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Abstract Given a large social or information network,

how can we partition the vertices into sets (i.e., colors)

such that no two vertices linked by an edge are in the same

set while minimizing the number of sets used. Despite the

obvious practical importance of graph coloring, existing

works have not systematically investigated or designed

methods for large complex networks. In this work, we

develop a unified framework for coloring large complex

networks that consists of two main coloring variants that

effectively balances the tradeoff between accuracy and

efficiency. Using this framework as a fundamental basis,

we propose coloring methods designed for the scale and

structure of complex networks. In particular, the methods

leverage triangles, triangle-cores, and other egonet prop-

erties and their combinations. We systematically compare

the proposed methods across a wide range of networks

(e.g., social, web, biological networks) and find a signifi-

cant improvement over previous approaches in nearly all

cases. Additionally, the solutions obtained are nearly

optimal and sometimes provably optimal for certain classes

of graphs (e.g., collaboration networks). We also propose a

parallel algorithm for the problem of coloring neighbor-

hood subgraphs and make several key observations.

Overall, the coloring methods are shown to be (1) accurate

with solutions close to optimal, (2) fast and scalable for

large networks, and (3) flexible for use in a variety of

applications.

Keywords Network coloring � Unified framework �
Greedy methods � Neighborhood coloring � Triangle-core

ordering � Social networks

1 Introduction

We study the problem of graph coloring for complex net-

works such as social and information networks. Our focus

is on designing (1) accurate coloring methods that are (2)

fast for large-scale networks of massive size. These

requirements lead us to introduce a unified coloring

framework that can serve as a basis for investigating and

comparing the proposed methods.

Graph coloring is an important fundamental problem

in combinatorial optimization with numerous applica-

tions including timetabling and scheduling (Budiono and

Wong 2012), frequency assignment (Sivarajan et al.

1989; Banerjee and Mukherjee 1996), register allocation

(Chaitin 1982), and more recently to study networks of

human subjects (Kearns et al. 2006; Chaudhuri et al.

2008), among many others (Colbourn and Dinitz 2010;

Moscibroda and Wattenhofer 2008; Ni et al. 2011; Capar

et al. 2012; Schneider and Wattenhofer 2011; Grohe

et al. 2013). The graph coloring problem consists of

assigning colors to vertices such that no two adjacent

vertices are assigned identical colors, while minimizing

the number of colors. However, in general, the coloring

problem is known to be computationally intractable (NP-

hard), even to approximate it within n1�� (Garey and

Johnson 1979). Nevertheless, coloring lies at the heart of

many applications where the goal is to partition a set of

entities into classes where two related entities are not in

the same class while also minimizing the number of

classes used.
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Despite its practical importance in a variety of domains

(e.g., engineering, scientific computing), coloring algo-

rithms for complex networks such as social, biological and

information networks have received considerably less

attention. Majority of work focuses on graphs that are

relatively small, synthetic, or from other domains. How-

ever, these real-world networks (e.g., social networks) are

usually sparse with complex structural patterns (Newman

and Park 2003; Boccaletti et al. 2006; Barabasi and Oltvai

2004; Davidson et al. 2013; Kleinberg 2000; Adamic et al.

2001), while also massive in size and growing at a tre-

mendous rate over time. For instance, the web graph has

well over 1 trillion pages, whereas social networks such as

Facebook have hundreds of millions of users. Unfortu-

nately, coloring algorithms suitable for these large sparse

real-world networks have been largely ignored, even

despite the significance of coloring and its potential for use

in a wide variety of applications. Furthermore, due to the

aforementioned reasons, there has yet to be a systematic

investigation of coloring and its potential applications.

In terms of social networks, coloring has been used for

finding roles (see Everett and Borgatti 1991), but that work

is limited to extremely small instances and does not scale

to the requirements of modern social and information

networks present in the age of big data. Others have used

coloring to study small controlled groups of human sub-

jects and their behavior (Kearns et al. 2006; Chaudhuri

et al. 2008). Nevertheless, coloring methods for large

sparse networks have not been proposed, nor has coloring

been used for applications in these large networks.

The age of big network data has given rise to numerous

opportunities and potential applications for graph coloring

including descriptive and predictive modeling tasks. A few

of the possibilities are discussed below. For instance, the

number of colors, distribution of the size of independent

sets, and other properties derived from coloring are useful

in tasks such as relational classification (as features) (Sen

et al. 2008; De Raedt and Kersting 2008), graph similarity

(Berlingerio et al. 2013), anomaly detection (Akoglu et al

2010; Aggarwal et al. 2011), network analysis (Chaoji et al.

2008; Sun et al. 2008; Kang et al. 2011; Wang and

Davidson 2010), or for evaluating graph generators, among

many other tasks (Sharara et al. 2012). Additionally, vertex

or edge induced neighborhoods may also be colored to

study various questions; similar to the work of Ugander

et al. (2013a) which used neighborhood motifs instead.

