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Abstract The social influence of people on their peers in

the selection of products and services is frequently mod-

eled as a diffusion process. Recently, such processes have

been successfully applied as a tool for predicting customer

turnover, or churn, in mobile communication carriers.

These predictions are most accurate when specific social

ties are used in the diffusion process, and are primarily

useful when they provide a long forecast horizon, so as to

enable a service provider to take mitigating actions. Here,

we investigate several measures of social affinity and

compare their performances for churn prediction, using

data from two large mobile phone carriers. Our analysis

demonstrates that the various measures of social ties cap-

ture different calling and texting patterns, and that a sig-

nificant improvement in the accuracy of prediction is

reached by combining them. We study the predictive

horizon of diffusion processes and show that it deteriorates

significantly as the horizon increases. Our findings under-

line the usefulness of diffusion processes for enhancing

churn prediction while providing insights to their

limitations.

Keywords Churn prediction � Diffusion processes �
Telco � Social networks

1 Introduction

Over the past few decades, telecommunication, and espe-

cially mobile telecommunication, has become a dominant

communication medium. Many countries report over

100 % saturation of the telecom market, indicating the

importance customers assign to this form of communica-

tion. Public regulators and standardization bodies have

made the telecom market highly competitive, by enabling

customers to easily move from one telecommunication

provider to another. Such transitions are known as churn.

Throughout this paper, we refer to the transition from one

carrier to another as churn.

Churn is one of the most costly items affecting a tele-

com carrier’s bottom line as it decreases revenue. Addi-

tionally, a carrier’s investment in winning a new customer

is far greater than the cost of preserving an existing one

(Hadden et al. 2007). In many cases, churn can be lessened

by offering customers incentives to remain customers of

the existing carrier. Therefore, salient reasons exist for

predicting which customers are likely to churn in the near

future as a means to try and prevent their churn.

In addition to identify likely churners, a good churn

prediction system should provide a sufficiently long hori-

zon forecast in its predictions. First, a long forecast horizon

is required to enable the customer care department to

approach a customer and make a retention offer. Second, a

long forecast horizon is advantageous in that the further

away a customer is from actually making the churn deci-

sion, the easier it is to prevent that decision at a signifi-

cantly lower cost.

Most churn prediction systems (see for example,

Coussement and Van den Poel 2008; Datta et al. 2000;

Gopal and Meher 2008; Pendharkar 2009; Song et al. 2006;

Neslin et al. 2006; Idris et al. 2012; Huang et al. 2012; Lu
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et al. 2012; Jadhav and Pawar 2011) consider each cus-

tomer individually. The goal of these systems is to predict

which customers are likely to churn in the immediate

future, usually defined as between 1 and 3 months. Such

systems rely on hundreds of complex key performance

indicators (KPIs) that are generated for each customer from

their call attributes, financial attributes, and service infor-

mation-all evaluated over long periods (many months and

years). These KPIs then serve as input to a statistical

regression model, usually a logistic regression variant, that

outputs a churn score. This approach has one major

drawback in that it relies on the assumption that a churning

customer changes some attributes (calling patterns or

otherwise) prior to switching carriers. While this may be

true in some cases, certainly many scenarios occur in

which these assumptions are violated. For example, cus-

tomers who have come to believe that they have found a

better deal with a competitor may churn immediately.

The dominant approach to churn prediction focuses

exclusively on the individual customer without taking

social influence into account. Clearly, churn entails many

social aspects, as witnessed in other consumer areas (Doyle

and Barn 2007; Yang et al. 2007). A dominant example is

when a churning customer influences other customers to

churn as well. Thus, developing churn prediction systems

that take social aspects into account poses an emerging

theoretical challenge with potentially great practical

implications.

Several works (e.g., Kawale et al. 2009; Birke 2006;

Dasgupta et al. 2008; Peres et al. 2010; Dierkes et al. 2011)

have started exploring the possibility of using social ties to

predict churn. The dominant approach in this direction is

known as diffusion. The underlying assumptions of diffu-

sion are that recent churners are known and that they are

likely to affect the churning decisions of their social

neighborhoods. To predict churn, the network of sub-

scribers is modeled as a weighted directed graph on which

nodes represent the customers, and weights on the edges

correspond to the strength of the social connections

between them. Next, a diffusion process is used to model

the flow of information from recent churners to their social

environment. Specifically, each node in the network that

corresponds to a recent churner is assigned an initial

numerical value, termed energy. A decaying diffusion

process propagates this energy across the global network

until convergence. At that point, each subscriber in the

network has some associated energy corresponding to the

amount of churning information or influence that has been

assigned to him. The individual churn scores are then

derived directly from these energies (Dasgupta et al. 2008).

