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Abstract The scalability of the system is of vital

importance in the design of social networks. This research

attempts to establish a comprehensive framework for ana-

lysis and validation of requirements and design documents

for software systems. In previous work, we applied this

framework to analyze the requirements of a social network

of agents with respect to scalability of the system. In our

approach, system requirements were expressed using sce-

nario-based specifications. Scenarios are appealing because

of their expressive power and simplicity. Moreover, due to

the clear and concise notation of scenarios, they can be

used to analyze the system requirements for general

validity, lack of deadlock, and existence of emergent

behavior. In this paper a methodology is presented to for-

mally verify that certain scenarios do not emerge in the

system’s behavior. This methodology is devised to indicate

whether or not the new requirements of the system are

consistent with the current requirements in place. A larger

prototype of a social network of MSA for semantic search

is utilized to illustrate the developed methodology.

Keywords Software requirements engineering � Software
verification tool � Ontology � Domain knowledge �
Scalability of social networks � Formal verification �
Scenario-based software engineering � Emergent behavior �
Multi-agent systems

1 Introduction

Modifying the scale of software applications is in general a

non-trivial endeavor especially in social networks due to

their rapid growth. As a social network increase in size, the

need for additional functionality becomes evident. There-

fore, these systems face a serious scalability challenge due

to their lack of central control as well as their rapid growth

which results in increased complexity of the system. To

avoid introducing bugs into the system, it is highly bene-

ficial to ensure the correctness and integrity of the system

will be preserved after scaling. Research suggests that

detection of failures and removal of faults during field use

of a system is about 20 times more expensive than detec-

tion and removal in the requirement and design phase

(Goldenson and Gibson 2003).

Due to the integrated nature of social networks, it can be

challenging to gather comprehensive and correct require-

ments for these software systems. Scenario-based specifi-

cation is an effective and efficient way to describe the

behavior of a variety of software systems such as multi-

agent systems and distributed systems. Scenarios enable

engineers and designers to describe system’s functionality

using the partial interactions of the system elements. There

are several advantages of using scenarios such as
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expressive power and simplicity. In Moshirpour et al.

(2013) we demonstrated that scenario-based software

engineering (SBSE) can be used to effectively represent the

requirements of social networks. Furthermore, in Moshir-

pour et al. (2013) we used the methodology devised in this

research to analyze the scalability of social networks.

There are two main ways of representing scenarios,

namely, sequence diagrams (SD) developed by the object

management group (OMG) (Unified Modeling Language

Specification. version 2 2006) and message sequence charts

(MSC) which were developed by the International Telecom-

munications Union (ITU) (‘‘ITU: message sequence charts.

Recommendation, International Telecommunication Union’’

1992). In this research MSCs are used to represent scenarios.

In Moshirpour et al. (2013) a methodology to analyze

the requirements of social networks, expressed using

scenarios, to detect emergent behavior was introduced.

Emergent behavior, also known as implied scenario is a

specification of behavior that is in the synthesized model

of the system but is not explicitly specified in the set of

scenarios (Casual Closure for MSC Languages 2005; Alur

et al. 2003; Muccini 2003; Uchitel et al. 2002). This

usually happens when several autonomous components

need to handle a joint task as a group in a shared envi-

ronment where control is also distributed. Although

emergent behavior is not always unwanted, it is extremely

useful for system designers and engineers to be aware of

its existence.

In this paper, the methodology presented in (Moshirpour

et al. 2013a, b) is extended to formally verify that certain

scenarios do not emerge in the system’s behavior after

applying the changes in system requirements. To illustrate

this methodology, it is applied to the extended case study

of semantic search engine which is a social network of

multi-agent systems. Furthermore, this paper introduces a

software verification tool which was developed based on

the devised methodology in this research.

