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Abstract Community detection has drawn significant

attention as new media generates big data every day. To

provide statistical testing procedures for community

detection in social networks, a scanning method has been

developed based on the likelihood of Poisson random

graph. However, the scan statistics did not consider

detecting communities of the attributes with power-law

distribution. Power-law distribution, generally followed by

network attributes, is conspicuous in many scientific situ-

ations. This paper aims at extending the scanning method

to analyze a social network in which attributes follow

power-law distribution. Besides the theoretical construc-

tion, simulation studies are performed to verify the feasi-

bility of the proposed method, and an authorship network is

used to demonstrate the proposed method.

Keywords Community detection � Scanning method �
Power-law distribution � Simulation study � Coauthor
relationship network

1 Introduction

Clusters or communities, defined as groups of vertices that

share common properties or play similar roles in a network,

are one of the most important patterns in social networks.

Fortunato (2010) summarized some recent development of

the community detection methods. Modularity-based

method (Newman and Girvan 2004) is arguably the most

popular methods in finding communities of networks.

Greedy techniques (Newman 2004) and annealing methods

(Guimera et al. 2004) were developed based on this crite-

rion. However, the modularity method lacks statistical sig-

nificance for deciding if the detected communities are real

ones and are criticized for hardly finding communities

smaller than a given scale (Fortunato and Barthélemy 2007).

Bayesian models (Handcock et al. 2007; Heard et al. 2010)

and Latent Dirichlet Allocation (LDA) models (Blei et al.

2003; Liu et al. 2009; Balasubramanyan and Cohen 2011)

offer statistical inference of clusters via given model priors,

but the selection of priors and computing times are judged

like other applications of Bayesian models.

Recent studies of social networks also paid attentions on

networks with attributes. For example, a tendency called

‘‘homophily’’ (McPherson et al. 2001) suggested that

people usually interact with others who are similar to

themselves with some attributes (Kossinets and Watts

2006). Some studies also discussed how homophily affects

network integration (Louch 2000). Zhou et al. (2009)

developed a distance-based transition probability, based on

similarities of both structure and attribute, to construct a

clustering algorithm. Yang et al. (2013) modeled the links

of network and node attributes to provide a probability

regime to detect community memberships.

However, few of them considered attributes with power-

law (PL) distributions. The PL distribution is one of the

most commonly found distributions that many data sets

follow in networks (Clauset et al. 2009), such as the

degrees of proteins in the protein interaction network and

the degrees of metabolites in the metabolic network. In

addition, the properties and problems of PL distributions

are also well addressed in Goldstein et al. (2004) and
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Clauset et al. (2009). Thus, we intend to construct a

community detection method which can accommodate to

PL distributions.

To provide a statistical significance of cluster detection

without considering the priors, Wang et al. (2008) provided

a scanning method for testing clusters based on the idea of

cluster detection in the spatial data analysis (Kulldorff 1997).

Under the assumption of Poisson randommodel,Wang et al.

(2008) constructed a scan statistic for detecting structure

clusters in social networks. Instead of considering the

structure clusters, We intend to generalize scan statistics to

consider the attribute of networks with PL distributions.

Since the scan statistic is originally applied in temporal

(Naus 1966) and spatial domains (Kulldorff 1997), the test

statistics are basically constructed by the likelihood of

attributes. For this reason, we can extend the scan statistic to

accommodate to PL distributions with a similar way.

This study aims to extend the use of the scanning

method provided in Wang et al. (2008) to the network

whose attributes are PL distributed. In Sects. 2 and 3, we

introduce the PL distributions including both ‘‘discrete’’

and ‘‘continuous’’ cases, and the scanning method for

community detection in social networks. To verify the

proposed method, simulation studies are provided in Sect.

4 and a real data set of authorship is analyzed in Sect. 5.

We discuss this method and provide some future works.

2 Power-law distributions

Specifying network clusters with PL-distributed attributes

is the main focus in this paper. We only mention the topics

related to the scanning methods, including density func-

tions and the maximum likelihood estimates (MLEs). If

one is interested in the other properties of PL distribution,

such as goodness of fit and additional examples of PL

distributions, please refer to Goldstein et al. (2004) and

Clauset et al. (2009). Note that, we use different notations

for density functions and parameters to distinguish between

the ‘‘discrete’’ and ‘‘continuous’’ PL distributions.