Independent sets are also seemingly useful in many

applications. One such application is network sampling,

where vertices/edges may be selected from a large inde-

pendent set to ensure good network expansion (and of

course independence), and may be useful for estimating

properties efficiently in the age of big data (Al Hasan and

Zaki 2009; Ahmed et al. 2014). Indeed, such a sampling

strategy would also be particularly useful for machine

learning problems such as relational active learning

(Sharma and Bilgic 2013), see the work of Bilgic et al.

(2010). It is also easy to find applications in other problem

domains, e.g., network A/B testing (Ugander et al. 2013b)

which requires running randomized experiments on two

independently sampled universes, A and B, to test the

effectiveness of new products and marketing campaigns.

Although some recent work has used coloring in small

social networks (Enemark et al. 2011; Mossel and Scho-

enebeck 2010), there has not been any systematic evalua-

tion or comparison of coloring methods for large complex

networks of various types. Further, this recent work also

used only small networks. Moreover, the majority of pre-

vious work used a single coloring method and therefore

lacked any evaluation or comparison to other coloring

methods. Due to this, the properties and behavior of col-

oring algorithms for social and information networks are

not well understood and are left largely unexplored. This

work attempts to fill this gap by developing a variety of

techniques that exploit the structure of these large networks

while also being fast and scalable for partitioning the

vertices into independent sets.

More specifically, we address the theoretically and

practically important problem of graph coloring with a

focus on coloring large complex networks such as social,

biological and technological networks. For this purpose, we

develop a flexible framework that serves as a foundation

for coloring real-world graphs. The framework is designed

to be fast, scalable, and accurate across a wide variety of

networks (i.e., social, biological). To satisfy these

requirements, we relax the constraint of using the minimum

number of colors, and instead focus on balancing the

competing tradeoffs of accuracy and performance. This

relaxation provides us a framework that scales linearly with

the graph size, while also accurate as demonstrated in Sect.

6. Using this framework, we propose three classes of col-

oring methods designed specifically for the scale and the

underlying structure of these complex networks. These

include social-based methods, multi-property methods, and

egonet-based coloring methods (See Table 1). We also

adapt previous coloring methods/heuristics that have been

widely used on small and/or dense graphs from other

domains (Gebremedhin et al. 2013; Leighton 1979; Matula

and Beck 1983; Coleman and Moré 1983; Welsh and

Powell 1967; McCormick 1983) and unify them under the

greedy coloring framework. This provides us with a basis

for comparing our proposed techniques with those tradi-

tionally used. We also develop static and dynamic ordering

techniques for coloring based on triangle counts, triangle-

cores (Zhang and Parthasarathy 2012; Rossi 2014), and a

variety of egonet properties, and demonstrate the effec-

tiveness of these methods using a large collection of
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networks from a variety of domains including social, bio-

logical, and technological networks.

The dynamic triangle ordering techniques proposed here

are likely to be of use in other applications and/or problems

such as for improving community detection (Blondel et al.

2008; Fortunato 2010), distance queries (Jiang et al. 2014),

the maximum clique problem (Prosser 2012; Carraghan

and Pardalos 1990), and numerous other problems that rely

on an appropriate vertex/edge ordering.

We also formulated the problem of coloring neighbor-

hood subgraphs and proposed a parallel algorithm that

leverages our previous methods. One key finding is that

neighborhoods that are colored using a relatively few

number of colors are not well connected, with low clus-

tering and a small number of triangles. While neighbor-

hood colorings that use a relatively large number of colors

have large clustering coefficients and usually contain large

cliques. Nevertheless, we also find linear speedups and

many other interesting results (See Sect. 7 for further

details).

In addition to the technical contributions, the other aim

of this work is a large-scale investigation of coloring

methods for these types of networks. In particular, we

compare the three classes of our proposed coloring meth-

ods to a wide variety of previous methods that are con-

sidered state-of-the-art for relatively small and/or dense

graphs from other domains. Using our unified framework

as a basis, we systematically evaluate our proposed col-

oring methods (with past methods) on over 100 networks

from a variety of types including social, biological, and

information networks.1

The types of graphs differ in their size, semantics,

structure, and the underlying process governing their for-

mation. Overall, we find a significant improve over the

previously proposed methods in nearly all cases. Moreover,

the solutions obtained are nearly optimal and sometimes

provably optimal for certain classes of graphs (e.g., col-

laboration networks). Additionally, the large-scale inves-

tigation on 100? networks revealed a number of useful and

insightful observations. One main finding of this work is

that despite the pessimistic theoretical results previously

mentioned, large sparse networks found in the real-world

can be colored fast and accurately using the proposed

methods.

