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Abstract Particle swarm optimizers (PSO) have been

extensively used in optimization problems, but the scientific

community still lacks proper mechanisms to analyze the

swarm behavior during the optimization (execution) process.

In this paper, we propose to assess the swarm information

flow based on particle interactions. We introduce the concept

of the swarm influence graph to capture the information

exchange between the particles in a given iteration during the

execution of the algorithm. We propose that analysis of this

graph to find its number of components and its overall

structure may be used to define a fingerprint for the swarm

search behavior. We simulated the PSO algorithm with three

different communication topologies and we showed that each

topology leads to different communication signatures. Also,

we showed that, in the case of a dynamic topology, this

signature is related to the stagnation of the swarm.

Keywords Swarm intelligence � Network science �
Particle swarm optimization � Swarm behavior assessment

1 Introduction

Computational intelligence is a set of nature-inspired algo-

rithms that can be applied to solve problems in complex and

dynamical environments (Engelbrecht 2007). Some exam-

ples of computational intelligence paradigms include: arti-

ficial neural networks, fuzzy systems, evolutionary

computation, and swarm intelligence. Swarm intelligence is

a concept in which actors communicate with each other

locally and also act locally on the environment. The inter-

actions between these individuals (the swarm) lead to the

emergence of solutions to hard problems. Many computa-

tional techniques motivated by this behavior constitute what

we call computational swarm intelligence—a set of bio-

inspired algorithms based on populations of simple reactive

agents. Among the best known swarm techniques are: par-

ticle swarm optimization (PSO) (Kennedy and Eberhart

1995), ant colony optimization (ACO) (Dorigo and DiCaro

1999), artificial bee colony (ABC) (Karaboga 2005), and

fish school search (FSS) (Bastos-Filho et al. 2008).

PSO was proposed by Kennedy and Eberhart, and

inspired by the social behavior of flocks of birds when

searching for food (Kennedy and Eberhart 1995). The

technique has been widely used to solve optimization

problems in hyper-dimensional search spaces with contin-

uous variables. The main idea behind the technique refers

to a population of simple reactive agents (particles) that

explore the search space by seeking the best solutions.

Each particle has a position representing a candidate

solution for the problem and stores the best position it has

visited. This stored information is used by the particles to

update their position and to navigate within the search

space. Although different equations may be used to update

the particles (Engelbrecht 2007), they all modify the par-

ticles’ position based mainly on their own history and on

their neighbors information. Therefore, the way the infor-

mation exchange happens between the particles plays an

important role in the swarm behavior during the

search (Mendes et al. 2004).
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The ability of PSO to use different swarm topologies is

an example of the importance of the communication

between particles on the swarm search behavior. This

structure defines the particles that can exchange informa-

tion with each other (i.e. the particle’s neighborhood) and

its characteristics have a high impact on the convergence

speed and the quality of the solution obtained by the

algorithm (Bratton and Kennedy 2007; Kennedy and

Mendes 2002). Less connected topologies slow down the

information flow given that the information is transmitted

indirectly through intermediary particles (Kennedy and

Mendes 2002). Conversely, highly connected topologies

decrease the average distance between individuals. Con-

sequently, they lead the whole swarm to move quickly

towards the first local optimum found by any of the par-

ticles. Indeed, these different behaviors motivated the use

of dynamic self-adjustable topologies to manage the

information flow during the execution of the PSO algo-

rithm (Suganthan 1999; Peram et al. 2003; Janson and

Middendorf 2005; Mendes et al. 2004; Wang and Xiang

2008; Oliveira et al. 2013).

Although some researchers used the swarm topology to

analyze the swarm behavior, this structure is only a static

representation of the boundaries of the particles’ commu-

nication (Kennedy and Mendes 2002; Mendes et al. 2004).

Moreover, these analyses regarding the impact of the

topology on the swarm performance are generally per-

formed using measures that cannot provide a comprehen-

sive information about the swarm behavior. In general,

researchers use measures that do not assess the flow of

information within the swarm; they just evaluate simple

measures, such as the average distance between particles,

and the evolution of the fitness of the particles along the

iterations. In fact, as we look further into the literature we

conclude that there are no measures to appropriately assess

the communication process within swarms.

Furthermore, despite the communication between par-

ticles being a fundamental aspect of the swarm behavior,

many researchers focus solely on the final result of these

particles’ interactions. For example, many studies have

used the particles’ properties (e.g. the position of a parti-

cle, the velocity of a particle, etc.) to assess the swarm

behavior (Zhan et al. 2009; Zhang et al. 2011; Pontes et al.