In addition to churn prediction, diffusion processes play

central roles in the study of various fields in marketing and

social network analysis. These include the study of the

spread of innovation, viral marketing, and more (Ma et al.

2008; Wang et al. 2010; Karnstedt et al. 2010; Iyengar

et al. 2011; Gruhl et al. 2004). A recent survey of this

literature can be found at Peres et al. (2010) and a pio-

neering study of graph theoretic problems that stem from

some of these applications can be found in Kempe et al.

(2003). We believe that understanding the properties of

diffusion-based models can enhance the research on these

topics as well.

As noted above, the basic assumption underlying dif-

fusion is that friends who churn affect ones’ churn pro-

pensity. Recently, Nitzan and Libai (2010) showed that

exposure to a churning customer increases the likelihood of

churn by 80 % (after controlling for homophily, i.e., user

similarity). Interestingly, this study also demonstrated that

two-thirds of customers who churn do not have an imme-

diate churning acquaintance, defined as a person called by

the churner. This means that diffusion can explain the

churn of at least 33 % of the churning population, which is

a significant social effect.

Two technical factors influence the performance of

diffusion: the way in which the strength of a connection

between customers is estimated, and the specific algorithm

used to diffuse energy across the graph.

Most papers to date, which we are aware of, modeled the

connection strength between customers using the number of

minutes of calls between subscribers, normalized by the total

number of calls made by a customer (Dasgupta et al. 2008;

Kawale et al. 2009; Peres et al. 2010; Birke 2006). This has

an obvious advantage in that it is easy to measure and is easy

to justify as a measure of the strength of relationships.

Adamic and Adar (2001) suggested that a more informative

measure is to count the number of shared friends every pair

of customers have between them. Richter et al. (2010)

modified this measure by normalizing it to the total number

of subscribers called, through the use of point-wise mutual

information. However, to the best of our knowledge, no

study has shown a rigorous comparison of the effect of these

measures on the accuracy of the diffusion process.

Our goal in this paper is to investigate three important

aspects of diffusion-based algorithms for churn prediction.

First, we study the effective predictive horizon of diffusion

algorithms, which is of major importance to the applica-

bility of these algorithms to realistic business problems.

We demonstrate that diffusion algorithms can provide

impressive churn prediction capabilities, though only for a

limited horizon. For longer prediction horizons, we show

that a significant deterioration in performance occurs.

Second, we compare different methods of estimating the

connection strength between users, and show that some

methods have significantly better performance than others.

Finally, we show that combining results from diffusion

processes based on different types of connection strength
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measures improves the accuracy of prediction. Specifically,

in one of the carriers, this method yielded an average of

50 % improvement compared to the standard baseline

measure. These findings can guide telecommunication

carriers who wish to implement diffusion algorithms, and

have important insights into human behavior.

2 Diffusion processes for churn prediction

2.1 Description of the diffusion process

The diffusion process we studied is based on Dasgupta

et al. (2008). We describe it in detail in this section (see

also Algorithm 1). The diffusion process starts with the

construction of a call graph and a seed. The call graph is

a directed graph in which each node corresponds to a

subscriber in the network and the weight on each

directed edge reflects the strength of connection between

the caller (head of edge) and the callee (tail of edge).

The weight associated with each edge is based on call

data, such as the total number of calls or the total

duration of calls over a period of time. The seed is a list

of subscribers who are known to have churned during a

predefined period of time, typically a subset of the time

period that was used to construct the graph, e.g., the last

2 weeks, etc. Each such churner is assigned with an

initial positive energy and all other subscribers are

assigned with zero energy. Finally, a diffusion-like

process is initiated in the graph, where at each iteration,

nodes transfer a fraction of their energy to their outgoing

neighbors in the graph. The exact value depends linearly

on the weight associated with the edge and on a

spreading coefficient d 2 ð0; 1Þ that determines the

fraction of energy that can be given away. After the

stopping condition is met, each subscriber is associated

with a certain amount of energy, where higher values are

considered higher probability candidates for churning. In

the remainder of this paper, we use the implementation

of the diffusion algorithm as described in Dasgupta et al.