2.1 Discrete power-law distribution

The probability density function of discrete PL distribution

is expressed as

pðxÞ ¼ Mx�a;

whereM is a normalized constant and is usually expressed as

M ¼ 1=fða; xminÞ ¼ 1=
X1

w¼0

wþ xminð Þ�a

when a lower bound xmin [ 0 is considered. In a special

case of xmin ¼ 1, fða; 1Þ is equivalent to the Riemann zeta

function and is abbreviated as fðaÞ. Observed from its

density function, the probability is confined by the value of

a and has a heavy tail.

A likelihood ratio of PL distribution is required when

applying a PL distribution. Suppose fx1; x2; . . .; xng is a

random vector following PL distribution and only the

parameter a is considered. The log-likelihood is

ln LðaÞ ¼ �n ln fða; xminÞ � a
Xn

i¼1

lnðxiÞ: ð1Þ

By differentiating Eq. (1) at a,

f
0 ða; xminÞ
fða; xminÞ

¼ � 1

n

Xn

i¼1

lnðxiÞ; ð2Þ

where f
0 ðaÞ is the derivative of the zeta function. Since

Eq. (2) contains an infinity summation, there is no closed

form of the MLE for a, and the MLE of this distribution

cannot be directly found. Numerical algorithm thus

becomes a possible way to obtain its solution. When

xmin ¼ 1, we can quickly solve it by computing the Rie-

mann zeta function whose derivation is provided in most

mathematical softwares like Matlab and Maple. On the

other hand, an approximated estimate is considered.

â ’ 1þ n
Xn

i¼1

ln
xi

xmin � 1=2

� �" #�1

: ð3Þ

when xmin � 6 (Clauset et al. 2009). In this paper, the data

are restricted to xmin ¼ 1, so Eq. (2) is applied to construct

the likelihood ratio test of the scanning method. If xmin � 6,

we would suggest to directly use the approximate estima-

tion Eq. (3). If xmin is not included in above cases

(1\xmin\6), iterative computation is required to solve the

equation (Gillespie 2013). We did not consider the

parameter xmin in this study, because it is easier to assume

xmin is a known constant and this assumption is usually true

in our experience. If the xmin is not certain and has to be

estimated, it will be more complicated than the discussion

in this study. Clauset et al. (2009) also gave some details of

the estimations for parameters a and xmin.

2.2 Continuous power-law distribution

Similar to what we have done in the case of discrete PL

case, the continuous case is introduced as follows. Since

the formulation of the continuous PL distribution can be

obtained by integration, the estimation procedures are

easier. We also assume that the xmin is a fixed and known

parameter. The continuous PL density function is expres-

sed as

f ðxÞ ¼ Kx�b;
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where K is a normalized constant and is expressed as

K ¼ b� 1ð Þxb�1
min :

Suppose a random sample is collected as fx1; . . .; xng. By
directly differentiating the parameter a, the MLE of a is

obtained as

b̂ ¼ 1þ n
Xn

i¼1

ln
xi

xmin

" #�1

: ð4Þ

3 The scanning method for PL distributions

The scan statistic is one of the most popular cluster

detection methods applied in spatial domain (Kulldorff

1997). However, there are few studies and methods

applying this approach to detect clusters in social networks.

Wang et al. (2008) first used a scan statistic to detect

clusters in a social network. We briefly introduce the basic

idea of the scanning method and extend it to networks with

PL-distributed attributes.

3.1 Scanning window and test statistic for structure

pattern in networks

A scanning window is used to separate the studied region/

network into two parts, where a likelihood ratio test is used

to evaluate the difference between the selected observa-

tions and their complementary observations. Usually, a

scanning window is circularly expanded and constructed by

a center and a radius. In the network structure, the center is

one node in a given network, and the radius is the shortest

path from the center node to the other nodes. We demon-

strate the construction and move of a scanning window via

a grid network in Fig. 1.