2011; Zhou and Shi 2011). Although these approaches

perform well with their proposed analyses, they are actu-

ally analyzing the final results (particles’ properties) of the

particles’ interactions. For example, the average distance

between particles (the density) in the search space can be

used to infer if the swarm has stagnated in a certain area.

However, all particles being in the same place is the result

of a lack of diversity in the particles’ communication. This

approach also loses important information about the swarm

behavior. For instance, the particles that attracted all the

other particles to a region cannot be distinguished by just

evaluating the density of particles in this specific region of

the search space. Nevertheless, the particles that have

attracted many other particles to this region present a

higher influence and can be seen as hubs; hence it might be

the case that one can help the entire swarm to escape from

a local minimum by just working on these particular hub-

particles. In addition to these afore mentioned aspects, one

may notice that the approach based on the particles’

properties may be cumbersome because these properties

are dependent on the dimension of the problem addressed

by the swarm. For example, in a swarm that is optimizing a

function in 1,000 dimensions, any particle’s property is

also defined in 1,000 dimensions, and calculations using

these properties (e.g. Euclidean distance to calculate the

swarm barycenter) will be inconvenient.

We propose the analysis of the particles’ communication

as a way to assess the swarm execution behavior because

we believe it to be the core mechanism driving the

behavior the swarm. First, to have this analysis, we need to

capture the information flows within the swarm, thus we

define the swarm influence graph, that is a graph (or net-

work) representing the information exchange between

particles in the swarm. Second, we analyze this network to

understand the information flow; we propose the analysis

of the influence graph by looking at the number of com-

ponents present and its general structural characteristics.

We simulated the PSO algorithm with three different

communication topologies and we showed that each

topology leads to different communication signatures.

Also, we showed that, in the case of a dynamic topology,

this signature is related to the stagnation of the swarm.

The paper is organized as follows: we review the par-

ticle swarm optimization and some network science con-

cepts in Sect. 2. In Sect. 3 we define the swarm influence

graph and describe the measures to analyze it. In Sect. 4,

the simulation setup and results are presented. Finally, we

present our conclusions and suggest some future work in

Sect. 5.

2 Background

In this section, we provide a brief explanation of the topics

related to our proposal. In Sect. 2.1, PSO is defined

focusing on the topologies used by the swarm. Some def-

initions from network science are given in Sect. 2.2, along

with network concepts that are used in this paper.

2.1 Particle swarm optimization

PSO is a stochastic, bio-inspired, population-based global

optimization technique (Eberhart and Kennedy 1995;
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Kennedy and Eberhart 1995). In PSO, each particle i has a

position xiðtÞ at iteration t within the search space and each

position represents a possible solution for a d-dimensional

optimization problem. The particles move through the

problem’s search space seeking for the best solutions. Each

particle updates its position according to the current

velocity viðtÞ, the best position piðtÞ found by itself, and the
best position niðtÞ found in its neighborhood during the

search so far. The velocity viðtÞ and the position xiðtÞ of

every particle is updated iteratively by applying Eqs. (1)

and (2), respectively.

viðt þ 1Þ ¼ viðtÞ þ r1c1½piðtÞ � xiðtÞ�
þ r2c2½niðtÞ � xiðtÞ�;

ð1Þ

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ; ð2Þ

where r1 and r2 are vectors containing random numbers

generated from a uniform probability density function

within the interval [0,1] at each iteration, for all particles,

and for every dimension. The learning factors c1 and c2 are

the cognitive and the social acceleration constants. They

are non-negative constants and weigh the contribution of

the cognitive and social components, i.e. the second and

the third terms of Eq. (1).

This basic set of particles’ update equations can lead the

swarm to what is called an explosion state. This behavior

arises because these equations allow the particles to increase

their velocities indefinitely (i.e. they ‘‘explode’’). Some

approaches have been proposed to overcome this issue

(Eberhart et al. 1996; Shi and Eberhart 1998; Clerc and

Kennedy 2002). Bratton and Kennedy (2007) developed an

approach in which the velocities are constricted by a con-

stant v, referred as the constriction factor (Clerc and Ken-

nedy 2002). They determined a relation based on this factor

that avoids the explosion state, defined according to Eq. (3).

u is the sum of the acceleration coefficients c1 and c2.

v ¼ 2

j2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 4u
p

j
; u ¼ c1 þ c2: ð3Þ

This factor was introduced to adjust the influence of the

previous particle velocities to the optimization process.

The final update equation (using v) for the particle’s

position is defined as:

viðt þ 1Þ ¼ v �
�

viðtÞ þ r1c1½piðtÞ � xiðtÞ�

þ r2c2½niðtÞ � xiðtÞ�
�

:

ð4Þ

The constriction factor v also helps to regulate the

exploitation–exploration balance of the swarm (Clerc and

Kennedy 2002; Bratton and Kennedy 2007). This balance

is related to the swarm behavior during the swarm search.

