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Abstract The advent and availability of technology has

brought us closer than ever through social networks.

Consequently, there is a growing emphasis on mining

social networks to extract information for knowledge and

discovery. However, methods for social network analysis

(SNA) have not kept pace with the data explosion. In this

review, we describe directed and undirected probabilistic

graphical models (PGMs), and highlight recent applica-

tions to social networks. PGMs represent a flexible class of

models that can be adapted to address many of the current

challenges in SNA. In this work, we motivate their use with

simple and accessible examples to demonstrate the mod-

eling and connect to theory. In addition, recent applications

in modern SNA are highlighted, including the estimation

and quantification of importance, propagation of influence,

trust (and distrust), link and profile prediction, privacy

protection, and news spread through microblogging.

Applications are selected to demonstrate the flexibility and

predictive capabilities of PGMs in SNA. Finally, we con-

clude with a discussion of challenges and opportunities for

PGMs in social networks.

Keywords Probabilistic graphical modeling � Social
network analysis � Bayesian networks � Markov networks �

Exponential random graph models � Markov logic

networks � Social influence � Network sampling

1 Introduction

Over 40 years ago, social scientist Allen Barton stated that

‘‘If our aim is to understand people’s behavior rather than

simply to record it, we want to know about primary groups,

neighborhoods, organizations, social circles, and commu-

nities; about interaction, communication, role expectations,

and social control.’’ (Barton 1968 as reported in Freeman

2004). This sentiment is fundamental to the concept of

modularity. The importance of structural relationships in

defining communities and predicting future behaviors has

long been recognized, and is not restricted to the social

sciences (Freeman 2004).

Social network analysis (SNA) has a rich history that is

based on the defining principle that links between actors

are informative. The advent and availability of Internet

technology has created an explosion in online social net-

works and a transformation in SNA. The analysis of

today’s social networks is a difficult Big Data problem,

which requires the integration of statistics and computer

science to leverage networks for knowledge mining and

discovery (Manyika et al. 2011). Historically, scientists

have had to rely on tractable records of social interactions

and experiments (e.g., Milgram’s small world experiment);

now they have a luxury of accessing huge digital databases

of relational social data. SNA relies on diverse data rep-

resentations and relational information, which may include

(among others), tracked relationships among actors, events,

and other covariate information (Scott and Carrington

2011). Modeling social networks is especially challenging

due to the heterogeneity of the populations represented, and
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the broad spectrum of information represented in the data

itself. Modern applications of SNA include, among others,

the estimation of influence, privacy protection, trust (and

distrust) microblogging, and web browsing.

In this review, we focus on probabilistic graphical models

(PGMs), which have demonstrated promise in modeling

social networks (Lauritzen 1996; Koller and Friedman

2009). PGMs represent a marriage between graph theory and

probability theory that offers flexible modeling paradigms

with good interpretably. The graphical representation con-

sists of nodes connected by edges, which may be directed

(Bayesian networks) or undirected (Markov networks). The

relationship between nodes in a graph can be interpreted in

terms of conditional independencies. These independencies

can be read directly from the graph and enable a

tractable decomposition of the joint distribution possible

through the use of conditional probabilities. In this setting,

the compact representation of a high-dimensional joint dis-

tribution of random variables fX1;X2; . . .;Xpg can be rep-

resented explicitly in a factorized form that has a graphical

interpretation rooted in conditional independencies.

A powerful feature of the PGMmodeling paradigms is the

ability to perform probabilistic queries and reasoning on the

graph atmultiple levels (Koller and Friedman 2009). Queries

of interest may include the estimation of probabilities (joint,

conditional, or marginal), reasoning about variables in light

of new evidence (causal, evidential, and inter-causal rea-

soning), and quantitative predictions through the use of the

graph as a generator in simulations. Another attractive fea-

ture of PGMs is their inherent flexibility to model variables

that follow different distributions, and the ability to bring in a

priori information in to the learning process.

In this review, we outline the basic theory of PGMs,

along with the parameter and structural learning. The topic

of PGMs is extremely rich in content and theory. Several

existing surveys on the topic of graphical models that are

similar in spirit include (e.g., Goldenberg et al. 2010; Daud

et al. 2010; Salter-Townshend et al. 2012; Srihari 2014).

Our review differs from existing reviews in both style and

content. One distinguishing feature is that we illustrate the

different modeling paradigms using accessible and simple

models. Simple examples facilitate a connection between

theory and practice. Once this connection is established, we

highlight more complex recent applications in SNA that

differ from each other in both the nature of the data and

objectives of the modeling. These applications reveal the

inherent flexibility of PGMs to model a broad spectrum of

data that target relevant open challenges and questions in

SNA. We address both directed PGMs, known as Bayesian

networks (BNs), and undirected PGMs, known as Markov

networks, in Sects. 2 and 3, respectively. In Sect. 4, some

of the current challenges are highlighted, comparisons

between directed and undirected paradigms are made, and

future directions and opportunities for PGM-based research

in SNA are also highlighted.

2 Directed probabilistic graphical models

Bayesian networks (BNs) are a special class of PGMs that

capture directed dependencies between variables, which

may represent cause and effect relationships. The edges in

a BN form a directed acyclic graphs (DAGs). The DAG

architecture conveys a critical modeling assumption that

there is no feedback via cycles in the graph. BNs obey the

Markov assumption which states that each variable, Xi, is

independent of its non-descendants (unconnected nodes),

given its parents in G. Taken together, these assumptions

enable the compact representation of the high-dimensional

joint probability distribution of the variables in the model.

Despite their flexibility, the use of directed graphs in SNA

has been somewhat limited, although the applications that

we highlight are diverse. We describe the basic principles

of these directed PGMs and motivate them with applica-

tions in the literature, which showcase their utility in SNA.

Static Bayesian Networks Our major focus is static BNs,

which utilize data from a single snapshot of a social

community at a given time point. A DAG conveys precise

information regarding the conditional independencies

between modeled variables (nodes). For a set of random

variables fX1;X2; . . .;Xng is a network with the structure

that encodes conditional independence relationships:

PðX1;X2; . . .;XnÞ ¼ PðGÞ
Yn

i¼1
PðXi j paðXiÞ;HiÞ; ð1Þ

where P(G) is the prior distribution over the graph G,

paðXiÞ are the parent nodes of child Xi, and Hi denotes the

parameters of the local probability distribution. The prior

comes into play only when an expert cannot describe the

graph and structural learning is required. Structures and

relationships that are more likely (and less likely) can be

embedded into P(G) to influence searches through the

posterior model space.

A simple and fully parameterized BN for a course at a

University is shown in Fig. 1. This network can be viewed

as a template model in which different sections of a course

are taught by different professors ðPr 2 fp0; p1g). Similar

templates can be used for various courses, e.g., Calculus,

Introduction to Chemistry, etc. In this example, different

teaching assistants (TA) vary in their teaching effective-

ness (TAq 2 fPoor; Fair;Goodg), and their own grade in

the course influences their overall ability to convey the

material in the class in well (TAg 2 fA;B;Cg). A student’s

grade (Grade 2 fA;B;Cg) is caused by their intelligence
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fi0; i1g, the professor of the course, and the grade of the

TA. Finally, if a professor is asked to write a letter of

recommendation for a particular student, for simplicity,

this may be based on the performance of the student in the

course and the professor (e.g., some are more prone to

write positive letters). This scenario, although overly sim-

plistic, may hold in large classroom settings where the

teacher does not get to know the individual students well.