The remainder of this article is organized as follows:

Preliminaries are given in Sect. 2. Section 3 introduces the

framework along with the proposed methods while Sect. 4

proposes the more accurate recolor variant. In Sect. 5, we

derive the lower and upper bounds used throughout the

remainder of the article. Section 6 demonstrates the

effectiveness of the proposed methods on over a hundred

networks. Next, Sect. 7 formulates the neighborhood col-

oring problem and proposes a parallel algorithm for col-

oring neighborhood subgraphs. We also provide numerous

Table 1 Methods used as selection criterion

Name Property f ð�Þ

NATURAL f ðvÞ ¼ indexðvÞ, select next uncolored vertex in the order

in which vertices appear in G

RAND f ðvÞ�Unið1; jV jÞ, select the next uncolored vertex

uniformly at random from the uncolored vertices

Degree distance-1 methods

DEG f ðvÞ ¼ dðvÞ, no. adjacent vertices of v in G (i.e., degree )

DLF f ðvÞ ¼ no. uncolored adjacent vertices of v

IDO f ðvÞ ¼ no. colored adjacent vertices of v (i.e., jNcðvÞj)
KCORE (SLO) f ðvÞ ¼ KðvÞ, k-core number of v

Degree distance-2 methods

DIST-TWO-

DEG

f ðvÞ ¼ jNhops¼2ðvÞj, no. unique vertices 2-hops away of v

in G

DIST-TWO-

DLF

f ðvÞ ¼ no. unique uncolored vertices 2-hops away of v

DIST-TWO-

IDO

f ðvÞ ¼ no. unique colored vertices 2-hops away of v

Social-based methods

TRI f ðvÞ ¼ trðvÞ, no. triangles of v in G

TCORE-MAX f ðvÞ ¼ maxw2NðvÞ Tðv;wÞ, triangle core number of v

Multi-property methods

KCORE-DEG f ðvÞ ¼ KðvÞ � dðvÞ
TRI-DEG f ðvÞ ¼ trðvÞ � dðvÞ
TRI-KCORE f ðvÞ ¼ trðvÞ � KðvÞ
TRI-KCORE-

DEG

f ðvÞ ¼ trðvÞ � KðvÞ � dðvÞ

Egonet-based methods

DEG-VOL f ðvÞ ¼
P

w2NðvÞ dðwÞ

KCORE-VOL f ðvÞ ¼
P

w2NðvÞ _KðwÞ

TRI-VOL f ðvÞ ¼
P

w2NðvÞ trðwÞ

TCORE-VOL f ðvÞ ¼
P

w2NðvÞ Tðv;wÞ

KCORE-DEG-

VOL

f ðvÞ ¼
P

w2NðvÞ trðwÞ � dðwÞ

TRI-KCORE-

VOL

f ðvÞ ¼
P

w2NðvÞ trðwÞ � KðwÞ

TRI-KC-DEG-

VOL

f ðvÞ ¼
P

w2NðvÞ trðwÞ � KðwÞ � dðwÞ

The previously proposed methods are unified under the framework and

categorized into three general classes (i.e., index-based, degree-based

methods, and degree distance-2-based methods). Many of these greedy

coloring methods are considered the state-of-the-art for small and/or rel-

atively dense graphs from other domains (Gebremedhin et al. 2013), and

thus used as a baseline for evaluating our methods. However, this work

proposes three main classes of methods for large complex networks

including social-based methods, multi-property methods, and egonet-

based methods

1 In the spirit of reproducible research, the large 100? collection of

benchmark graphs used in this article are available for download at

http://www.networkrepository.com.
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results indicating the scalability and utility of our approach.

Finally, Sect. 8 concludes.

2 Background

Networks are ubiquitous and can be used to represent data

in various domains, from social, biological, and informa-

tion domains. Facebook is a good live example of a real-

world network, where vertices represent people, and edges

represent relationships/communications among them. In

this section, we start by defining the fundamental graph

properties used in the problem of coloring networks.

Assume G ¼ ðV;EÞ is an undirected graph used to repre-

sent some network, such that V is the set of vertices, and E is

the set of edges. We use the term indexðvÞ to refer to the index

of a vertex v. This index represents the unique identifier of a

vertex v as it appears in the graph G. One simple example of an

index could be the unique userid assigned to each user by

online social network providers (e.g, Facebook). Similarly, we

use dðvÞ to represent the vertex degree, such that dðvÞ is the

number of adjacent vertices (i.e, neighbors) to v in the graph.

The concept of a vertex degree could simply describe the

number of friends of a Facebook user.

Another property that proved to be useful particularly in

social networks, is transitivity. A transitive edge would

mean that if u is connected to v and v is connected to w,

then u is connected to w. In this case uvw represents a

triangle in G. We use the term trðvÞ to refer to the number

of triangles incident to a vertex v. In common parlance, for

a user x in a social network, the number of pairs of friends

of x that are also friends themselves would represent the

number of triangles. The concept of transitivity can be also

generalized to subgraphs with more than three vertices. In

this case, every vertex in the subgraph is connected by an

edge to every other. These types of subgraphs is typically

called cliques. Note that cliques are maximal subgraphs,

means that no other vertex in the network can be a member

of the clique while preserving the same property that every

vertex in the clique is connected to every other. In social

networks, the occurrence of cliques indicates highly con-

nected subgroups of users, such as co-workers.

Cliques are one example of the more generic concept of

network groups. In networks, vertices can be divided into

various types of groups or communities that help to explain the

underlying network structure. In this section, we introduce

two fundamental concepts of network groups related to the

problem of coloring networks (k-core, and k triangle-core).

