
ORIGINAL ARTICLE

Rand-FaSE: fast approximate subgraph census

Pedro Paredes1 • Pedro Ribeiro1

Received: 7 March 2014 / Revised: 25 February 2015 / Accepted: 13 May 2015 / Published online: 27 May 2015

� Springer-Verlag Wien 2015

Abstract Determining the frequency of small subgraphs

is an important graph mining primitive. One major class of

algorithms for this task is based upon the enumeration of

all sets of k connected nodes. These are known as network-

centric algorithms. FAst Subgraph Enumeration (FaSE) is a

exact algorithm for subgraph counting that contrasted with

its past approaches by performing the isomorphism tests

while doing the enumeration, encapsulating the topological

information in a g-trie and thus largely reducing the

number of required isomorphism tests. Our goal with this

paper is to expand this approach by providing an ap-

proximate algorithm, which we called Rand-FaSE. It uses

an unbiased sampling estimator for the number of sub-

graphs of each type, allowing an user to trade some ac-

curacy for even faster execution times. We tested our

algorithm on a set of representative complex networks,

comparing it with the exact alternative, FaSE. We also do

an extensive analysis by studying its accuracy and speed

gains against previous sampling approaches. With all of

this, we believe FaSE and Rand-FaSE pave the way for

faster network-centric census algorithms.

Keywords Complex networks � Graph mining �
Subgraphs � G-tries � Network motifs � Graphlets

1 Introduction

A large variety of real systems can be seen as a complex

network, with graphs appearing as an ubiquitous abstract

representation, serving as the base model for multitude of

applications (Costa et al. 2011). It is therefore only natural

that graph mining has been receiving increasing attention

in the past years. One way of studying networks is to search

for interesting groups of nodes. These groups may have a

relatively large size, as is the case with community de-

tection (Fortunato 2010). However, they can also be of

smaller sizes, like it is the case on network motifs dis-

covery (Milo et al 2002) or graphlet-based metrics (Pržulj

2010).

These methodologies have been applied with success to

a wide range of real systems, such as in the social networks

domain, where motifs have been used, for instance, to

characterize and classify co-authorship networks (Choob-

dar et al. 2012a) or wikipedia edition networks (Wu et al.

2011). Likewise, graphlets have been used to provide a

complete characterization of social networks, allowing the

selection of an adequate graph model (Janssen et al. 2012).

These methodologies have also been successfully applied

to other domains, such as biological networks (Sporns and

Kötter 2004; Albert and Albert 2004), engineering systems

such as electronic circuits (Itzkovitz et al. 2005) and also

on software architecture (Valverde and Solé 2005).

Computing the frequencies of subgraphs in the network

being analyzed is also known as performing a subgraph

census, and plays a central role in most of these methods.

For example, a network motif is defined as a statistically

significant subgraph, which means that its frequency in the

original network is much higher than in similar random

ones (Milo et al 2002). Thus, this method requires a sub-

graph census for the original network, but also for an

& Pedro Ribeiro

pribeiro@dcc.fc.up.pt

Pedro Paredes

pparedes@dcc.fc.up.pt

1 CRACS and INESC-TEC, DCC-FCUP,

Universidade do Porto, Porto, Portugal

123

Soc. Netw. Anal. Min. (2015) 5:17

DOI 10.1007/s13278-015-0256-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-015-0256-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-015-0256-2&domain=pdf

ensemble of randomized networks (Ribeiro et al. 2009).

However, calculating the frequency of a subgraph is a

computationally hard task since it is closely related to the

classic subgraph isomorphism problem, which is known to

be NP-Complete (Cook 1971). The execution time of any

algorithm that calculates this is bounded by the amount of

subgraphs being enumerated and this number grows ex-

ponentially. Thus, the applicability is limited to relatively

small subgraph sizes. By decreasing the execution time, we

are effectively pushing the limits on which a subgraph

census computation is feasible. And even increasing by one

node the size of the subgraphs being searched, new insight

into a network can be gained because patterns previously

unknown may emerge.

We can divide the previous algorithms for this problem

into three main groups related to their conceptual approach.

Network-Centric algorithms, such as the one we present in

this work, ESU (Wernicke 2006) or Kavosh (Kashani

et al. 2009), compute the frequency of all possible k-sized

subgraphs in the original network. By contrast, Subgraph-

Centric algorithms, such as the one by Grochow and Kellis

(2007), search for one single specific subgraph. Finally, the

Set-Centric approach of g-tries (Ribeiro and Silva 2014b)

is conceptually in the middle, allowing for computing the

frequency of a customized set of subgraphs.

In this work, we aim at improving the network-centric

approach, and thus our algorithm requires as its input a

network and a subgraph size k. Note that for the proposed

task, subgraph-centric methods would still be able to do the

full enumeration, albeit they would need to search indi-

vidually for all possible k-sized subgraphs. Likewise, set-

centric methods would need to receive as input the same set

of all possible k-sized subgraphs, regardless of having no

guarantees that all possible subgraph types will appear on

the network being analyzed. Network-centric methods can

be summarized through two major steps: enumeration of

connected sets of k nodes and isomorphism tests to deter-

mine to which subgraph type each enumerated set belongs

to. Past classical approaches do this independently: the

enumeration part gives origin to sets of k nodes and

afterward each one of this sets is inputted into an isomor-

phism computation (typically by calculating a canonical

labeling) so that the correspondent subgraph type fre-

quency can be incremented. This means that the number of

performed isomorphism tests is equal to the number of

occurrences of subgraphs, even though the actual number

of existent subgraph types is generally much smaller.

This paper extends the work done in Paredes and

Ribeiro (2013), where we presented the FaSE algorithm, a

network-centric approach that aims precisely at reducing

this very redundancy of performing one isomorphism test

per subgraph occurrence. Instead of postponing this cal-

culation step, we consider it while doing the enumeration

by storing it in a customized version of a g-trie, a tree-like

data structure that works as a prefix tree of graphs, so as to

take advantage of the underlying structure of the graphs

being enumerated. Whenever a new node is selected to be

added to the enumerating set we either create a new edge

on the g-trie or try to follow an existing one that corre-

sponds to a topologically equivalent graph, where equiva-

lence here is defined by an intermediate set of classes given

by the way we label each subgraph type (a process we

called LS-Labeling). A path from the root node to any node

in the tree corresponds to a different node permutation of a

certain graph type (something that is given by our labeling

algorithm). To know the true subgraph type of each oc-

currence, we compute a canonical labeling for each leaf in

the g-trie. By doing so, we are able to only compute one

isomorphism test per leaf and thus avoid repeating this

calculation for two subgraphs that have the same node

permutation and are equivalent on our g-trie. Note that as

we have shown, the number of leafs is proportional to the

number of isomorphism classes and is usually very small

compared with the total number of subgraphs. All in all, we

end up getting an internal subgraph representation that

looks out for the topology and common substructures of the

enumerated graphs, which allows for further improvements

based on this information.

In this paper, we also expand upon our previous de-

scription of FaSE, by further explaining its behavior.

Moreover, we introduce an approximation approach that

samples the search space to estimate the exact value of the

frequency of present subgraph types. This classic trade of

accuracy for speed technique has been applied in the past,

since many real-world networks are of large scale and thus

it is unfeasible to perform an exhaustive full enumeration.

Most previous approaches work in a similar fashion by

sampling a fraction of all enumerating subgraphs (Kashtan

et al. 2004; Omidi et al 2009; Wernicke 2006). Our sam-

pling works by considering the enumeration as a recursion

tree (which is possible due to the way we enforce this

process) and by only exploring certain branches with a

predefined probability. We end up with an unbiased sample

that we use to estimate the real frequency of all subgraph

types. This results in an algorithm that is able to achieve

higher values of subgraphs sampled per second and thus

obtain the same accuracy of the previous network-centric

approaches, but doing so in far lesser time.

To confirm this, we tested our approach on a set of both

representative real-world simple directed and undirected

complex networks with varied topological features. We

compared our results with two base network-centric ap-

proaches. For completeness we included the results ob-

tained for the exact approach that were already presented in

Paredes and Ribeiro (2013). Furthermore, we test the ap-

proximate approach by comparing it with the exact

17 Page 2 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

approach and with previous approaches, to showcase its

behavior speed-wise, accuracy-wise and convergence-wise.

We show that we obtain considerable speedups in both

exact and approximate approaches, being roughly an order

of magnitude faster than past methods which compute an

isomorphism test per subgraph occurrence. The source

code of the preliminary version of our algorithm is avail-

able at http://www.dcc.fc.up.pt/gtries/fase/.

The remainder of this paper is organized as follows:

Section 2 defines the problem being solved and further

describes some of the past approaches that are more rele-

vant to our current work. Section 3 describes in detail our

proposed exact methodology. Section 4 explores our ap-

proximate approach. Section 5 shows our experimental

results. Section 6 concludes the paper and also gives some

directions for future work.