The exploration mode is the ability of individuals to

broadly explore a region in the search space, while

exploitation happens when the search is focused on a

specific area of the search space (Kennedy and Eberhart

2001).

2.1.1 Particle swarm optimization topologies

The swarm topology defines the boundaries of the parti-

cles’ communication. The particles only share information

with others in the neighborhood defined by the swarm

topology. Thus, the flow of information within the swarm

during the search is impacted by the topology used by the

swarm. Kennedy and Mendes (2002) showed how the

topology structure influences the flow of information

among the particles (Kennedy and Mendes 2002). They

demonstrated that the presence of intermediary individuals

slows down the information flow. Conversely, the infor-

mation moves faster if more pairs of individuals are

directly connected. Thus, when the average distance

between nodes is too short, the population tends to move

quickly towards the best solution found in earlier iterations.

This behavior implies a faster convergence to the global

optimum in simple unimodal problems. However, this fast

convergence might force the swarm to prematurely reach a

local optimum and loose diversity, specially in multimodal

problems (Bratton and Kennedy 2007). In such cases,

communication topologies with lower number of connec-

tions may reach better results, because the information

spreads slowly and the swarm explores different regions of

the search space.

Figure 1 depicts some well-known communication

topologies used in swarms (Bratton and Kennedy 2007).

The global topology was the first topology proposed for the

PSO (Kennedy and Eberhart 1995). In this topology, shown

in Fig. 1a, all the particles of the swarm are neighbors of

each other, leading to a social memory shared by the entire

swarm. On the other hand, in local topologies the particles

do not share the same neighborhood (Bratton and Kennedy

2007). Consequently, the social memory is not the same for

all the particles and is topology dependent. The most used

local topology is the ring topology (Bratton and Kennedy

2007), in which each particle has only two neighbors, as

depicted in Fig. 1b. This structure helps to avoid a pre-

mature attraction of all particles to a single location of the

search space given that the information spreads slowly; this

characteristic comes with the caveat of a slow convergence

time (Bratton and Kennedy 2007).

These two topologies lead to extreme opposite behaviors

in the swarm, therefore many efforts have been made to

propose approaches that have fast convergence while

avoiding local minima, such as the ones depicted in Fig. 1c

and d (Kennedy and Mendes 2002; Mendes et al. 2003;

Bratton and Kennedy 2007). However, all these proposed
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structures are usually more appropriate to certain problems

(e.g. global topology for unimodal problems) (Kennedy

and Mendes 2002). The main reason for this problem

dependency is that these topologies are based on arbitrary

structures, normally static, and consequently they lead to a

non-robust search behavior.

To achieve more robustness, some dynamic topologies

were proposed (Suganthan 1999; Peram et al. 2003; Men-

des et al. 2004; Janson and Middendorf 2005; Wang and

Xiang 2008; Godoy and Von Zuben 2009; Mo et al. 2010;

Oliveira et al. 2013). The structures of these topologies are

not static, they change during the search process generally

based on specific rules. Oliveira et al. (2013) proposed an

approach that (self-)adapts the communication scheme

based on the swarm state. This dynamic topology tries to

change the information flow within the swarm when the

particles are stagnating in the search space. The structure

modification is based on the preferential attachment

mechanism present on the Barabási-Albert model (Bara-

basi and Albert 1999; Albert and Barabasi 2002). Each

particle attempts to create a connection with new particles

using a roulette wheel based on the particles’ fitness. We

call this topology as the dynamic topology henceforth in

this paper.

The self-adaptation in the dynamic topology is based on

the state of the swarm. The topology changes when the

swarm is stagnating, thus a way to assess the swarm state is

needed. To do that, each particle has a new attribute, called

Pkfailures, to determine if the particle k is improving its

fitness during the search process. Therefore, if the fitness of

the particle k does not improve after its iterative position

update, Pkfailures is incremented, otherwise Pkfailures is

set to zero. The particle is considered stagnated if Pkfail-

ures reaches a preset threshold, a parameter of the

algorithm.

In the beginning of the algorithm execution, all the

particles are connected based on a structure that allows

exploration of the search space. The rationale of this initial

scheme is that it is desirable for the swarm to explore the

search space in the initial stage of the algorithm run, then in

the final steps an exploitation behavior is prefera-

ble (Bratton and Kennedy 2007). At each iteration, each

particle updates its Pkfailures and when the value reaches

the preset threshold of failures, the particle k searches for

better particles to be connected with, as well as to stop

being connected to its current neighbors. This selection of

new neighbors is based on a roulette wheel with a linear

fitness-based ranking. More details about the dynamic

topology can be found in Oliveira et al. (2013).