A k-core is a maximal subgraph of G, such that every

vertex in the subgraph is connected to at least k others in

the subgraph (Matula and Beck 1983). The concept of

k-core was first introduced in (Szekeres and Wilf 1968).

k-cores are useful for various applications in network

analysis, such as finding communities and cliques (Rossi

et al. 2014). A simple algorithm to find the k-core of the

graph G is to start with the whole graph, and remove any

vertices that have degree less than k. Clearly, the removed

vertices cannot be members of a k-core (i.e, a core with

order k) under any conditions. Note that by removing these

vertices, naturally, the connected vertices to the removed

ones will reduce their degrees as well. Therefore, the

procedure continues until there are no vertices in the graph

with degree less than k. The output of this procedure is the

k-core (or k-cores) of G.

This procedure can also be repeatedly used to compute

the core decomposition of the graph—this means com-

puting the core number of each vertex v. The core number

of a vertex (denoted by KðvÞ) is defined as the highest order

k of a maximum k-core that v can possibly belong to. While

simple to implement, this procedure has a worst case

runtime of OðjEj � jV j � log jVjÞ. However, the runtime can

be efficiently reduced to OðjV j þ jEjÞ by another imple-

mentation–which we use in this paper (see more details in

Batagelj and Zaversnik 2003).

The concept of k triangle-core has recently emerged in

network analysis research, it was first proposed in (Cohen

2009), and improved in (Zhang and Parthasarathy 2012;

Rossi 2014). A k triangle-core is an edge-induced subgraph

of G such that each edge participates in at least k � 2 tri-

angles and k� 2. A subgraph Hk ¼ ðVjEðFÞÞ induced by

the edge-set F is a maximal triangle core of order k if

8ðu; vÞ 2 F : trHðu; vÞ� k � 2, and Hk is the maximum

subgraph with this property. Most importantly, we define

the triangle core number denoted Tðu; vÞ of an edge e ¼
ðu; vÞ 2 E to be the highest order k of a maximum triangle

k-core that e can possibly belong to. See Fig. 1 for further

Fig. 1 Triangle cores 4, 3, and 2. A k triangle-core is an edge-induced

subgraph of G such that each edge participates in k � 2 triangles.

Hence, each clique of size k is contained within a k triangle-core of G.

Similarly, the k triangle-core is contained within the ðk � 1Þ-core

(i.e., the k � 1 core from the k-core decomposition)
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intuition. Computing the triangle core numbers of each

edge e in the graph G is called the triangle core decom-

position of G. In Sect. 3.2, we provide an efficient algo-

rithm for computing the triangle core decomposition with

runtime OðjEj3=2Þ.

3 Greedy coloring framework

In this section, we present a scalable fast framework for

coloring large complex networks and introduce the varia-

tions designed for the structure of these large complex

networks found in the real-world.

3.1 Problem definition

Let G ¼ ðV;EÞ be an undirected graph. A clique is a set of

vertices any two of which are adjacent. The maximum size

of a clique in G is denoted xðGÞ. An independent set C is a

set of vertices any two of which are non-adjacent, thus,

8ðv; uÞ 2 C iff ðv; uÞ 62 E. The graph coloring problem

consists of assigning a color to each vertex in a graph G

such that no adjacent vertices share the same color, mini-

mizing the number of colors used. More formally,

Definition 3.1 (Graph Coloring Problem) Given a graph

G, find a mapping / : V ! f1; . . .; kg where /ðviÞ 6¼ /ðvjÞ
for each edge ðvi; vjÞ 2 E. such that k (the number of col-

ors) is minimum.

This problem may also be viewed as a partitioning of

vertices V into independent sets C1;C2; . . .;Ck where

f1; 2; . . .; kg are called colors and the sets C1; . . .;Ck are

referred to as color classes. Thus, the graph coloring

problem is to find the minimum number k of independent

sets (or color classes/partitions) required to color the graph

G. Nevertheless, graph coloring is NP-hard to solve opti-

mally (on general graphs), and for all �[ 0, it is even NP-

hard to approximate to within n1�� where n is the number

of vertices (Garey and Johnson 1979).

In this work, we relax the strict requirement of parti-

tioning the vertices into the minimum number of inde-

pendent sets to allow for colorings that are close to the

optimal. This relaxation gives rise to fast linear-time col-

oring algorithms that perform well in practice (See Sect. 6).

Motivated by this, we describe general conditions for

greedy coloring that can serve as a unifying framework in

the study of these algorithms. More formally, we define the

greedy coloring framework as follows:

Definition 3.2 (Framework) Given a graph G ¼ ðV ;EÞ
and a vertex property f ð�Þ, the greedy coloring frame-

work selects the next (uncolored) vertex v to be colored

such that

v ¼ argmax
vi

f ðviÞ

The selected vertex v is then assigned to the smallest per-

missible color. This process is repeated until all vertices are

colored.