1.1 Related work

In the network-centric realm, the two main base algo-

rithms are ESU (Wernicke 2006) and Kavosh (Kashani

et al. 2009). Even though they are conceptually similar,

since they both work by iterating through all K-subgraph

occurrences incrementally and in the end perform iso-

morphism tests, they use two underlying different ap-

proaches. Although their execution times are usually

pretty close, past tests show that Kavosh performs

slightly better on average. An improvement over these

approaches is the very recent QuateXelero algorithm

(Khakabimamaghani et al. 2013). It avoids having to do

one isomorphism test per occurrence by storing the un-

derlying topology of the subgraphs being enumerated in a

quaternary tree. A contemporaneous algorithm with a

similar methodology is our own work, FaSE (Paredes and

Ribeiro 2013), which is the base algorithm for this paper’s

work. FaSE differs from QuateXelero because it uses

a different underlying topological structure, the g-trie.

Also, we supply a sampling version of FaSE, capable of

providing faster approximate results while the current

QuateXelero implementation only provides exact re-

sults. A different improvement approach is followed by

NetMODE (Li et al 2012), that considers only very small

subgraph sizes and either caches the results of isomor-

phism tests or builds a customized isomorphism test or a

particular subgraph size. Our work differs because we aim

at a more complete generality, with no rigid restrictions

on the subgraphs size.

Regarding subgraph-centric approaches, the work of

Grochow and Kellis (2007) stands out. It works by taking a

single subgraph type and computing its frequency on the

input network by breaking symmetries. We would like to

point out that this approach is conceptually different from

the one taken in this work, since a full subgraph census

would require a separate computation per subgraph and

pre-generated set of subgraphs.

As for the set-centric approach, the state-of-the-art is the

usage of g-tries (Ribeiro and Silva 2014b), a work previ-

ously developed by us. Like in the subgraph-centric ap-

proach, this algorithm makes use of symmetry breaking

conditions to enumerate not one, but a set of subgraphs.

Note that the data structure used in this work is similar to

these g-tries (and that is why we used the same name).

However, our work does not use symmetry conditions and

is network centric in its natures, thus does not requiring a

pre-generated set of subgraphs to search for.

Another possible assumption is to only consider certain

types of graphs and thus explore specific combinatorial

features of that graph type, as was done in Marcus and

Shavitt (2010). Our work differs from both this and the pre-

calculation approach since it aims at generalness and ap-

plicability in all types of graphs.

For approximate approaches, one of the first to appear

was Kashtan et al. (2004), an algorithm that provided a

biased estimator by doing a random walk on the network.

To correct the bias, it calculated the probability to sample

each subgraph and used it to weight each sampled sub-

graph. As an extension of the ESU algorithm there exists

Rand-ESU (Wernicke 2006), which works by placing

probabilities in each level of the enumeration, thus giving

an unbiased estimator for the number of subgraphs of each

isomorphism class, similar to what was done on this work.

Another extension of an exact method is Rand-gtries

(Ribeiro and Silva 2010), which works in a similar fashion

to Rand-Esu. A more recent approach is given by GUISE

(Bhuiyan et al. 2012), which works using a Markov Chain

Monte Carlo sampling method. However, it is also more

specialized on a more specific census, namely undirected

subgraphs of sizes 3–5. Our work differs because right

from the start we aim towards total generalization and we

support both directed and undirected networks of any size

for which we have enough memory to store the subgraph

classes. Finally, we should note that as in the exact algo-

rithms, there are approximate approaches that are geared

only towards certain subgraph types and try to exploit

specific properties of those types. For instance, Fascia

(Slota and Madduri 2013) provides an approximate count

of non-induced tree-like subgraphs.

2 Preliminaries

2.1 Terminology and notation

To ensure consistency in the terminology throughout the

paper, we will review the used notation. A graph G is

composed of a set of vertices VðGÞ and a set of edges

Soc. Netw. Anal. Min. (2015) 5:17 Page 3 of 18 17

123

http://www.dcc.fc.up.pt/gtries/fase/

EðGÞ, represented by pairs ða; bÞ : a; b 2 VðGÞ. We define

the size of G, denoted by jVðGÞj, as the number of vertices

and we assume that all vertices are assigned consecutive

integers from 0 to jVðGÞj � 1. Furthermore, for two ver-

tices u and v of a graph G, we write u[v to denote that the

label of vertex u is larger than the label of vertex v. A graph

with size k is denoted as a k-graph. A graph G is called

undirected if 8u; v 2 VðGÞ; ðu; vÞ 2 EðGÞ $ ðv; uÞ 2 EðGÞ
and directed otherwise.

A subgraph Gk of a graph G is a k-graph where VðGkÞ �
VðGÞ and EðGkÞ � EðGÞ. This subgraph is induced iff

8u; v 2 VðGkÞ : ðu; vÞ 2 EðGÞ $ ðu; vÞ 2 EðGkÞ and is

called connected if all vertex pairs are connected by a se-

quence of edges. The neighborhood of a vertex v 2 VðGÞ is
defined as NðvÞ ¼ fu : ðu; vÞ 2 EðGÞ _ ðv; uÞ 2 EðGÞg and

similarly we define the neighborhood of a subgraph Gk of G,

denoted as NðGkÞ, as the set of all of the neighbors of vertices
in VðGkÞ not included in Gk. The exclusive neighborhood of

a vertex v in a graph G relative to a subgraphGk is defined as:

Nexcðv;GkÞ ¼ fu : u 2 NðvÞ ^ u 62 NðGkÞ ^ u 62 Gkg.
Two graphs G and H are said isomorphic, denoted as

G�H, if there is a bijection/ between VðGÞ and VðHÞ such
that 8u; v 2 VðGÞ : ðu; vÞ 2 EðGÞ $ ð/ðuÞ;/ðvÞÞ 2 EðHÞ.
It is clear that the isomorphism relation is an equivalence

relation and so we call each equivalence class an isomor-

phism class. For a particular k-subgraph,Gk, of a graphG, we

denote the set of all subgraphs of G that belong to the same

isomorphism class of Gk by SðGk;GÞ and we call frequency
to the number of subgraphs ofG that belong to that class and

denote it as: FðGk;GÞ ¼ jSðGk;GÞj.
For a subgraph Gk of a graph G, an estimator of the

value of FðGk;GÞ is denoted as bFðGk;GÞ. It is called un-

biased if its expected value, denoted as EðbFðGk;GÞÞ, is
equal to FðGk;GÞ and biased if not.

2.2 Problem definition

We will now define more precisely the problem we are

trying to solve:

Definition 1 (Subgraph census problem) Given an inte-

ger k and a graph G, determine the frequency of all con-

nected induced k-subgraphs of G. Two occurrences of a

subgraph are considered different if they have at least one

node that they do not share.

It is important to notice that we are only concerned with

subgraphs that are both connected and induced. Note also

how we distinguish occurrences. Other frequency concepts

do exist and have been tested (Schreiber and Schwobber-

meyer 2004), but here we use the standard definition. This

has direct implications on the number of existing sub-

graphs, with no downward closure on the frequencies, since

a subgraph may appear more times than a subgraph con-

tained in it. Figure 1 exemplifies a subgraph census for

k ¼ 3 in a graph G with five nodes.

2.3 Base network-centric enumeration algorithms

In this section, we will discuss in some detail the previous

enumeration approaches that are more relevant to this work,

namely the ESU and Kavosh algorithms, which constitute

the two core network-centric enumeration algorithms that

are inclusively used by other methods. For instance, Qu-

ateXelero uses ESU as the underlying enumeration al-

gorithm, while NetMODE resorts to Kavosh. Furthermore,

we will discuss how the ESU algorithm is used as an ap-

proximate algorithm in the Rand-ESU approach (Kavosh

has not been extended to a sampling version).

2.3.1 ESU

The ESU algorithm works by enumerating all k-subgraphs

of a network and in the end performing an isomorphism

test per enumerated occurrence. The enumeration step is

thus the most important one and the breakthrough it

brought was the ability to enumerate all occurrence once

and only once.

It keeps two vertex sets, which we will call VS and VE.

The former represents the subgraph being currently enu-

merated and since we are enumerating induced subgraphs,

we only require a vertex list. The latter is a list of vertices

that neighbor any vertex in the current subgraph and can be

added to the subgraph being enumerated, that is VS.

Initially, it sets VS ¼ fvg for each vertex v in the input

network G and VE ¼ NðvÞ. Then, for each vertex u in VE, it

removes it from VE and makes VS ¼ VS [fug, effectively
adding it to the subgraph being enumerated and VE ¼
VE [fu 2 Nexcðu;VSÞ : u[vg (where v is the original

vertex to be added to VS as stated in the beginning of the

paragraph). The Nexc here makes sure we only grow the list

of possibilities with vertices not already in VS and the

condition u[v is used to break symmetries, consequently

preventing any subgraph from being found twice. This

process is done several times until VS has K elements,

Fig. 1 An example 3-subgraph census

17 Page 4 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

which means VS contains a single occurrence of a K-

subgraph.