2.2 Network science concepts

The analysis made in this paper is a network-based

approach to capture the information flow within the swarm

and is conducted by modeling the particles’ interactions as

networks/graphs. A graph G consists of a pair

½VðGÞ;EðGÞ�, where VðGÞ is a set of vertices labelled

1; 2; . . .; n and EðGÞ is a set of edges (i.e. pairs of adjacent
vertices). Any graph G can be represented by its adjacency

matrix AðGÞ, in which its elements are defined as:

Aij ¼
1; if vertex i and vertex j are adjacent;

0; otherwise:

�

ð5Þ

The spectrum of G consists of the n eigenvalues of AðGÞ,
denoted as k1; k2; . . .; kn where k1 � k2 � � � � � kn. The

spectral density of a graph can be defined as the density of

these eigenvalues and can be stated as a probability density

function as follows:

qðkÞ ¼ 1

n

X

n

j¼1

dðk� kjÞ; ð6Þ

where n is the number of eigenvalues and d is the Dirac

function.

Many characteristics of the graph can be assessed by

analyzing the graph spectrum (Cvetković et al. 2010).

Actually, the spectrum is considered a fingerprint of the

networks that can be used to characterize them (Doro-

govtsev et al. 2003). Farkas et al. (2001) showed that

topological features of some kinds of graphs (uncorrelated

(a) Global (b) Ring

(c) Von Neumann (d) Four clusters

Fig. 1 The swarm topology defines the boundaries of the particles’

communication. In each network topology, the nodes are the particles

and the links represent the possibility of information exchange
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random networks, the small-world networks, and the scale-

free networks) can be identified by its graph spectral den-

sity (Farkas et al. 2001). They also proposed some practical

tools for the identification of the basic types of random

graphs and for classification of real-world networks. These

tools are based on the extremal eigenvalues of the adjacency

matrix. Farkas et al. (2001) showed that these eigenvalues

contain useful information about the structure of the graph.

Depending on the periodicity of this structure, the principal

eigenvalue is detached from the rest of the spectrum. Thus,

they proposed a quantity named R, defined as:

R ¼ k1 � k2
k2 � kn

; ð7Þ

that measures the distance of the first eigenvalue from the

main part of qðkÞ.
The R value can be used to distinguish between some

graph structure features: (1) periodical or almost periodi-

cal; (2) uncorrelated and non-periodical; and (3) strongly

correlated non-periodical. For example, a regular graph has

a structure that is periodical, conversely a random graph is

non-periodical. However, when the probability in a random

graph is not constant and depends on the nodes involved,

the result is a correlated structure. In large systems, R value

of the sparse uncorrelated random graph converges to a

constant, while R value in the scale-free model decays as a

power law function of the number of the nodes.

The Laplacian matrix LðGÞ of a simple graph G is the

matrix DðGÞ � AðGÞ, where DðGÞ is the degree matrix of

graph G. Some properties of a graph can be inferred using

the Laplacian matrix, its eigenvalues v1ðGÞ� v2ðGÞ� � � �
� vnðGÞ relate to many of these properties. For instance,

the multiplicity of 0 as an eigenvalue of L is equal to the

number of components in G (Cvetković et al. 2010). Thus,

the second-smallest eigenvalue of L is equal to zero if and

only if G is a non-connected graph. This eigenvalue is

called the algebraic connectivity (or Fiedler value) of G

and its magnitude reflects how well the graph is connected.

3 Assessing particle swarm optimizers

In this section, a structure called the swarm influence graph

is defined to capture the flows of information within the

swarm. Moreover, some measures are described to analyze

these flows by analyzing this proposed structure. In

Sect. 3.1 the afore mentioned structure is defined and the

measures are presented in Sect. 3.2.

3.1 The swarm influence graph

Although the swarm communication topology defines

which particles can communicate with one another, the

topology only bounds the particles’ communication range.

Actually, the information flow changes at each iteration

when the particles share information with their best

neighbors. That is, at iteration t, each particle i only gets

information from its best neighbor niðtÞ. Thus, a network of
information exchanges between particles in a given itera-

tion can be used to assess the information flow within the

swarm. Therefore, we define the influence graph as the

representation of this network. The elements of the swarm

influence graph I0t at iteration t are defined as follows:

I0tij ¼
1; if niðtÞ ¼ j;

0; otherwise:

�

ð8Þ

where niðtÞ is the neighbor of particle i at iteration t.

One can observe that the influence graph I0i is a directed

graph by definition. The direction of the edges is the actual

direction of the information exchange between particles.