The main intuition of the greedy coloring framework is

to color the vertices that are more constrained in their

choice of color as early as possible, giving more freedom to

the coloring algorithm to use fewer colors, and thus result

in a tighter upper bound on the exact number of colors. As

an aside, selecting the vertex that minimizes f ðvÞ usually

results in a coloring that uses significantly more colors than

the latter. Notice that a fundamental property of the above

greedy coloring framework is that it is both fast and effi-

cient, thus, providing us with a natural basis for investi-

gating the coloring of large real-world networks, which is

precisely the scope of this work.

The above definition of the framework uses a selection

criterion as the basis for coloring. Instead, we replace the

selection criterion with the more general notion of a vertex

ordering. More specifically, given a graph G ¼ ðV ;EÞ and

a vertex ordering

p ¼ fv1; v2; . . .; vi; . . .; vng

of V , let vðG; pÞ denote the number of colors used by a

greedy coloring method that uses the vertex ordering p of

G. Hence, the greedy coloring framework selects the next

vertex to color based on the vertex ordering. This formal-

ization allows for a more precise characterization of the

framework that depends on three components:

1. A graph property f ðGÞ for selecting the vertices to

color

2. The direction in which vertices are selected (e.g.,

smallest to largest). For instance, p ¼ fv1; . . .; vng is

from max to min if f ðv1Þ� � � � � f ðvnÞ, or min to max

if f ðv1Þ� � � � � f ðvnÞ.
3. A tie-breaking strategy for the case when the graph

property assigns the same value to two vertices.

Suppose f ðvÞ ¼ f ðuÞ, then v is before u in the ordering

p if f HðvÞ[ f HðuÞ where f Hð�Þ is another graph

property used to break-ties.

Notice that two vertex orderings p1 and p2 from the graph

property f ðGÞ may significantly differ in the number of

colors used in a greedy coloring (i.e.,

vðG; p1Þ 6¼ vðG; p2Þ þ �). This is due to the direction of the

ordering (smallest to largest) and tie-breaking strategy

selected. Consequently, a specific graph property f ð�Þ
defines a class of orderings where the order direction (from

max to min) and tie-breaking strategy (f Hð�Þ) represent a

specific member of that class of orderings. Note that in
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general f ðGÞ can be thought simply as a function for

obtaining an ordering p.

In addition, we also define a few relationships between

the graph parameters introduced thus far. Clearly, vðG; pÞ
from a greedy coloring method is an upper bound on the

exact number of colors required, denoted by vðGÞ, i.e., the

minimum number of colors required for coloring G. Fur-

ther, let xðGÞ be the size of the maximum clique in G,

which is also a lower bound on the minimum number of

colors required to color G. This gives the following

relationship:

xðGÞ� vðGÞ� vðG; pÞ�DðGÞ þ 1

where DðGÞ is the maximum degree of G.

An example of the framework is shown in Fig. 2. This

illustration uses a proposed triangle selection criterion,

which is shown later in Sect. 6 to be extremely effective for

large social and information networks.

3.2 Ordering techniques

In this section, we first review the previous methods used

for coloring relatively small and/or dense graphs from

other domains (see Gebremedhin et al. 2013), which are

unified under our coloring framework. Many are consid-

ered state-of-the-art greedy coloring techniques and shown

to perform reasonably well for those types of graphs.

Despite the past success of these methods, they are not as

well suited for large sparse complex networks (e.g., social,

information, and technological networks) as demonstrated

in this work. As a result, we propose three classes of

methods for greedy coloring based on well-known funda-

mental properties of these large complex networks. In

particular, we propose social-based methods, multi-prop-

erty, and methods based on egonet properties, which are

shown later in Sect. 6 to be more effective than the state-of-

the-art techniques used in coloring graphs from other

domains. A summary and categorization of these methods

are provided in Table 1.

Index-based methods The simplest arbitrary ordering

techniques under the sequential greedy coloring framework

are natural ordering (NATURAL) and random ordering (RAND).

The natural ordering (NATURAL) method selects the vertices

to be colored in their natural order as they appear in the

input graph G, i.e., v1; v2; . . .; vn. We also define the ran-

dom ordering (RAND) as the method that selects the vertices

to be colored randomly. Therefore, the (RAND) method

selects a vertex by drawing an uncolored vertex uniformly

at random without replacement from V .