Since ESU works recursively in a set incrementation

fashion, it creates an implicit recursion search tree. In each

node, we consider a certain VS and VE representing the

partially (or fully if it is a K-subgraph) enumerated sub-

graph. Note that this feature that ESU displays of incre-

menting a set of vertices will be very important for our own

algorithm in the next section. Figure 2 exemplifies this

implicit enumeration tree for a 3-subgraph census.

After the enumeration, the third-party nauty (McKay

2012) algorithm is used for isomorphism testing, so that

each occurrence is attributed to the correct isomorphism

class and the respective frequency is increment.

2.3.2 Kavosh

Like ESU, the core idea of the Kavosh is to find all

subgraphs that include a particular vertex, then remove that

vertex and continue from there iteratively. It differs,

however, because it builds an implicit tree rooted at the

chosen vertex (with tree children being network neighbor

vertices), and then generates all combinations with the

desired number of nodes. For instance, if we are searching

for 3-subgraphs, and considering that at the tree root level

we can only have one vertex, we could have the combi-

nations with pattern 1–2 (one vertex at root level 0, two

vertices at level 1) or with pattern 1–1–1 (one vertex at root

level 0, one at level 1 and one at level 2). In an analogous

way, 4-subgraphs would lead to patterns 1–1–1–1, 1–1–2,

1–2–1 and 1–3. Figure 3 exemplifies this combinatorial

search, by showing all patterns emerging from a single root

node.

The combinations are done using a revolving door al-

gorithm (Kreher and Stinson 1999) and as in ESU the iso-

morphism detection is done using nauty (McKay 2012)

2.3.3 Rand-ESU

The approximate version of ESU is very similar to the

exact one. The idea behind it is very similar to the one we

will present on Sect. 4 since the underlying structure of

both algorithms is very similar.

For each level of the enumeration tree, the algorithm

places a probability of descending, meaning it will only

go on exploring that branch with that particular prob-

ability. This results in only a fraction of all subgraphs

occurrences being enumerated, where each occurrence is

sampled with the same probability (we will address and

prove this later). Thus, it is possible to have an unbiased

estimator for the number of occurrences in each isomor-

phism class.

3 Exact subgraph census

Our proposal to address the subgraph census problem was

presented in (Paredes and Ribeiro 2013). We tried to ex-

plore the underlying structure of networks to decrease the

amount of computation needed to classify each occurrence

in its isomorphism class. The idea is to separate all oc-

currences in intermediate classes that have two important

properties: they can be calculated quickly and each oc-

currence in the same intermediate class is in the same

isomorphism class. Following the complete enumeration of

the subgraphs in the network, it is only necessary to

compare a single representative subgraph per intermediate

class, hence decreasing the number of isomorphism tests

required.

To accomplish that, our algorithm, FaSE (from FAst

Subgraph Enumeration), is composed of two processes,

closely integrated with each other: enumeration and en-

capsulation. The former pertains to the fundamental pro-

cess of actually finding each individual occurrence of a

subgraph in the original network. This is required to be

done by an incremental growth of a connected set of ver-

tices. The encapsulation process is where the isomorphism

classes are obtained by storing the topological features of

the subgraph. Whenever a vertex is added to the current set

of enumerated vertices, we generate a label that describes

the relation of the newly added vertex to the already added

ones. This corresponds to the partitioning in intermediate

Fig. 2 An example induced ESU search tree leading to eight different

3-subgraphs occurrences

Fig. 3 Kavosh combinatorial search tree starting on node 0 leads to

five different 3-subgraphs occurrences

Soc. Netw. Anal. Min. (2015) 5:17 Page 5 of 18 17

123

classes mentioned above. To actually accomplish this, we

use a generic process we called LS-Labeling that catego-

rizes each subgraph intermediate class. The actual storage

of the labels and subgraphs is done using a tree data

structure that acts as a customized g-trie in which the LS-

Labeling works as the divider, that is, it is responsible by

the tree’s edges. The following sections describe these

techniques thoroughly.

3.1 Subgraph enumeration

The enumeration process is not constrained, it allows for

different approaches. As long as it counts every occurrence

of each subgraph once and only once and provided that it

does so in an incremental fashion, meaning node by node,

any process is allowed. The goal here is to enforce that the

process transitions from state to state adding a single new

node at a time. This permits that each enumerated subgraph

is labeled according to the transitions it took to reach the

final state.

Consequently, it is possible to use any modern enu-

meration algorithm. As described above, two of best that

accomplish this task are ESU (Wernicke 2006) and

Kavosh (Kashani et al. 2009) and they both can be inte-

grated in FaSE since they follow the required behavior.

3.2 Encapsulating isomorphism information

in a tree

As the enumeration process is running, we need to record

the data collected. The reason to do so is to take advantage

of the topology of subgraphs, which in practice is

separating the subgraphs into said intermediate classes.

Thus, a data structure that is adapted to the behavior of the

enumeration step, but also compact and benefiting from the

common topology given by the labels is required. Thus, a

good candidate that follows these parameters and fits to the

idea of hierarchical construction of the enumeration is a

g-trie. The actual data structure used is based on our pre-

vious work with g-tries, which can be thought of as ‘‘prefix

trees of graphs’’, although FaSE’s setup is somewhat al-

tered. To avoid ambiguity, throughout the rest of this pa-

per, we will use nodes to refer to tree nodes (in our g-trie)

and vertices to network and subgraph vertices.

3.2.1 G-tries

The custom g-trie works as a tree whose nodes represent

graphs. This is done in an order that respects the topology

of the subgraphs, meaning if a certain node is parent of

another node, then the graph represented by the former is

a subgraph of the latter (in this particular case, with only

one additional vertex). Each node stores two pieces of

information: a frequency, which is the number of sub-

graphs of the original network that are of that particular

type; a label information regarding its topological struc-

ture. The idea is to start off with an empty graph and

sequentially add new vertices. For each vertex added, a

label that portrays its relation with the previous added

vertices is calculated and used to determine its node on

the g-trie. Each vertex addition follows a new node on the

g-trie. Note that this is a deterministic process, meaning

that if the same subgraph is added twice the resulting

label is the same. In terms of the g-tree correspondence,

the calculated label establishes the node to follow (and

the due edge). If this node is nonexistent, both the node

and the edge are created. As a result, if two different

subgraphs are processed and end up on the same g-trie

node, it is assured that they are isomorphic, thanks to the

label requirements. An example g-trie can be visualized in

Fig. 4.

Regarding how the g-trie actually accomplishes this, it

works by keeping a current node that represents the partial

subgraph being enumerated (partial since it is being enu-

merated), which is initially the root node (corresponding to

the empty graph). It uses two procedures to progress:

Deepen and Jump. The first one inserts a new vertex into

the current graph by moving along the g-trie to the corre-

sponding node, a process which lowers the current node

(‘‘deepening’’). Additionally, it creates the new node and

edge if they were previously nonexistent and augments the

frequency count of that particular node by one. It uses the

label generated for the added vertex, which is assigned to a

determined edge, to decide where to go in the tree. This is

implemented using a prefix tree (or ‘‘trie’’) to ensure linear

Fig. 4 An example g-trie with some graphs up to 4 vertices. Dark

vertices newly added vertices

17 Page 6 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

time search of the new node on the length of the label.

Contrary to this, the Jump procedure sets the current

vertex to its parent, thus going up in the g-trie.

To actually insert graphs into this g-trie, it is possible to

take advantage of the common topologies inherent on the

enumeration of the subgraphs. Whenever a new vertex is

selected by the enumeration process, the labeling algo-

rithms assigns a new label to this vertex in relation to the

already selected ones and uses this information to perform

a Deepen operation on the g-trie. After the recursive call

made to enumerate all the subgraphs that exist from the

current subgraph, a Jump call is performed to go back to

the previous node in the g-trie. The reason this works (and

why it is done) is since all subgraphs achieved from a

particular state (corresponding to a node in the g-trie) will

share a common topology related to the partial enumerated

set (the state) and therefore share the same label informa-

tion to that point.

Summarizing the previous paragraphs, it is possible to

conclude that this setup is the one of a simple tree regulated

by the labels assigned in each step. The consequence of this

is that it ends up representing graphs simply because the

label is designed in that way. Hence, this is a very general

data structure adaptable to different labeling algorithms.

3.2.2 LS-labeling

The generic labeling algorithm is called LS-Labeling. As

already mentioned, it is the core of the g-trie and it is also

directly related with the branching factor of the tree since it

governs the different edges, thus it is associated with both

the algorithm running time and the used memory. It acts

under a pair of conditions namely that it deterministically

partitions the different subgraphs in a class created by the

LS-Labeling are in the same isomorphism class, and that it

does so incrementally (emulating the behavior of the enu-

meration step) using only information regarding the newly

added vertex and its relationship with the already added

ones. From these conditions, one could idealize that this

labeling algorithm could simply be a procedure that actu-

ally calculated isomorphisms, thus rendering the point of

the tree useless. However, as was said throughout the pa-

per, this is a computationally hard problem and so its use is

exactly what we are trying to avoid. Thus, it makes sense to

ensure another condition: that the algorithm runs in poly-

nomial time. This behavior sets up a trade off regarding the

time spent labeling the various subgraphs and the time

spent on the actual g-trie (which includes the final iso-

morphism test time).