The structure of this paper is as follows: in Sect. 2 some

background on the scalability of social networks as well as

the time management amongst the nodes of such systems is

presented. Section 3 contains the case study of the social

networks of multi-agent systems (MAS). The verification

methodology is demonstrated in Sect. 4. In Sect. 5 the

software verification tool is introduced and conclusions and

future work are presented in Sect. 6.

2 Background

Some background knowledge with regard to scalability of

social networks as well as the tie management amongst

nodes in social networks is provided in this section.

2.1 Agent

The concept of agent has many different definitions.

According to Tianfield, an agent can be defined as: ‘‘An

autonomous entity package of a set of capable computa-

tional entities, three of which (for internal scheduling,

problem solving and communication routing) are norma-

tive and others are optional’’ (Moshirpour et al. 2010).

2.2 Multi-agent system (MAS)

MAS can be defined as: ‘‘a loosely coupled network of

problem solvers (agents) that interact to solve problems

which are beyond the individual capabilities or knowledge of

each problem solver’’ (Mousavi 2009). AMAS is therefore a

collection of heterogeneous agents, each of which with its

own problem solving strategy that is able to interact and

coordinate with each other (Mousavi and Far 2008).

When an agent is implemented in a MAS, it interoper-

ates with other agents; therefore the architecture of the

agent must be able to distinguish between its own internal

data Datown and the internal data of other agents Datother

it communicates with (Daconta et al. 2003). At the same

time, they must be able to understand each other even if

they use different knowledge representations.

2.3 Ontology

Ontologies are used in artificial intelligence, knowledge

engineering, education, e-commerce, and semantic web,

etc. There are several definitions of ontology, but we will

use the definition stated by Daconta in (Daconta et al.

2003) as it is more relevant to our work, ‘‘Ontology defines

the common words and concepts (meanings) used to

describe and represent an area of knowledge, and so stan-

dardizes the meanings. Ontologies are used by people,

databases, and applications that need to share domain

information (a domain is just a specific subject area or area

of knowledge, like medicine, counterterrorism, imagery,

automobile repair, etc.) Ontologies include computer

usable definitions of basic concepts in the domain and the

relationships among them.’’

Daconta classifies ontologies according to their richness

into four groups as presented in Fig. 1. The lower ontolo-

gies have weaker semantics and the upper ones have

stronger semantics.

If two agents use the same ontology or are able to

understand each other’s ontology, communication between

them is possible. However, this is rare. In this case they

need a mechanism to understand each other. In this paper,

we illustrate how a single learner agent can learn new

concepts from different teacher agents.
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2.4 Agent communication

In order to let heterogeneous agents communicate with

each other, a communication and a contents language are

needed. The communication language, commonly known

as Agent Communication Language (ACL), includes sev-

eral constructs to help agents find each other and exchange

messages. There are a number of ACLs specified in the

IEEE FIPA (http://www.fiba.org) specifications. The con-

tents language, on the other hand, handles the message

contents and lets the sender and receiver break down the

message to interpretable tokens. Some of the tokens are

operands (i.e., concepts) and some are operators (i.e., how

to manipulate concepts). Interpretation of the operands

requires an ontology to assign the same meaning to the

operands on the sender and receiver side.

2.5 Scalability of social networks

A simple paradigm to avoid the scalability challenge in

social networks is with a fully distributed architecture of

the network. It is not always possible to achieve this par-

adigm due to resource scarcity. There is always a tradeoff

between functionality and future scalability.

There are several recent works in the literature which

aim at solving the problem of social networks scalability.

In Pujol et al. (2010), the authors propose a system to

scale up a centralized social networks design without

undergoing a costly transition to a fully distributed sys-

tem. They take advantages of the structural properties of

social networks to propose their paradigm. They call it

one-hop replication (OHR). OHR utilizes some of struc-

tural characteristics of social networks. For instance most

of information is one-hop away, and the topology of the

network of connections among nodes displays a strong

community structure. This system is composed of two

components. The first component is the controller which

is responsible for assigning users to servers. The second

component is the middleware which ensures replication

consistency.

