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Abstract Many interconnected systems and particularly

social interactions can be modeled as networks. These

networks often exhibit common properties such as high

clustering coefficient, low average path lengths and degree

distributions following power-law. Networks having these

properties are called small world-scale free networks or

simply complex networks. Recent interest in complex

networks has catalysed the development of algorithmic

models to artificially generate these networks. Often these

algorithms introduce network properties in the model

regardless of their social interpretation resulting in net-

works which are statistically similar but structurally dif-

ferent from real world networks. In this paper, we focus on

social networks and apply concepts of social ties, homo-

phily and extraversion-introversion to develop a model for

social networks with small world and scale free properties.

We claim that the proposed model produces networks

which are structurally similar to real world social networks.

Keywords Social networks � Small world networks �
Scale free networks � Network generation models

1 Introduction

Many interconnected real world systems can be modelled

as networks including social networks. Social networks can

be defined as a set of people, or groups of people inter-

acting with each other (Scott 2000; Wasserman and Faust

1994). Graphically, these networks can be represented by

using a set of nodes and edges, where nodes represent

people and edges represent their interactions.

Many researchers have studied different structural

properties of social networks. Two of these properties that

gained considerable importance (Sebastian and Schnettler

2009) are Small World (Watts and Strogatz 1998) and

Scale free (Barabási and Albert 1999) properties. A small

world network is defined by two structural metrics, small

average geodesic distance and high clustering coefficient.

A scale free network (Barabási and Albert 1999) is defined

has having a degree distribution following power law i.e. a

few nodes have a very high number of connections (de-

gree) and lots of nodes are connected to a few nodes only.

A number of models have been proposed to artificially

generate networks with both these properties (Dorogovtsev

and Mendes 2002; Holme and Kim 2002; Klemm and

Eguiluz 2002) (see Sect. 3 for more references). These

models do not incorporate domain specific structural

properties for social networks. As a result, when compared

to real world social networks, the networks generated using
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existing models are structurally different. For example,

Fig. 1a shows a co-authorship network1 and equivalent size

networks generated using (Holme and Kim 2002) (Fig. 1b)

and the proposed model (Fig. 1c). A basic structural motif

in social networks is the presence of cliques of varying

sizes in real networks. Figure 1b shows the equivalent size

network generated using the model of (Holme and Kim

2002) which only has triads and cliques of bigger sizes are

completely absent. Another important feature missing in

artificially generated networks is the connectivity patterns

of how different individuals and groups of individuals

connect to each other to form a bigger society. We review a

number of social traits from sociology to outline different

structural characteristics a model should accommodate in

order to generate networks which are structurally similar to

real world networks. We extensively review different

models and highlight their differences with real world

networks in Sect. 3.

The study of network generation models is very useful

as they can be used to construct networks with desired

structural properties that mimic real world net-

works (Krivitsky et al. 2009). These networks can then

serve as benchmarks and test beds to facilitate various

experimental and empirical studies. These models are also

useful for simulation studies to examine different network

processes such as epidemic spreading, influence mining

(Hussain et al. 2013) and formation of community struc-

tures (Badham and Stocker 2010). Researchers have also

used these models to test various network sampling

methods (Kurant et al. 2011) as these models can generate

networks with different sizes and varying structural prop-

erties. Furthermore, these models provide us with insight

about the underlying structures present in a network

facilitating the task of understanding and analyzing these

networks (Scott 2011).

In this paper, we propose a new model to generate social

networks with small world and scale free properties where

we incorporate a number of structural elements derived

from the concepts of social ties, homophily and extraver-

sion-introversion. We discuss how small social groups

interact to form large social networks (Simmel and Wolff

1950), how an individual’s intrinsic preferences and char-

acteristics (Rapoport 1957) result in forming new

acquaintances and how the extroverts are able to inter-

connect small social groups in our society. Incorporating

these important elements in the proposed network genera-

tion model, we show that the generated networks are

indeed small world and scale free as well as structurally

similar to real world social networks.

The rest of the paper is organized as follows: In Sect. 2,

we discuss a number of different social properties and

argue that combining these concepts, we can understand

the characteristics required for a real world social network.

In Sect. 3, we discuss a number of different models to

generate small world and scale free networks. We then

present the proposed network generation model in Sect. 4

and provide experimental results in Sect. 5. Finally we

conclude and give possible future directions of our research

in Sect. 7.