In our past work, we described two intuitive labeling

algorithms which are called the ‘‘adjacency list’’ label and

the ‘‘adjacency matrix’’ label, coming from the corre-

sponding graph data structures. We show an example of

both labels in Fig. 5. When a new vertex is added, the

algorithms act on the current subgraph and the vertex to be

added. For simplicity, we will consider the undirected case

first when adding the k-th vertex and then distinguish the

directed one. In the case of the adjacency list, the label

corresponds to a ordered list of at most k � 1 integers

where the value i (0\i\k) is present if there is a con-

nection from the newly added vertex to the i-th added

vertex. Similarly, in the adjacency matrix case a list of

k � 1 Boolean values is kept, each one indicating if there is

a connection between the newly added vertex and each

vertex added before in order of addition, which corre-

sponds to a segment of the actual adjacency matrix of those

vertices. This method scales pretty easily to the directed

case, where instead of just keeping one list, in both cases

we keep two, one pertaining to the ingoing connections and

the other two the outgoing (in practice, a separator value is

also used on the adjacency list case to separate the ingoing

from the outgoing list). We show a visual representation of

a g-trie with the labels associated with each edge using the

‘‘adjacency list’’ label in Fig. 6.

To prove the correctness of these two labels options,

first notice that they are methodically equivalent and only

change the way they represent the information. Thus, to

prove its correctness, it suffices to show that two subgraphs

labeled equally belong to the same isomorphism class. To

show that we need to find a bijection between the two

subgraphs. This is simple enough by following the order in

which each vertex was enumerated, which is implicitly

represented on the actual label, and map the vertex in each

position of the order to one another. Hence, any two sub-

graphs labeled equally belong to the same isomorphism

class and we have our correctness proof.

We are aware that there are more possibilities for this

operation that we did not previously address. One of them

is what we called the ‘‘nth-neighbor’’ label, which instead

of simply considering the connections between the already

added vertices and the newly added, also considers the

Fig. 5 Two different valid LS-Labeling schemes on two example

graphs. Dark vertices are the ones being added

Soc. Netw. Anal. Min. (2015) 5:17 Page 7 of 18 17

123

connections from the nodes at distance of a maximum of n

from the corresponding vertices. Obviously, these con-

nections augment exponentially and if they are all con-

sidered it corresponds to a full isomorphic label. However,

a simple ‘‘2nd-neighbor’’ label could, in some cases where

the subgraph fingerprint is more heavily populated with

certain subgraphs, decrease the run time and memory used.

However, since this method is not so simple as the previous

ones, it would probably have greater costs on the general

case and thus we did not experiment with it.

Note also that since the LS-Labeling is being used as an

intermediate classifier, the g-trie will end up having more

leaves than there are different isomorphism classes. This

could affect the overall run time (since we need to perform

an isomorphism test per intermediate class), however, in

the case of both the adjacency list and matrix label, the

number of leaves is directly correlated to the different

automorphisms of a same graph. Thus, it ends up being just

a fraction of the total number of occurrences in any prac-

tical example and so there is a significant gain of compu-

tation time.

We conclude this section by highlighting the flexibility

the LS-Labeling generic algorithm displays. Since it only

enforces a small number of conditions, it allows for the

trade off referred earlier to be adjusted by changing the

type of LS-Labeling. Perhaps more importantly, it is

adaptable to different formulations of the problem, as was

possible to observe with the case of directed graphs. The

algorithm is still the same, but the labeling is tuned to suit

this particular instance. So it can be extended to other

problem formulations such as colored graphs, weighted

graphs or even multigraphs.

3.3 The FaSE algorithm

We present an overview of the whole FaSE in Algo-

rithm 1. This incorporates the enumeration step, the g-trie

and the LS-Labeling. We use the expression ?= to denote

‘‘increment by a value’’.

Algorithm 1 The FaSE Algorithm
Input: A graph G and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do
4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure EnumerateAll(G,K,S, d) :subgraph;
d:depth

6: if d = K then
7: GTrie.current.count += 1
8: else
9: while nS ← EnumerateNext(S) do
10: w ← nS.NextNode()
11: nL ← LSLabel(S,w)
12: GTrie.Deepen(nL)
13: nS.Subgraph ← nS.Subgraph ∪ w
14: EnumerateAll(G,K, nS, d+ 1)
15: GTrie.Jump()

This algorithm puts together all the discussed parts of

FaSE. The procedure EnumerateAll() iterates

through all subgraphs of all sizes to K, incrementing the

counter when the size is K. The frequencies are stored

internally by the g-trie, however, since the LS-Labeling

does not give the final classes, it is necessary to accumulate

the results from each g-trie node and perform an isomor-

phism test to a representing graph. In the original imple-

mentation, we do so resorting to nauty (McKay 2012), a

third-party efficient isomorphism toolkit, although any al-

gorithms that create a canonical label (that is, a label that

represents isomorphism classes) will work.

Note also that in our original implementation (and in

any practical implementation) we hard coded the enu-

meration step into the EnumerateAll() function to

increase efficiency and explore low-level features of the

algorithm.

Fig. 6 An example g-trie with list LS-Labeling after searching for 4-subgraphs

17 Page 8 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

4 Approximating a subgraph census

In this section, we will explore this work’s contribution, an

interesting feature of the FaSE algorithm, namely that it

can be adapted to an approximation algorithm to estimate

the frequency of each subgraph type in a network by ob-

taining a sample of subgraphs. It is possible to tune the

algorithm to trade accuracy for time, which allows it to be

run in a wider range of real networks, which are usually too

large for a complete exact enumeration for higher subgraph

sizes. The actual method we use is very similar to the one

presented in Wernicke (2006) but we will provide our

analysis and discussion.

Since each subgraph is enumerated once and only once

in the exact version, we can use that to only find a sample

of the total number. To do so, we will introduce a prob-

ability pd at each depth d (d varies from 0 to K � 1, where

K is the desired size of the enumerated subgraphs) of the

enumeration (which can conceptually be easier to imagine

in the g-trie). To clarify the previous sentence, the depth

here is the order of the vertex being currently added to the

partial set, which is equivalent to the size of the partially

enumerated subgraph. The idea is to instead of always

processing each newly enumerated vertex (which corre-

sponds to lines 10-15 in Algorithm 1), do it with prob-

ability pd at each level pd.

We can easily observe that the probability of a par-

ticular subgraph on the network being sampled is the

probability of the first vertex being chosen (at level 0)

which is p0 times the probability of the second vertex

being chosen and so on, which equals
Q

0� d\K pd. We

will call this value sampling percentage, and denote it as:

ps ¼
Q

0� d\K pd.

We denote the total number of subgraphs of size K (the

leaves in the induced ESU search tree) in graph G by TðGÞ.
It is possible to show that the average number of sampled

subgraphs is ps � TðGÞ. To prove so, first note that each K-

subgraph has the same probability of ps of being sampled.

Since there are TðGÞ subgraphs and each one has a prob-

ability of ps of being sampled, the average number of

sampled subgraphs is ps � TðGÞ.
We will call FsampleðGk;GÞ to the frequency of sub-

graphs of G sampled by the algorithm that are from the

same isomorphism class as Gk. This definition allows us to

define an estimator for the value of FðGk;GÞ as follows:

bFðGk;GÞ ¼
FsampleðGk;GÞ

ps

Note that since all the isomorphism classes are disjoint, to

obtain an estimator for the total number of subgraphs it

suffices to sum all the bFðGk;GÞ, one per different iso-

morphism class.

4.1 Uniform sampling

To start the theoretical discussion of the approximation, we

will first prove the estimator is an unbiased estimator. To

do so, observe that since the probability of sampling each

subgraph is the same, ps, the expected value of

FsampleðGk;GÞ is simply ps � FðGk;GÞ.
To calculate the expected value of bFðGk;GÞ, we observe

that since the expected value is a linear operator, this

corresponds to the previously calculated value divided by

ps. Plugging this into the formula of the estimator gives:

EðbFðGk;GÞÞ ¼
EðFsampleðGk;GÞÞ

ps
¼ FðGk;GÞ

Thus, we conclude that bFðGk;GÞ is an unbiased estimator

for FðGk;GÞ.
Using this information, Algorithm 2 shows the adapted

algorithm, which from now on we will call Rand-FaSE to

distinguish from the exact version of FaSE.