Social Partition and Replication (SPAR) is another

paradigm which is implemented in Pujol et al. (2010).

SPAR is a middleware that leverages the social graph

structure to achieve data locality and minimize replication

at the same time. SPAR constricts all relevant data for a

user on a server and guarantees that for all users’ direct

neighbors, data is co-located on the same server. In this

paradigm, scalability is achieved by adding commodity

servers with low memory and network I/O requirements.

On the other hand Loupasakis et al. (2011) introduces a

decentralized scalable social network (eXO) to solve the

problem of centralization in order to face the scalability

challenge. eXO offers a fully decentralized social network

with the ability to efficiently index and search globally for

top-k users and content based on metadata information.

The architecture of eXO provides also content replication

as in P2P networks. eXO is based on distributed hashed

table and it adds methods on top of it for efficient indexing

and search and retrieval of users and content in the social

networks scenarios.

Fig. 1 The ontology spectrum

(Daconta et al. 2003)
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2.6 Managing the ties between nodes

The strength of a tie is affected by several factors.

Granovetter (1983) proposed four dimensions that may

affect tie strength: the duration of the relationship; the

intimacy between the two actors participating in the rela-

tionship; the intensity of their communication with each

other; and the reciprocal services they provide to each

other. In social networks of humans other factors such as

socioeconomic status, educational level, political affilia-

tion, race and gender are also considered to affect the

strength of ties (Lin et al. 1981).

Structural factors, such as network topology and infor-

mation about social circles, may affect the tie strength

(Burt 1995). The work in (Gilbert and Karahalios 2009)

suggests quantitative measures (variables) for tie strength

including intensity variable, days passed since the last

communication and duration. Another variable that may

affect the strength of the tie is the neighborhood overlap

variable (Onnela et al. 2007) which refers to the number of

common friends the two actors have. The work in Petroczi

et al. (2007) introduced mutual confidence between the

actors of social networks. In El-Sherif et al. (2011) we

propose a new methodology to calculate the strength of ties

between agents in a social network using Hidden Markov

Models (HMM) (Cappé et al. 2007).

We showed that tie strength depends on several factors:

closeness factor, by measuring how close two agents are to

each other (i.e., the degree of similarity between the two

ontologies used by the two agents participating in the

relationship); time-related factor, combines all time factors

that affect the strength of the relationship (e.g., duration of

the relationship, frequency of communication between the

two agents, time passed since the last communication);

mutual confidence factor, clarifying the nature of the

relationship under measure, if it is a one-sided relationship

or a mutual relationship. Then we built an HMM model to

measure the strengths of ties between agents in a social

network using those factors.

3 Case study: semantic search engine

A model for semantic search was presented in Moshirpour

et al. (2013). This model utilizes a spiral workflow to

incorporate both search and concept learning in the

semantic search process (Far et al. 2009). The spiral

workflow and its suggested scenario are shown in Fig. 1.

Semantic search depends on understanding the meaning

of the concepts used in the context of other words. Thus, it

then tries to retrieve the related documents to these con-

cepts. The foundation of semantic search is the semantic

interoperability which is the main ingredient for notation

extraction from the search phrase. Utilizing social networks

in this system provides great flexibility; in particular, when

dealing with concepts in ontologies. It allows MAS to

understand the meaning of the same concept even though

its definition might be slightly different in each agent’s

ontology.

In our framework proposed in Moshirpour et al. (2013),

we assume that in a society of n multi-agent systems;

MAS1, MAS2, …, MASn, each multi-agent system, MASi,

controls a repository Ri. Each repository uses an ontology

that consists of a set of concepts and some documents to

represent examples of these concepts. The architecture of

our system is illustrated in Fig. 2. Each concept C in our

Fig. 2 Spiral workflow

between semantic search and

concept learning
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system possesses supporting examples. In addition, each

agent has its own ontology (Oi) to represent the concept C.