(2008) and according to additional details obtained from

personal communication with A. Nanavati. Note that

many variants of the above process are possible, e.g., a

non-uniform initialization of the churn energies.

2.2 Additional aspects of the diffusion process

The diffusion process described in Sect. 2.1 gives rise to

several natural questions that we attempt to investigate in

this work. These include the effect of the prediction hori-

zon, the effect of the used performance measure, and the

usage of enhancement techniques. We describe them in

detail in the next sections.

2.2.1 Predictive horizon

The predictive horizon is the period of time in the future for

which an algorithm can provide predictions. Churn predic-

tion is typically used as a means for customer preservation.

Since resources are limited, only a small fraction of the

population may be contacted by customer care service, with

the main goal being to reach the customers that are most

likely to churn, as early as possible. Therefore, the time

horizon plays a role in the efficiency of the obtained results.

An optimal predictor would provide long-term prediction so

as to be most effectively used to prevent churn by customers

at risk, a task which naturally requires time and effort on the

part of the telecommunication company. Previous work

(Nitzan and Libai 2010) demonstrated a degradation in

prediction accuracy over time when using a ‘‘word-of-

mouth’’ scenario, for a specific similarity measure and a

simple diffusion. Our goal is to ascertain whether the sharp

degradation is a general characterizer of diffusion processes

for churn prediction and whether it is affected by the choice

of relationship measure, addressed in the next section.

Algorithm 1 The diffusion algorithm of Dasgupta et al (2008)
1: Calculate Wi j, ∀i, j from calls data:

Wi j = # calls where i is the caller and j is the callee

2: Set initial energy for all subscribers as follows:

E0(i) =

⎧
⎪⎨

⎪⎩

c, if i ∈ seed (churner);

0, else;

3: repeat

4: Update E( j)∀ j by having each subscriber i in the graph transfers d · E(i) energy to its neighbors

according to the formula:
d·Wi j ·E(i)

∑k Wik

5: until maxi |Enew(i)−Eold(i)| < ε .
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2.2.2 Relationship measure

Most previous works used a social affinity measure that is

based on direct correspondence between two subscribers.

Several recent works demonstrated the usefulness of

alternative measures for various applications (for example,

Adamic and Adar 2001; Sarkar et al. 2010; Richter et al.

2010). Therefore, our second goal is to determine the effect

of the relationship measure (i.e., the corresponding edge

weight) on the accuracy of the algorithm with respect to

churn prediction. In this work, we compare four types of

measures:

• Calls measure The weight is proportional to the count

of calls between the caller and the callee. This is the

most common measure used in the context of diffusion,

and it provides similar results to measures that are

based on the number of minutes (normalized). Let vi

denote the calls vector of the ith caller, where vi½j� is the

number of times caller i called j. In the calls measure,

wij ¼ vi½j� (where wij denotes the weight of the edge

from i to j).

• Weighted number of shared neighbors measure: The

weight is proportional to the number of shared outgoing

neighbors (Adamic and Adar 2001) in the call graph,

weighted by the number of calls made to those

neighbors. The weighting was added to emphasize the

effect of frequently called subscribers, with whom a

caller is assumed to have stronger connections. Let vi

denote the calls vector of the i’th caller, where vi½k� is

the number of times caller i called k. In the shared

measure, wij ¼
P

kðvi½k� � vj½k�Þ. Note that contribution

to the sum is not zero only for callers k to whom both i

and j called.

• Social measure: This measure, defined in Richter et al.

(2010), measures the point-wise mutual information

between caller and callee, according to the number of

shared versus unshared outgoing neighbors, if and only

if the caller made at least one call to the callee. We

refer to this measure as social for two reasons. First, it

takes into account the fact that two subscribers talked to

each other. Second, when estimating connection

strength among linked subscribers, the social environ-

ment of the caller and callee is weighted such that a

much higher weight is given to cases where two

subscribers share a large proportion of their friends.