The simplified influence graph It is defined by removing

the edge direction. The elements of this graph at iteration t

are described as follows:

Itij ¼
1; if niðtÞ ¼ j or njðtÞ ¼ i;

0; otherwise:

�

ð9Þ

In other words, the simplified influence graph is the net-

work of the particles that shared information between them

at a given iteration. Figure 2 depicts examples of simplified

influence graphs (in bold) over three different swarm

topologies. These examples suggest that the swarm

(a) Global topology (b) Ring topology

(c) Dynamic topology (Ex-
ample 1)

(d) Dynamic topology (Ex-
ample 2) 

Fig. 2 Examples of the swarm influence graph over the topology for

the three communication topologies. These examples suggest that the

swarm topology impacts the structure of the influence graph
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topology impacts the structure of the influence graph. For

example, in the case of the ring and dynamic topologies,

there are some sub-graphs, whereas the global topology

presents only a focal point in the influence graph. One must

notice that the existence of two particles in the same

component does not imply they share information, actually

they only do if they are directed connected, otherwise they

only share common particles that are indirectly exchanging

information.

The swarm influence graph is a forest, that is a graph in

which each connected component is a tree. The compo-

nents in the influence graph are related to the information

flows within the swarm. Therefore, the number of com-

ponents as well as their structure is associated with the

swarm behavior, and the analyses in this paper are made on

these two aspects.

The simplified influence graph is the one used to analyze

the swarm information flow in this paper because the

analysis of the structure of a undirected graph is simpler

than a directed one (e.g. the eigenvalues of the adjacency

matrix of a directed graph may be not real). Although the

direction is removed from the edges in the simplified

graph, there is still implicit information about the influence

of the nodes. This is the case because of the tree structure

of the influence graph and the fact that every particle must

retrieve information from other particle, once the PSO

version being analyzed is a selfless model, that is, the

particles always use the neighbors’ information to evaluate

niðtÞ (Kennedy 1997). For example, Fig. 3 is a small tree

that depicts a possibly influence graph of three particles,

namely a, b, and c.

The graph in Fig. 3 can be the result of the direction

removal process of the follow structures depicted in Fig. 4.

One must notice that the structures in Fig. 4b and c can be

seen as the same, the difference between them is just the

labels, thus they are treated as the same. Furthermore, once

this is a selfless model and a particle must retrieve infor-

mation from its neighborhood, the structure in Fig. 4a may

also be understood in the same way as the other ones.

Therefore, when the labels are disregarded, these structures

are the same, as depicted in Fig. 5.

Such understanding of the swarm influence graph can be

also easily obtained in a tree of two particles, a case in

which there is only one possible configuration: both par-

ticles sending and receiving information. Thus, there is no

loss of information when the directions are removed from

these small-sized trees. On the other hand, bigger trees are

more complicated to analyze and indeed there is loss of

information. However, the structure of these trees still

contains informative aspects of the swarm communication.

For example, a particle with degree k in a tree of the

influence graph transmits information to at least k � 1 other

particles (and at most to k particles). Thus, the higher is the

degree of a particle, the higher is the impact of this particle

on the others. Therefore, although the influence graph is

simplified, the analysis of its structure still provides

information about the influential role of the particles

involved, as well as the information flow.

3.2 Analyzing the swarm influence graph

In this paper, the swarm influence graph is analyzed by its

number of components and its structure. In Sect. 3.2.1, the

use of the number of zero-valued eigenvalues of the La-

placian matrix is discussed as a way to count the number of

information flows. To analyze the structure of these flows,

the density spectrum is used and discussed in Sect. 3.2.2.

Once the analysis of the spectrum may be cumbersome, the

R value is used to assess the information flow and is also

discussed in Sect. 3.2.2.

Fig. 3 The structure of the

simplified influence graph still

provides information about the

swarm behavior. In this

example, a simplified influence

graph of three particles is

derived from one of the graphs

in Fig. 4

Fig. 5 The origin of the struc-

ture in Fig. 3 when the labels are

disregarded. There is no loss of

information when the directions

are removed from these trees

Fig. 4 The possible directed

influence graphs of the structure

in Fig. 3. Due to the tree

structure of the influence graph

and the fact that every particle

must retrieve information from

other particle, all of them can be

seen as the same
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3.2.1 The number of zero-valued eigenvalues

in the Laplacian matrix

The components in the swarm influence graph (i.e. the sub-

graphs in the case of undirected graphs) are groups of

particles that shared information with the same particles; in

such a manner that if two particles are not in the same

component, they have different sources of information to

calculate their velocities. Thus, these components can be

seen as different flows of information in the swarm. The

number of these flows within the particles is related to the

swarm diversity. For instance, a swarm with few infor-

mation flows does not have different sources of information

regarding different regions of the search space. In this case,

the swarm may contain low diversity, which drives all the

particles towards the same place in the search space.