The Markov assumption is apparent through the condi-

tional probability tables (CPDs) for each node, which

depend only on the parents. The head nodes (top layer)

have no parents, thus the CPD table is simply a marginal

probability that will sum to one across the different states

of the discrete variable. On the other hand, nodes with

parents are conditional on the possible combinations of the

parent states. It is evident that even for a small number of

parents, and a small number of states for those parents, the

CPD tables can grow quickly. In our example, PðG j

I; Pr;TAgÞ has 12 possible states (or scenarios) that can

occur that would influence grade-level.

Our toy example is an expert system that was written

down according to knowledge about the modeling domain.

Importantly, there are many scenarios that may be more or

less realistic, which may include changing some edges or

the addition of new variables. Nonetheless, it is often the

case that a network structure can be accurately described

by an expert. When a structure is prescribed for a BN,

parameter learning is still required. This comes in the form

of CPD tables for discrete distributions (Fig. 1). In our

simple example, the probabilities for the CPD table may

have been extracted from teaching evaluations, grades, or

other means.

As demonstrated in our simple example, each child node

is dependent on its parent nodes. The parameter learning

can be viewed as a local model or distribution that involves

only the child and the parents. These local models are the

Professor

Grade

TA Grade

TA Quality

Intellegence

i0 i1
0.35 0.65

p0 p1
0.5 0.5

Letter

i0, p0, A i0, p0, B i0, p0, C i0, p1, A i0, p1, B i0, p1, C i1, p0, A i1, p0, B i1, p0, C i1, p1, A i1, p1, B i1, p1, C
A 0.1 0.1 0.2 0.2 0.2 0.2 0.4 0.4 0.7 0.5 0.6 0.65
B 0.2 0.25 0.3 0.4 0.4 0.3 0.2 0.3 0.2 0.3 0.3 0.25
C 0.7 0.65 0.5 0.4 0.4 0.5 0.4 0.3 0.1 0.2 0.1 0.1

p0, A p0, B p0,C p1, A p1, B p1, C
Very Good 0.9 0.25 0 0.6 0.2 0
Good 0.1 0.75 0.1 0.4 0.4 0
Nuetral 0 0 0.9 0 0.4 0.95

A Simple Parameterized Static Bayesian Network

P(I, Pr, TA_g, G, TA_q, L} = P(I)P(Pr)P(TA_g)P(G|I,Pr,TA_g)P(TA_q| TA_g)P(L|Pr, G)
Joint Distribution

A B C
0.6 0.35 0.05

A B C
Good 0.3 0.3 0.1
Fair 0.5 0.6 0.8
Poor 0.2 0.1 0.1

Simple Bayesian Networks

B Time-slices from a Dynamic Bayesian Network

Student A

Student B

True Network

Student A

Student B

Student A

Student B

time point k time point k+1

Unrolled BN (two time points)

Fig. 1 a Simple example of a

parameterized Bayesian

Network of a University multi-

section course. In this scenario,

a student may enroll in a course

taught by different

Professors. A student’s

Grade is influenced by the

student’s Intelligence, the
Professor, and the

effectiveness of their TA as

measured by the TA grade in

the course. The TA Quality is

a direct reflection of the TA’s

mastery of the material (their

grade). The quality of a

student’s Letter of

recommendation is dependent

on the grade in the course, and

also the professor. b Time slices

from a dynamic Bayesian

network of two students that

interact in a study group. The

true network is given to the left,

which includes both feedback

and a cycle (prohibited in static

BNs). Relationships can

unrolled in a DBN across

discrete time points (right)
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building blocks of the graphical model and they make up

the factors in the product for the joint distribution (Eq. 1).

When the variables in the model are continuous, the

specification of a local model requires distribution param-

eters. For example, if fX1;X2;X3g are Gaussian, and

X1 �! X2 �X3, then a local model would be of the form

X3�Nðb0 þ b1 � X1 þ b2 � X3; r2Þ. Therefore, in the con-

tinuous case, the local model can be viewed as a regression

on the parents. Another popular local model is a condi-

tional Gaussian Bayesian network (CG-BN), which gives

rise to regressions in which a continuous child node may

have parents that are both discrete or continuous (Lauritzen

1996). To enable factorization, CG-BNs prohibit the dis-

crete children from having continuous parents.

Structural learning is required when the network is not

known and has to be learned from the data. The objective

function for maximization is the posterior probability of a

graph, G, given by:

PðG j XÞ / PðX j GÞPðGÞ;

where P(G) is the prior on the graph. The marginal like-

lihood, PðX j GÞ, requires complex integration over the

parameters H:

PðX j GÞ /
Z

PðX j h;GÞPðh j GÞdh;

which can be alleviated with the use of conjugate priors. In

an effort to accelerate the learning process, and prevent

from over-fitting, a fan-in assumption is typically adopted.

This limits the number of parents that a node can have

(e.g., a node can have no more than three parents). The

graph prior P(G) can be explicitly used to encourage cer-

tain relationships, and penalize against others (Mukherjee

and Speed 2008; Hageman et al. 2011). Computation relies

on the fact that each node in the network, together with the

corresponding parents, represents a local model, which can

be described by a regression. These individual regressions

have priors on their parameters, PðX j GÞ, for example a

normal-Wishart prior can be used for nodes that follow a

normal distribution. In practice, the posterior in a graph is

calculated as a product of the local models, which is valid

representation under the Markov assumption. Possible

local models are often pre-computed in an effort to ease the

computational demand of the learning algorithms.

The structural learning problem concerns identifying a

global network that assembles these local models in a

optimal way. The process is a major challenge (NP-hard),

as the number of possible networks is super-exponential

with the number of nodes (Chickering et al. 2001). Struc-

tural learning methods rely on sampling-based approaches

or a greedy optimization, e.g., hill climbing or simulated

annealing (Heckerman 2008). Sampling-based approaches

rely on Markov Chain Monte Carlo (MCMC) techniques

that sample the posterior distribution by moving through

model space according to a proposal distribution. The

proposal represents the modification to the current graph,

Gcurr, which is then evaluated and potentially accepted,

Gnew, (kept in the sample) or rejected (not kept in the

sample, another proposal is attempted) (Madigan et al.

1995). A widely used proposal for a new graph in the

Markov chain is to either add, delete, or reverse a single

edge (Fig. 2). This proposal is implemented within a

Metropolis–Hastings framework. The acceptance criterion

for a new graph is determined by:

min 1;
PðGnew j XÞ
PðGcurr j XÞ

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

BayesFactor

QðGcurr j GnewÞ
QðGnew j GcurrÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

HastingsRatio

8
>>><

>>>:

9
>>>=

>>>;
: ð2Þ

The Bayes factor gives a measure of goodness of fit of the

proposed graph relative to the current. The Hastings ratio is

simply the neighborhood size of possible moves from the

current and new graph, equivalently,

NeighborhoodðGcurrÞ=NeighborhoodðGnewÞ (¼5=6 in

Fig. 2).

The directionality and causal structure of the inferred

model make BN an attractive modeling paradigm for social

networks that capture cause and effect relationships.

Screen-based bayes net structure (SBNS) was developed as

a search strategy for large-scale data, which relies on the

adopted assumption of sparsity in the overall network

structure (Goldenberg and Moore 2004). SBSN enforces

the sparsity through a two stage process, which frames the

structural learning problem as market basket analysis task.