None of the other three measures shares both attributes.

Let vi denote the calls vector of the i’th caller, where

vi½k� is the number of times caller i called k. In the

social measure, wij ¼ 1½vi½j�[ 0� �MIðvi; vjÞ where 1½��
equals 1 when the condition in the brackets holds, and

MIðvi; vjÞ ¼ �Pi;j log2 Pi;j �Pi;^j log2 Pi;^j � P^i;j log2

P^i;j � P^i;^j log2 P^i;^j. Here, Pi;j ¼ sumkð1½vi½k�[ 0;

vj½k�[ 0�Þ, Pi;^j ¼ sumkð1½vi½k�[ 0; vj½k� ¼ 0�Þ, P^i;j ¼
sumkð1½vi½k� ¼ 0; vj½k�[ 0�Þ and P^i;^j ¼ sumkð1½vi½k�
¼ 0; vj½k� ¼ 0�Þ.

• Cosine of the angle between call vectors measure The

weight is proportional to the cosine between the two

vectors representing the calls that the caller and the

callee performed to all other nodes in the calls graph.

Cosine similarity is frequently used as a measure of

similarity between sparse entities, for example, in

information retrieval, and more recently in social

networks Crandall et al. (2008); Kossinets and Watts

(2009). Let vi denote the calls vector of the ith caller,

where vi½k� is the number of times caller i called k. In

the cosine measure, wij ¼ 1½vi½j�[ 0� vi�vj

vik k� vjk k where 1½��

equals 1 when the condition in the brackets holds and 0

otherwise , vi � vj is the dot product of vi; vj, and vkk k
denotes the Euclidean norm of vk.

Naturally, each measure will result in a different network

structure, such as in cases in which the measures are

asymmetric. Section 2.3 describes these measures in more

detail and addresses some of the differences in their

resulting network structure.

The four similarity measures require different compu-

tational complexities. Whereas the calls measure can be

built using a simple sparse matrix, computing the other

three measures requires second-order computations, and

are thus more expensive computationally.

2.2.3 Methods for performance enhancement

In many applications, using more features or sources of

information can increase model accuracy. In the current

study, a natural question is whether the accuracy of

diffusion processes can be enhanced by combining

scores from several sources. This question may also

have implications on other applications of marketing

and social networks. In this paper, we focus on the

possibility of combining different diffusion processes

and show that indeed such a combination can signifi-

cantly increase the performance of churn prediction

methods.

2.3 The interplay between the relationship measure

and the coverage

It is important to note that the graphs obtained by each of

the measures described above are different in structure (i.e.,

which nodes are connected through non-zero weighted

edges) as well as in the edge weights.

The call graph represents all the users who made or

received at least one call during the corresponding period.

Hence, it has the largest coverage among the studied
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relationship measures. Other measures invoke smaller graphs,

as we demonstrate using the following simple example: con-

sider a network of 5 nodes, numbered 1; 2; 3; 4; 5. Let vi½j�
denote the number of times caller i called j and consider the

following five vectors: v1 ¼ ½0; 100; 0; 0; 1�, v2 ¼ ½0; 0;
100; 0; 1�, v3 ¼ ½0; 0; 0; 100; 0� and both v4 and v5 are zero

vectors. In this example, callers 4 and 5 made no outgoing

calls, caller 1 called caller 2 100 times and caller 5 once. Caller

2 called caller 3 100 times and caller 5 once, and caller 3 called

caller 4 100 times. The call graph that corresponds to this data

is shown at the top of Fig. 1. By definition, in the calls mea-

sure, the weights are wij ¼ vi½j�. In this figure, large weights

are denoted by solid lines and small weights by dashed lines.

Let us now consider each of the measures that we study

on this call graph.

When constructing the social graph, we took into

account the social environment as well as the immediate

connections. The mutual information between two nodes

(A and B) takes into account the number of nodes that both

A and B called, the number of nodes that A called and B

did not, the number of nodes that B called and A did not,

and the number of nodes that neither called. The resulting

network appears in the middle of Fig. 1. Again, solid lines

represent large weights and dashed lines represent small

weights. The strength of the connection between nodes 1

and 2 is high because their social environment is non-

empty (node 5 is an outgoing neighbor of both). The other

weights are smaller, and although we keep a large fraction

of the edges, low valued edges are pruned in our imple-

mentation. Therefore, depending on the actual settings of

the algorithms, the resulting network may not retain con-

nections to nodes 3, 4, 5, or any subset of those.