Based on this 5 by 5 grid network (Fig. 1a), we clearly

observe the distances (the length of shortest paths) among

nodes. Thus, it is easy to transform and demonstrate the

network into a radius expansion. In this study, we use

circular windows to be elective subgraphs. That is, a

scanning window is generated based on a center with a

corresponding radius, and the set of nodes within the

window is the elective subgraph. Take the node 13 as the

center for example. In Fig. 1b, the scanning windows with

gray boundaries are generated from the center 13, and each

window is expanded based on the length of the shortest

paths. Suppose we generate a scanning window by the

center node 13 and a radius 1. The elective subgraph is

demonstrated in Fig. 1c, and we can compare the difference

between the selected part and its unselected counterpart.

One may check that all the vertices are contained in the

windows according to Fig. 1a. In fact, the number of testing

regions for a scan statistic is decided based on the number

of vertices and the number of radiuses.

Wang et al. (2008) provided explicit descriptions on

how to test the structure based on the scan statistics. We

recall some notations that appear in the rest of our paper.

We only focus on undirected graphs in this study. Let G ¼
ðVG;EGÞ be an undirected graph with vertex set VG ¼
fv1; . . .; vjVGjg and edge set EG, and the degrees of vertices

are k ¼ fk1; . . .; kjVGjg. In addition, we define the sum of

total degrees as kG ¼
PjVGj

i¼1 ki and the total number of

edges as jEGj ¼ kG=2. Then, by considering the Poisson

random graph model (Erd}os and Rényi 1959) with degree

vector k, the number of expected edges connecting the pair

nodes ðvi; vjÞ is expressed as eij ¼ ðkikjÞ=ð2jEGjÞ for i 6¼ j,

and eii ¼ k2i =ð4jEGjÞ.
Suppose a subgraph Z ¼ ðVZ ;EZÞ is selected. Similar

notations is used to describe the quantities of Z: kZ ¼P
i2VZ

ki and jEZ j ¼ kZ=2. To test if a network is composed

by two different subgraphs, the number of edges in G is

equal to Poi ðk ¼ clðZ
T
GÞ þ glðZC

T
GÞÞ, where c and

g represent the strengths for subgraph Z and its comple-

mentary subset ZC, and lðZ
T
GÞ and lðZC

T
GÞ represent

the expected numbers of edges under the null hypothesis.

Under the Poisson random graph assumption, lðGÞ, lðZÞ,
and lðZCÞ are, respectively, defined as

lðGÞ ¼ k2G
4jEGj

;

lðZÞ ¼ k2Z
4jEGj

; and

l ZC
� �

¼ lðGÞ � lðZÞ:

Thus, the likelihood ratio statistic of a selected subgraph Z

is

LRðZÞ ¼ LZ

L0
¼

EZj j
lðZÞ

� �jEZ j jEGj � jEZ j
lðGÞ � lðZÞ

� �jEGj�jEZ j
if ĉ[ ĝ

1 otherwise,

8
><

>:

ð5Þ

where ĉ ¼ jEZ j
lðZÞ and ĝ ¼ jEGj�jEZ j

lðGÞ�lðZÞ. By scanning the whole

region, the test statistic is the one with the maximum

logarithmic likelihood ratio

kSðZÞ ¼ max
Z

ln LRðZÞ:

The subgraph Z with maximum LRð�Þ is identified as a

cluster if the null hypothesis is rejected.
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3.2 The hypothesis and likelihood ratio test

for discrete PL distribution

A testing statistic for attribute is constructed in a similar

manner. Since the data are divided into two parts via a

scanning window, the likelihood ratio evaluates the like-

lihoods between the values within the selected window and

the unselected counterpart. In general, the test suggests

H0 : FðZÞ ¼ FðZcÞ vs. Ha : FðZÞ\FðZcÞ, where F is the

distribution function. Suppose a subgraph is selected as Z

and the parameter of interest is h. The likelihood ratio

statistic is expressed as

k Z; Zcð Þ ¼ supH L hjxð Þ
supH0

L hjxð Þ ;

where H0 is the parameter space under the null hypothesis

and H is the entire parameter.

In this study, the distribution of interest is PL, and we

consider the cluster with higher value of PL distribution, or

equivalently, the cluster with a smaller parameter a in the

PL distribution. Thus, it is equivalent to consider the test

H0 : az � ac vs. Ha : az\ac, where az and ac are the

parameters of PL distribution for the selected observations

and their complementary observations, respectively.
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(a) Grid network
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(b) Scanning windows at center 13
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(c) Selected subgraph and the unselected coun-
terpart

Fig. 1 Example of scanning window in a grid network
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Set the minimum value of the PL distribution as 1.