The key requirements for our proposed semantic search

system are given below:

1. Software agents from different MASs must be able to

communicate with each other and be able to exchange

information.

2. MASs must be responsible for organizing data in their

own repository by annotating documents in their local

repositories.

3. MASs must be able to reorganize their local reposi-

tories based on updates of concepts.

4. Agents from different MASs must be able to cooperate

with each other to learn and teach new concepts.

5. MASs should be able to hide the complexity of

learning process and semantic search from the user.

Figure 3 shows different agent roles in each MAS in our

prototype system (Moshirpour et al. 2013). In this system,

agents of different MASs are the nodes in a social network.

They connect with each other by a tie. These roles can be

defined as follows (Fig. 4):

• Query Handler This role involves accepting a search

query and processing it by extracting concepts from it.

Also it is responsible for broadcasting the query

statement to all the neighbor repositories.

• Concept Manager This role involves finding the new

concepts in the search query and broadcasting it to all

neighbor agents.

• Concept Learner This role involves maintaining and

confirming newly learnt concepts, including creation of

taxonomies of domain of interest. It is also responsible

for broadcasting these concepts to all group members to

teach the concepts to the local agent. Moreover, the

concept learner rearranges local repositories with the

newly learned concepts.

• Document Annotator This role involves annotating the

documents in the local repository and filtering them

according to the search keywords, then returning back

the filtered documents.

• Peer Finder This role involves detecting cooperative

peers (agents) that communicate with the current agent.

• Tie Manager This role involves keeping track of

common concepts between peers and the interactions

that occur between those peers in the learning process.

This allows the change of the strength of a tie between

peers dynamically. It is also responsible for setting the

initial strength of the relationship between agents.

Figure 5 is a flow diagram of the concept learning

process. The steps of this process are as follows:

• The concept learning process is initialized by an agent

in one MAS (learner in this case). The learner sends a

request to all MASs it is related to in a social network.

They become teachers in this case. The learning request

contains information available about the concept to be

Ontology

Documents

Ontology

Documents

Ontology

Documents

MAS1 MAS2
MASn

R1 RnR2

...
Fig. 3 Semantic search system architecture

Fig. 4 Agent roles within the semantic search engine Fig. 5 Flow diagram of tasks in the concept learning module
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learnt (e.g., its name, identifying keywords, annotation

information, etc.).

• Each teacher receives the learning request.

• Each teacher searches its local repository for the best

matching concept. In order to select the best matching

concept, each teacher calculates for each concept in its

local repository the value of sim(qspec, Cbest) which is

the ratio between number of examples that satisfy the

search keywords and total number of examples that

represent each concept. The best matching concept is

the one with the highest value for sim(qspec, Cbest).

sim qspec;Cbest

� �
¼ MAX8i

� number of examples satisfy search keywords in concept Ci

total number of examples for conceptCi

• After finding the best matching concept, each teacher

agent selects some positive (?ve) and negative (-ve)

examples to represent this concept.

• The teachers send their example sets to the learner

agent.

• The learner collects all example sets from all teachers.

• The learner tries to detect if there are any conflicts

between the examples. By conflicts we mean that some

examples are considered as positive examples by some

teachers while at the same time being considered as

negative examples by other teachers. In order to resolve

this conflict, the learner sends another request to all

teachers to vote against examples of conflict (i.e.,

decide if those examples are positive or negative

examples according to their ontologies).

• All teachers vote against the examples of conflict.

• All teachers send the votes back to the learner.

• The learner collects all votes and resolves the detected

conflicts.

• After resolving all conflicts, the learner uses the

positive and negative example sets to learn the new

concept.

• The learner updates its local repository by adding the

newly learnt concept to its proper location in the

ontology.

• The learner updates the strengths of all ties between it

and all teachers based on the interactions occurred

between them during the learning and the closeness

between their ontologies.