Conversely, a swarm with many different information

flows explores the search space as a whole because there

are many sources of information. These two distinct search

behaviors with different number of information flows also

relate to the exploration–exploitation balance in the swarm.

When the particles are exploring broadly a region in the

search space (i.e. exploration search mode), there are dif-

ferent information flows in the swarm. On the other hand,

when the search is focused in an area (i.e. exploitation

search mode), the swarm diversity is low.

The multiplicity of ‘‘0’’ as an eigenvalue of the Lapla-

cian matrix of the swarm influence graph is equal to the

number of components in this graph. Thus, to count the

number of information flow in the swarm, we analyze the

influence graph with this measure.

3.2.2 The density spectrum and R value

The analysis of the structure of the information flow within

the swarm may elucidate aspects of the swarm behavior.

For instance, although particles in the swarm can share

information with the same particles, there is the possibility

of a particle being more influential than others in the same

flow. This is the case, for example, when particles trans-

mitting information to many others are present in the flow.

This is highly related to the diversity of the swarm since the

existence of impactful particles may lead the other particles

to the same region of the search space. Thus, the way

information navigates within the swarm is described by the

structure of the information flow, that impacts the swarm

behavior. Therefore, the analysis of the structure of the

swarm influence graph may explain these intricate behav-

iors of the particles during the search process.

The spectra of eigenvalues of the graph adjacency

matrix is considered a fingerprint of the networks that can

be used to characterize them (Dorogovtsev et al. 2003).

Thus, we use the density spectrum of the swarm influence

graph to find the fingerprints of the swarm search behav-

iors. That is, this analysis can show a signature of the type

of the search being performed by the swarm. Still, this

analysis may be cumbersome because the density spectrum

analysis we perform is mainly a plot analysis. In general,

the spectral density can be mainly used to assess the

behavior of algorithms or to diagnose the influence of a

parameter in the algorithm performance.

Considering this, we also deployed the R value since it

can also be used as a way to understand the characteristics

of the network. Besides, the R value is a single indicator

and can be used to control the operation of the algorithm. It

is worthy to mention that the R value can be used together

with other measures, such as the evolution of the fitness or

the density of particles in a certain region of the search

space.

4 Simulation setup and results

4.1 PSO setup

To assess the proposed methodology, we used the PSO

algorithm to optimize two well-known multimodal bench-

mark functions, named F6 function and F8 function, that

were proposed in 2010 as large-scale optimization prob-

lems (Tang et al. 2010). The F6 function is a single-group

shifted and m-rotated Ackley’s function and F8 function is

a single-group shifted and m-dimensional Rosenbrock’s

function. The former is a multimodal function and the latter

is also a multimodal function very dependent on the initial

values. We selected these two different functions to have

insights of the swarm behavior in two distinct scenarios.

In all experiments, we used 1,000 dimensions and m

equal to 50. We used 200 particles in all simulations. For

each simulation trial, we used 300,000 fitness function

evaluations. We performed simulations for the global,

local, and dynamic topologies. In the case of the dynamic

topology, the threshold of failures for the particles was set

to Pkfailures = 50. The particles were updated according

to Eq. (4) with c1 ¼ 2:05 and c2 ¼ 2:05 as indicated in

Clerc and Kennedy (2002), which guarantees no explosion

state.

4.2 The number of information flows

The evolution of the number of information flows within

the swarm during the execution of the PSO optimizing the

F6 function is shown in Fig. 6a. It shows the behavior of

this quantity as a function of the number of iterations for

the three considered topologies.

The influence graph in the global topology is an one-

component star-like graph and keeps its structure during
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the whole execution of the algorithm; the number of zero

eigenvalues is constant and equal to one. Although the

value is equal to one in this case, it does not mean that the

influence graph is the same along the entire process. The

best particle of the swarm can change along the iterations

which causes the center of the star-like topology to

change.

Although the ring topology is static, the influence graph

can present different sub-graphs. One can observe that the

number of information flows varies through the iterations,

but presents a high average value of 40 along the entire

process.

In the dynamic topology, the algorithm starts with 10

information flows and diminishes in average to 5 infor-

mation flows along the algorithm execution. One must

observe that the dynamic topology presents a balanced

behavior between the two static approaches.

Figure 6b depicts the same analysis on the F8 function.

One can observe that the curves are similar to the ones

shown in Fig. 6a. This similarity can also be seen with all

benchmark functions in Tang et al. (2010).