Algorithm 2 The Rand-FaSE Algorithm
Input: A graph G and a subgraph size k
Result: Frequencies of all k-subgraphs of G

1: procedure FaSE(G, k)
2: EnumerateAll(G, k, ∅, 0)
3: for all n in GTrie.leaves() do
4: frequency[CanonicalLabel(n.Graph)] += n.count

5: procedure EnumerateAll(G,K,S, d) :subgraph;
d:depth

6: if d = K then
7: GTrie.current.count += 1
8: else
9: while nS ← EnumerateNext(S) do
10: with probability pd do
11: w ← nS.NextNode()
12: nL ← LSLabel(S,w)
13: GTrie.Deepen(nL)
14: nS.Subgraph ← nS.Subgraph ∪ w

15: EnumerateAll(G,K, nS, d+ 1)
16: GTrie.Jump()
17:

Note that in all practical implementations the actual prob-

ability call should be hard coded, since it can prevent some

unneeded work done in the EnumerateNext() function.

4.2 Performance analysis

To continue, we will reason about the variance of the es-

timator and how the choice of each individual value of pd
affects it and thus the quality of the estimation.

Soc. Netw. Anal. Min. (2015) 5:17 Page 9 of 18 17

123

First of all, notice that the number of subgraphs sampled

of a certain type depends on the structure of the enu-

meration tree. If it were perfectly balanced and each sub-

graph type evenly distributed along the tree, then the

individual values would not matter but only their product

(what we called of sampling percentage). However, this is

not the case in any of the presented enumeration algo-

rithms. Even though for instance the ESU enumeration tree

is naturally skewed since it enforces an order on the enu-

meration, it is highly unlikely that any algorithm generates

a balanced enumeration tree since this is very input

dependent.

Since the enumeration tree is not balanced, the choice of

parameters influences the quality of the sample and run

time. If lower values for pd are chosen for levels of the tree

nearer to the root, this will increase the variance of the

results, since it is possible to branch out a sub-tree with

more occurrences of a certain type. However, the run time

of the algorithm is decreased in exchange for the augment

of variance. This decrease is twofold: on one hand, the

amount of subgraphs sampled has a higher variance, which

results in fluctuations in run time; on the other hand, since a

subgraph that is not going to be sampled is pruned earlier in

the tree, we can avoid most work on its partial enu-

meration, which is costly since it involves traversing the

g-trie, generating its label through the LS-Labeling and

doing the actual enumeration.

A consequence of the unbalance of the enumeration tree

is that even if given the values for pd, calculating the

variance is hard since it is highly dependent on the input

network. It is possible to draw some conclusions though,

the most important one being that the variance is higher in

relative value for lower FðGk;GÞ values. To explain this

recall that the average number of sampled subgraphs in

SðGk;GÞ is: ps � FðGk;GÞ. When this value is small

(specially when it approaches 1 or is smaller than 1) since

the number of sampled subgraphs is a discrete quantity, the

actual value of FsampleðGk;GÞ is going to be rounded

down or up. This means the variance will be higher in

relative value, since for high values of FðGk;GÞ the con-

tinuous approach is a good approximation.

There are ways of decreasing the variance while keep-

ing the estimator unbiased. In Wernicke (2006), the author

suggests instead of simply continuing with a certain

probability, from a node (of the enumeration tree) with x

children at depth d randomly choose x0 ¼ x � pdd e with

probability x � pd � x � pdb c or choose x � pdb c with prob-

ability ð1� ðx � pd � x � pdb cÞÞ. The idea is to choose a

fixed number of children instead of taking each one with a

certain probability, ensuring that there is always a col-

lection of nodes that will be followed. The author also

showed that this leads to a lower variance. In our

implementation, which we will discuss on the next section,

we did not include this because even though this improves

the quality of the sample on average, for lower values of

FðGk;GÞ it can decrease, particularly when x � pdd e rounds
to 0, where depending on the input network, the algorithm

would not sample any subgraphs of a certain isomorphism

class.

In the next section, we will provide some experimental

results that will help in understanding all the important

features and behavior of the sampling algorithm, namely

run time, performance and convergence.

4.3 Further discussion

To conclude the discussion about the sampling we will

mention two important aspects regarding the sampling’s

application and how to improve it.

Naturally, the main purpose of doing a sample in place

of a full enumeration is to use it in inputs that would take

too much time to calculate using the latter approach. On

these cases are included networks with high number of

vertices and edges. Therefore, the data structure used to

represent the network cannot be a simple adjacency matrix,

since it would draw too much memory and thus would be

unfeasible. The obvious substitute is an adjacency list, but

due to the fact that FaSE requires a way of knowing if two

certain vertices are connected (in the LS-Labeling and in

the isomorphism test), the adjacency list will hurt time

performance compared with the simple matrix (which im-

plements this operation in constant time). To improve the

operation of finding out if two vertices are connected, we

experimented numerous alternatives like keeping the

neighbor list of each vertex ordered and then performing a

binary search to find if a vertex is in the list (we can do this

since we never delete vertices from the graph). Another

method we tried out turned out to give better results on all

networks we tested, this method was to keep a hash table as

a neighbor list with a simple hash function of taking the

vertex label of each neighbor modulus a constant times the

number of neighbors of each vertex. We could slightly

improve the results by keeping a cache of a small number

of recent queries and reporting the result immediately if

positive.

Another aspect that could improve the quality of the

sample would be to automatize the choice of the individual

probabilities pd. This could be achieved through an adap-

tive sample, that would start out with very low parameters

and over multiple runs only explore the enumeration tree

where needed. This works since for high values of

FðGk;GÞ the estimator result converges rather quickly

whereas for lower values it does not. So exploring this

could significantly improve the sample.

17 Page 10 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

5 Experimental results

To evaluate the performance of both proposed algorithms,

Rand-FaSE was implemented in C þþ using ESU as the

base enumeration algorithm. All tests were performed on a

Linux machine with an Intel Core 2 6600 (2.4 GHz) and 2

GB of memory.

We implemented both the adjacency list and matrix LS-

Labeling methods, but the two had very similar execution

times, although the list method ended up having slightly

better results most of the time, so we opted to only show

the results obtained using it. As stated previously, we used

the third-party tool nauty (McKay 2012) to efficiently

perform the isomorphism classifications.

We used a varied set of undirected and directed net-

works. In all networks weights, self-loops and multiple

edges were either ignored or nonexistent.

To provide a comparison measure, we included a sum-

mary of the experimental results obtained by the Exact

approach in Paredes and Ribeiro (2013) and its analysis.

We will first present the results regarding the Exact

approach and follow it with the Approximate approach

results.

5.1 Exact approach results

To test the performance of the Exact approach, we ran

FaSE with different subgraph sizes and different networks

and compared the execution times to ESU, through its

publicly available tool and Kavosh, through its original

source code. We chose these algorithms since at the time

they were the main previous approaches. The networks

used are summarized in Table 1.

The time each algorithm took to perform a complete K-

subgraph census on all networks was measured, with K

varying from 3 to 9. Due to time constraints, we only show

execution times up to 5 h. All the results as well as

statistics about the number of subgraphs per network and

how many leaves of FaSE’s g-trie used are shown in

Table 2.

Analyzing the results, the general trend is that FaSE

obtains better results in all setups than both ESU and

Kavosh, as was expected. Moreover, it was always an

order of magnitude faster, except for a couple of outliers.

Another observation in order is that there is a tendency for

the speedup to increase as the K increases, which means

there is a larger speedup in setups where the total execution

time is higher, which are the ones where a faster algorithm

is more critical. This is a sensible outcome, since the

speedup comes mainly from the isomorphism tests avoid-

ed, which is directly related to the ratio between the total

number of subgraphs and number of g-trie leaves and this

is a quantity that generally increases for smaller subgraph

sizes and larger networks (as is possible to observe in the

results table). The actual values are very much network

dependent and there is no ‘‘external’’ measure (number of

nodes, edges...) that allows a prediction of the actual

execution times in any order of accuracy, since it heavily

depends on combinatorial features of the network.

It is also important to notice that the major bottleneck of

a subgraph census is the isomorphism testing, which is

what the algorithm aims to improve. To check that FaSE

addresses this and is not a somehow faster implementation

of the ESU algorithm it was ran without the g-trie func-

tionality, simulating the actual ESU algorithm functioning.

The result proved to be slightly better than FanMod, but

was still roughly an order of magnitude slower than

FaSE’s normal functioning. Furthermore, contribution of

the enumeration process was compared to the final

execution time by running the algorithm without the iso-

morphism tests, meaning only running the enumeration

algorithm. Obviously, this does not allow to compute the

actual census. The results indicate that the actual enu-

meration is only a tiny fraction of the whole execution

time, confirming what we stated above.

The final aspect we want to highlight is that the number

of leaves used by the g-trie has a heavy influence on the

memory used by the algorithm. This implicates that it is

impossible to run it with much larger subgraph sizes than

the ones tested in this work. Even though the super expo-

nential growth of the number of subgraph types makes it

impossible to even store the individual frequencies of each

type, this is still prohibitive and actually potentially slightly

affects the execution time.