Based on the null hypothesis that H0 : aZ ¼ aZc , the joint

likelihood of the distribution is

L0 ajxð Þ ¼
Yn

i¼1

pðxiÞ

¼
Yn

i¼1

f a; xminð Þx�a
i :

By taking logarithm on L0 and differentiating it with

respect to a, the MLE of a is the solution of

f
0 ðâ0Þ
fðâ0Þ

¼ � 1

n

Xn

i¼1

lnðxiÞ:

Thus, the denominator of the testing statistic k is

supH0
L hjxð Þ ¼ L0 â0jxð Þ.

Two cases on the numerator of the test statistic are

considered; az � ac and az\ac. When az � ac, the numer-

ator of the test statistic reduces to the null hypothesis and

obtains the same estimate of the denominator. When

az\ac, the joint likelihood is viewed as two parts; one

belongs to the selected subgraph Z and the other one is the

complementary set of Z, Zc. Then, the joint likelihood of

the distribution for this case is

LHðajxÞ ¼
Y

i2Z
pðxiÞ

Y

j2Zc

pðxjÞ:

Since xi and xj belong to different as and are independent,

we separately discuss the estimates of az and ac. The MLEs

of them are the solutions of

f
0 ðâzÞ
fðâzÞ

¼ � 1

nz

X

i2Z
lnðxiÞ and

f
0 ðâcÞ
fðâcÞ

¼ � 1

nc

X

j2Zc

lnðxjÞ;
ð6Þ

where nz and nc are the numbers of nodes in Z and Zc,

respectively. Denote the estimates as âz and âc. The

numerator of the testing statistic is supH LðhjxÞ ¼
Lðâz; âcjxÞ when âz\âc, and supH LðhjxÞ ¼ L0ðâ0jxÞ
otherwise.

According to above description, the test statistic is kðZÞ ¼
Lðâz;âcjxÞ
Lðâ0jxÞ when âz\âc, and kðZÞ ¼ 1 otherwise. By consid-

ering the real form of the PL distribution, the likelihoods for

the null hypothesis and the alternative hypothesis are

L â0ð Þ ¼
Yn

i¼1

x�â0
i

f â0; xminð Þ

" #
; and

L âz; âcð Þ ¼
Y

i2Z

x
�âz
i

f âz; xminð Þ

" #
Y

j2Zc

x�âc
j

f âc; xminð Þ

" #
:

By scanning the whole region via some predetermined

radii, the test statistic for detecting clusters is

kAðZÞ ¼ max
Z2X

kðZÞ:

The logarithm form of the test statistic is expressed as

KAðZÞ ¼ ln kAðZÞ
¼ �âz

X

i2Z
lnðxiÞ � nz ln f âz; xminð Þð Þ � âc

X

j2Zc

lnðxjÞ

� nc ln f âc; xminð Þð Þ þ â0
X

i2X
lnðxiÞ þ n ln f â0; xminð Þð Þ;

ð7Þ

where n, nz, and nc are the numbers of nodes in the whole

graph, the selected subgraph Z, and the complementary

subgraph Zc, respectively.

3.3 The hypothesis and likelihood ratio test

for continuous PL distribution

Similar to the discrete PL distribution, we construct the

testing statistic for the continuous PL distribution. Since

we have the MLE of the continuous case from Eq. (4), we

can directly apply the same construction of the test

statistic for the continuous PL distribution. For the null

hypothesis, H0 : bZ � bZc , the joint likelihood of the dis-

tribution is

L0 bjxð Þ ¼
Yn

i¼1

pðxiÞ

¼
Yn

i¼1

b� 1ð Þxb�1
min x

�b
i :

By taking logarithm on L0 and differentiating it with

respect to b, the MLE of b is

b̂0 ¼ 1þ n
Xn

i¼1

ln
xi

xmin

" #�1

:

Thus, the denominator of the testing statistic k is

supH0
LðhjxÞ ¼ L0ðb̂0jxÞ.

Furthermore, for the case bz\bc, the MLEs of them are

b̂Z ¼ 1þ n
X

i2Z
ln

xi

xmin

" #�1

and

b̂cZ ¼ 1þ n
X

j2Zc

ln
xj

xmin

" #�1

:

ð8Þ

where nz and nc are the numbers of nodes in Z and Zc,

respectively.