Here we need to explore the concept learning process

from the perspective of a learner. We explore the initiali-

zation of the learning process, the main steps in learning

new concept from other agents and updating strength of

ties between the learner and teachers.

We need also to apply the factors that affect tie strength

in a normal social network as describe earlier in Sect. 2.6

of this paper. For the closeness factor, we can measure the

closeness between the multi-agent systems by measuring

similarity between their ontologies. The intensity variable

can be represented in our system by the number of mes-

sages traded between two agents and how many concepts

are learnt from each other which brings their ontologies

closer to each other.

The dependency factor can indicate how much agents

still depend on each other in learning new concepts or

searching for keywords. The neighborhood overlap can be

reflected as the overlap of neighborhood circles (i.e.,

number of common neighbors) of two agents. In most

social networks, the relationship between members is

asymmetric. That means the strength of ties is not neces-

sarily equal in both directions. The same consideration is

valid in our system.

The system is initialized by a user sending a query

statement to one MAS in our system. The query handler

tokenizes this statement to detect concepts and it cooper-

ates with other agents to figure out if there are any new

concepts to be learnt. The concept learning process is ini-

tialized when new concepts are identified. It is achieved by

concept learner agent as indicated in Fig. 6.

The concept learning process itself is described in

Fig. 7. This figure shows interaction done by the leaner and

one teacher (B) only. This process is repeated for all

detected peers.

As the system is developed further, the strengths of ties

between the learner and all peers need to be updated. It is

assumed that the strength of ties between each two nodes in

the network (i.e., each MAS) depends on the following

criteria (see Fig. 8):

(a) Number of times they have been able to successfully

cooperate (frequency of interactions).

(b) Number of peers they have in common.

(c) Closeness between ontologies.

Figure 9 shows undesired behavior, where the strength

of tie between the learner and a teacher (peer D) is too low

that the learner cannot depend on that teacher to learn new

concepts. Although, the learner did not validate the

strength of the tie and send a learning request to that

teacher.

4 Verification methodology

By modifying the functionality of the social network of

MAS, it is highly desirable to verify the system’s behavior.

The methodology to detect emergent behavior in the

requirements of this system was presented in Moshirpour

et al. (2013a, b). A solution to verify the system against

particular unwanted behavior, such as the one depicted in

Fig. 9 is presented in this section.
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This solution takes two different sets of scenarios which

are expressed using MSCs as follows:

A. A set of MSCs containing scenarios describing the

system’s behavior (Figs. 6, 7, 8)

B. A set of illegal scenarios which are undesirable to

occur (Fig. 9)

By having these two sets of scenarios this methodology

verifies whether or not scenarios in set B can be derived

from scenarios of set A. In other words this methodology

ensures that system’s behavior does not contain scenarios

from set B. This methodology is divided into two parts of

constructing the behavioral model (Moshirpour 2011;

Moshirpour et al. 2010) and ensuring the lack of invalid

scenarios in the built models, as presented in the following

subsections.

4.1 Behavior modeling

The model which describes the behavior of each system

component (i.e., node for social networks) is usually called

a behavioral model, and the procedure of building the

behavioral model from a scenario-based specification, is

called synthesis of behavioral models, or simply, behavior

modeling (Moshirpour 2011; Moshirpour et al. 2010). State

machines are commonly used to represent behavioral

Fig. 6 The initialization of

concept learning process based

on search query entered by a

user

Fig. 7 Steps of concept learner

process
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models (Harel and Kugler 2002; Kruger et al. 1999;

Makinen and Systa 2001; Uchitel et al. 2003; Whittle and

Schumann 2000, 2006). In the synthesis process, one state

machine will be built for each node. The state machine

includes all the interactions of a particular node based on

the messages that it receives or sends. Theoretically, the

behavior of the network can be described by the union

(parallel execution) of all the state machines of the indi-

vidual nodes. The behavior model for the initial tie-man-

agement mechanism, shown in MSCs 1 and 2 is depicted in

Fig. 10 (Moshirpour et al. 2013).