4.3 Analyzing the structure of the information flows

with the density spectrum

To analyze the eigenvalue spectra of the swarm influence

graph, we divided the analysis in two parts: static topolo-

gies and the dynamic topology. First, we try to capture the

structural characteristics of the static topologies. Thereaf-

ter, we try to analyze the performance of the algorithm by

its structural characteristics when the swarm has a dynamic

topology.

The static topology analysis is given in Sect. 4.3.1 and

analysis of the dynamic topology is shown in Sect. 4.3.2.

4.3.1 Static topologies

The spectral density has the capacity to represent the fre-

quency of the eigenvalues. Therefore, it is interesting to

evaluate the characteristics of the topologies as a function

of the number of iterations to examine the swarm behavior

through iterations.

As the ring and global topologies present a well-known

behavior in terms of connectivity and convergence, we first

evaluated the evolution of the spectral density of the

influence graph as a function of the number of iterations for

these two topologies.

The behavior of the spectral density of the influence

graph along the iterations of the PSO when using a Global

topology is depicted in Fig. 7b. The snapshots of the

spectral density are from iterations 100, 400, 800 and

1,200. One can observe that the Global topology presents a

perfect unimodal shape. Moreover, the shape does not vary

along iterations.

Figure 7a depicts the curve of the spectral density along

the iteration for the PSO with local topology. The shape is

bimodal, unlike the density spectrum shape of the swarm

with a Global topology. Nevertheless, the curve also does

not change along the iterations.

4.3.2 Dynamic topology

To analyze the information flow of the swarm and to assess

the performance of the proposed approach by means of the

information disseminated in the swarm, we use two dif-

ferent runs of the PSO algorithm. These different runs

optimize one of benchmark functions used before (F6

function), but one of these runs gets stagnated along the

iterations and the other has success.

(a)

(b)

Fig. 6 Number of zero eigenvalues of the swarm influence matrix for dynamic, ring, and global topologies for two different benchmark functions
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Figure 8 shows two different trials of the PSO with the

dynamic topology (Run #1 and Run #2) optimizing F6

function. As seen in the figure, the results of these two

independent runs are quite different. In Run #1, the algo-

rithm converged, while in the Run #2 the algorithm got

stuck in a local minimum. Figure 9 shows evolution of the

spectral density of the influence graph for these two runs

for the iterations 50 to 450 with increments of 50. In Run

#2, the curve is flattened out more quickly than the curve

from Run #1. Moreover, in both cases, the structure in the

first iterations is similar to the one when the swarm has the

global topology. However, one can observe that both cases

present side lobes, which represents a combination of local

and global behaviors.

Two runs of the PSO with the dynamic topology opti-

mizing F8 function are shown in Fig. 10. The fitness values

for these two independent runs are different just at the end

of the algorithm execution. The fitness is slightly better for

Run #1 when compared to Run #2.

Figure 11 shows the evolution of the spectral density of

the influence graph for these two runs for the iterations

from 50 to 1,000, with increments of 50. Again, in Run #2,

the curve is flattened out a little more quickly than the

curve from Run #1. This might explain the difference in the

final fitness. However, one must observe that the difference

in the shape of the curve is not so evident as in the former

case (F6 function).

Hence, although interesting, from our results alone, we

still cannot define a rigid rule between the flattening rate of

the spectral density and the stagnation level of the swarm.

However, the information provided by the evolution of the

spectral density may be used to assess the influence of a

parameter in the swarm performance.

4.4 Using the R value

Two analysis of the swarm influence graph with the R

value were made. First, we compare the structure features

through iterations of the information flow of the PSO using

different topologies. Thereafter, we analyze the perfor-

mance of the algorithm by its structural characteristics

when the swarm has a dynamic topology.

4.4.1 Static and dynamic topologies

Figure 12 presents the behavior of R value of the influence

graph as a function of the number of iterations for the three

topologies considered in this paper. A low R value means

that k1 is not detached from the rest of the spectrum and it

can be seen as a consequence of a periodical structure

Farkas et al. (2001).

Because of the star-like behavior of influence graph for

the global topology, its R value is constant and presents the

value 1, since the extremal eigenvalues k1 and kN are

opposites, and k2 ¼ 0.

Both the ring and the dynamic topologies present small

R values, as they produce influence graphs that display very

(a) (b)

Fig. 7 Density spectrum of the swarm influence graph for a the ring topology and b the global topology (right)

Fig. 8 The performances of two independent runs of the PSO algorithm with the dynamic topology optimizing F6 function
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periodical structures. Again, the dynamic topology pre-

sented a balanced behavior.

4.4.2 Dynamic topology

Figures 8 and 10, described in Sect. 4.3.2, depict runs of the

PSO algorithm with different performances. Here, we try to

learn more about those runs by means of the information

disseminated in the swarm using the R value defined

earlier.