The algorithm relies on the theory of frequent sets and

support, to first screen for local modules of nodes, and then

connect them through a global structure search. The market

basket framework lends itself to transaction style data,

which is by nature large, sparse and binary. The learning

problem is to identify an influence graph based on derived

features of the binary transaction data. In this case, actors

are assumed to be linked to each other indirectly through

items or events. A simple example of individuals linked

through a conference is shown in Fig. 3a. In this example,

the conference attendance (transaction items) can be used

to infer a network of social influence between individuals,

which adds insights into the social hierarchy that are not

apparent in classical interaction networks. The method was

shown to be effective for modeling a variety of SNs,

including citation networks, collaboration data, and movie

appearance records (Berry and Linoff 1997).

Koelle et al. proposed applications of BNs to SNA for

the prediction of novel links and pre-specified node fea-

tures (e.g., leadership potential) (Koelle et al. 2006). The

authors emphasize the advantage of BN to account for
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uncertainty, noise, and incompleteness in the network. For

example, a topology-based network measures such as de-

gree centrality, which is often used as a surrogate for im-

portance, are subject to summarizations over incomplete

and sometimes erroneous data. Comparatively, a BN

affords more flexibility that enables measures such as im-

portance to be estimated in a more data-dependent manner.

Koelle et al. provide an example of combining topology-

based network measures with covariate information

(Fig. 3b). Directed inference of this type leverages small

X1

X2 X3 X3X2

X1

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

Current Graph (G_curr) Current Graph (G_new)

Structural Learning: Example of Graph Proposals in MCMC 

Neighborhood Neighborhood

Deletion

Reversal

Addition Addition

Addition Reversal Reversal

Addition noiteleDnoiteleD

Addition

1/6

1/5

Fig. 2 A widely used proposal

in an MCMC sampling for

structural learning in a BN is the

addition, reversal, or deletion of

an edge from the current graph,

Gcurr, to form a new graph,

Gnew. The proposal move is

selected at random from models

in the neighborhood with a

probability. The Metropolis–

Hastings acceptance criteria are

a function of the neighborhood

size for the current and propose

graphs and the overall fit of

those graphs to the data as

measured by the Bayes factor

Future Leadership
Potential

Sex Education

Religion

Individual Importance

Degree 
Centrality

Link 
Certainty

Individual 
Importance

- Centrality Measure

- Attribute

- Derived Metric

m1

m2

t1

t2

t3

k1

k2

k3

Q

Edge Types
following
mentioning 
tagging
publishing
re-tweeting
sharing

Node Types
microblogger
tweet
reply
retweet
hashtag
web resource

Twitter Tweet “Layored” Search

Microbloggers Tweets Terms Query

Conference 1

Anne

Bill

Cal

Doug

Eden

Anne

BillCal

DougEden

Individuals linked through events Inferred Social Influence

A Sparse Bayesian Influence B  Local Bayesian Network Prediction

C  Bayesian models of Twitter Queries

Bayesian Network Applications

Session Level

Query Level

- Observed

- Latent

Et-1 Et Et+1

Ai

au su

Si

Ci

D Click Modeling

Conference 2

Conference 3

E - Examination
A - Attraction
S - Satisfaction

Fig. 3 Simplified schematics of

select examples of Bayesian

networks in social networks.

a Inferring influence based on

transaction style data that links

actors to events. b DAGs can

utilize network features such as

attributes and centrality

measures on the network itself

to predict derived metrics, e.g.,

individual importance or

leadership potential. c Twitter is
a microblogging community,

which can be queried using a

retrieval model that is based on

a Bayesian network. d An

application of DBNs for click

modeling in a browser. The

temporal dimension is a click

sequence that connects the

examination of webpages with

attraction and satisfaction
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local models, which can be naturally translated to regres-

sion or classification problems, depending on the child

node (response variable). In this setting, the local BN can

be evaluated at the node-level, ranked probability estimates

can be used for predictive purposes, and the output serves

as a surrogate for model fit on a given structure.

Privacy protection is a major concern amongst users in

online social networks. Generally, people prefer that their

personal information is shared in small circles of friends

and family, and shielded from strangers. Despite this

common desire, relatively simple BNs have been shown to

be successful in the invasion of privacy though the infer-

ence of personal attributes, which have been shielded

through privacy settings (He et al. 2006). The BNs operate

under the often accurate assumption that friends in social

circles are likely to share common attributes. In 2006, the

recommendation by He et al. to improve privacy was to hide

friend lists through privacy settings, and to request that

friends hide their personal attributes. Practically speaking,

setting the optimal privacy settings is complex, and can be a

tedious and difficult for an average user (Lipford et al.

2008). In 2010, a privacy wizard template was proposed,

which automates a persons privacy settings based on an

implicit set of rules derived using Naive Bayes (the simplest

BN) or decision tree methods (Fang and LeFevre 2010).

On the other side of the application spectrum, BNs are

useful for recommending products and services, to users,

taking into account their interests, needs and communica-

tions patterns. Belief propagation has been used to sum-

marize belief about a product and propagate that belief

through a BN (Ayday and Fekri 2010; Yang et al. 2013).

Belief propagation is the process in which node marginal

distributions (beliefs) are updated in light of new evidence.

In the case of a BN, evidence (e.g., opinion or ratings) is

absorbed and propagated through a computational object

known as a junction tree, resulting in updated marginal

distributions. Comparing the network marginals before and

after evidence is entered and propagated conveys a system-

wide effect of influence(s), and insights into how perception

or ratings change when recommendations are passed

through a network. Despite its simplicity, the BN approach

has been shown to be competitive with the more classical

collaborative filtering (CF)-based recommendation. Trust

(and distrust) can be highly variable dynamic processes,

which depends not only on distance from a recommender,

but also, the characteristics of the network users (Wang and

Vassileva 2003; Kuter and Golbeck 2007). Accounting for

trust in recommendation systems is an open area of research

Microblogging networks represent another effective

venue for rapidly disseminating information and influence

throughout a community. Twitter is the most well-known

microblogging network, in which posts (tweets) are short

and time-sensitive with respect to the reference of current

topics (Kwak et al. 2010). Users within microblogging

networks of this type participate though the act of following

and being followed, which gives rise naturally to directed

associations (Java et al. 2007). With over 50 million tweets

submitted daily, ranking and querying microblogs has

become an important and active area of open research.

Jabeur et al. proposed a retrieval model for tweet searches,

which takes into account a number of factors, including

hashtags, influence of the microbloggers, and the time

(Jabeur et al. 2012a, b). A query relevance function was

developed based on a BN that leverages the PageRank

algorithm to estimate parameters, such as influence, in the

model (Fig. 3c). The retrieval model was shown to out-

perform traditional methods for information retrieval on

Twitter data from the TREC Tweets 2011 corpus (Ounis

et al. 2011).

Dynamic Bayesian Networks The static BNs described

depict a network at a single time point. This is most often an

oversimplification of the true nature of the network, which is

inherently dynamic. Modeling the dynamics of a network

over the time-course can be achieved in the BN framework

with additional modeling assumptions. Dynamic Bayesian

networks (DBNs) provide compact representations for

encoding structured probability distributions over arbitrarily

long time-courses (Murphy 2002). State-space models, such

as hidden Markov model (HMM) and Kalman filter models

(KFMs), can be viewed as a special class of the more general

DBN. Specifically, KFMs require unimodal linear Gaussian

assumptions on the state-space variables. HMMs do not

allow for factorizations within the state-space, but can be

extended to hierarchical HMMs for this purpose. Overall,

DBNs enable a more general representation of sequential or

time-course data.