To verify that the system’s integrity is preserved after

adding the new functionalities, the new behavior model for

the system is constructed as shown in Fig. 11.

4.2 Domain knowledge

After synthesis of behavior models for each system com-

ponent, the state values for the models are to be calculated.

To do this, an invariant property of the system called

semantic causality is used:

Fig. 8 Updating strengths of

ties between a learner and one

of the teachers (Peer B)

Fig. 9 Undesired behavior of

concept learning system

V(qm2
1)

1

1V(qm2
2)

V(qm1
1) 1

New Peer 
Detected(B)

V(qm1
2)

Can’t 
Cooperate

Maintain Tie 
(Decrease)

New Peer 
Detected(B)

Mutual Peer 
Exists(C)

Maintain Tie 
(increase)

Fig. 10 The union of state machines built from MSCs 1 and 2
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Definition 1 (semantic causality) A message mji½j� is a

semantical cause for message mji½k� and is denoted by

mji½j�!
se

mji½k�, if component i has to keep the result of the

operation of mji½j� in order to perform mji½k�.

As semantic causality is an invariant property of the

system and is part of the system’s architecture and the

domain knowledge, it is independent of the choices made

by the domain experts. In other words, we let the current

state of the component to be defined by the messages that

the component needs in order to perform the messages that

come after its current states.

Following the definition of semantic causality, the

domain theory of the system is constructed as follows:

Definition 2 (domain theory) The domain theory Di for a

set of MSCs M and component i 2 P is defined such that

for all m 2 M, if mji j½ �!se mji k½ � then ðmji j½ �;mji k½ �Þ 2 Di.

This solution provides an automated approach to build

the domain knowledge for the system using an ontology-

based approach as presented in detail in Khurshid et al.

(2013) and Moshirpour et al. (2013). The ontology consists

of the static and dynamic views (Khurshid et al. 2013;

Moshirpour et al. 2013). The static view of ontology is

much like a tree structure, where the elements are com-

ponents of the system and are related to each other in this

ontology based on their hierarchy within the system. The

dynamic view of ontology represents the interactions

between system components. This view describes the

aspects of the system which can change with time. Fig-

ure 12 depicts the dynamic view of the ontology for the

social network of MAS, which has been constructed using

a deterministic finite state automaton.

The states of this automaton are the categories which

were established in the static view of the ontology. Both the

static and dynamic ontology of the system are constructed

automatically using the system scenarios and are used in the

automatic extraction of the domain knowledge of the sys-

tem (Khurshid et al. 2013; Moshirpour et al. 2013).

All required systemknowledge should be present in the full

set of MSCs. Thus, for each MSC i in MSCs, we find a non-

mutually exclusive partial set of knowledge. For each com-

ponent c in i,we consider addingc under the ‘‘System’’ node in

the static ontology. If a similar node d exists under ‘‘System’’,

we refrain fromadding c to the ontology.Otherwise, we add c.

This algorithm assumes two things:

1. All knowledge in the system is present as components

in the full set of MSCs; and

2. Any knowledge hierarchy within the system is irrelevant.

To gather knowledge about the behavior of the system,

we use the knowledge present in the static ontology, as

well as the MSCs. There are three steps to this technique:

1. Add states,

2. Determine next-state relationships, and

3. Determine finality.

Step 1—add states For each node n in the static ontology

under the ‘‘System’’ node, add a state s to the dynamic

ontology.

Step 2—determine next state For a message m in MSC i,

we note f as the component from which m originates from,

and t as the component to which m is sent. Find the state s0

that relates to f, and the state s00 that relates to t. We will

now consider choosing s00 as a next state to s0. If s00 is

already a next state to s0, do not add s00 to s0 as a next state.
Otherwise, add s00 as a next state to s0. Repeat this process
for all messages m in all MSC i in the full set of MSCs.