Degree methods The four simplest, yet most popular

ordering methods under the sequential greedy coloring

framework (Sect. 3) are all based on vertex degree. Spe-

cifically, we use the degree ordering DEG, the incidence

degree ordering (IDO), the dynamic-largest-first (DLF), and

the k-core ordering (KCORE) [a.k.a smallest-last ordering

(SLO)]. First, the degree ordering (DEG) (Welsh and Powell ,

1967) orders vertices from largest to smallest by their static

degree as it appears in G. Second, the incidence-degree

ordering (IDO) (Coleman and Moré 1983) dynamically

orders vertices from largest to smallest by their back

Fig. 2 Greedy coloring framework. In this graph, we use the number

of triangles incident to a vertex v 2 V as the selection criterion. On

the left, vertices are ordered from largest to smallest using the number

of triangles, which results in a greedy coloring that utilizes only three

colors. For this graph, this coloring is also optimal and thus

vðG;pÞ ¼ vðGÞ. However, when vertices are ordered from smallest

to largest (on the right) results in a coloring that uses four colors. As

an aside, DðGÞ þ 1 is the maximum number of colors that can be used

from any greedy coloring method from the framework and thus

vðG; pÞ�DðGÞ þ 1. In this graph, DðGÞ þ 1 ¼ 4 and thus, the

ordering used on the right is also the worst possible coloring that can

be obtained. Notice that in this example, we used the vertex index as

the tie breaking strategy, i.e., vi is ordered before vj if i\j. We also

note that if the proposed repair coloring scheme (Sect. 4) were used in

the minimum triangle selection criterion, then only three colors would

be needed. Other selection criterion (e.g., degree) may lead to a

different vertex ranking and as a consequence the greedy coloring

framework may result in an entirely different coloring. For instance,

ranking the vertices by max degree gives fv2; v3; v4; v1; v5g which

differs from the ranking given by max triangle counts. Further, if two

nodes have equal degrees, then we break ties using triangle counts

(known as a tie-breaking strategy)
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degree, such that the back degree of v is the number of its

colored neighbors. In this case, the incidence-degree

method initially starts with all vertices with back degree

equal to zero, and initially selects an arbitrary vertex v to

color. Then, all the neighbors of v will increase their back

degree by one, and the next vertex with largest back degree

will be selected for coloring. This process continues until

all vertices are colored. Third, in contrast to the incidence-

degree method (IDO), the dynamic-largest-first (DLF) (Ge-

bremedhin et al. 2013) dynamically orders the vertices by

their forward degree from largest to smallest, where the

forward degree of v is the number of its uncolored neigh-

bors. Thus, the dynamic-largest-first method initially starts

with all vertices with forward degree equal to their original

degree in G, and selects the first vertex v to color, such that

v has the maximum degree in G [i.e, dðvÞ ¼ DðGÞ]. Con-

sequently, all the neighbors of v will decrease their forward

degree by one, and the vertex with the largest forward

degree will be selected next to be colored.

Finally, the k-core ordering (KCORE) [also known as the

smallest-last ordering (SLO) (Matula and Beck 1983)]

orders the vertices from lowest to highest by their k-core

number (refer to Sect. 2 for definition). The k-core ordering

method (a.k.a smallest-last ordering) was proposed in

(Matula and Beck 1983), based on the concept of k-core

decomposition, to find a vertex ordering of a finite graph G

that optimizes the coloring number of the ordering in linear

time, by repeatedly removing the vertex of smallest degree.

The k-core ordering dynamically orders the vertices by

their forward degree from smallest to largest, where the

forward degree of v is the number of its uncolored neigh-

bors. The method initially starts with all vertices with

forward degree equal to their original degree in G, and

selects the first vertex v to color, such that v has the

smallest degree in G (i.e, dðvÞ ¼ dðGÞ). Thus, all the

neighbors of v will decrease their forward degree by one,

and the vertex with the next smallest forward degree will

be selected for coloring. The output of this method is the

vertex ordering for the coloring number, which is

equivalent to ordering vertices by their k-core number as

defined in (Szekeres and Wilf 1968).

These methods (including KCORE) were found to be

superior to others, especially for forests and a few types of

planar graphs (Gebremedhin et al. 2013). We also use these

as baselines for evaluating our proposed methods (see Sect.

6).

Distance-2 degree methods We note that the degree-

based methods were defined on the 1-hop away neighbors

of each vertex v 2 V . These methods can also be extended

for the unique 2-hop away neighbors of each vertex v 2 V

(McCormick 1983), we call these methods distance-2

degree ordering (DIST-TWO-DEG), distance-2 incidence

degree ordering (DIST-TWO-ID), distance-2 dynamic largest

first ordering (DIST-TWO-DLF), and distance-2 k-core order-

ing (DIST-TWO-KCORE) respectively.

Social-based methods While the degree-based meth-

ods were shown to perform well in the past, in this

paper, we compare them to other social-based orderings

such as triangle ordering (TRI), and triangle-core ordering

(TCORE).

First, the triangle ordering (TRI) method orders vertices

from largest to smallest by the number of triangles they

participate in, i.e. f ðvÞ ¼ trðvÞ where trðvÞ can be com-

puted fast and in parallel using Algorithm 2. Other triangle-

based quantities such as clustering coefficient may also be

used and computed fast and efficiently using Algorithm 2.