Consider the network that is constructed from this data

using the weighted number of shared neighbors measure.

Formally, this measure is defined by the dot product between

call vectors above: wij ¼ vi � vj, if vi½j�[ 0 and zero other-

wise. The resulting network is shown at the bottom of Fig. 1.

As shown, it contains only one edge -the edge from node 1 to

node 2, because these are the only two nodes that have shared

outgoing neighbors and are connected.

Using a similar consideration, we can show that the

cosine network has the same structure as the shared one,

with different weights: wij ¼ vi � vj=ð vik k vj

�
�
�
�Þ. Specifi-

cally, with the shared number of connections, the link

between node 1 and node 2 would be rated as having a

strength of 1, which is the minimal strength value between

friends who share a connection. This is in compared to

cosine, where the strength is 0.0001 (on a range of [0,1]).

As will be demonstrated, even though the cosine and

shared networks have the same structure, the results in

terms of converged energy are different.

Table 1 summarizes the weights that corresponds to

each of the measures.

This small example demonstrates that even before run-

ning the diffusion algorithm, the choice of relationship

measure has a major effect on the network structure, and in

particular on the node coverage. While the calls measure

guarantees that all callers and callees are part of the net-

works, the social measure prunes a fraction of the smallest

edges resulting in a smaller network. The shared and cosine

measures networks might be significantly smaller in terms of

nodes and edges. As will be demonstrated this indeed hap-

pens and should be taken into account when choosing a

measure. Various modification of these two measures may be

attempted (e.g., adding some constant to the actual number of

mutual neighbors). We leave the study of such modifications

and their effects on the diffusion algorithm to future work.

3 Experiments

This section describes the experiments that we conducted

to check the hypotheses raised in the paper. We describe in

Table 1 Values of weights obtained by the various measures for the

networks of Fig. 1 Wij corresponds to the weights of the edge from i to

j.

Weight Calls Social Shared Cosine

W12 100 1.9219 1 0.0001

W23 100 1.5219 No edge No edge

W34 100 0.7219 No edge No edge

W15 1 0.7219 No edge No edge

W25 1 0.7219 No edge No edge

Calls graph

Shared/cosine graph

Social Graph

5

5

5

1

1

1

2

2

2

3

3

3

4

4

4

Fig. 1 The networks resulting from various relationship measures.

From top to bottom calls, social, shared neighbors, and cosine
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detail the data sets that were used as well as the methods

for results evaluation. We present the results of these

experiments in Sect. 4.

3.1 Data sets

We used call data from two telecommunication provid-

ers located in different countries. Each data set contains

the call data records (CDRs) of the provider, which is a

list of the calls made by subscribers of the provider.

Each record contains the number of the caller, number of

the callee, a time stamp of the call and its duration and

sometimes additional information. We only used the

tuple caller, callee, time stamp. For each carrier, we had

a list of churners and their corresponding churn dates.

We divided the data into 2-week periods, with an

overlap of 1 week between each pair of consecutive

periods. The seed (list of churners - nodes with positive

energy) is the set of churners who churned during the

2-week period according to the churn dates provided by

the operator. When predicting, day 1 refers to the first

day after the 2-week data. Unless otherwise noted, the

reported results are averaged over these time periods.

Note that each experiment utilizes 2 weeks of data to

predict from day 1 onwards, and is performed indepen-

dently of other experiments.

Following the discussion of Sect. 2.3, Table 2 summa-

rizes the average number of nodes in each graph (averaged

over time periods). Figure 2 shows a logarithmic histogram

of the undirected node degrees. The social graph contains

about 55 % of the nodes of one carrier and 79 % of the

Table 2 Nodes statistics for the two datasets, for the four similarity

measures

Measure Average number of

nodes

Average number of

targeted nodes

Carrier 1 Carrier 2 Carrier 1 Carrier 2

Calls 7,731K 8,572K 270K 306K

Social 4,325K 6,794K 246K 303K

Shared and cosine 1,581K 4,620K 211K 299K
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Fig. 2 Histogram of the number of edges for each carrier and each relationship measure. Isolated nodes (churners that made no calls in the

relevant time period, for example) are not taken into account. Note that the vertical axis is logarithmic
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second, and the shared and cosine graphs contain about

20 % of the nodes of one carrier and 54 % of the second.