DBN modeling is achieved through the use of template

models,which are instantiated, i.e., duplicated, overmultiple

time points. The relationships between the variables within a

template are fixed, and represent the inherent dependencies

between ground variables in themodel. There are three types

of edges in a DBN. Intra-time slice edges represent depen-

dencies within a time slice. Persistent edges link the same

variable in two time slices; for example, the velocity of a

vehicle at a time slice is very dependent on the velocity of the

vehicle in the previous time slice. Finally, inter-time slice

edges connect different variables between time slices, for

example, the velocity of a car may also be influenced by

weather at the previous time slice.

The objective is to model a template variable over a

discretized time-course, X0 � � �XT, and represent PðX0 :

XTÞ as a function of the templates over the range of time

points. Reducing the temporal problem to conditional

template models makes the problem computationally

tractable, but requires the specification of a fixed structure
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across the entire time trajectory. In a DBN, the probability

for a random variable X spanning the time-course can be

given in factored form,

PðX0:TÞ ¼ PðX0Þ
YT�1

t¼0
PðXtþ1 j XtÞ;

where X0 represents the initial state, and the conditional

probability terms of the form PðXtþ1 j XtÞ convey the

conditional independence assumptions. The conditional

representation of the likelihood is similar in spirit to the

static BN representation, but conveys the conditional

independence with respect to time. The Markov assump-

tion enables this factorization, which has different, yet

analogous meanings in static and dynamic BNs. In a DBN,

the Markov assumption explains the memoryless property,

i.e., that the current state depends on the previous and is

conditionally independent of the past ðXtþ1?X0:t�1 j XtÞ.
Comparatively, in static BNs, the Markov assumption only

captures nodes’ independence of their non-descendants,

given the states of their parents.

Briefly, the learning paradigms are rather similar.

Structural learning is typically achieved by the same

scoring strategies, but with the added constraint that the

structure must repeat over time (Friedman et al. 1998).

Such a constraint alleviates the computational burden for

search strategies. Additionally, the best initial structure can

be searched for independently from the remainder of the

time-course. The search is performed either through greedy

hill climbing or sampling.

A major advantage of DBNs is that they can be enriched

to accommodate more complex interactions that would

violate DAG assumptions in a static BN. Figure 1b shows a

simple example of a common situation where the true

network has feedback in the form of self-loops and a cycle

in the graph. This feedback is prohibited in a static BN, but

can be captured in a DBN. In this scenario, two students

form a study group, but also self-study, in an effort to

improve learning outcomes. The unrolled BN captures

these relationships for two time slices that contains per-

sistent and inter-time slice edges. These relationships are

preserved over a time series (e.g., a semester), thereby

forming a template model.

Despite the fact that social networks are inherently

dynamic, the applications of DBNs in SNA have been

limited. Importantly, there have been many attempts to

model social networks probabilistically over time, but not

in the strict PGM context, which is the focus of this review;

many of these advances are mentioned in the discussion.

Chapelle et al. used DBNs to model web users’ browsing

history (Chapelle and Zhang 2009). The DBN extends the

traditional and widely used cascade model for browsing

behavior. The dynamic of click sequences for single click

(Fig. 3d) takes into account the information at the query

and session levels, differentiating perceived/actual attrac-

tion (au and Ai respectively) and perceived/actual satis-

faction (su and Si respectively) with links. At each click

(time-step), the hidden binary variables for examination

(Ei) and satisfaction (Si) track the time progression to

predict future clicks. The DBM approach was shown to

outperform traditional methods, and highlighted the sen-

sitivity of click modeling to measures of relevance and

popularity at the query level.

Meetings can be viewed as social events, in which

valuable information is exchanged mainly through speech.

Effectively processing, capturing, and organizing this

information can be costly, but important in order to max-

imize the impact and information flow for participants.

Dielman et al. cast the problem of meeting structuring as a

DBN, which partitions meetings into sequences of actions

or phases based on audio (Dielmann and Renals 2004).

DBNs outperformed baseline HMMs in detecting meeting

actions in a smart room, such as dialog, notes at the board,

computer presentations, and presentations at the board.

Twitter and microblogs, in general, have become a

major resource for the media to obtain breaking news or a

the occurrence of a critical event. Recently, Sakaki et al.

showed that tweet modeling via Kalman Filtering is

effective for the prediction of earthquakes of a certain

magnitude in Japan. Furthermore, they developed a

reporting system Torreter, which is quicker than the

existing government reporting system in warning registered

individuals through email of an impending quake (Jansen

et al. 2009).

3 Undirected probabilistic graphical models

Markov networks (MNs), also known as Markov random

fields (MRFs), are PGMs with undirected edges. Similar to

directed BNs, a MN is a representation of the joint prob-

ability distribution between random variables (represented

by nodes), where the absence of an edge between two

nodes implies conditional independence between the

nodes, given the other nodes in the network. In this review,

we restrict our focus to MNs, Markov logic networks

(MLNs) and exponential random graph models (ERGMs),

which can be viewed as generalizations of the random

graphs (Frank and Strauss 1986), and are widely used in

SNA (Newman et al. 2002). The basic formulation of these

models and their utility in SNA will be highlighted.

Markov networks express the joint probability of given

random variables by decomposing the network into smaller

complete sub-graphs known as cliques, and use maximal

cliques to capture the random variables’ dependencies. A

clique is a maximal clique if it cannot be extended to
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include additional adjacent nodes. The clique representa-

tion enables a compact factorization of the probability

density function (pdf). The joint pdf of n random variables,

X ¼ fX1; . . .;Xng, with conditional (in)dependencies cap-

tured by a graph, can be expressed as:

PðXÞ ¼ 1

Z

Y

C2X
wCðXCÞ; ð3Þ

where C is a maximal clique in the set of maximal cliques

X. Let XC denote a subset of X comprised of the random

variables that form clique C. Clique potential wCðXCÞ is a
function of these variables (e.g., the frequency of distinct

realizations of the random variables forming the clique). A

unique clique potential can be specified for each clique; the

size of a clique can be one determinant of the corre-

sponding clique potential; however, cliques of the same

size may have different clique potentials. The clique

potentials are positive functions that capture the depen-

dence of the variables within the cliques (Koller and

Friedman 2009). The normalizing constant, also known as

the partition function, is given as:

Z ¼
X

X2v

Y

C2X
wCðXCÞ:

Each clique potential in a MN is specified by a factor,

which can be viewed as a table of weights for each com-

bination of values of variables in the potential. In some

special cases of MNs such as log-linear models (Murphy

2012), clique potentials are represented by a set of func-

tions, termed features, with associated weights (i.e.,

hC/CðXCÞ ¼ logðwCðXCÞÞ, where /CðXCÞ is a feature

derived from the values of the variables in set XC) and hC is

the weight of /CðXCÞ estimated at the parameter learning

stage.

The Hammersley–Clifford theorem specifies the condi-

tions under which a positive probability distribution can be

represented as a MN. Specifically, the given representation

(Eq. 3) implies conditional independencies between the

maximal cliques and is, by definition, a Gibbs measure

(Murphy 2012).

A simple example of the use of MNs to study the col-

lective behavior in a social network is shown in Fig. 4.