Figure 13a depicts the evolution of the R value through

the iterations of the PSO when optimizing the F6 function.

As the plot is confusing to understand, we use the

cumulative R value, defined as follows:

Rcumi
¼ 1

i

X

i

j¼1

Rj; ð10Þ

where Ri is the R value at iteration i.

The evolution of the cumulative R value through itera-

tions of the swarm influence graph of the PSO when

optimizing the F6 function using the dynamic topology is

shown in Fig. 13b. As it is possible to see, the behaviors of

the curves are very different. In the first iterations, the plots

are similar, but at approximately iteration 400, the plots

diverge. One can observe that the cumulative R value is

higher for Run #2 and presents a value that is more similar

to the one presented by a global topology, which represents

a higher chance to get trapped in a local minima.

(a) (b)

(c) (d)

Fig. 9 The density spectrum of the swarm influence graph from different iterations of the two runs with performances depicted in Fig. 8. The

curve for Run #2 is flattened out more quickly than the curve from Run #1

Fig. 10 The performances of two independent runs of the PSO algorithm with the dynamic topology optimizing F8 function
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Figure 13c shows the behavior of the cumulative R value

through iterations of the swarm influence graph of the PSO

when optimizing the F8 function. Again, the worst run

(Run #2) presented higher values for the cumulative R

value.

5 Conclusions and future work

We proposed the analysis of the swarm behavior in PSO

based on the particles’ interactions. We defined a network

of these interacti ons named the swarm influence graph and

we assessed the swarm behavior by analyzing this graph.

The novelty of our approach is that we analyze the fun-

damental aspect of the swarm intelligence: the particles

communication. Due to this characteristic, our proposal

allows richer analyses regarding the information flows

within the swarm than the usual approaches. Moreover, the

particles’ properties (e.g. the position of a particle, the

velocity of a particle, etc) are not needed on this swarm

analysis, thus our approach is not dependent of the problem

dimension.

In this paper, we proposed the analysis of the swarm

influence graph to assess the information flow to find the

fingerprints of the swarm search behavior. The analyses

made on the influence graph consider its number of com-

ponents and its structure. More specifically, we used: the

number of zero-valued eigenvalues in the Laplacian matrix

to count the number of components in the graph; the

spectral density to characterize the network; and the R

value to numerically characterize the network. The first can

be used to assess the number of information flows within

the swarm. The second provides a signature of the infor-

mation flows, which can provide insights on the type of

search performed by the swarm in the last iteration. The

third one also returns information about the network

(a) (b)

(c) (d)

Fig. 11 Density spectrum of the swarm influence graph from different iterations of the two algorithm executions with performance shown in

Fig. 10. Again, the curve for Run #2 is flattened out faster than the curve from Run #1

Fig. 12 R value of the swarm influence graph along the iterations when the swarm has dynamic, ring, and global topologies. the dynamic

topology leads to a balanced behavior between ring and global topologies
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structure, but is a single value that could be used to control

the operation of the algorithm.

We showed that our approach can assess the different

search behaviors of the swarm when different topologies

are used. Each topology used by the swarm does have

different signatures in the swarm influence graph that leads

the swarm to behave in distinct manners. We showed that

the swarm with the dynamic topology has a behavior that is

between the two most used static approaches, the ring and

global topologies. Moreover, regarding the dynamic

topology, the simulation results showed that the measures

can be used to indicate a possible stagnation process within

the swarm. Again, this can be used to trigger operators, for

example, to generate diversity in the swarm.

Although we have presented results using measures from

the network science field applied to the PSO algorithm, the

main idea presented in this paper is not technique-depen-

dent. We believe this is a first attempt to show that this

measures can be used to assess the performance and to assist

the design of swarm intelligence algorithms. In fact, the

analysis of the communication within the swarm can be

done with other swarm intelligence approaches (e.g. FSS,

ACO, etc.). In ACO, the analysis could be performed in the

pheromone graph. In the FSS, the idea could be adapted to

assess the memory matrix introduced in the dFSS approach.

As future works, we intend to use these measures to

design high performance dynamic topologies for PSOs by

assessing the information flow within the swarm. We also

aim to develop variations of the swarm influence graph to

recognize different aspects of the swarm communication.

Furthermore, we want to perform analysis on the swarm

performance of different swarm intelligence approaches as

indicated above.
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(a)

(b)

(c)

Fig. 13 Comparison of the R value and cumulative R value of the

influence graph of the swarm with dynamic topology. We show the

non-cumulative only for the F6 function because the result for the F6

function is similarly confusing and not used in any analysis. The

evolution of the cumulative R value for runs #1 and #2 diverges at a

certain iteration
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