As explained earlier, an option exists to disregard edges

below a certain threshold for the social graph (as in Richter

et al. 2010), which implies a tradeoff between the size and

accuracy that can result from different choices of this

threshold. A higher threshold (i.e., retaining only stronger

edges) decreases the size of the graph and leaves only

edges that represent stronger connections. We did not

explore the effects of the threshold parameter. The data

summarized in the table demonstrates that indeed different

measures yield different networks in terms of nodes and

edges.

Table 3 describes the fraction of the edges a! b in

which b churned in a small time period after a. The fraction

is taken over all the edges of the graph. We present the

fraction for each metric and for two time periods—up to

1 week and between 8–14 days.

In all relationship measures, we see that more nodes

with a small number of connections exist as compared to

nodes with a large number of connections. The decrease in

all relationship measures is rapid, and closely follow an

exponential decay fit (R2� 0:9 for both carriers on all).

Each carrier defines a subset of the subscribers that are

considered relevant for churn prediction. In the induced

network we refer to them as the set of targeted nodes.

These can be different segments of the population (private,

business, etc.) or based on customer value. Table 2 also

summarizes the average number of nodes that are targeted

by the carrier in each graph. Interestingly, the number of

targeted nodes is less affected by the choice of measure.

Finally, churn rates are 1 % per month for the first carrier,

and 0.4 % for the second carrier, which are considered

relatively low rates.

3.2 Evaluation of the results

Lift (Lima et al. 2009) is one of the most commonly used

performance measures for this type of application. For a

given fraction P, where 0\P� 1, the lift is defined as the

ratio between the number of churners among the fraction of

P subscribers that are ranked highest by the proposed

system, and the expected number of churners in a random

sample from the general subscribers pool of equal size. For

example, a lift of k at a fraction P ¼ 0:05 means that

among the 5 % of the subscribers that are the highest

ranked by the algorithm, k times as many churners exist

than in a random sample of the population.

The lift curve characterizes the performance of a given

churn prediction system. This curve plots as a function of

fraction of the population (0\P� 1) to the lift value

obtained for this fraction. In general, it is a monotonically

decreasing function, because the larger the fraction, the

more difficult it is to provide meaningful lift. By definition

for P ¼ 1, the lift is 1.

Typically, since carriers can only invest targeted efforts in

a small fraction of the population, the lift that corresponds to

the small fractions is more important to the carriers. In

practice, common working points range from 0.1 to 10 %.

4 Experimental results

We implemented the diffusion algorithm of Dasgupta et al.

(2008) using the IBM Parallel Machine Learning toolbox

(Toledano et al. 2008). The output of each run of the dif-

fusion algorithm is a list of nodes, along with their corre-

sponding level of energy (which we refer to as scores). Our

experiments compare the performance of the algorithm

over the entire population. In cases in which nodes did not

receive a score by a measure, we set this score to zero.

4.1 Effects of the predictive horizon

In this set of experiments, we studied the effect of the

predictive horizon on the quality of the results. We cal-

culated the lift for every period, for prediction horizons

varying between 5 and 90 days (at intervals of 5 days). In

all the experiments we conducted, on both carriers and on

all four measures, we see a clear deterioration of the pre-

dictive accuracy as the prediction horizon is increased. The

effect is more evident in smaller fractions of the popula-

tion. After approximately 30 days, the decrease is signifi-

cant (30–40 % is some cases) and beyond 60 days, the lift

values are almost constant.