Suppose each member of a friendship network (Fig. 4a) is

looking to make a decision about purchasing a given pro-

duct, ‘‘liking’’ a post in an online forum, supporting a

political party, participating in a school activity or choos-

ing a family doctor. In this setting, the random variables in

the nodes are binary and the edges indicate pairwise

dependencies between them. Let X1; . . .;X5 denote five

random variables, each of which takes on the value of 1 or

0 to signal the member’s attitude—Like or Dislike,

respectively. Figure 4b depicts the MN with three cliques

a, b and c, X ¼ fa; b; cg, with Xa ¼ fX1;X2;X3g, Xb ¼
fX1;X5g and Xc ¼ fX4;X5g. The MN includes three clique

potentials, waðX1;X2;X3Þ;wbðX1;X5Þ and wcðX4;X5Þ, sat-
isfying the requirements of the Hammersley–Clifford

A

B

C

Fig. 4 a A social network and a

corresponding MN model (b).
The nodes of the MN are actors’

decisions and the variable

dependencies are defined based

on the ties in the social network.

The three tables show the

frequencies of hypothetical

(observed) Like and Dislike

combinations. c A factor graph

for the MN in b

62 Page 8 of 18 Soc. Netw. Anal. Min. (2015) 5:62

123



theorem under the assumption that a member’s decision

can be affected by only their immediate friends and that it

matters if those friends are also friends with each other.

The joint probability function of X1; . . .;X5 is expressed as:

PðX1; . . .;X5Þ ¼
1

Z
waðX1;X2;X3ÞwbðX1;X5ÞwcðX4;X5Þ;

where Z ¼
P

X1;X2;...;X5
waðX1;X2;X3ÞwbðX1;X5ÞwcðX4;X5Þ

¼ 3� 1� 13þ � � � þ 9� 10� 19 (the summation is taken

over all the 25 distinct realizations of the model’s variables;

the first explicitly written term above corresponds to the

case where the variables are all zeros, and the last term

corresponds to the case where the variables are all ones).

To parameterize the MN and obtain a log-linear model, let

ha/aðX1;X2;X3Þ ¼ logðwaðX1;X2;X3ÞÞ, hb/bðX1;X5Þ ¼
logðwbðX1;X5ÞÞ and hc/cðX4;X5Þ ¼ logðwcðX4;X5ÞÞ. With

H ¼ fha; hb; hcg, the joint probability function defined by

the MN becomes:

PðX1; . . .;X5Þ ¼
1

ZðHÞ expfha/aðX1;X2;X3Þ

þ hb/bðX1;X5Þ þ hc/cðX4;X5Þg;

where ZðHÞ is the partition function. The set of the model

parameters, H, would need to be estimated from any

available data of known decisions made by the social

network members. Figure 4c depicts a factor graph corre-

sponding to the MN. Factor graphs are bipartite graphs

used to specify the factorization of the probability distri-

bution function, and also, to inform the computation of

marginal probability distributions of MN variables (Mur-

phy 2012).

MN specification problems, including parameters esti-

mation and structure learning from data, can be quite

challenging. The main difficulty in MN parameter esti-

mation is that the maximum likelihood problem formulated

with Eq. 3 has no analytical solution due to the complex

expression of Z (Lee et al. 2006). The problem of finding

the optimal structure of the MN using available data,

similar to BNs, is even more challenging (Bromberg et al.

2009). Currently existing approaches to structure learning

are either constraint-based or score-based (see Koller and

Friedman 2009; Ding 2011; Schmidt et al. 2010 for more

details).

MNs have found increased utility in SNA with the

emergence of online social networks (OSNs) and digital

social media (see Bonchi et al. 2011 for a review of key

problems in SNA). The need to capture non-causal

dependencies within and between data instances (e.g.,

profile information) and observed relationships (e.g.,

hyperlinks) in these applications is exacerbated by the

presence of missing or hidden data in OSNs (Xiang and

Neville 2013). A popular problem instance in this domain,

that of user (missing) profile prediction, has been attacked

using MNs (Taskar et al. 2002; Neville and Jensen 2007).

Along with the problem of predicting missing profiles,

link prediction is among the most prominent problems in

Big Data SNA. Multiple variations of MNs that have been

used to estimate the probability that a (unobserved) link

exists between nodes include Markov logic networks,

relational Markov networks, relational Bayesian networks

and relational dependency networks (Al Hasan and Zaki

2011; Chen et al. 2013; Tresp and Nickel 2013). Detection

of community structures is another area of MN application

(Newman 2006). Communities can be discovered through

examination and subsetting (cutting) network relationships

according to labels of interest, and through the use of

weighted community detection algorithms. Social network

clustering is especially challenging in a dynamic context,

e.g. in mobile social networks (Humphreys 2007). Wan

et al. employed undirected graphical models (i.e., condi-

tional random fields) constructed from mobile user logs

that include both communication records and user move-

ment information (Wan et al. 2012).

Several generative models have been proposed, which

are motivated by MNs, and explain the effects of selection

and influence (e.g., see Aggarwal 2011). Modeling chan-

neled spread of opinions and rumors, known more generally

as diffusion modeling, is an active area of research in SNA

(Bach et al. 2012). Several applications of diffusion models

have been proposed for social networks including, but not

limited to the spread of information (Cowan and Jonard

2004), viral marketing (Kempe et al. 2003), spread of dis-

eases (Anderson and May 1979), the spread of cooperation

(Santos et al. 2006). Given a social network, for each node,

a corresponding random variable indicates the state of the

node (e.g., product or technology adoption) and links in the

network represent dependency (Wortman 2008).

Markov logic networks employ a probabilistic frame-

work that integrates MNs with first-order logic such that

the MN weights are positive for only a small subset of

meaningful features viewed as templates (Richardson and

Domingos 2006). Formally, let Fi denote a first-order logic

formula, i.e., a logical expression comprising constants,

variables, functions and predicates, and wi 2 R denote a

scalar weight. An MLN is then defined as a set of pairs

ðFi;wiÞ. From the MLN, the ground Markov network,

ML;C, is constructed (Richardson and Domingos 2006) with

the probability distribution (Tresp and Nickel 2013),

PðX ¼ xÞ ¼ 1

Z
exp

X

i

winiðxÞ
 !

; ð4Þ

where niðxÞ is the number of true groundings (e.g., true

logic expressions based on observations) of Fi, i.e., such

formulae that hold, in x.
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A simple example network of five senators is shown in

Fig. 5a. In this setting, each senator supports one of two

political parties (Democratic or Republican). Each senator

in this network has two attributes (1) political affiliation,

(R(n) is 1 if senator n is a republican and 0 otherwise for

n 2 fA;B;C;D;Eg), and (2) supporting a particular bill,

(S(n) is 1 if senator n supports the bill and 0 otherwise). Let

F(n, m), a binary symmetric function, denote the relation-

ship between senators n and m (n 6¼ m). Suppose

‘‘Republicans do not support the bill’’ and ‘‘If two senators

have a relationship and one is republican then so is the

other’’ are two logical statements denoted by F1 and F2.

The first-order logic format is given as follows:

F1 : 8n; RðnÞ ) :SðnÞ;
F2 : 8n;m Fðn;mÞ ^ RðnÞ ) RðmÞ:

The MLN is similar to the ground network (Fig. 5b).