2 Structure of social networks

In this section, we discuss a number of concepts from the

domain of sociology in an attempt to better understand how

social networks in the real world are structured.

Social ties People in the real world are linked to each

other through social ties (Wasserman and Faust 1994). The

simplest form of a tie is Dyad (Simmel and Wolff 1950)

where two people are linked to each other. This is con-

sidered as the unit of studying relationships in a social

network. Triads are relationships between three people and

Fig. 1 Comparing Netscience co-author network with (Holme and Kim 2002) and the Proposed Model. Netscience a and Proposed network

model c both have cliques of size greater than 3 whereas only triads are present in b

1 NetScience Network is a co-authorship network of scientists

working on network theory and experiments, as compiled by Newman

in May (2006). The biggest connected component is considered for

visualization here which contains 379 nodes and 914 edges.
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have been the focus of many social network stud-

ies (Wasserman and Faust 1994). Groups of larger size are

also possible but since a variety of relationships can form

in them, they are less stable (Simmel and Wolff 1950) and

often less studied in sociology. They are often identified by

their dense connectivity and clear bounds forming a cluster.

Due to dense interconnectivity, these ties are termed as

strong ties (Krackhardt 1992) where nodes that are loosely

connected to each other are said to have weak ties (Gra-

novetter 1973). Each of us in the society has these weak

ties along with strong relationships. These weak ties or

acquaintances are important for developing new relation-

ships and possibly joining new social communities or

clusters. There is a fine mix of both these weak and strong

ties that exist in our society and both should be considered

to develop a model to generate artificial social networks.

Homophily An important human characteristic is ho-

mophily, tendency of actors or entities to associate with

other actors or entities of similar type (Rapoport 1957;

Rapoport and Horvath 1961). Homophily helps to explain

why you know the people that you do, because you all have

something in common. A model based on these ideas was

proposed by Rapoport who called it Random Biased Nets.

The idea was to modify the traditional random model of

networks such that it incorporates social behaviors. Rapo-

port also concluded that we occasionally do things that are

derived entirely from our intrinsic preferences and charac-

teristics, and these actions may lead us to meet new people

who have no connections to our previous friends at all.

Although these actions might appear to be random, but can

be justified as having strong social background with logical

explanations. We limit our study to address this character-

istic and refer it as random connectivity pattern. In the light

of homophily and social dynamics, we can conclude that

new connections between people are formed based on two

properties, random connectivity and homophily.

Extraversion–introversion It is interesting to note that in

our society, we come across people that are well known

and famous, and then there are people who have very few

friends and contacts. These ideas are the direct implication

of the human trait of extraversion–introversion (Jung

1921). Extroverts, who are open to meeting new people and

developing new relationships are expected to have high

degree of connectivity in a social network as compared to

Introverts, who tend to be more reserved, less outgoing,

and less sociable.

An important use of this human characteristic is to

explain the scale free degree behavior of social networks.

A famous person is likely to become more famous as

compared to a person who is not well known in the social

community. Termed as the principle of Preferential

Attachment (Barabási and Albert 1999), it explains the

growth behavior of networks with power law degree

distribution. The idea is that nodes having high degree,

have a high probability of attracting more new connections.

Thus a model to generate a social network must take this

property into consideration as well.

Observations and inferences In our society, we not only

form relations with individuals, but with groups of people

(called social groups) as well. These relations are defined

by particular circumstances, interests or some context like

our school, work place, family (Rapoport and Horvath

1961; Granovetter 1973) and can be explained by homo-

phily. These groups are densely connected to each other

often forming a clique where every individual in the social

group is connected to each other. Our society is built using

these social groups or cliques and we can call them

‘Building Blocks’ of our society.

Each of these ‘building block’ or ‘social group’ (Sim-

mel and Wolff 1950) is like a small cluster joined to each

other by people belonging to more than one group (Watts

2003; Burt 2005). When these small clusters have many

connections to each other, they form bigger size clusters.

Bigger size clusters or small groups when connected

loosely to each other, form a social network (Simmel and

Wolff 1950). The size of social groups or small clusters in

a network, vary to a large extent, and so does the number of

clusters. Both these parameters depend largely on how the

individuals and their ties evolve in a society.