Figures 3 and 4 plot the lift values of the first carrier for

working points of 1 and 5 % correspondingly. Figures 5

and 6 plot the lift values along with the best exponential fit

(solid line) of the form f ðxÞ ¼ Ae�a�x þ B, in which

A;B; a 2 R. These curves represent the lift on the entire

Table 3 Fraction of edges that connect churners who churned within

certain time differences

Measure Carrier 1 Carrier 2

1–7 days

(l)

8–14 days

(l)

1–7 days

(l)

8–14 days

(l)

Calls 3.9 0.55 8.42 2.7

Social 3.03 0.77 9.24 3.15

Shared &

Cosine

10.79 1.66 18.21 5.53

l ¼ 10�6
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population. Similar phenomena can be observed in both

carriers regardless of the fraction of the population. Table 4

presents the values obtained in the exponential fit for the

various measures. In this fit, the resulted decay parameters

are in the range [0.025, 0.047] and the fit is extremely high

(average R2 is 0.98). In the limit of infinite time horizon

(x!1), the theoretical value of the lift approaches 1.

Therefore, we expect the fit to also approach 1 for large

horizons. Probably due to the limited maximal horizon of

90 days, we did not reach that value, but we did reach a

close one (the mean value of B is 1.23). Results on the

second carrier are similar. We tested the difference in

performance among the four similarity measures for sta-

tistical significance using the Fisher paired test (Demšar

2006). The social measure was found to be statistically

significantly better than the other three measures. The null

hypothesis, namely, that the other 3 measures (calls,

cosine, and shared) have indistinguishable performance

could not be rejected at P = 0.05.

In Nitzan and Libai (2010), the authors showed that

the hazardous effect that churners have on their neigh-

bors decreases exponentially over time. Our results are

consistent with their findings and indicate that diffusion

is especially suited for short to medium prediction

horizons.

4.2 The effect of different relationship measures

As mentioned above, we tested several relationship mea-

sures on the same populations, time frames, and predictive
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horizons. This allowed us to estimate the contribution of

the measures directly, given that all other parameters were

equal.

Figure 7 shows the lift at the 1 % fraction of the

population as a function of the prediction horizon, for

the first carrier. As this figure demonstrates, up to

horizon of 40 days, the calls measure is outperformed by

the social, shared, and cosine measures, as well as some

combined measures to be discussed at the next section.

Table 6 quantifies these improvements, averaged over

several prediction horizons, and shows that the differ-

ences between the individual measures are often signif-

icant. Additionally significant, the social measure

outperforms the calls measure in both carriers. There-

fore, we deduce that the social measure is a good can-

didate for being the default measure of choice in diffu-

sion, while taking into account its larger computational

complexity. However, individual carriers may find that

other measures offer (sometimes greatly) superior per-

formance for their specific population

Table 4 Fitted parameters of the exponential fit

Measure Working point of 1 % Working point of 5 %

A B a A B a

Calls 3.4601 1.5739 0.0424 0.8958 0.9812 0.0306

Social 4.306 1.5542 0.0471 0.9559 0.9085 0.0344

Shared 4.1966 1.5400 0.0426 0.9571 0.8319 0.0297

Cosine 4.2088 1.5595 0.0378 0.9771 0.8977 0.0255
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4.3 Combining multiple diffusion scores

The previous section demonstrated that similarity measures

differ in performance. Therefore, we hypothesize that each

measure may be better at identifying a different set of

churners. Hence, in this section, we demonstrate that

combining multiple diffusion measures can improve the

quality of the results for churn prediction.

First, the Spearman correlation (Spearman 1904)

between the scores resulting from the different relationship

measures is shown in Table 5, for different fractions of the

population. The top 1 % refers to 1 % of the population

which received the highest averaged score across all

measures. Interestingly, for most pairs of measures, the

correlation coefficients that correspond to these top 1 % of

scores are small in their absolute values and differ in their

signs, while the correlation for the entire population is

somewhat higher and always positive. This suggests a large

disagreement between measures on the ranking of the most

likely churning subscribers, and a general agreement on the

scoring of less likely churn candidates. The only pairs that

have a high correlation are shared and the cosine. This is

not surprising, given that these measures are highly related

by definition, and they form the same network structure

(for a more detailed discussion, see Sect. 2.3).

We tested several classifiers for combining the four

similarity measures. The inputs to the classifiers were the

diffusion scores, and the classifiers tested were logistic

regression and regression tree. Since the regression tree

maps large fractions of the populations to the same score,

we also tried to smoothen the scores by adding to each tree

score the average over all measures. We term this the soft

decision tree. The classifiers were constructed for each

horizon using the first (training) period, and applied to the

test periods. For comparison, we also provide the lift

obtained by a simple averaging of the four diffusion scores.