According to above description, the test statistic is

kðZÞ ¼ Lðb̂z;b̂cjxÞ
Lðb̂0jxÞ

when b̂z\b̂c, and kðZÞ ¼ 1 otherwise. By
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considering the real form of the PL distribution, the like-

lihoods for the null hypothesis and the alternative

hypothesis are

Lðb̂0Þ ¼
Yn

i¼1

b̂0 � 1
� �

x
b̂0�1
min x

�b̂0
i

h i
;

and

Lðb̂z; b̂cÞ ¼
Y

i2Z
b̂z � 1

� �
x
b̂z�1

min x
�b̂z
i

h iY

j2Zc

b̂c � 1
� �

x
b̂c�1
min x

�b̂c
i

h i
:

Thus, the test statistic for detecting clusters with the con-

tinuous PL distribution is expressed as

KAðZÞ ¼ ln kðZÞ ¼ nz ln b̂z � 1
� �

� b̂z
X

i2Z
ln

xi

xmin

þ nc ln b̂c � 1
� �

� b̂c
X

i2Zc

ln
xi

xmin

� n ln b̂0 � 1
� �

þ b̂0
X

i2X
ln

xi

xmin

; ð9Þ

where n, nz, and nc are the numbers of nodes in the whole

graph, the selected subgraph Z, and the complementary

subgraph Zc, respectively.

3.4 Testing procedure

Due to a large set of selected subgraphs, scanning

method often suffers the multiple testing problem. The

Monte Carlo testing is a suggested solution to this

problem Kulldorff (1997). For the case of attribute

pattern, we directly apply the method provided in

Kulldorff (1997) in which a randomized permutation

of observation is suggested. For example, when a PL

distribution is applied, the Monte Carlo procedure

randomly permutes the observations and assigns the

values for each node.

When a new graph is generated, we evaluate the new

data by the same test statistics provided in Sects. 3.2 and

3.3. Suppose a simulation with a large number of iteration,

such as 99 or 999, is executed. A Monte Carlo p value with

R runs is computed as

p ¼ # Kr �Kobsf g þ 1

Rþ 1
; ð10Þ

i.e., the probability of finding more extreme values than the

observed value. If the p value is smaller than a prespecified

criterion (e.g., 0.05), it is statistically significant to declare

that there is a cluster. That is, the observed value is less

likely to happen under the null hypothesis. The details

about the Monte Carlo simulations in other distributions

are referred to Kulldorff (1997).

4 Simulation study

4.1 Simulation settings

In this section, we generate a series of random data to

testify the type I error and the testing power for detecting a

single cluster with power-law distributions based on our

proposed method. For the network structure, we restrict the

study region with 100 nodes and the edges among them are

set to follow a Bernoulli distribution with connection

probability p0 ¼ 1=20, i.e., expected degree of each node is

5. To verify the power of our proposed method, we set a

cluster in the network with a variate size S (10, 15, and 20)

with higher connection probability of edges (pc ¼ 1=4, 1/2,

3/4, and 1). For the consideration of attribute, we set a

power-law distribution for usual nodes with the parameters

a ¼ 2:5 and xmin ¼ 1, and set that for cluster nodes with the

lower a (from 1.5 to 2.0 in steps by 0.1).

We illustrated a simulated network in Fig. 2. In this

example, we set the cluster size as 20, connection proba-

bility as 1/2 for the cluster nodes and 1/20 for the usual

nodes, and the parameter as of discrete PL attribute is 1.8

and 2.5 for the cluster nodes and usual nodes, respectively.

The node labels are the values of discrete PL attributes.

From Fig. 2, the cluster nodes clearly have higher con-

nections than other nodes. However, it is not trivial to

observe the difference by eye for the cluster of attribute,

even if we set a large difference between usual nodes and

cluster nodes. Thus, it is necessary to have an automatic

tool to specify the clusters.