However, only the combinations of variables correspond-

ing to logical statements, F1 and F2, are parameterized in

the MLN (all the other weights are zero). Let X ¼
fX1; . . .;X15g denote the set of all nodes in the ML;C where

Xi indicate node i (e.g., X1 is the node labeled S(A) in

Fig. 5b). In an MLN, clique potentials are defined similar

to those in Markov networks. Now, one can use this MLN

to find the probability that all senators in this example

support the bill (i.e., PðSðAÞ ¼ 1; . . .; SðEÞ ¼ 1). To cal-

culate the number of true groundings (n1 and n2), both F1

and F2 should be examined for all nodes in the observed

network. More generally, this approach can be imple-

mented to estimate missing profiles in social networks as

well.

Many problems in statistical relational learning, such as

link prediction (Domingos et al. 2008), social network

modeling, collective classification, link-based clustering

and object identification, can be formulated using instances

of MLN (Richardson and Domingos 2006). Dierkes et al.

used MLNs to investigate the influence of Mobile Social

Networks on consumer decision-making behavior. With

the call detail records represented by a weighted graph,

MLNs were employed in conjunction with logit models as

the learning technique based on lagged neighborhood

variables. The resulting MLNs were used as predictive

models for the analysis of the impact of word of mouth on

churn (the decision to abandon a communication service

provider) and purchase decisions (Dierkes et al. 2011).

As mentioned above, link mining and link prediction

problems can also be addressed using MLNs, since MLNs

combine logic and probability reasoning in a single

framework (Domingos et al. 2010). Furthermore, the abil-

ity of MLNs to represent complex rules by exploiting

relational information makes them an appropriate alterna-

tive for collective classification (e.g., classification of

publications in a citation network, or of hyperlinked web-

pages) (Crane and McDowell 2011).

The Ising model and its variations form a subclass of

MN with foundations in theoretical physics. The Ising

model is a discrete and pairwise MN, and is popular in

applications in part due to its simplicity (Koller and

Friedman 2009). The variables in the model, X1 � � �Xp, are

assumed to be binary, and their joint probability is given

as:

PðX;HÞ ¼ exp
X

ðj;kÞ2E

hjkXjXk � UðHÞ

0
@

1
A 8 X 2 v;

where v 2 f�1; 1gp
, and UðHÞ is the log of the partition

function

UðHÞ ¼ log
X

x2v
exp

X

ðj;kÞ2E

hjkxjxk

0

@

1

A

2

4

3

5:

A B

Fig. 5 An example of using MLN in the political science. a Depicts a
social network of five senators with two attributes. The ground

predicates (b) are denoted by 15 elliptical nodes. The red ones are

captured by the links of the social networks and dark blue nodes

indicate nodes’ attributes. Two first-order logics, F1 and F2,

determine the structure of the MLN. There exist five groundings of

the F1 (illustrated by the edges between the R(x) and S(x)0 nodes) and
15 groundings of F2 captured by the rest of the edges. Other examples

of MLNs can be found in Tresp and Nickel (2013)
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Special, efficient methods exist for learning the Ising

Model parameters from data (Ravikumar et al. 2010).

While the model has been originally found useful for

understanding magnetism and phase transitions, its utility

has later expanded to image processing, neural modeling,

and studies of tipping points in economics and social

domains (Afrasiabi et al. 2013).

In SNA, the Ising model can be employed to analyze

factors such as network substructures and nodal features

affecting the opinion formation process. A classical

example within this is a study of medical innovation

spread, namely the adoption of drug tetracycline by 125

physicians in four small cities in Illinois (Van den Bulte

and Lilien 2001). A small subset of this network is illus-

trated in Fig. 6. The adoption status of node k is repre-

sented by Xk 8 k ¼ 1; . . .; 5, where Xk ¼ 1 if adopted (blue

nodes) and 0 otherwise (black nodes). Since the Ising

model only captures pairwise dependencies between vari-

ables, the corresponding MN only considers cliques of size

two (i.e., dyads); hence, one can concisely write the clique

potentials in the form wðXk;XjÞ ¼ XkXj. Let nþ and n�

denote the number of agreements (i.e., cases withXkXj ¼ 1

for some k and j) and the number of disagreements (i.e.,

cases with XkXj ¼ �1 for some k and j), respectively.

Assuming hjk ¼ hA if XkXj ¼ 1 and hjk ¼ hD if XkXj ¼ �1,
H ¼ fhA; hDg, one can obtain

P
ðj;kÞ2E hjkXjXk ¼ hAnþ

�hDn�. Hence, the joint probability of all nodes’ adoption

status is:

PðX1; . . .;X5;HÞ ¼ expðhAnþ � hDn� � UðHÞÞ;

where UðHÞ ¼ log
P

x2v½expðhAnþ � hDn�Þ� is the parti-

tion function. For this small example, the table in Fig. 6b

shows all clique potentials which are either �1 or 1 based

on the network structure. The counts of agreements and

disagreements are obtained next (e.g., nþ ¼ 5 and n� ¼ 2

in Fig. 6b). The partition function has 32 additive terms:

each combination of Xk’s leads to particular values of nþ

and n� and all these values affect the value of UðHÞ.
In the model presented above, the counts of possible

agreements and disagreements depend on the network

structure, so the MN can be said to explore the impact of

homophily on tetracycline adoption decisions. Note that the

model’s parameters, hA and hD, first need to be estimated

from any given data (i.e., from a single observation of a

network of (non)adopters); however, the approaches to

such parameter estimation are beyond the scope of this

paper.

Figure 7 depicts the entire physicians’ advisory network

from a data set prepared by Ron Burt from the 1966 data

collected by Coleman et al. (1966) about the spread of

medical innovation. The figure illustrates the physicians’

network in two different time points and shows how

physicians changed their opinions and adopted the new

medication overtime. To find the probability of adoption,

the Ising model can be modified by considering the impact

of nodal attributes on the adoption.

Recently, the Ising Model has been used to examine

social behaviors (Vega-Redondo 2007), including collec-

tive decision making, opinion formation and adoption of

new technologies or products (Grabowski and Kosiński

2006; Krause et al. 2012). For example, Fellows et al.

proposed a random model of the full network by modeling

nodal attributes as random variates. They utilized the new

model formulation to analyze a peer social network from

the National Longitudinal Study of Adolescent Health

(Fellows and Handcock 2012). Agliari et al. (2010) pro-

posed a model to extract the underlying dynamics of social

systems based on diffusive effects and people strategic

choices to convince others. Through the adaptation of a

cost function, based on the Ising model, for social inter-

actions between individuals, they showed by numerical

simulation that a steady-state is obtained through natural

dynamics of social systems.

A B

Fig. 6 An example of implementing the Ising model to find the probability of adopting a new medication. a A sub-network of an physicians’

advisory network with 5. b A pairwise Markov network is constructed where the cliques with size of at most 2 are involved

Soc. Netw. Anal. Min. (2015) 5:62 Page 11 of 18 62

123



Exponential random graph models (ERGMs) (Wasser-

man and Pattison 1996), also known as the p�-class models,

are among the most widely used network approaches to

modeling social networks in recent years (Pattison and

Wasserman 1999; Robins et al. 1999, 2007a). A social

network of individuals is denoted by graph Gs with N nodes

and M edges, M� N
2

� �
. The corresponding adjacency

matrix of is denoted by Y ¼ ½yij�N�N , where yij is a random

variable and defined as follows:

yij¼
1 if there exists a linkbetweennodes i and j 8i;j;i 6¼ j

0 otherwise.