Table 1 Complex networks used in the exact tests

Network Directed Nodes Edges Avg. degree Type Source

StarWars No 51 157 3.08 Social Our own (Paredes and Ribeiro 2013)

Jazz No 198 2742 13.85 Social Arenas (Gleiser and Danon 2003)

Neural Yes 297 2359 7.94 Biological Newman (Watts and Strogatz 1998)

Foldoc Yes 13,356 120,700 9.04 Semantic Pajek (Batagelj and Mrvar 2006)

Soc. Netw. Anal. Min. (2015) 5:17 Page 11 of 18 17

123

5.2 Approximation approach results

We divided the tests for the Approximation approach into

three sections with different aims. We first compared it

with the Exact approach to assess the accuracy of the ap-

proximation for different sampling values. Then, we

compared it with the previous work by testing how many

subgraphs were sampled per second, so as to evaluate the

time efficiency of the approximation. Finally, we tested

how the approximation converges to the exact values by

measuring the error and standard deviation displayed

through various sampling percentages.

We used additional networks on the tests regarding the

Approximation approach. We summarized the networks we

used in Table 3. Note that we repeated some networks used

in the previous section, but we included them in this table

for completeness.

Since our algorithm requires choosing the multiple

probabilities per level, pd, we opted for the following three

setups that explore the sampling properties differently:

High: p0¼1; . . .; pK�3¼1; pK�2¼ps; pK�1¼1

Medium: p0¼1; . . .; pK�4¼1; pK�3¼
ffiffiffiffi

ps
p

; pK�2¼
ffiffiffiffi

ps
p

;

pK�1¼1

Low: p0¼1; p1¼
ffiffiffiffi

psK�2
p

; . . .; pK�2¼
ffiffiffiffi

psK�2
p

; pK�1¼1

Note that we always considered p0 and pK�1 to be 1 since

due to the way we implemented our algorithm having

pK�1 6¼ 1 means it will do all the work enumerating a

certain subgraph and then discard it with probability 1�
pK�1 and having p0 6¼ 1 means discarding a whole branch

of the enumeration recursive tree, which means a whole

isomorphism class could be discarded.

5.2.1 Comparison with the exact approach

To compare the Approximate approach with the exact one,

we first ran Rand-FaSE with two different input net-

works, Yeast and Metabolic, to different sampling

percentages. We used these two for this particular test since

they are average sized directed and undirected networks

and so allow us to perform more time demanding tests that

would otherwise be unfeasible on larger networks. To

measure the accuracy of the approximation, we calculated

the percentage of isomorphism classes correctly estimated

by the algorithm and considered the frequency of an iso-

morphism class to be correctly estimated when the ap-

proximated value is within 15 % of the real value

(calculated through the Exact approach) for the three

sampling setups described above (high, medium and

Table 2 Detailed experimental results for the four networks used for the exact setup

Network K Subgraphs found FaSE ESU Kavosh

Types Occurrences Time (s) Leaves Time (s) Speedup Time (s) Speedup

StarWars 3 2 1449 \0.01 3 \0.01 – \0.01 –

4 6 12,958 \0.01 17 0.04 23.5 0.03 17.6

5 21 98,426 0.01 171 0.39 30.7 0.21 16.5

6 106 630,369 0.08 2,406 3.12 38.0 1.90 23.1

7 699 3,445,808 0.58 26,692 21.95 38.0 13.26 23.0

8 5601 16,320,648 3.55 203,687 133.34 37.6 78.18 22.0

9 41,790 67,883,236 19.08 1,133,749 a – 395.90 20.7

Jazz 3 2 67,414 \0.01 3 0.14 31.8 0.06 13.6

4 6 1,833,618 0.15 17 4.24 28.9 2.55 17.4

5 21 49,500,654 4.65 171 143.64 30.9 89.3 19.2

6 112 1,266,953,062 140.84 3,113 3,630.00b 25.8 2,912.43 20.7

7 853 30,166,157,456 3,946.81 106,417 [5 h – [5 h –

Neural 3 13 47,322 0.01 45 0.09 16.7 0.04 7.4

4 197 1,394,259 0.13 1,846 2.21 17.5 1.71 13.5

5 7072 43,256,069 4.73 76,214 102.14 21.6 91.03 19.3

6 286,376 1,309,307,357 170.96 2,499,645 4,420.00b 25.9 4,636.43 27.1

Foldoc 3 13 2,553,830 0.35 45 3.97 11.2 2.17 6.1

4 198 228,272,189 27.80 2,304 903.39 32.5 308.78 11.1

5 8345 29,621,881,964 3,735.20 141,115 [5 h – [5 h –

a FanMod accepts only 8 as the maximum subgraph size
b Overflow problem in its own reported enumeration time and so we used elapsed time

17 Page 12 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

low). We did not consider isomorphism classes where the

expected number of subgraphs sampled is smaller than 10,

the reason being that in these cases the error associated

would be too large to estimate the real value in any prac-

tical scenario.

The obtained results were graphed in a log plot dis-

played in Fig. 7. Excluding a few outliers, both plots are

approximately a line (the first one eventually converges to

100 % correctness). Since this is a semi-log plot, this

means that it is approximately a logarithmic function, that

is, multiplying by 10 the number of samples should roughly

double the correctness of the approximation. Of course this

result is dependent on the way we measured correctness

and thus is not fit for all scenarios.

Another observation to make is that, as expected, since

the high setup places the probabilities in lower levels it

should have a lower variance, which results in overall better

results. Likewise, since the low setup distributes the prob-

abilities more evenly it has the highest variance and obtains

the overall worse results. There were a few outliers on the

lower probabilities, but it was probably due to the fact that

for lower sampling percentages the variance is obviously

higher and so there are a lot more fluctuations in the results.

To have a better understanding of how the sampling

works for individual isomorphism class sizes, we ran the

algorithm with the network foldoc for different sampling

percentages and measured the relative error to the real

value. We used the foldoc network to showcase this

since it is a rather dense network and thus for the particular

subgraph size chosen, it has at least a subgraph of each

existing type. Thus, it is clear how our algorithm behaves

for lower and higher frequency subgraph classes. The re-

sults are showcased in Table 4. Taking a close look at the

table confirms that the relative error for isomorphism

classes with fewer subgraphs is higher, specially for the

smaller sampling percentages. Furthermore, for the 0.1 %

there were even isomorphism classes that did not get any

subgraphs sampled at all.

5.2.2 Comparison with the previous approaches

Comparing our algorithm with the previous approaches

was done by analyzing the speed performance. We com-

pared our algorithm with Rand-Esu, the approximated

version of the ESU algorithm. Since the functioning of

Rand-Esu is conceptually similar to Rand-FaSE and

Table 3 Complex networks used in the approximation tests

Network Directed Nodes Edges Avg. degree Type Source

Jazz No 198 2742 13.85 Social Arenas (Gleiser and Danon 2003)

Yeast No 2361 6646 2.81 Biological Pajek (Batagelj and Mrvar 2006)

AstroPh No 18,772 198,050 10.55 Social SNAP (Leskovec et al. 2007)

Metabolic Yes 453 2025 4.47 Biological Arenas (Gleiser and Danon 2003)

Foldoc Yes 13,356 120,700 9.04 Semantic Pajek (Batagelj and Mrvar 2006)

Neural Yes 297 2359 7.94 Biological Newman (Watts and Strogatz 1998)

0

20

40

60

80

100

10-2
10

-1
100 10

1
10

2

Yeast Network

%
 o

f
cl

as
se

s
co

rr
ec

tl
y

es
ti

m
at

ed

%
 o

f
cl

as
se

s
co

rr
ec

tl
y

es
ti

m
at

ed

% of subgraph samples

10-2
10

-1
100 10

1
10

2

% of subgraph samples

High
Medium

Low
0

20

40

60

80

100
Metabolic Network

High
Medium

Low

Fig. 7 Accuracy of Rand-FaSE for the undirected Yeast Network and directed Metabolic Network for size 5 subgraphs

Soc. Netw. Anal. Min. (2015) 5:17 Page 13 of 18 17

123

uses the idea of probabilities per level, when comparing

with it we used the same probabilities in the same depths.

Note however, that we did not enforce pK�1¼1 in Rand-

Esu’s tests since its implementation places the probability

before performing the enumeration, contrary to how FaSE

does it (as explained above). Even though in Sect. 5.1 we

compared with Kavosh, it does not own an approximate

version, as far as we know, so we did not consider it in this

section.

We first ran our algorithm against the Rand-Esu in

the Jazz network and the Neural network for a 10 %

sampling percentage and recorded the number of sub-

graphs sampled per second. We used this instead of the

raw execution time since the actual number of sampled

subgraphs oscillates and thus it does not represent the

quality of the algorithm speed-wise. We chose these two

networks to both vary the type of tested networks and

the average degree. The results obtained are plotted in

Fig. 8.

The principal aspect to take note is that Rand-FaSE

always outperforms Rand-Esu, being roughly an order of

magnitude faster. This result is consistent with the one

obtained in the exact approach. However, the speedup is

expected to be slightly less in the sampling version, since

the speedup derives from the number of enumerated sub-

graphs that do not require an isomorphism test, thus by

reducing the number of subgraphs that are actually enu-

merated, the speedup will tend to decrease. Although, the

results on these networks show that it is not a noticeable

decrease.