Addressing the principle of Preferential Attachment, for

every node in a social group, extroverts have higher con-

nectivity with other people. For example, in a group rep-

resenting the actors playing in the same movie, the famous

actors who have acted in many movies will have many

connections, and the actors who are starting their career, or

are not so well known will have only a few connections.

Finally, we look at the society on the whole where we

consider the average path length of the networks. Low

average path length can be realized by random connectivity

of nodes, where Watts and Strogatz (1998) used this

method to have low average path lengths in small world

networks. Kasturirangan argues that low average path

lengths are not due to the random connectivity of nodes,

but due to multiple scales in a network. These scales are

formed due to the presence of high degree nodes which are

responsible for reducing the overall average path length of

a network Kasturirangan (1999).

Combining all these principles, we can conclude that the

important elements to capture in the structure of a social

network are:

1. Social networks consists of many small groups that are

densely connected within themselves forming cliques.

This represents the connectivity within a social group.

2. These groups overlap due to individuals having

multiple affiliations. Some groups have many overlaps
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which creates large size communities or clusters.

These connections represent how small social groups

connect to form a social network.

3. A certain degree of randomness exists where we

occasionally do things that are derived entirely from

our intrinsic preferences and characteristics. These

actions lead us to meet new people who have no

connections to our previous friends at all. This

represents that nodes not only connect preferentially,

but due to some extent, randomly also.

4. The random connectivity pattern and the presence of

high degree nodes creating multiple scales is respon-

sible for the low distances between any two people on

average.

5. Every small group of people has a few Extroverts and

many Introverts, where introverts are only connected

to a few people, usually in their social group and

extroverts are responsible for interconnecting people

from different social groups and the society at large.

We incorporate all these principles in the proposed model.

We discuss the details of the proposed model in Sect. 4.

3 Related work

We first describe the two ground breaking network models

to generate small world and scale free networks. We then

discuss network models proposed to generate small world-

scale free networks.

The small world model (Watts and Strogatz 1998) starts

with a ring of n vertices in which each vertex is connected

to its k nearest neighbors, for a given k. Then, each edge is

rewired with a given probability p by choosing randomly a

new vertex to connect. Since the neighbors are connected

to each other in a regular graph, the overall clustering

coefficient is very high. On the other hand, the average path

length is very low as vertices are only connected to their

neighbors. Randomly rewiring a few edges connects nodes

lying at long distances, which reduces the overall average

path length. Most of the nodes remain connected to their

neighbors, resulting in high clustering coefficient whereas

the average path length is reduced, giving us the properties

of a small world network. It is important to note that these

networks do not have scale free degree distribution. Since

every vertex in the network initially has a fix k degree,

random rewiring of only a few vertices does not effect the

overall behavior of the degree distribution. More formal

studies of this model have been conducted with interesting

results (Dorogovtsev and Mendes 2000).

The scale free model (Barabási and Albert 1999)

explains how the scale free degree distribution emerges in

real world networks. To begin, a disconnected graph of

n vertices is created. At every time step t, a new vertex

v with m edges is added to the network. These edges are

connected to existing vertices with the probability pro-

portional to the degree of the nodes in the network. This

preferential bias in the connectivity is termed as prefer-

ential attachment as new nodes prefer to attach to high

degree nodes. Mathematical results for scale free graphs

have been studied by several researchers such as (Bollobás

and Riordan 2002; Bollt and ben Avraham 2008).

Most of the early research tried to unify these two models

to generate networks with both small world and scale free

networks. For example, Holme and Kim (2002) modified

the well known Barabasi and Albert model (Barabási and

Albert 1999) to obtain graphs that are small world as well as

scale free. A Triad formation step is added where every

preferentially added node is also probabilistically connected

to a randomly selected neighbor of the node it preferentially

chose. This results in the creation of triads in the network

increasing the overall clustering coefficient. A drawback of

this model is that it does not generate cliques of larger size,

since by construction, the algorithm only enforces triads.

Figure 1 shows three network drawn using Tulip software

(Auber 2010). The first network (Fig. 1a) is the well known

co-authorship network of researchers working on network

theory (Newman 2006). Figure 1b shows a network drawn

using (Holme and Kim 2002) with approximately the same

number of nodes and edges. Figure 1c shows the network

drawn using the proposed model. The absence of larger size

cliques in Fig. 1b can be easily noticed.