4.2 Type I error

For testing the feasibility of our proposed method, we

conduct a simulation for type I error. In this subsection,

different connection probabilities (p0 ¼ 1/20, 1/15, 1/10,

and 1/5) are considered to check the performance of our

proposed method. In each simulation case, we executed

1,000 runs to assess sampling fluctuations. If at least a

subgraph among the constructed network is statistically

significant, the type I error occurs. Table 1 shows that the

type I errors are very consistent and well performed around

0.05 for both the discrete and continuous power-law

distributions.

We will use p0 ¼ 1=20 in the following simulations

since p0 ¼ 1=20 is the usual case in real data.

4.3 Testing the attribute clusters

In our past studies, we realize that the cluster size and

connection strength greatly affect the detection power, so
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one should pay attention to these changes. The simulation

for this purpose is set up as follows. pc are selected from

1/4, 1/2, 3/4, and 1; cluster sizes are selected from 10, 15,

and 20; the parameters a and b of discrete and continuous

power-law attributes for cluster nodes are selected from 1.5

to 2.0 in steps by 0.1 and that of usual nodes is fixed as 2.5.

We also try to set the a and b for usual nodes as 3.

However, the behavior of each node is too similar to one

another (most of them are 1), and the cluster may not be

easily noticeable.

Figures 3 and 4 illustrate the detection powers for con-

tinuous and discrete PL attributes, respectively. The results

show few differences between continuous and discrete

cases, and cluster size does not appear to affect the testing

power. In contrast, connection probability is the most

important factor for detecting clusters. If the clusters are

not highly connected, it is hard to see the similarity of

attributes even we set a large value for cluster nodes. On

the other hand, parameter value has impact when it has a

lower value (smaller than 1.7). In Fig. 2, most data are 1

and few nodes have extreme values. It is hard to verify the

significant difference. To see the influence of the parameter

values, we list the estimation results for some selected

cases in Table 2.

Table 2 shows the average values and standard devia-

tions of estimations in 100 simulations for each combina-

tion case. The estimated averages are acceptable, but they

are underestimated for large true values and are overesti-

mated for small true values. In addition, the standard

deviations (the bracket values) show interesting changes.

When connection probability gets higher, the standard

deviation gets lower. The estimations under the null

hypothesis, values of â0 and b̂0, are equally important but

not included in Table 2. The average values of the

parameters under null hypothesis range between 2.2 and

2.4 and the standard deviations range between 0.12 and

0.16. These results suggest that a good power can be

achieved when the cluster parameter is not low.

5 Empirical study

We apply our proposed method to the authorship data in

this section. The authors collaboration network was pro-

duced from the BibTeX bibliography (Beebe 2002)
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Fig. 2 A simulated cluster

network with size 20,

connection probability 1/2, and

discrete power-law distribution

a ¼ 1:8

Table 1 Type I error

Pattern Connection probability p0

1/5 1/10 1/15 1/20

Continuous 0.040 0.048 0.051 0.050

Discrete 0.040 0.054 0.053 0.039
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obtained from the Computational Geometry Database and

was well organized in Pajek datasets (http://vlado.fmf.uni-

lj.si/pub/networks/data/collab/geom.htm). We only con-

sider the vertices with at least one paper in this study. Thus,

the network of interest consists of 6158 vertices and 11,898

edges. The maximum number of papers for an author is 697

in this data. There are strong connections between

coauthors. Most researches only consider the network

structure, but few of them mentioned that the number of

papers itself may form another patterns. We apply our

method to the data with PL distribution as a demonstration.

First, we inspect the data properties and check if the data

follows a PL distribution. The log–log plot and Q–Q plot

with estimated parameter a of PL distribution are shown in
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Fig. 3 The detection powers of discrete PL-attributed clusters with different structure and parameter a
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Fig. 4 The detection powers of continuous PL-attributed clusters with different structure and parameter b

Table 2 Estimation results of

parameter a for cluster nodes
Size CP Discrete true value of a Continuous true value of b

2.0 1.7 1.5 2.0 1.7 1.5

10 0.25 1.88 (0.25) 1.77 (0.21) 1.65 (0.19) 1.81 (0.25) 1.75 (0.23) 1.68 (0.21)

0.5 1.83 (0.24) 1.75 (0.22) 1.67 (0.2) 1.83 (0.23) 1.78 (0.21) 1.65 (0.2)

0.75 1.81 (0.25) 1.75 (0.2) 1.62 (0.19) 1.86 (0.23) 1.76 (0.21) 1.63 (0.19)