Other important observation is that our algorithm, as

well as Rand-Esu, appears to scale well with the in-

creased subgraph size. As it increases a small drop is de-

tectable, however it is a very subtle one.

To evaluate how the approximation speed compares to

the exact value speed, we ran Rand-FaSE on the net-

works of Sect. 5.2.1 and plotted the execution time for

various sampling percentages in relation to the time the

Table 4 Results obtained for different sampling percentages for the directed Foldoc Network for size 3 subgraphs with setup high

Subgraph

type

Number Number Error (%) Number Error (%) Number Error (%) Number Error (%)

Exact 50 % Sample 10 % Sample 1 % Sample 0.1 % Sample

178,812 179,364 0.3 177,400 0.8 186,500 4.3 184,000 2.9

167,053 166,736 0.2 170,820 2.3 159,100 4.8 138,000 17.4

420,580 423,762 0.8 437,710 4.1 371,400 11.7 311,000 26.1

1,354,914 1,353,372 0.1 1,348,450 0.5 1,321,900 2.4 1,534,000 13.2

30,118 30,448 1.1 29,420 2.3 27,400 9.0 29,000 3.7

13,783 13,870 0.6 14,280 3.6 13,300 3.5 7,000 49.2

65,626 65,616 0.0 64,570 1.6 57,700 12.1 62,000 5.5

676 698 3.4 670 0.7 500 25.9 0 100.0

2,254 2222 1.2 2180 3.1 1700 24.4 0 100.0

262,620 263,238 0.2 270,730 3.1 268,500 2.2 237,000 9.8

29,963 29,972 0.0 29,130 2.8 28,000 6.5 42,000 40.2

7,401 7,484 1.2 7550 2.1 5500 25.6 5000 32.4

20,030 19,942 0.4 19,940 0.4 19,500 2.6 22,000 9.8

Total 2,553,830 2,556,724 0.1 2,572,850 0.7 2,461,000 3.6 2,571,000 0.7

17 Page 14 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

exact approach took, on a 5-subgraph census in Fig. 9.

Using the same networks here as in the previous sub-

section, we get an idea of how speed performance com-

pares with accuracy for the same setups. Note that the

result displays a roughly linear growth behavior (since the

graph is in a semi-log scale, the exponential represents a

linear growth). However, even though for both networks a

50 % sample takes approximately 50 % of the time the

exact approach takes, a 1 % sample takes 3 % of the time

the exact approach, for the high setup. This effect

worsens as the sampling percentage drops and ends up

stabilizing at about 2 % of the time the exact approach

takes, regardless of the sampling percentage. The reason

for so is that thanks to the way the high setup is de-

signed, it ends up enumerating all subgraphs up to size

K � 1. For the medium setup a similar effect is notice-

able, but much subtler, since in this case we are enu-

merating all subgraphs to size K � 2. Obviously, the low

setup does not display this behavior, but likewise, as the

sampling percentage decreases the relation between time

of the approximation and time of the exact deviates more

from an exponential. For example, a 0.1 % sample takes

approximately 0.2 % of the time the exact approach does.

Since the main goal of running an approximation algo-

rithm is to apply it to a network where the exact approach

is unfeasible, we tested our algorithm using the ideas dis-

cussed in Sect. 4.3 in an undirected network with

1,134,890 nodes and 2,987,624 edges that represent the

network of a Youtube community taken from SNAP (Yang

and Leskovec 2012). We ran a 0.1 % sample for 4-

10 4

10 5

10 6

10 7

10 8

3 4 5 6

Jazz Network (10% Sample)
Su

bg
ra

ph
s

pe
r

Se
co

nd

Subgraph Size

FaSE High
FaSE Medium

FaSE Low
Fan Mod High

Fan Mod Medium
Fan Mod Low

10 4

10 5

10 6

10 7

10 8

3 4 5 6

Neural Network (10% Sample)

Su
bg

ra
ph

s
pe

r
Se

co
nd

Subgraph Size

FaSE High
FaSE Medium

FaSE Low
Fan Mod High

Fan Mod Medium
Fan Mod Low

Fig. 8 Sampling speed comparison for a 10 % sample for the undirected Jazz Network and directed Neural Network

0

20

40

60

80

100

10 -2 10 -1 10 0 10 1 10 2

Yeast Network

%
 o

f
ti

m
e

re
la

ti
ve

 t
o

E
xa

ct

0

20

40

60

80

100
%

 o
f
ti

m
e

re
la

ti
ve

 t
o

E
xa

ct

% of subgraph samples
10 -2 10 -1 10 0 10 1 10 2

% of subgraph samples

High
Medium

Low

Metabolic Network

High
Medium

Low

Fig. 9 Comparing the execution time of various sampling percentages with the Exact approach for the undirected Yeast Network and directed

Metabolic Network for size 5 subgraphs

Soc. Netw. Anal. Min. (2015) 5:17 Page 15 of 18 17

123

subgraphs with setup high, which took about 20 min to

complete. Based on tests on enumerations on 3-subgraphs

of the same network and the results of this section, it

should take about a full day to run the exact approach. The

results allow us to have an idea of the total number of

subgraphs as well as the distribution of the different sub-

graph types having run for only a very small fraction of

what the exact approach is expected to.

5.2.3 Measuring convergence

To bring this section to an end, we performed some tests

to assess the convergence of our algorithm. In Sect. 5.2.1,

we could observe the percentage of correctly estimated

values converging towards the optimal value so we con-

solidate this with a more detailed view over the per-

centage of error and the standard deviation. We ran

Rand-FaSE with the astroPh network with setup high

for various sampling percentages and measured both the

relative error and the standard deviation normalized by

the real value. We used this network since it is of a larger

size and thus allows us to better observe the convergence

and standard deviation evolution. The results are plotted

in Fig. 10. Note that ‘‘Sub1’’ refers to the ‘‘L’’ shaped

size 3 subgraph and ‘‘Sub2’’ refers to the triangle (size 3

complete graph). The number of subgraphs of type

‘‘Sub1’’ and ‘‘Sub2’’ in the astroPh network is of the

same order of magnitude.

As expected, both the relative error and the standard

deviation decrease towards 0. It is interesting to notice that

above the 10 % sampling percentage the relative error and

standard deviation stabilize and decrease very slowly, with

little fluctuations.

6 Conclusion

In this paper, we presented both Rand-FaSE, an extension

of FaSE that performs an approximate network-centric

subgraph census. By making use of the common topology

of the enumerated subgraphs and encapsulating this infor-

mation in a tree structure called a g-trie, FaSE is able to

discard most of the isomorphism tests required to correctly

identify each subgraph type, which is the main bottleneck of

this problem. Hence, it achieves much better results than

any of the past approaches that tackle the same problem,

which is shown by the results found by comparing all ap-

proaches. Furthermore, its sampling version, Rand-FaSE,

acts as a logical extension and works by sampling only a

percentage of the total number of subgraphs. By placing a

probability in each depth and during the enumeration pro-

cess only continuing the recursive step if a drawn random

number is smaller than that depth’s probability, the algo-

rithm gives an unbiased estimate of the real frequency of

each subgraph type in the original network.

Thanks to FaSE’s use of LS-Labeling, the algorithm is

very generic and allows for various different LS-Labeling

functions. This means that the algorithm can be easily

adapted for different scenarios such as colored graphs or

multigraphs. In these more complex setups, network-cen-

tric approaches have a clear advantage over other ap-

proaches that require a pre-generated set of subgraphs as

input since the addition of colors or multiedges vastly in-

crements the number of possible subgraphs types. Net-

work-centric algorithms naturally only enumerate the

existing types, which are normally a very small fraction of

the total number of possibilities. We note that there are

some examples of applications on other graph setups, such

0

0.5

1

1.5

2

2.5

3

3.5

4

100 101 102

AstroPh Network

% of subgraph samples

%
 o

f
er

ro
r

Sub1
Sub2
Total

0

1

2

3

4

5

6

100 10 1 10 2

AstroPh Network

% of subgraph samples

%
 o

f
st

an
da

rd
 d

ev
ia

ti
on

Sub1
Sub2
Total

Fig. 10 Testing convergence through % of error to the real value and standard deviation (normalized by the real value)

17 Page 16 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

as weighted graphs (Choobdar et al. 2012b) and colored

graphs (Ribeiro and Silva 2014a).

The main drawback of the FaSE algorithm is the

memory it spends to store the g-trie and all its leaves. We

intend to tackle this issue by first noticing that since our

g-trie only stores the intermediate classes generated by the

LS-Labeling, there is still a lot of common substructures

that we can take advantage of. The idea is to compress the

g-trie so as to only store as many leaves as actual iso-

morphism classes during the actual enumeration process.

Having this done, we intend to pre-calculate a whole g-trie

and completely discard the isomorphism tests, as long as

there is enough memory.

Regarding Rand-FaSE, we wish to experiment with

the large-scale data structures to store huge networks. As

stated in Sect. 4.3, we have tried different approaches and

tested it real networks, as said in Sect. 5.2.2. However,

there is still a lot of improvement that could be done by

studying how the queries of connected vertices are per-

formed to explore any patterns.