The results of this analysis are shown in Fig. 7, which

depicts the lift values over time, and in Table 6, which

shows the average lift values, using the calls measure as the

baseline. As shown, the decision and regression trees offer

the best improvements in lift, obtaining results that are far

superior than the ones obtained for each measure sepa-

rately, with an improvement over the baseline of over 50 %

for the first carrier and around 18 % for the second. This

lends additional evidence to the finding that different

measures identify different churners, and that these can be

exploited through a learning algorithm. Our finding may

also hint that different measures identify subscribers who

churn for different social influences. This, however,

requires additional study.

Figure 8 shows the structure of the regression tree for

the working point of 20 days for the first carrier. The tree

was pruned to a depth of five levels to avoid over fitting.

All measures we tested appear in the tree. Interestingly, the

most indicative feature is the social measure, in which a

low social score indicates a lower propensity to churn

(which is further partitioned using the calls measure).

Table 5 Spearman correlation coefficient values

Carrier Carrier 1 Carrier 2

Top 1 % All scores Top 1 % All scores

Calls vs. social -0.054 0.572 -0.018 0.286

Calls vs. shared 0.283 0.586 0.077 0.494

Calls vs. cosine 0.302 0.576 0.075 0.452

Social vs. shared 0.151 0.666 0.061 0.412

Social vs. cosine 0.153 0.658 0.139 0.458

Shared vs. cosine 0.928 0.982 0.878 0.907
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Fig. 7 Lift as functions of time horizon, on all basic measures and

combinations in working point of 1 %. This figure is best viewed in

color

Table 6 Average percentage improvement in diffusion performance

using different similarity measures and combination classifiers,

compared to the calls measure

Measure Carrier 1 Carrier 2

Social measure 1.70 5.73

Shared measure 4.86 -31.88

Cosine measure 11.62 -19.00

Average measure 15.34 -2.16

Decision tree 38.79 18.46

Logistic regression 26.60 -18.22

Soft decision tree 54.5 6.19

Predictive horizon is averaged between 15 and 25 days, and the lift

fraction is 1 %
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Conversely, a high social score, combined with a high

score in cosine and shared is indicative of an extremely

high churn likelihood.

5 Conclusions and future work

Diffusion processes play a central role in applications of

viral marketing and social networks. A deeper under-

standing of the properties of such processes can lead to

theoretical and practical insights on these applications. In

this context, churn is a useful ground truth because it is

relatively easy to define and measure.

In this paper, we addressed a number of phenomena

related to the use of diffusion-based algorithms for churn

prediction in Telco networks. We demonstrated three main

phenomena: the fact that accuracy deteriorates sharply with

the prediction horizon, the effect of the social affinity

measure used, and the usefulness of combining social

affinity measures for enhancing the performance of churn

prediction algorithms.

During this study, we fixed several parameters of the

diffusion algorithm such as the initial energy and the

spreading coefficient d. The values were set as suggested in

Dasgupta et al. (2008), which also provide a discussion on

the effect of changing the value of d. We leave for future

work to check whether the optimal value of d should

depend on the chosen social affinity measure, and whether

the initial energy has a major effect on the results.

Several research directions stem from this work: our

paper showed that significant gains can be achieved from

both the use of different social affinity measures and their

combination via ensemble methods. We believe that these

gains could be further improved by both introducing

additional measures and by additional ways of combining

them. Additionally, as is the case in many such applica-

tions, each carrier may find that a different set of measures

is best for its specific population, though the social measure

is the best single measure among those we tested.

The deterioration of prediction quality as a function of

the time horizon has implications for marketing applica-

tions. A theoretical explanation of this phenomenon may

lead into novel algorithms and deeper insights. One pos-

sible conjecture is that this phenomenon stems from the

expander-like structure of such networks. Yet, deducing a

generic theoretical explanation of this deterioration would

be challenging.

The fact that different measures identify different

churners is interesting from a social perspective, as it may

be due to different modes of churn or to differences in the

churning subscribers. Future work should investigate this

phenomena in more detail.
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