The idea of introducing triads used by Holme and Kim

(2002) is similar to the model proposed by Dorogovtsev

et al. (2002) where every new node added to the network is

connected to both ends of a randomly chosen link where

one of the nodes of this link is selected through preferential

attachment. Similar behavior is obtained in terms of con-

nectivity as lots of triads are created and the absence of

large size cliques remains a drawback. Preferential

attachment principle is used to represent the extroverts in

the network as explained in Sect. 2.

These models inspired Jian-Guo et al. (2005) to intro-

duce another similar model. The network starts with a

triangle and a new node with two edges is added to the

network in each iteration. The other two ends of these two

edges connect to two different nodes say n1 and n2 which

are already connected to each other forming a triad. Nodes

n1 and n2 are both selected on the basis of preferential

attachment. This differs from the previous two models

where the second node is preferentially chosen. Struc-

turally, the network thus generated still miss bigger size

cliques. Since the new node is connected to two nodes

preferentially, the random connectivity pattern also gets

ignored as described in Sect. 2.

Fu and Liao (2006) proposed another extension to

Barabási and Albert (1999) which they called the
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Relatively Preferential Attachment method. In each step,

the newly introduced node in the network connects to a

node w with preferential attachment, the nodes in the

immediate neighborhood of w have higher probability of

connecting to this new node as compared to other nodes.

The newly added nodes can have m edges which differs

from the previsouly discussed models. The value of m is

chosen as an initial parameter which remains constant

throughout the execution of the algorithm. As a result,

dense groups appear in the network which are not neces-

sarily cliques. For values of m greater than 2, lots of triads

appear in the network increasing the overall clustering

coefficient but structurally dense social groups with weak

ties do not appear in the network as described in Sect. 2.

Klemm and Eguiluz (2002) proposed a model where

each node of the network is assigned a state variable. A

newly added node is in active state and keeps attaching

links until eventually deactivated. At each time step, a new

node is added to the network by attaching a link to each of

the z active nodes. The new node is set as active. One of the

existing nodes is deactivated where the probability of a

node being deactivated is inversely proportional to its

degree. To reduce the average path length of the entire

graph, at every step, for each link of the newly added node,

it is decided uniformly at randomly whether the link con-

nects to the active node or it connects to a randomly

selected node. Again the model does not impose any other

constraints to form cliques and the random connectivity

pattern is induced probabilistically.

Catanzaro et al. (2004) present a model incorporating

assortativity (Newman 2002) in generated networks. New

nodes are added to the network based on preferential

attachment and a new edge is added between previously

existing nodes chosen on the basis of their degree. This

introduces links between similar degree nodes forcing

assortative mixing behavior of social networks. The model

is innovative as it allows addition of new links between

previously existing nodes. Triads are created by links

added between similar degree nodes but they do not follow

the connectivity pattern described in Sect. 2 where nodes

from different social groups overlap to connect small social

groups.

Newman et al. (2002) study models of the structure of

social networks with arbitrary degree distributions also

including networks with degree distributions following

power-law. They use the idea to generate affiliation net-

works similar to co-authorship networks using random

bipartite graphs. Guillaume and Latapy (2006) also propose

a model based on bipartite networks. The authors use two

disjoint sets called bottom and top. At each step, a new top

node is added and its degree d is sampled from a prescribed

distribution. For each of the d edges of the new vertex,

either a new bottom vertex is added or one is picked among

the pre-existing ones using preferential attachment. The

bipartite graph is then projected as a unipartite graph to

obtain a small world and scale free network. Figure 2a

shows such a bipartite random graph and Fig. 2b shows its

unipartite projection. These models produce very dense

networks as the unipartite versions are projections of

n-partite networks. Furthermore, random connectivity

results as a by-product of the initially generated random

bipartite networks rather than as a social trait.

Wang and Rong (2008) proposed a slightly different

model, which is still a modified form of the preferential

attachment model. Instead of adding one node in each step,

rings of n nodes are added in each step. Two of these newly

added nodes connected to the existing network using

preferential attachment. Since n remains fixed through out

the process, uniform size cliques can be found in the

generated networks. Furthermore these cliques do not

overlap as discussed in Sect. 2 but are connected to other

cliques through newly added links differing the structure of

the generated network.