We are currently working on a parallel version of FaSE

to take advantage of having multiple processors working.

Our goal is to adapt it in a shared memory environment, by

having multiple threads sharing the work.

Lastly, we wish to apply both algorithms in real com-

plex networks in greater detail by both considering larger

subgraph sizes and getting more accurate approximations

(by having a larger sampling percentage).

Acknowledgments Pedro Ribeiro is funded by an FCT Research

Grant (SFRH/BPD/81695/2011). This work is partly funded by NSRF

and ERDF through the COMPETE and ON.2 Programmes and by

National Funds through FCT, within projects FCOMP-01-0124-

FEDER-037281 and NORTE-07-0124-FEDER-000059.

References

Albert I, Albert R (2004) Conserved network motifs allow protein-

protein interaction prediction. Bioinformatics 20(18):3346–3352.

doi:10.1093/bioinformatics/bth402

Batagelj V, Mrvar A (2006) Pajek datasets. http://vlado.fmf.uni-lj.si/

pub/networks/data/

Bhuiyan M, Rahman M, Rahman M, Hasan MA (2012) Guise:

uniform sampling of graphlets for large graph analysis. In: IEEE

international conference on data mining, ICDM, pp 91–100

Choobdar S, Ribeiro P, Bugla S, Silva F (2012a) Co-authorship

network comparison across research fields using motifs. In:

IEEE/ACM international conference on advances in social

networks analysis and mining, IEEE, pp 147–152. doi:10.1109/

ASONAM.2012.34

Choobdar S, Ribeiro P, Silva F (2012b) Motif mining in weighted

networks. In: Data mining workshops (ICDMW), 2012 IEEE

12th international conference on, pp. 210–217. doi:10.1109/

ICDMW.2012.111

Cook SA (1971) The complexity of theorem-proving procedures.

ACM Symposium on Theory of computing. ACM symposium on

theory of computing (STOC). ACM, New York, NY, USA,

pp 151–158

Costa L, Oliveira O Jr, Travieso G, Rodrigues F, Boas P, Antiqueira

L, Viana M, Da Rocha L (2011) Analyzing and modeling real-

world phenomena with complex networks: a survey of applica-

tions. Adv Phys 60:329–412

Fortunato S (2010) Community detection in graphs. Phys Rep

486(3–5):75–174

Gleiser PM, Danon L (2003) Community structure in jazz. Adv

Complex Syst 06(04), pp. 565–573. doi:10.1142/S021952

5903001067

Grochow J, Kellis M (2007) Network motif discovery using subgraph

enumeration and symmetry-breaking. Res Comput Mol Biol,

pp 92–106

Itzkovitz S, Levitt R, Kashtan N, Milo R, Itzkovitz M, Alon U (2005)

Coarse-graining and self-dissimilarity of complex networks.

Phys Rev E (Stat Nonlin Soft Matter Phys) 71:016127

Janssen E, Hurshman M, Kalyaniwalla N (2012) Model selection for

social networks using graphlets. Internet Math

Kashani Z, Ahrabian H, Elahi E, Nowzari-Dalini A, Ansari E, Asadi

S, Mohammadi S, Schreiber F, Masoudi-Nejad A (2009)

Kavosh: a new algorithm for finding network motifs. BMC

Bioinform 10(1):318

Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling

algorithm for estimating subgraph concentrations and detecting

network motifs. Bioinformatics 20(11):1746–1758

Khakabimamaghani S, Sharafuddin I, Dichter N, Koch I, Masoudi-

Nejad A (2013) Quatexelero: an accelerated exact network motif

detection algorithm. PLoS ONE 8(7):e68073. doi:10.1371/jour

nal.pone.0068073

Kreher DL, Stinson DR (1999) Combinatorial algorithms: generation,

enumeration, and search. SIGACT News 30(1):33–35

Leskovec J, Kleinberg JM, Faloutsos C (2007) Graph evolution:

densification and shrinking diameters. ACM Trans Knowl

Discov From Data 1(1). doi:10.1145/1217299.1217301

Li X, Stones DS, Wang H, Deng H, Liu X, Wang G (2012) Netmode:

network motif detection without nauty. PLoS One 7(12):e50093

Marcus D, Shavitt Y (2010) Efficient counting of network motifs. In:

ICDCS workshops, IEEE Computer Society, pp 92–98

McKay B (2012) nauty. http://cs.anu.edu.au/*bdm/nauty/

Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U

(2002) Network motifs: simple building blocks of complex

networks. Science 298(5594):824–827

Omidi S, Schreiber F, Masoudi-nejad A (2009) Moda: an efficient

algorithm for network motif discovery in biological networks

Paredes P, Ribeiro P (2013) Towards a faster network-centric

subgraph census. In: Proceedings of the 2013 IEEE/ACM

international conference on advances in social networks analysis

and mining, ACM, New York, NY, USA, ASONAM ’13,

pp 264–271. doi:10.1145/2492517.2492535

Pržulj N (2010) Biological network comparison using graphlet degree

distribution. Bioinformatics 26(6):853–854

Ribeiro P, Silva F (2010) Efficient subgraph frequency estimation

with g-tries. International Workshop on algorithms in bioinfor-

matics, Springer, WABI, 6293:238–249

Ribeiro P, Silva F (2014a) Discovering colored network motifs. In:

Contucci P, Menezes R, Omicini A, Poncela-Casasnovas J (eds)

Complex networks V, Studies in computational intelligence, vol

549, Springer International Publishing, pp 107–118. doi:10.

1007/978-3-319-05401-8_11

Ribeiro P, Silva F (2014b) G-tries: a data structure for storing and

finding subgraphs. Data Min Knowl Discov 28:337–377

Ribeiro P, Silva F, Kaiser M (2009) Strategies for network motifs

discovery. In: IEEE international conference on e-Science,

e-Science, pp 80–87

Soc. Netw. Anal. Min. (2015) 5:17 Page 17 of 18 17

123

http://dx.doi.org/10.1093/bioinformatics/bth402
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://dx.doi.org/10.1109/ASONAM.2012.34
http://dx.doi.org/10.1109/ASONAM.2012.34
http://dx.doi.org/10.1109/ICDMW.2012.111
http://dx.doi.org/10.1109/ICDMW.2012.111
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1142/S0219525903001067
http://dx.doi.org/10.1371/journal.pone.0068073
http://dx.doi.org/10.1371/journal.pone.0068073
http://dx.doi.org/10.1145/1217299.1217301
http://cs.anu.edu.au/~bdm/nauty/
http://dx.doi.org/10.1145/2492517.2492535
http://dx.doi.org/10.1007/978-3-319-05401-8_11
http://dx.doi.org/10.1007/978-3-319-05401-8_11

Schreiber F, Schwobbermeyer H (2004) Towards motif detection in

networks: frequency concepts and flexible search. In: Interna-

tional workshop on network tools and applications in biology,

NetTAB, pp 91–102

Slota GM, Madduri K (2013) Fast approximate subgraph counting

and enumeration. In: 42nd international conference on parallel

processing (ICPP), pp 210–219

Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2:369

Valverde S, Solé RV (2005) Network motifs in computational graphs:

a case study in software architecture. Phys Rev E 72(026):107.

doi:10.1103/PhysRevE.72.026107

Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’

networks. Nature pp 440–442

Wernicke S (2006) Efficient detection of network motifs. IEEE/ACM

Trans Comput Biol Bioinf, pp 347–359

Wu G, Harrigan M, Cunningham P (2011) Characterizing wikipedia

pages using edit network motif profiles. In: 3rd International

workshop on search and mining user-generated contents

(SMUC), ACM, New York, NY, USA, pp 45–52

Yang J, Leskovec J (2012) Defining and evaluating network

communities based on ground-truth. In: Proceedings of the

ACM SIGKDD workshop on mining data semantics, ACM, New

York, NY, USA, MDS ’12, pp 3:1–3:8. doi:10.1145/2350190.

2350193

17 Page 18 of 18 Soc. Netw. Anal. Min. (2015) 5:17

123

http://dx.doi.org/10.1103/PhysRevE.72.026107
http://dx.doi.org/10.1145/2350190.2350193
http://dx.doi.org/10.1145/2350190.2350193

	Rand-FaSE: fast approximate subgraph census
	Abstract
	Introduction
	Related work

	Preliminaries
	Terminology and notation
	Problem definition
	Base network-centric enumeration algorithms
	ESU
	Kavosh
	Rand-ESU

	Exact subgraph census
	Subgraph enumeration
	Encapsulating isomorphism information in a tree
	G-tries
	LS-labeling

	The FaSE algorithm

	Approximating a subgraph census
	Uniform sampling
	Performance analysis
	Further discussion

	Experimental results
	Exact approach results
	Approximation approach results
	Comparison with the exact approach
	Comparison with the previous approaches
	Measuring convergence

	Conclusion
	Acknowledgments
	References