1 1.86 (0.21) 1.76 (0.19) 1.6 (0.16) 1.85 (0.21) 1.74 (0.17) 1.62 (0.16)

20 0.25 1.85 (0.22) 1.72 (0.19) 1.61 (0.15) 1.82 (0.2) 1.72 (0.2) 1.59 (0.17)

0.5 1.84 (0.21) 1.71 (0.18) 1.56 (0.14) 1.83 (0.22) 1.73 (0.17) 1.58 (0.14)

0.75 1.86 (0.2) 1.71 (0.14) 1.6 (0.12) 1.87 (0.18) 1.7 (0.14) 1.6 (0.13)

1 1.87 (0.17) 1.75 (0.14) 1.62 (0.13) 1.89 (0.18) 1.72 (0.14) 1.62 (0.12)

The brackets are the standard deviations from 100 estimation results of each combination
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Fig. 5. Clearly from Fig. 5, the coauthor data possess the

features of the PL distribution such as the heavy tail and

logarithm linear form, together with some biased values on

both ends.

Following the testing procedures in Sect. 3, the results of

structure and attribute clusters are listed in Table 3. We

show the results of the most significant cluster of these two

types of clusters. In addition, the Newman’s modularity

method (Newman and Girvan 2004) is also applied to

detect the structure clusters. The modularity measure is

defined as

Q ¼ 1

2jEGj
X

ij

Aij �
kikj

2jEGj

� �
sisj ¼

1

4jEGj
sTBs;

where the notations jEGj, ki, and kj are equivalent to those

described in Sect. 3.1, A is the adjacent matrix based on the

given network, and s is a �1 vector in which 1 represents

an element belongs to the target group and �1 represents

an element does not belong to the target group if only two

groups are considered.

Table 3 lists all the results of our proposed method and

the Newman’s modularity method. The bracket of the

method column indicates the pattern types of the detected

cluster. When considering the structure cluster (S), the scan

method detect a larger cluster but with lower connection

strength within the cluster SZ : The modularity values Q of

the Scan(S) and Newman(S) are interesting. It is common

that Newman’s method usually finds the best modularity

when considering the existence of two clusters. However,

the scan method is able to a higher modularity (although

there is more than one cluster detected), because the scan

method is more flexible to find the clusters in this case.

Compare the attribute cluster with the structure clusters,

the attribute cluster (A) detected by the proposed method is

apparently larger than the structure clusters detected by the

other two method. That means the expansion of the attri-

bute seems quicker than the network connection.

6 Discussion

In this paper, we extend the scan statistic to consider PL

distributions in both discrete and continuous cases for

testing the attribute clusters in networks. We first review

the properties and the estimations of PL distributions, and

then we generate the likelihood ratio test statistic of PL

distributions for the scanning method. We further construct

simulations to verify the feasibility of our detecting

approach. Finally, we use the method to analyze the

authorship data and compare the results with the modu-

larity method from (Newman and Girvan 2004).

In practice, the scanning method can be applied to other

distributions such as binomial, Poisson, normal, and

multinomial distributions which were constructed in spatial

data analysis. The power-law distribution, which is rarely

mentioned in many statistical applications, is however one
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Fig. 5 Exploratory data

analysis of the coauthor data

Table 3 Information of

detected clusters
Method KS S0 Sz Q KA A0 Az Size

Scan(S) 1487.67 0.80 1.75 0.32 556

Newman(S) 2061.38 0.88 3.35 0.23 333

Scan(A) 191.43 1.63 1.47 2904
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of the most important distributions in social networks. We

believe the potential of extending this distribution to other

statistical applications. Besides, a truncated power-law

distribution draws much attention in recent years (Bur-

roughs and Tebbens 2001). Some studies believe that it is

more realistic for real data, but the estimation is more

difficult.

There are few problems of the scanning method. One of

the most obvious problem is the computing burden.

Because the scan statistics are decided by the scanning

windows, the number of scanning windows is tremendous

in a large network. Furthermore, we applied the Monte

Carlo method to obtain a statistical significance. This also

increases the computing burden. The other problem is the

connection probability and clustered size can influence the

detection power. We are not sure if this problem exists in a

large but spare network like the authorship data in this

study, since it is not feasible in terms of the computing

loading for our proposed method to test all generated

windows and verify clusters by Monte Carlo procedure in

such a large network. To resolve the computing burden

listed above, We are looking forward to parallel computing

method which can evaluate the Monte Carlo simulations at

the same time to facilitate the computing efficiency. In

addition, we also try to create a new algorithm to reduce

the number of scanning windows rather than searching the

whole region.