Another class of models has been proposed where

connectivity among nodes is determined based on social

and demographic attributes (Boguñá et al. 2004; Wong

et al. 2006; Badham and Stocker 2010; de Almeida et al.

2013; Pasta et al. 2014) rather than structural metrics.

These models use the notions of social spaces and nodal

attributes to determine the similarity among nodes and

create links. For example Pasta et al. (2014) proposes a

model to generate networks similar to facebook datasets

using nodal and structural attributes at the same time.

Nodal attributes include such as age, gender, class year,

major and residence and structural attributes include node

degree and friend-of-a-friend.

Fig. 2 a Randomly drawn bipartite graph, b unipartite Projection of

graph a
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Evolutionary network models with aging nodes have

also been proposed in the literature such as (Dorogovtsev

and Mendes 2000; Zhu et al. 2003; Geng and Wang 2009;

Wen et al. 2011). For example Wen et al. (2011), study the

dynamic behavior of local-world evolving networks with

aging nodes. Newly added nodes connect to previously

existing nodes based on strength-age preferential attach-

ment. Networks thus generated exhibit power-law degree

distribution, high clustering coefficient and small world

properties.

Other models have also been proposed based on the

local-world phenomena (Pan et al. 2006; Sun et al. 2007;

Wang et al. 2009; Wen et al. 2011) where nodes only

consider information from there neighbourhood to deter-

mine formation of new links in contrast to earlier discussed

models that assume the presence of global information. For

example, Wang et al. (2009) investigate a local preferential

attachment model to generate hierarchical networks with

degree distribution following power-law.

Another class of network generation models address the

issue of generating graphs with community structures

(Condon and Karp 1999; Virtanen 2003; Lancichinetti and

Fortunato 2009; Moriano and Finke 2013; Zaidi 2013;

Sallaberry et al. 2013; Pasta et al. 2013). These models

generate networks with well defined communities. Since in

this paper, we do not try to generate networks having

community structures, we do not discuss these papers

further.

Another class of graphs models, the exponential random

graph models (ERGMs) have gained a lot of popularity

(Frank and Strauss 1986; Snijders et al. 2006; Robins et al.

2007). These models are used to test, to what extent nodal

attributes and structural dependencies describe structure of

a network measured using frequency of degree distribution,

traids and geodesic distances (Toivonen et al. 2009). The

possible ties among individuals are modelled as random

variables, and assumptions about dependencies among

these random tie variables determine the general form of

the exponential random graph model for the network

(Robins et al. 2007). An important difference between

network generation models and ERGMs is that network

models try to explain how a network is generated, whereas

ERGMs do not explicitly explain any network generation

process (Toivonen et al. 2009).

We have cited a large number of network generation

models above but the related work is by no means

exhaustive. We have omitted several citations simply

because either they do not generate small world-scale free

networks, or because they target some specific structural

property other than clustering coefficient, short geodesic

distance and degree distribution following power-law.

Surveys, reports and comparative analysis for different

network generation models can be found in Dorogovtsev

and Mendes (2002), Newman (2003), Jackson (2005),

Fortunato (2010), Badham and Stocker (2010), Toivonen

et al. (2009), Goldenberg et al. (2010), Pasta et al. (2014).

4 Proposed model

There are three basic steps in the model which are dis-

cussed in detail in the sections below. In the first step, we

introduce what we call building blocks in the network. Our

society is composed of many small social groups, which

can be represented by cliques of various sizes in a network.

This is different from various models described earlier,

where one node or fixed number of nodes are added at a

time to the network. Adding cliques to represent social

groups of the society introduces densely connected nodes

resulting in high clustering coefficient of the entire net-

work. These groups act as the building blocks of our

society as described earlier in Sect. 2.

The next step is to determine how to join these dis-

connected cliques to form a society, a social net-

work (Simmel and Wolff 1950). From the property of

Extraversion-Introversion, we know that there are people

with many social contacts as well as people with only a few

contacts. People with many social contacts belong to

multiple social groups. This idea leads us to define the

number of groups every individual belongs to. Nodes

representing extroverts belongs to many different cliques,

whereas intorverts only belong to only one or a few cliques.

This number is drawn from a scale free degree distribution

ensuring that the final node degrees follow the power law

degree distribution.

In the final step, we simply merge two nodes from dif-

ferent groups into a single node as shown in Fig. 4. As a

result, two cliques are combined with a single node being

part of the two cliques representing the extroverts of the

society that belong to multiple social groups as explained

in Sect. 2.

