: Persons currently

employed in a legal profession.

4. Politically exposed persons: Elected officials, heads of

parties, or persons who have held or currently hold

political positions now or in the past.

5. Suspected terrorists: Persons suspected of aiding,

abetting or committing terrorist activities.

This dataset is publicly available (Persons of interest

dataset 2013).

The color scheme we use for our figures is as follows:

red for Suspicious individuals (SI), blue for Convicted

individuals (CI), brown for Lawyer/legal professionals

(LL), orange for Politically exposed persons (PEPS), and

black for Suspected terrorists (ST).

4.2 Basic properties

We want to know whether our dataset has the common

properties of social networks or not, i.e., having a power

law distribution. The first thing to check is the degree

distribution of each subnetwork, and if they can be fitted to

a power law distribution. We have a scale-free network if

the degree distributions in our subnetwork follow power

law distribution. We used the poweRlaw (Gillespie 2015)

and igraph (Csardi and Nepusz 2006) packages to calculate

the maximum likelihood power law fit of the legal sub-

network, and the results are shown in Fig. 2. It looks like a

scale-free network, but we need to check this with more

accurate measures. In a power law distribution, PðX ¼ xÞ is
proportion to cxa. The a of each subnetwork can be seen in

the Table 3. Each of our subnetwork can be fitted into a

power law distribution, so all of them are scale-free net-

works. However, these networks are not small-world net-

works. The number of connected components in each

network indicates if you start at a certain node in each

network it is impossible to reach to most of the other nodes

in that network.

4.3 Sampling method

For each category, we choose a random induced subgraph

of a 1000 vertices as a sample. We then analyze this data,

and repeat this operation 1000 times and represent the

data’s average with bold lines in the following graphs. All

figures also include a representation of what happens to this

data when the standard deviation of it is taken at a margin

of 2, which we illustrate through a line of a lighter variation

of the same color. We analyzed this data with three

2 5 10 20 50

0
.0

1
0
.0

5
0
.2

0
0
.5

0

Neighbors

C
D

F

Fig. 2 The cumulative distribution functions and their maximum

likelihood power law fit of the legal subnetwork
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different methods, the singular value decomposition,

Graphlet decomposition, amd our own proposed model.

4.4 Singular value decomposition

We first analyzed our data using the singular value decom-

position method (Chung 1997). Figure 3 shows the effective

number of non-zero coefficients for this algorithm. Figure 4

demonstrates the ability of this algorithm to discriminate

between two different categories. Finally, the ability of the

algorithm to distinguish between the five categories is

illustrated in Fig. 5. The average number of bases we

observed in the samples of a 1000 vertices is around 800 as

can be seen in Figs. 3, 4 and 5.

4.5 Graphlet decomposition

We next performed the same tests using Graphlet

decomposition. Figure 6 demonstrates the effective num-

ber of non-zero coefficients for this algorithm. Figure 7

shows the ability of this algorithm to discriminate

between two different types of networks. The algorithm’s

ability to distinguish between the five categories is again

illustrated in Fig. 8. As can be seen in these figures the

number of bases elements for Graphlet decomposition is

around 20.

Table 3 Table of alpha, the exponent of the fitted power law dis-

tribution in each category

Category a

Suspicious individuals 1.838563

Convicted individuals 1.733839

Lawyers/legal professionals 2.977307

Politically exposed persons 3.107326

Suspected terrorists 1.770715
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4.6 Cliqster

Finally, we performed the same tests using our method. We

first determined appropriate bases using the Bron–Ker-

bosch algorithm. We then computed A and d. The new

representation for a sample network of one category that

resulted from our new method is shown in Fig. 9. Fig-

ure 10 shows the ability of our algorithm to discriminate

between two different types of networks. Our new algo-

rithm’s ability to distinguish between two different types of

networks is illustrated in Fig. 11, which also shows that the

number of bases elements for Graphlet decomposition is

around 50.

4.7 Performance

Weanalyzed the time complexity of Cliqster in the Sect. 3.5.

Now it is time to check if the empirical results verify our

theory. For the convicted individuals subnetwork, we ran

both ourmethod and SVDusing the igraph package inR. The

performance of the Graphlet method is very similar to

Cliqster so we do not include that in this experiment.

We ran our experiment on ‘‘Intel(R) Core(TM) i7-2600

CPU @ 3.40 GHz (8 CPUs), 3.4 GHz’’ processor with

‘‘16,384 MB’’ of memory. As you can see in Fig. 12, as we

grow the sample size our method performs twice as fast as

the SVD method.
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4.8 Distinguishability

To compare the ability of each of these methods to dis-

tinguish between different types of social networks, we

sampled 100 networks from each category, combining all

of these samples before running the K-means clustering

algorithm (with 5 as the number of clusters), and repeated

this action 100 times. We used each network’s top 20

largest coefficients, and are willing to know if coefficients

of different subnetworks can be distinguished from each

other. We gave the combined coefficients of all different

subnetworks to the K-means clustering algorithm as an

input, and calculated the mean error of clustering. As you

can see in Table 4, our method often returns the bases with

the best ability to distinguish between the type of social

network presented. The Graphlet decomposition slightly

outperforms our method in two of the following subnet-

works, and such difference is negligible in practice.
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4.9 Classification

Another method for checking the ability of Cliqster to

produce the features that can distinguish between different

networks, is to use k-nearest neighbors algorithm (or k-NN

for short). k-NN is a non-parametric method that is used for

classification in a supervised setting. Let us assume we

want to compare the features that are used to distinguish

between these two groups: Suspicious Individuals and

Convicted Individuals. We train Cliqster with samples of

size 1000 that are randomly selected from both commu-

nities, gather the features and repeat this operation 1000

times. After that we run the k-NN with k ¼ 3 and a test data

of size 100. To avoid ties, we need to pick an odd number

for k in case of binary classification. When we set k ¼ 3,

we are looking at the classification problem in a three-

dimensional space. We also make sure there is no inter-

section between the members of training and test sets to

avoid the problem of over-fitting.