Thus, the triangle ordering initially selects the vertex v with

the largest number of triangles centered around it. This

process continues until all vertices are colored. The intui-

tion behind triangles in social networks is that vertices tend

to cluster, and therefore, triangles were extensively used to

measure the number of vertices adjacent to v that are also

linked together (as explained in Sect. 2). We conjecture

that ordering vertices from largest to smallest by their tri-

angle number would give a chance to those vertices that are

more constrained in their choices of color to be colored first

than those that have more freedom (as we explained

earlier).
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Second, the triangle-core ordering (TCORE) method

orders vertices from largest to smallest by their triangle

core number (as explained in Sect. 2). Using the triangle

core numbers, we obtain an ordering and use it to deter-

mine the next vertex v (or edge) to color, using the criteria:

f ðvÞ ¼ maxw2NðvÞ Tðv;wÞ, where NðvÞ is the set of neigh-

bors of vertex v, and Tðv;wÞ is the triangle core number of

the edge ðv;wÞ 2 E. Notice that triangle core ordering is

comparable to k-core ordering, however, instead of

removing a vertex and its edges at each iteration, we

remove an edge and its triangles. This gives rise to a

variety of ordering methods based on the fundamental

notion of removing edges and their triangles. We call these

dynamic triangle ordering methods and provide a summary

of the main ones in Table 2 as well as a comparison with a

few of the dynamic degree-based methods. Let us note that

any edge-based quantity may be used for ordering vertices

(and vice-versa). For instance, TCORE-MAX defined in Table

1 computes for every vertex v in the graph, the maximum

triangle core number among the (1-hop)-away-neighbors of

v.

The proposed triangle ordering template is shown in Alg

3 and the key operations are also summarized in Table 2.

The backward (or forward) triangle counts are initialized in

line 2. For SLT, PARALLELEDGETRIANGLES shown in Alg 4 is

used to initialize the triangle counts. Next, line 3 adds ðv; uÞ
to the bucket consisting of the edges with Tðv; uÞ triangles

which is denoted bin½Tðv; uÞ�. Hence, the edges are

ordered in OðjEjÞ time using a bucket sort. Note that if IT is

used then this step can be skipped since each edge ðv; uÞ is

initialized as Tðv; uÞ ¼ 0.

The triangle ordering begins in line 4 by ensuring

jEj[ 0 where E initially consists of all edges in G. At each

iteration, a single edge ðv; uÞ is removed from E. Line 5

finds the edge ðv; uÞ with the smallest Tðv; uÞ or largest

Tðv; uÞ, see Table 2 for the variants. The neighbors of u that

remain in E are marked in line 7 with the unique edge

identifier ei of ðv; uÞ (to avoid resetting the array). In line 8,

we iterate over the triangles that ðv; uÞ participates, i.e., the

pairs of edges ðv;wÞ and ðu;wÞ that form a triangle with

ðv; uÞ. Since the neighbors of u are marked in X, then a

triangle is verified by checking if each neighbor w of v has

been marked in X, if so then u; v;w must form a triangle.

Line 9 sets bin½Tðv; wÞ�  bin½Tðv; wÞ� n ðv; wÞ and

bin½Tðu; wÞ�  bin½Tðu; wÞ� n ðu; wÞ, removing ðv;wÞ and

ðu;wÞ from their previous bins. Next, the triangle counts of

ðv;wÞ and ðu;wÞ are updated in line 10 using an update rule

from Table 2. Afterwards, line 11 adds the edges to the

appropriate bin, i.e., bin½Tðv; wÞ�  bin½Tðv; wÞ� [ ðv; wÞ
and bin½Tðu; wÞ�  bin½Tðu; wÞ� [ ðu; wÞ. This is repeated

for each pair of edges ðv;wÞ and ðu;wÞ that form a triangle

with ðv; uÞ. Finally, line 12 implicitly removes the edge

ðv; uÞ from E.

Egonet-based methods An egonet is the induced sub-

graph centered around a vertex v and consists of v and all

its neighbors NðvÞ. Assume we are given an arbitrary graph

property f ð�Þ (e.g., triangle-cores, number of triangles)

computed over the set of neighbors of v, i.e., NðvÞ, we

define an egonet ordering criterion for a vertex v as
P

w2NðvÞ f ðwÞ. In addition, besides using the sum operator

over the egonet, one may use other relational aggregators

such as min, max, var, avg, among many others.

Table 2 Dynamic ordering methods

Methods Operations

Initialization Find Update

Degree

ID dbðvÞ ¼ 0 v ¼ maxw2Vb
dbðwÞ dbðwÞ  dbðwÞ þ 1

SLO dbðvÞ ¼ dðvÞ v ¼ minw2Vb
dbðwÞ dbðwÞ  dbðwÞ � 1

Triangles

IT TðeiÞ ¼ 0 ei ¼ maxej2Eb
TðejÞ TðejÞ  TðejÞ þ 1

SLT TðeiÞ ¼ trðeiÞ ei ¼ minej2Eb
TðejÞ TðejÞ  TðejÞ � 1

LFT TðeiÞ ¼ trðeiÞ ei ¼ maxej2Eb
TðejÞ TðejÞ  TðejÞ � 1

Summary of the main dynamic degree-based and dynamic triangle-

based ordering methods. Note that SLT and TCORE are used inter-

changeably. For convenience, let e denote an edge ðv; uÞ
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Multi-property methods We also propose ordering

techniques that utilize multiple graph properties. For

instance, the vertex to be colored next may be selected

based on the product of the vertex degree and k-core

number, i.e., f ðvÞ ¼ KðvÞ � dðvÞ.