As the network is built from cliques and the connections

are directed by scale free degree distribution, we get a

network with high clustering coefficient and degree dis-

tribution following power law. The average path length of

the overall network remains low due to two connectivity

patterns, the random connections and multiple scales in the

degree distribution as explained in Sect. 2 .

We explain the details of the proposed algorithm below.

The following mathematical notations are used throughout

the explanation: G(V, E) represents an undirected multi-

graph where V is a set of n nodes and E is a set of e edges.

The graph G is initially empty and the nodes and edges are

added as the algorithm progresses. C represents a set of

cliques such that C ¼ fC1;C2; . . .;Ckg are different cliques

each comprising of several nodes.
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4.1 Step 1: building blocks

We start by adding cliques of variable sizes to an empty

graph G. This is different from the existing network gen-

eration models where a single node or a triad is added in a

single step. Recall from Sect. 2, we identified cliques as

one of the fundamental patterns present in networks. These

cliques represent the small social groups of our society as

described in Sect. 2.

The algorithm takes as parameter, the number of cliques

to be generated (k), the minimum (min) and the maximum

size (max) of the cliques to be generated. A uniform random

distribution is used to determine the size of each clique Ci to

be added to the graph G such that nodes and edges of the

clique become members of V and E respectively.G becomes

a graph comprising of C ¼ fC1;C2; . . .;Ckg as shown in

Fig. 3.

If we use a random number generator, for large values of

k, the distribution will be uniformly spread and we will

have the same number of cliques for all possible size val-

ues. In real networks, this might not be the case as often,

cliques of large sizes are rare compared to cliques of small

sizes. To take the correct decision, it is important to

understand what type of network we are trying to generate.

If the network to be generated is expected to have cliques

of varying sizes uniformly distributed, the random gener-

ation will serve well our purpose. On the other hand, if we

expect that all the cliques will have the exact same size, the

min and max parameters can be set to that exact value to

have all the cliques of the exact same size. And in the case

where we expect a non-uniform distribution of different

sizes, we can draw the different sizes of cliques using the

type of distribution we require our final network to follow.

We consider the example of co-authorship network and

explain how these values effect the algorithm. We use

k ¼ 10, min ¼ 1 and max ¼ 5 and a random generation for

the size of the cliques. After the execution of this step, we

get a network as shown in Fig. 3. The idea of introducing

cliques, comes from the work of (Newman et al. 2002;

Guillaume and Latapy 2006) where affiliation networks

and the bipartite structure has been identified as an

important structural property of the way, the Author net-

work is constructed in the real world. As explained in Sect.

3, projecting a bipartite graph as a unipartite graph creates

cliques of different sizes. This is a better representation of

the structure of the society rather than to introduce triads as

most of the models do to achieve high clustering coeffi-

cient. This phenomena was explained in detail in Sect. 2.

Note that the size of the cliques can be forced to be

exactly 3, in which case we would have forced the presence

of only triads just as the other network generation models

presented in Sect. 3. Due to the presence of cliques (or

triads), the average clustering coefficient of the entire

graph increases as compared to a random graph which is a

fundamental property to identify a small world network.

4.2 Step 2: determine number of merges

Since our goal is to enforce a scale free degree distribution

on the generated network G, we generate a power law

degree distribution using a power law function. We asso-

ciate this distribution on the nodes of graph G as an attri-

bute and call this as open connections OC. These OC

values determine how social an individual is, as based on

these values two nodes are merged into a single node as

shown in Fig. 4. Recall from Sect. 2, extroverts are

responsible for connecting small social groups into a large

connected society. This attribute helps us determine the

extroverts and introverts of a social group which eventually

helps us to connect the initially added cliques to G into a

single connected network.

Note that this number of merges of OC values are

directly proportional to the final node degree. If a few

nodes are merged with many nodes, these nodes will end

up with many connections and thus the scale free degree

distribution will appear in the network.

An important variation to this step can be the assign-

ment of an equal value to all nodes. As a result, the net-

work produced will have only small world properties,

Fig. 3 Step 1: Network after execution of step 1 with min ¼ 1, max

¼ 5 and k ¼ 10

Fig. 4 Merging two nodes from two different cliques so that a node

becomes part of two cliques
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having high clustering coefficient and small average path

length. The equal value assignment will ensure that the

degree of all the nodes is approximately equal and thus the

final degree distribution will not follow a power law, rather

a uniform distribution.