We only generate circularly scanning windows in this

study, but there are many different ways to construct these

windows, such as elliptical shape windows (Kulldorff et al.

2006) and flexible scanning windows (Tango and Taka-

hashi 2005) proposed in the spatial statistics. It is a vital

future work that we will try to utilize these diverse methods

to see if the detection accuracy can be improved.
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Fortunato S, Barthélemy M (2007) Resolution limit in community

detection. In: Proceedings of the National Academy of Sciences

104:36–41

Gillespie CS (2013) Fitting heavy tailed distributions: the poweRlaw

package. R package version (20):2

Goldstein ML, Morris SA, Yen GG (2004) Problems with fitting to

the power-law distribution. Eur Phys J B Condens Syst

41(2):255–258

Guimera R, Sales-Pardo M, Amaral LAN (2004) Modularity from

fluctuations in random graphs and complex networks. Phys Rev

E 70(2):025–101

Handcock MS, Raftery AE, Tantrum JM (2007) Model-based

clustering for social networks. J Roy Stat Soc A Stat

170(2):301–354

Heard NA, Weston DJ, Platanioti K, Hand DJ (2010) Bayesian

anomaly detection methods for social networks. Ann Appl Stat

4(2):645–662

Kossinets G, Watts DJ (2006) Empirical analysis of an evolving

social network. Science 311(5757):88–90

Kulldorff M (1997) A spatial scan statistic. Commun Stat Theor M

26(6):1481–1496

Kulldorff M, Huang L, Pickle L, Duczmal L (2006) An elliptic spatial

scan statistic. Stat Med 25(22):3929–3943

Liu Y, Niculescu-Mizil A, Gryc W (2009) Topic-link lda: joint

models of topic and author community. In: Proceedings of the

26th Annual International Conference on Machine Learning,

pp 665–672

Louch H (2000) Personal network integration: transitivity and

homophily in strong-tie relations. Soc Netw 22(1):45–64

McPherson M, Smith-Lovin L, Cook JM (2001) Birds of a feather:

Homophily in social networks. Annu Rev Sociol pp 415–444

Naus JI (1966) Some probabilities, expectations and variances for the

size of largest clusters and smallest intervals. J Am Stat Assoc

61(316):1191–1199

Newman ME (2004) Fast algorithm for detecting community

structure in networks. Phys Rev E 69(6):066–133

Newman ME, Girvan M (2004) Finding and evaluating community

structure in networks. Phys Rev E 69(2):026–113

Tango T, Takahashi K (2005) A flexibly shaped spatial scan statistic

for detecting clusters. Int J Health Geogr 4(1):11

Wang B, Phillips JM, Schreiber R, Wilkinson DM, Mishra N, Tarjan

R (2008) Spatial scan statistics for graph clustering. In: SDM,

pp 727–738

Yang J, McAuley J, Leskovec J (2013) Community detection in

networks with node attributes. In: Data Mining (ICDM), 2013

IEEE 13th International Conference on, pp 1151–1156

Zhou Y, Cheng H, Yu JX (2009) Graph clustering based on structural/

attribute similarities. In: Proceedings of the VLDB Endowment

2:718–729

45 Page 10 of 10 Soc. Netw. Anal. Min. (2015) 5:45

123

http://www.math.utah.edu/~beebe/bibliographies.html
http://www.math.utah.edu/~beebe/bibliographies.html

	Power-law distributions of attributes in community detection
	Abstract
	Introduction
	Power-law distributions
	Discrete power-law distribution
	Continuous power-law distribution

	The scanning method for PL distributions
	Scanning window and test statistic for structure pattern in networks
	The hypothesis and likelihood ratio test for discrete PL distribution
	The hypothesis and likelihood ratio test for continuous PL distribution
	Testing procedure

	Simulation study
	Simulation settings
	Type I error
	Testing the attribute clusters

	Empirical study
	Discussion
	Acknowledgments
	References