V(qm2
1)

1

1V(qm2
2)

V(qm1
1) 1

New Peer 
Detected(B)

V(qm1
2)

Can’t 
Cooperate

Maintain Tie 
(Decrease)

New Peer 
Detected(B)

Mutual Peer 
Exists(C)

Maintain Tie 
(increase)

V(qm3
1) V(qm3

2) 1
New Peer 

Detected(B)
Get Contact 
Frequency

Maintain Tie 
(Decrease)

Fig. 11 Behavior model of the system after scaling

State1 User Interface Query Handler Concept Manager

Concept Learner Knowledgebase Peer Finder Tie Manager

Peer B
Fig. 12 Dynamic ontology of

the system
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Step 3—finality For every state s in the dynamic ontol-

ogy, if the state has no next-states, then mark it as final

state. If the state is not a next state to any state, then mark it

as initial state. The final dynamic ontology generated by

Emergent Behavior Detection Tool (EBD) is shown in

Fig. 12.

4.3 Detection of emergent behavior

Implied scenarios or emergent behavior appear when there

is a state, in which the component becomes confused as to

what course of action to take. This happens when identical

states exist in the union of FSMs obtained through

behavioral modeling. A definition for identical states is

needed for detection of emergent behavior. To achieve this

we must first have a clear procedure to assign values to the

states of the eFSMs. This is a very important step and is

performed differently in various works. For instance

Whittle and Schumann (2000) proposes the assignment of

global variables to the states of eFSMs by the system

engineers. However, the outcome of this approach is not

always consistent as the global variables chosen by dif-

ferent system engineers may vary. Therefore, to achieve

consistency in assigning state values, the approaches of

Moshirpour et al. (2010) and Mousavi (2009) which make

use of an invariant property of the system called semantic

causality is followed.

By making use of semantic causality (Definition 1), the

state values can be calculated as follows:

Definition 2 (state value) The state value vijðqm
k Þ for the

state qm
k in eFSM Am

i ¼ Sm; Rm; dm; qm
0 ; qm

f

� �
is a word

over the alphabet RiU f1g such that vij qm
f

� �
¼ mji½f � 1�,

and for 0\ k\ f is defined as follows:

1. vijðqm
k Þ ¼ mji½k � 1�vijðqm

j Þ, if there exist some j and l

such that j is the maximum index that

mji j � 1½ �!se mji l½ �; 0\j\k; k � l\f

2. vijðqm
k Þ ¼ mji½k � 1� if case (i) does not hold but

mji½k � 1�!se mji½l�, for some k B l\ f

3. vijðqm
k Þ ¼ 1, if none of the above cases hold.

By calculating all state values, equivalent states are

merged as shown in Fig. 13 (Moshirpour et al. 2013).

As it is shown in Fig. 9, state S1 is where the tie

manager of MAS_A falls into confusion. That is, as it is

illustrated in MSC3 (Fig. 6), TM will not be able to

distinguish whether or not it should increase the tie with

MAS_B or decrease it. Therefore, as a result of the

systematic approach in detecting emergent behavior in

MAS, the system engineers is notified of such possible

scenarios and is able to make modifications where

necessary.

Upon the identification of cases of emergent behavior, a

new set C is constructed to contain their related behavioral

models. Therefore, if a behavior model built based on

scenarios in set B does not match a behavioral model in set

C, it is verified that the system will not contain that par-

ticular illegal scenario. Conversely, if a behavior model

constructed based on the scenarios of set B is equal to the

behavioral model in set C, the verification has failed. By

comparing the FSM in Fig. 13 with the behavior model

constructed from set B it becomes evident that the illegal

scenario of set B can potentially emerge from the scenarios

of set A.

5 Software analysis tool

In order to enable the efficient and effective use of this

methodology in real world projects, it needs to be auto-

mated in a software package. In this section, the analysis of

system requirements using such a tool is presented.