4.3 Step 3: merge nodes

Finally, based on the number of merges assigned in the

previous step, we merge two nodes to build a connected

network. In case, where two nodes of different building

blocks are selected and that are already connected to each

other by some other node, multiple overlaps appear. This

results in two small groups densely connected to each other

and sparsely connected to nodes from other groups.

Two cliques can be combined by considering that one or

more than one individual belongs to two different cliques,

and these nodes play the role of combining two cliques (see

Fig. 4) representing extroverts of a social group as dis-

cussed earlier.

Merging two nodes creates connections between previ-

ously disconnected cliques. Moreover, the merged node

plays the role of a bridge between the two small clusters. In

terms of the degree, the node gets many new connections.

Higher the number of merges for a node, the more it gets

connections and higher would be its node degree. This is

the reason why we draw the number of merges from a

power law function, as a result, the final degree distribution

follows a power law.

An important decision while merging two nodes say n1
and n2 with OC values oc1 and oc2 is, how to decide the

ocn for the new node n. We experimented with the fol-

lowing different methods:

– Max: Assign the new node the maximum of the two OC

values ocn ¼ Maxðoc1; oc2Þ
– Min: Assign the new node the minimum of the two OC

values ocn ¼ Minðoc1; oc2Þ
– Avg: Assign the new node the average of the two OC

values ocn ¼ Avgðoc1; oc2Þ
– Rand: Assign the new node one of the two OC values

randomly ocn ¼ Randðoc1; oc2Þ
Assigning maximum value forces the degree distribution of

the network to take a more linear decay as most of the low

degree nodes disappear quickly from the network and lots

of high degree nodes are left for connectivity. On the other

hand, assigning minimum value removes the few nodes

with very high degree and the characteristic long tail in the

degree distribution disappears from the network. A similar

behavior is observed with the average assignment as the

long tail disappears and the average node degree increases

with this assignment. The best results are obtained by a

random assignment as nodes with high and low degree are

equally removed and thus the overall degree distribution

follows scale free behavior. We show the experimental

results using the random method in Sect. 5.

5 Experimental results and discussion

The first set of experiments shows the behavior of the

proposed model to generate networks with small world and

scale free properties, i.e. high clustering coefficient, small

geodesic distance and degree distribution following power-

law. The model takes as input three parameters, the number

of cliques Ck to be generated, the minimum min and

maximum max sizes for the cliques to be generated. We ran

simulations with Ck ¼ 2000,4000,6000,8000,10,000, min

¼ 1 and max ¼ 9; 11; 13 giving us 15 possibilities and the

results are averaged over 5 runs for each of these settings.

Figures 5, 6 and 7 shows the clustering coefficients,

Fig. 5 Averaged clustering coefficients for the generated networks

using the proposed model

Fig. 6 Averaged geodesic distances for the generated networks using

the proposed model
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geodesic distances and power-law fit for the degree dis-

tributions of the generated networks.

Figure 5 shows that for all the generated networks,

clustering coefficient remains around 0.6 which is com-

parably very high as compared to an equivalent random

network. Geodesic distances (Fig. 6) range between 4 and 7

for all the generated networks and power-law fitting con-

stants (Fig. 7) hover around 3.0 indicating a scale free

degree distribution. Thus all the generated networks have

small world and scale free networks.

The second set of experiments demonstrate the behavior

of increasing the max parameter while keeping the other

parameters constant. We used 10 values with max ¼
3; 5; 7; 9; 11; 13; 15; 17; 19; 21 keeping the other two

parameters as Ck ¼ 4000 and min ¼ 1. Figure 8 (Left)

clearly shows the linear relationship between increasing

max values and the number of nodes in the generated

network. Figure 8 (Right) shows the clustering coefficient,

average geodesic distance and power-law fitting constant

for these generated graphs. High clustering coefficients,

low average geodesic distances and power-law fitting

constants between 2 and 4 clearly show that the generated

networks have small world and scale free properties.

6 Comparison with other models and real
networks

Figure 1 shows the comparison of a real world co-author-

ship network to an existing and the newly proposed model.