�

Based on an ERGM, the probability of any observed net-

work, y, is:

PðY ¼ y;HÞ ¼ 1

Z
exp

XK

i¼1
hifiðyÞ

 !
; ð5Þ

where fiðyÞ; i ¼ 1; . . .;K, are called sufficient statistics

(Morris et al. 2008; Lusher et al. 2012), or motifs based on

configurations of the observed graph and H ¼ fh1; . . .; hKg
is a K-vector of parameters (K is the number of different

sufficient statistics used in the model). Network configu-

rations used to compute sufficient statistics, including but

not limited to network edge count (tie between two actors),

as well as counts of 2-stars (two ties sharing an actor) and

triads of various types, are related to communication pat-

terns among actors in a social network (see Lusher et al.

2012 for more details about network configurations). The

parameters of an ERGM describe the probabilities of a

wide variety of possible configurations in social networks

(Robins et al. 2001). Again, Z is called the normalization

constant.

As an example, a social network of five individuals is

assumed. Since the edges (ties) between nodes are

considered as random variables, the given network is the

most likely realization out of many possible networks. In

this case, an ERGM constructs a probability distribution

over all possible networks with five nodes. Figure 7 illus-

trates the social network (A) and the corresponding graph

where edges, yij 8i; j ¼ 1; . . .; 5 represent random variables

along with five sufficient statistics (fiðyÞ i ¼ 1; . . .; 5)
including edge, 2-star, 3-star, 4-star and triangle (B). The

probability distribution of any possible network is obtained

as follows:

PðY ¼ y;HÞ ¼ 1

Z
exp h1f1ðyÞ þ h2f2ðyÞ þ h3f3ðyÞð

þh4f4ðyÞ þ h5f5ðyÞÞ;

where y is any observed network with five nodes,

H ¼ fh1; . . .; h5g, the set of weights of sufficient statistics,
are estimated through solving an optimization problem

where the probability of the observed network is maxi-

mized. The exact computation of the normalization con-

stant, Z, requires handling of many terms (all possible

network realization must be considered and their corre-

sponding sufficient statistics calculated). This challenge is

conventionally handled using Markov Chain Monte Carlo

(MCMC) sampling technique (Snijders et al. 2006).

Some of the first proposed models, e.g., random graphs

and p1 models (Frank and Strauss 1986), used Bernoulli

and dyadic dependence structures, which are generally

overly simplistic (Robins et al. 2007a). On the contrary,

ERGMs are based on Markov dependence assumption

(Frank and Strauss 1986) supposing that two possible ties

are conditionally dependent when they share an actor

(node). Moreover, Markov dependence assumption can be

extended to attributed networks which assumes each node

has a set of attributes influencing the node’s possible

incoming and outgoing ties (Robins et al. 2007a) (e.g.,

Fig. 7 The spread of new drug adoption through an advisory network of physicians: two snapshots at different time points, about 2 years apart

(from left to right). The growth dynamics in the number of adopters can be analyzed with an Ising Model
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more experienced actors in an advisory network, more

incoming ties). When nodal attributes are taken into

account as random variables, ERGMs and MNs can be

integrated to model the social network due to similarities

that they share (see the Appendix and Fellows and Hand-

cock 2012; Thiemichen et al. 2014; Lusher et al. 2012).

ERGMs have been widely employed to study the net-

work and friendship formation (Song et al. 2014) and

global network structural using local structure of the

observed network (Uddin et al. 2013a). The observed

network is considered as one realization from too many

possible networks with similar important characteristics

(Robins et al. 2007a). For example, Broekel and Hartog

(2013) used ERGMs to identify factors determining the

structure of inter-organizational networks based on the

single observation. Schaefer and Simpkins (2014) used

SNA to study the relation between weight status and friend

selection and ERGMs to measure the effects of body mass

index on friend selection.

Moreover, Goodreau et al. (2009) used ERGMs to

examine the generative processes that give rise to

widespread patterns in friendship networks. Cranmer and

Desmarais used ERGMs to model co-sponsorship net-

works in the U.S. Congress and conflict networks in the

international system. They determined that several pre-

viously unexplored network parameters are accept-

able predictors of the U.S. House of Representatives

legislative co-sponsorship network (Cranmer and Des-

marais 2011).

The ERGMs have also been utilized in modeling the

changing communication network structure and classifying

networks based on the occurrence of their local features

(Uddin et al. 2013a) and to identify micro-level structural

properties of physician collaboration network on hospital-

ization cost and readmission rate (Uddin et al. 2013b).

Finally, a ERGM-based model of clustering nodes con-

sidering their role in the network has been reported (Salter-

Townshend and Murphy 2014).

4 Discussion

Mining social networks for knowledge and discovery has

proven to be a very challenging and active research area.

This review focussed on PGMs. The directed and undi-

rected PGM paradigms were described and their applica-

tions to social networks were highlighted. An important

consideration and major challenge is the issue of scalabil-

ity, not only for PGMs, but for SNA, in general. Structural

and parameter learning in high dimensions can be pro-

hibitive. Moreover, for structural learning, both greedy-

and sampling-based search strategies can get stuck at local

minima, and many graphs may be likelihood equivalent.

These numerical caveats can give rise to misleading net-

works, generating models, and subsequent predictions. In

addition, ERGMs can exhibit degeneracy, which occurs

when the generated networks show little resemblance to the

generating model. Proposed modifications to the concept of

goodness of fit have been proposed to safeguard against the

problems of degeneracy (Goodreau 2007; Hunter et al.

2008).

In the majority of applications of PGMs (both directed

and undirected) in SNA, the graphical structures are

assumed to be either known or designed by human experts

(i.e., captured directly by social networks), thereby the

learning problem is limited to the parameter estimation.

However, practically hand-constructed PGMs for SNA

have many barriers: time taken to construct them varies

from hours to months, experts can be costly or unavailable,

the data may be huge and errors may lead to poor answers.

On the other hand, structure learning is NP-hard with the

hypothesis space being super-exponential (2Oðn2Þ)
networks.

Directed and undirected graphs share common inter-

pretations in terms of conditional independences. Selection

of a PGM modeling paradigm is not trivial and is driven by

the data and ultimately what the user hopes to achieve with

the model. When the relationship can be viewed in terms of

cause and effect, BNs are more appropriate, and when the

relationship is association, MNs are preferred. Inferences in

both paradigms are met with challenges. The types of

variables (continuous or discrete) have to be carefully

considered. Modeling with a mixture of these variables is

possible in the case of BNs under strict assumptions.

However, the inference problem becomes more sensitive to

sample size, as the parameters estimated for the local

models are done so from a potentially reduced population,

which can be severely subset by level factors of parent

nodes. Another important learning task, outside of the

scope of this review, is queries that involve the absorption

of evidence (e.g., new data) in the network and propagation

through the network. This process is known as belief

propagation and it takes place on a factor graph (aka cluster

graph). In the case of BNs, the factor graph is a factor tree

(aka junction tree), and the propagation schemes give rise

to exact inferences of marginal distributions (aka beliefs).

On the other hand, in MNs the factor graph may have

cycles, which does not ensure exact inference in terms of

marginals, but has still been shown to be useful in practice,

see Koller and Friedman (2009) for more details.