Figure 13 shows the result of this experiment. With

using a training set of size 40 we can classify these two

groups with an accuracy of 97 %. It basically means that

when we have a training set of size 40, K-NN can learn

how to distinguish between these two groups with an

accuracy of 97 %.

Things are a little bit different when it comes to com-

paring the behavior of lawyers/legal professionals network

and politically exposed persons network. As you can see in

Fig. 14, we need a training set of size 100 to reach to an

accuracy of 74 %. This difference suggest a contrast

between the characteristics of these networks. According to

Cliqster, the network structure of lawyers/legal profes-

sionals and the network structure of politically exposed

persons have more in common than the network structure

of suspicious individuals and the network structure of

convicted individuals.

If we analyze the network structure of suspected ter-

rorists and compare it with network structure of convicted

individuals, we will see that after using a training set of

size around 20 we reach to the 100 % accuracy. k-NN can

classify these two groups with no error (Fig. 15). Now, we

compare the network structure of suspected terrorists and

politically exposed persons networks (Fig. 16). After using

a training set of size 50, we reach to the 99 % accuracy.

4.10 Discussion

Figures 3, 6, and 9 compare the ability of the three methods

to compress data. These graphs demonstrate that the SVD

method is inefficient for summarizing a network’s features.

The graph also shows that the Graphlet method produces

the smallest feature space. Our representation is also very

Table 4 Mean error of clustering with 20 coefficients (l1:20)

Category SVD Graphlet Cliqster

SI 0.51461 0.00817 0.0177

CI 0.71080 0.11535 0.0141

LL 0.75006 0.10931 0.0153

PEPS 0.66082 0.12195 0.0114

ST 0.65381 0.01303 0.0176

The bold value in each row indicates which method has the lowest

mean error of clustering comparing with other methods
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small, however, and the difference in size produced

through these methods is negligible in real-world applica-

tions of this equation. Earlier, we demonstrated that the 20

largest coefficients in the representation produced through

our method is sufficient to outperform the Graphlet algo-

rithm in terms of distinguish ability and clustering.

Figures 4, 7, and 10 demonstrate the ability of the

algorithms to distinguish between two selected categories.

When comparing our method with the SVD and graphic

decomposition methods, the coefficients seem to be very

similar between those produced by our method and the

SVD method, however, our method also performs as well

as the Graphlet Decomposition method in distinguishing

between two types of networks. This demonstrates that

community structure is a natural basis for interpreting

social networks. By decomposing a network into cliques,

our method provides an efficient transformation that is

concise and easier to analyze than SVD bases, which are

constrained through their requirement to be orthogonal.

Figures 5, 8, and 11 verify these claims for all five

categories.

Table 4 demonstrates the performance of our algorithm

to consistently summarize each network according to cat-

egory. We then clustered all coefficients using k-means.

Through this process, it became clear that the SVD method

could not identify the category of the network being ana-

lyzed. Because of this, we can infer that by selecting the

community structure (cliques) as bases, our ability to

identify a network is considerably improved. Our proposed

algorithm was more accurate in clustering than the

Graphlet decomposition algorithm. Thus, the Bernoulli

distribution (as used in seminal work of Erd}os and Rényi)

is a simpler and more natural process for generating net-

works. Our proposed method is also easier to interpret and

does not run the risk of getting stuck in local minima like

the Graphlet method.

Finally, Figs. 13, 14, 15 and 16 demonstrate the ability

of k-NN to classify features produced by Cliqster in binary

classification settings. They also give us some interpreta-

tions on similarities and differences between the network

structure of different groups.

5 Conclusion

After proposing Cliqster, which is a new generative model

for decomposing random networks, we applied this method

to our new dataset of persons of interest. Our primary

discovery in this research has been that a variant of our

decomposition method provides a statistical test capable of

accurately discriminating between different categories of

social networks. Our resulting method is both accurate and

efficient. We created a similar discriminant based on the

traditional singular value decomposition and Graphlet

methods, and found that they are not capable of discrimi-

nating between social network categories. Our research

also demonstrates community structure or cliques to be a

natural choice for bases. This allows for a high degree of

compression and at the same time preserves the identity of

the network very well. The new representation produced

through our method is concise and discriminative.
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Comparing the three methods, we found that the

dimensions of the Graphlet bases and our bases were

significantly smaller than the SVD bases, while also

accurately identifying the category of the network being

analyzed. Therefore, our method is an extremely accu-

rate and efficient means of identifying different network

types.

On the non-technical side, we would like to see how we

can get law enforcement agencies to adopt our methods.

There are a number of directions for further research on the

technical front. We would like to expand the use of our

simple intuitive algorithm to weighted networks, such as

networks with an edge generating process based on the

Gamma distribution. The problem with the maximum

likelihood solution for a network is that it is subject to

over-fitting or a biased estimation. Adding a regularization

term would adjust for this discrepancy. A natural choice for

such a term would be a sparse regularization, which is in

accordance with real social networks. Extensive possibility

for future work exists in the potential of incorporating prior

knowledge into Cliqster using Bayesian inference. Another

natural avenue for further investigations is to consider how

Cliqster can be adapted to regular social networks.
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