One of the major difference between the real world model

and the existing models in general is the idea of the

building blocks used in the proposed model. These building

blocks or variable sized cliques to mimic the real world

phenomena of densely connected individuals, which in turn

results in high clustering coefficients for the generated

Fig. 7 Averaged power-law fit demonstrating that the degree

distributions of the generated networks follows power-law

Fig. 8 Left Number of nodes plotted against increasing values of parameter max. Right Clustering coefficient, average geodesic distance and

power-law fit corresponding to the generated graphs are shown
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networks. Most of the existing network models (Holme and

Kim 2002; Dorogovtsev and Mendes 2002; Liu et al. 2005;

Fu and Liao 2006) try to force the presence of triads in a

network to increase clustering coefficients which deos not

necessarily mimic the social structure of real world net-

works. The network generated using the proposed model

not only looks structurally similar to the real co-author

network, but also has approximately the same clustering

coefficient, geodesic distance and the degree distribution

follows power law.

Figure 9 shows networks generated using Wang and

Rong model (2008) (Fig. 9a), Klemm and Eguiluz model

(Klemm and Eguiluz 2002) (Fig. 9b) and Catanzaro et al.

(2004) (Fig. 9c). Wang and Rong model uses fixed size

cliques to grow the evolving network as a result of which,

nodes with varying connectivity are rare and sparse.

Klemm and Equiluz modifies the preferential attachment

model by forcing the formation of triads to increase the

networks’s clustering coefficient but does not introduce

cliques or densely connected individuals in the network

which differs largely from a real network as shown in

Fig. 9b. The model of Catanzaro et al. preferentially

connects nodes based on their degree which results in

assortative networks but does not introduce triads or cli-

ques in the network as a result of which, the generated

networks have low clustering coefficients as absence of

triads and cliques can be seen in Fig. 9c.

Table 1 shows the comparison of three different real

networks with approximately equivalent size networks

generated using the proposed model. All the generated

networks exhibit small world and scale free properties with

short geodesic distances, high clustering coefficients and

the power-law coefficients around 3.0. It is important to

note that since the proposed model uses minimal parame-

ters, it is not able to generate networks that are exactly

equivalent to real networks with respect to different net-

work metrics.

The three networks used for comparative analysis are

the NetScience co-author network, Condensed Matter co-

author network and IMDB Actor network. For the NetS-

cience network (Newman 2006), only the biggest con-

nected component was considered containing 379 nodes.

The Condensed Matter (Newman 2001) network contain-

ing 15,876 nodes and a small subset of the IMDB actor

Fig. 9 Networks generated equivalent to NetScience co-author

network using different models. a Wang and Rong Model mostly

contains cliques of size 5. b Klemm and Eguiluz model generates a

network with a long chain like structure and enforces triads where

larger size cliques are missing. c Catanzaro et al. generates a network

with very low clustering coefficient when compared to the real

network

Table 1 Comparing different real world networks with generated networks using the proposed model

Network Nodes Edges Geodesic

distance

Clustering

coefficient

Power-law

coefficient

NetScience co-author 303 873 5.11 0.65 3.55

Proposed model 379 914 6.04 0.74 3.35

Condensed matter Co-author 15,876 42,416 5.38 0.61 3.81

Proposed model 16,439 43,419 6.62 0.53 3.57

IMDB actor 7640 277,029 2.94 0.87 5.71

Proposed model 7367 288,764 5.64 0.67 3.74
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network containing 7640 nodes were the other network

used.

7 Conclusion and future research

In this paper, we have studied the concepts of social ties,

homophily, extraversion-introversion as important proper-

ties for the structure of social networks. We use these

concepts to present a model to generate complex networks

with small world and scale free properties. We discussed a

number of network generation models that successfully

generated small world and scale free networks but produced

structurally different networks as compared to real world

networks. Results show that the proposed model indeed

generates networks that are structurally similar to real world

networks as compared to the other existing models.

We intend to extend our study to other types of networks

such as biological networks (Cannataro et al. 2010), online

social networks (Lewis et al. 2008), transportation net-

works (Ducruet and Zaidi 2012; Guimera et al. 2005) and

human communication patterns (Bourqui et al. 2008).

Although these networks also have small world and scale

free properties but they are again structurally different from

social networks and thus we need to modify the proposed

model to mimic the behavior of these other types of

networks.
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