There are several opportunities to access open source data

resources in order to develop and test methodologies for

PGMs, and related areas. Max-Plank researchers have

released OSN data used in publications, which includes

crawled data from Flickr, YouTube, Wikipedia and
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Facebook (Mislove et al. 2007; Cha et al. 2008, 2009;

Viswanath et al. 2009). Several directed OSNs have been

released in the Stanford Network Analysis Package (snap),

e.g. from Epinions, Amazon, LiveJournal, Slashdot and

Wikipedia voting (Stanford 2011). Recently, a Facebook

dataset was released that exhibited convergence properties

and was shown to be representative of the underlying pop-

ulation (Gjoka et al. 2010). Document classification datasets

have also been released (Getoor 2012). A sample from the

CiteSeer database contains 3312 publications from one of

six classes, and 4732 links. The Cora dataset consists of

2708 publications classified into seven categories and the

citation network has 5429 links. Each publication is

described by a binary word vector which indicates the

presence of certain words within a collection of 1433.

WebKB consists of 877 scientific publications from five

classes, contains 1601 links and includes binary word attri-

butes similar to Cora. Terrorism databases are also publicly

available (Division 1948; National Consortium for the Study

of Terrorism and Responses to Terrorism 2015). The most

extensive is the RAND Database of Worldwide Terrorism

Incidents, which details terrorist attacks in nine distinct

regions of the world across the time-span 1968–2009 (dates

vary slightly depending on region) (Division 1948). Several

well-known challenges may arise in the analysis and rep-

resentation of terrorist network data, including incomplete

information, latent variables influencing node dynamics, and

fuzzy boundaries between terrorists, supporters of terrorists,

and the innocent (Sparrow 1991; Krebs 2002). The DBLP

computer science bibliography (http://dblp.uni-trier.de/db/)

is a massive online database that contains bibliographic

meta-data for over 2.6 million publications. There is also

ample opportunity to enroll in various data challenges,

which are often posed by corporations and operators of the

networks themselves.

In this review, we surveyed directed and undirected PGMs,

and highlighted their applications in modern social networks.

Despite limitations that arise related to scalability and infer-

ence, it is our opinion that the utility of PGMs has been

somewhat under-realized in the social network arena. It is

indisputable that methods for understanding social networks

have not kept pace with the data explosion. There are several

relevant topics and opportunities in social networks, e.g., link

predication, collective classification, modeling information

diffusion, entity resolution, and viral marketing, where con-

ditional independencies can be leveraged to improve perfor-

mance. PGMs implicitly convey conditional independence

and provide flexible modeling paradigms, which hold

tremendous promise and untapped opportunity for SNA.
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Appendix

Similarity between MNs and ERGMs

While MNs and ERGMs have been developed in different

scientific domains, they both specify exponential family

distributions. MN models treat social network nodes as

random variables, and hence, their utility is most obvious

in modeling processes on networks; ERGMs, on the other

hand, have been conceptualized to model network forma-

tion, where it is the edge presence indicators that are

treated as random variables (these random variables are

dependent if their corresponding edges share a node). But

in fact, this application-related difference in what to treat

as random is not fundamental. This Appendix works to

more rigorously disclose the similarity between MNs and

ERGMs by re-defining an ERGM as a PGM. We begin,

however, by reviewing the branch of literature devoted

exclusively to ERGMs.

Similar to MNs, a well-discussed problem of ERGMs

for analyzing social networks is related to the challenge of

parameters estimation (Robins et al. 2007b) due to the lack

of enough observed data. Robins et al. (2007b) outline this

and some other problems associated with ERGMs, e.g.,

degeneracy in model selection and bimodal distribution

shapes (see also Handcock et al. 2003; Rinaldo et al. 2009;

Snijders et al. 2006; Handcock et al. 2006).

The roots of ERGMs in the Principle of Maximum

Entropy (Park and Newman 2004) and the Hammersley–

Clifford theorem have been previously pointed out (Robins

et al. 2001; Goldenberg et al. 2010). Here, we illustrate

how MNs and ERGMs are similar in terms of the form and

structure using most popular significant statistics in

ERGMs; under the assumption of Markov dependence, for

a given social network, one can build a corresponding

Markov network via the following conversion: (1) each

node in the Markov network will correspond to an edge in

the social network [Fienberg called this construct a ‘‘usual

graphical model’’ for ERGMs (Fienberg 2012)], (2) when

two edges share a node in the social network, a link will be

built between two corresponding nodes in the Markov

network.

Corresponding to each possible edge in a social network,

a node in an MN network is introduced; note the difference

between the original social network and the MN network—

they are not the same! Consider an ERGM with the
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significant statistics including the number of edges, f1ðyÞ,
the number of k-stars, fiðyÞ; i ¼ 2; . . .;N � 1 and the

number of triangles, fNðyÞ. In an MN, a maximum Entropy

(maxent) model proposes the following form for the

internal energy of the system, EcðxÞ ¼ �
P

i acigci. Define,

gci as ith feature of clique c 2 X and aci is its corresponding

weight in G. Thus, wcðxÞ ¼ expfbc

PN
i¼1 acigcig. Since

there are too many parameters in the MN, they can be

deducted by imposing homogeneity constraints similar to

that of ERGMs (Robins et al. 2007a). Before imposing

such constraints, these following facts are required.

It is straightforward to demonstrate that G encompasses

cliques of size f3; . . .;N � 1g. In addition, all substructure

in Gs can be redefined by features in G. Considering these

points, we can rewrite the joint probability of all variables

represented by the MN, P(X), as follows:

PðXÞ ¼ 1

ZðaÞ
YC

c¼1
exp bc

XN

i¼1
acigci

 !

¼ 1

ZðaÞ exp
XC

c¼1
bc

XN

i¼1
acigci

 !
:

ð6Þ

In (4), ZðaÞ is the partition function which is a function of

parameters. The homogeneity assumption, here, means

aci ¼ h0i 8 c ¼ 1; . . .;C; then P(X) is:

PðXÞ ¼ 1

Zðh0Þ exp
XN

i¼1
h0i
XC

c¼1
bcgci

 !
: ð7Þ

In (5), let’s Z 0 ¼ Zðh0Þ. In addition, we assume thatPC
c¼1 bcgci represented by f 0i , means that substructures i in

all cliques c are added up by weight bc. Finally, if we

replace f 0i in (5):

PðXÞ ¼ 1

Z 0
exp

XN

i¼1
h0if
0
i

 !
: ð8Þ

Comparing PðY ¼ yÞ and (4) confirms that ERGMs and

MNs are similar and under the following conditions they

are identical:

1. hi ¼ h0i,

2. fi ¼ f 0i ¼
PC

c¼1 bcgci.

The following Numerical Example (the same example in

the ERGM section) depicts similarities between ERGMs

and MNs. The social network has five actors, N ¼ 5

(Fig. 8). Considering Markov dependency assumption,

there exists an unique corresponding Markov network

shown in Fig. 9 with 10 nodes.There are 15 cliques (so-

called factors) of size three or four,

A B

Fig. 8 a A social network with 5 nodes and b the corresponding realization network (graph) and sufficient statistics of the observed network

Fig. 9 A social network with five actors (left) and its corresponding Markov network (right)
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U ¼ f/1ðy12; y13; y14; y15Þ; . . .;/15ðy24; y45; y25Þg:

As already mentioned, the joint probability function of

all variables in each clique is proportional to the internal

energy. For instance:

/1ðxÞ ¼
1

k
expf�b1Ecðy12; y13; y14; y15Þg;

where E1ðxÞ ¼ �
P

i acigci and k is the distribution

parameter. This simple example shows that how ERGMs

and MNs are the same in terms of the underlying concept

and the expressed probability distribution.
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