The user can start the analysis by making a project and

importing their MSCs. Currently, the Visio version of

S1S0 Sf
New Peer

Detected (B) S2
Mutual Peer
Exists (C)

Maintain Tie
(increase)

SfS3Can’t Cooperate
Maintain Tie
(Decrease)

Get Contact Frequency

Fig. 13 Resulted FSM after merging identical states Fig. 14 Create Project Window for EBD
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EBD, supports all Visio programs up to and including the

Office 365 version. The user can choose to import system

ontologies or to simply have EBD auto-generate them as

shown in Fig. 14. Upon importing the MSCs, the user can

browse through them or change them in them as desired in

the EBD window Fig. 15.

As can be seen from the snapshot of the tool’s graphical

user interface, upon importing a design project from

Microsoft Visio, the data boxes of the GUI are populated

automatically with data. By clicking any of the imported

MSCs, the components of that MSC will be shown in the

Component subsection of the GUI and the actual MSC will

be shown in the Selected Diagram area.

Consequently, by selecting a component, the messages

associated with that component will be shown in the

Message subsection of the GUI. The synthesis of the

behavior model, explained in Sect. 4 of this paper is con-

ducted immediately upon importing related MSCs. The

result of the built FSMs is shown in the Constructed FSMs

subsection of the GUI. By clicking on the title of any of the

FSMs the constructed figure will be shown in the selected

diagram area as shown in Fig. 15.

EBD generates two types of system ontologies namely

static and dynamic ontology. The static view of ontology is

much like a tree structure, where the elements are com-

ponents of the system and are related to each other in this

ontology based on their hierarchy within the system. The

static ontology here is used to generate knowledge about

the system (Fig. 16). At this point, by clicking the validate

design button, the methodology commences. Upon com-

pletion of the analysis, the user will be presented with a

report outlining the areas in which unwanted behavior

could occur.

The results of this analysis are then presented to the user

in a detailed report outlining all possible areas of emergent

behavior.

6 Conclusions and future work

Research suggests that detection of failures and removal of

faults during field use of a system is about 20 times more

expensive than detection and removal in the requirement

and design phase (Goldenson and Gibson 2003). Unfortu-

nately, manual review of the design documents may not

efficiently detect all the design flaws due to the scale and

complexity of the system. Therefore, devising an auto-

mated and systematic methodology to analyze system

requirements is greatly beneficial.

In the work presented in Moshirpour et al. (2013), a

method to identify the exact cause of implied scenarios

is provided, so that by capturing it, implied scenarios

can be detected and removed. This method is novel in

the sense of formalization of the cause of implied sce-

narios. This research indicates that this is the main

reason for some shortcomings and conflicts in the current

works, as they have been revealed in Mousavi (2009)

Fig. 15 Screenshot of the tool’s

user interface; displaying an

imported MSC

Fig. 16 Screenshot of the tool’s user interface; displaying the static

structure of the system
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and Mousavi and Far (2008). In Moshirpour et al. (2013)

we demonstrated our devised method to detect and

remove design flaws that may lead to emergent behav-

iors in social networks.

In this paper, the methodology presented in Moshirpour

et al. (2013a, b) is extended to verify the lack of existence

of particular illegal scenarios in the system. This goes a

long way towards ensuring the correctness and integrity of

the design of social networks after applying the changes

in system requirements. These techniques were illustrated

using a prototype of a social network of multi-agent

systems for semantic search. Due to the lack of central

control in social networks, the requirement gathering and

design of such systems can be difficult. Thus, the pre-

sented methodologies can be used to systematically vali-

date the requirements of social networks in terms of

scalability. Furthermore, this paper introduces a software

tool which was developed based on the devised

methodology.

In this research the requirements of social networks

were analyzed with a component level perspective. For

future work, the requirements of these systems can be

analyzed with a system-level outlook. Furthermore, since

emergent behavior is not necessarily a negative quality of

the system, the presented methodologies can be utilized to

discover implied scenarios which do not cause problems

for the system.
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