3.3 Algorithm and implementation

This section describes the algorithms and implementation.

The graph is stored using OðjEj þ jV jÞ space in a structure

similar to compressed sparse column (CSC) format used

for sparse matrices (Tewarson 1973). If the graph is small

and/or dense enough, then it is also stored as an adjacency

matrix for constant time edge lookups. Besides the graph,

the algorithm uses two additional data structures. In par-

ticular, let color be an array of length n that stores the color

assigned to each vertex, i.e., colorðvÞ returns the color class

assigned to v. Additionally, we also have another array to

mark the colors that have been assigned to the neighbors of

a given vertex and thus we denote it as used to refer to the

colors ‘‘used’’ by the neighbors.

The algorithmic framework for greedy coloring is

shown in Alg 1. For the purpose of generalization, we

assume the vertex ordering p is given as input and com-

puted using a technique from Sect. 3.2.

The algorithm starts by initializing each entry of color

with 0. We also initialize each of the entries in used to

be an integer x 62 V (i.e., an integer that does not match a

vertex id). The greedy algorithm starts by selecting the

next vertex vi in the ordering p to color. For each vertex

vi in order, we first iterate over the neighbors of vi

denoted w 2 NðvÞ, and set usedðcolorðwÞÞ ¼ vi as shown

in line 4. This essentially marks the colors that have been

used by the neighbors. Afterwards, we sequentially search

for the minimal k such that usedðkÞ 6¼ vi (in line 7). Line

5 assigns this color to vi, hence colorðviÞ ¼ k. Upon ter-

mination, color is a valid coloring and the number of

colors is vðG; pÞ ¼ argmaxv2P colorðvÞ. We denote

vðG; pÞ as the number of colors from a greedy coloring

algorithm that uses the ordering p of V , which is easily

computed in Oð1Þ time by maintaining the max color

assigned to any vertex.

Note that in line 4, the color of w (a positive integer) is

given as an index into the used array and marked with the

label of vertex vi. This trick allows us to avoid re-initial-

izing the used array after each iteration over a vertex

vi 2 p—the outer for loop. Hence, if w has not yet been

assigned a color, i.e., colorðwÞ ¼ 0, then usedð0Þ is

assigned the label of vi, and since 0 is an invalid color, it is

effectively ignored. In addition, each entry in usedðkÞ,
1� k�Dþ 1 must initially be assigned an integer x 62 p.

3.4 Complexity

The storage cost is only linear in the size of the graph, since

CSC takes OðjEj þ jV jÞ space, the vertex-indexed array

color costs OðjV jÞ, and used costs OðDþ 1Þ space. For the

ordering methods, degree and random take OðjV jÞ time,

whereas the other ‘‘dynamic degree-based’’ techniques

such as KCORE have a runtime of OðjEjÞ time. The other

ordering techniques that utilize triangles and triangle-cores

take OðjEj3=2Þ time in the worst-case, but are shown to be

much faster in practice. Importantly, we also parallelize the

triangle-based ordering methods by computing triangles

independently for each vertex or edge. We also note the

distance two ordering methods are just as hard as the tri-

angle ordering methods, yet perform much worse as shown

in Sect. 6. Finally, the greedy coloring framework has a

runtime of OðjV j þ jEjÞ and OðjEjÞ for connected graphs.

4 Recolor variant

This section proposes another coloring variant that

attempts to recolor vertices to reduce the number of colors.

The variant is effective while also fast for large real-world

networks.

4.1 Algorithm

The recoloring variant is shown in Algorithm 5. This var-

iant proceeds in a similar manner as the basic coloring

algorithm from Sect. 3.3. The difference is that if a vertex

is assigned an entirely new color k (i.e., number of colors

used in the coloring increases), then an attempt is made to

reduce the number of colors. Using this as a basis for

RECOLOR ensures that the algorithm is fast, taking advantage

of only the most promising situations that arise.

Suppose the next vertex v in the ordering is assigned a

new color k and thus Ck ¼ fvg, then we attempt to reduce

the number of colors by reassigning an adjacent vertex u

that was assigned a previous color i such that i\k. Hence,

if jCi \ NðvÞj ¼ 1, then Ci contains a single adjacent vertex

of v (i.e., a single conflict), and thus, we attempt to recolor

u by assigning it to the minimum color j such that i\j\k

and Cj \ NðuÞ ¼ ;. This arises due to the nature of the

sequential greedy coloring and is formalized as follows:

Given vertices v and u assigned to the ith and the jth colors,

respectively, where v is colored first and i\j, then since v

is assigned the minimum possible color, then we know the

colors less than i are invalid, however, v could potentially

be assigned the colors iþ 1; . . .; k, since these colors arose

after v was assigned a color.
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The key intuition of the RECOLOR variant is illustrated in

Fig. 3. In the start of the example, notice that v is assigned

to a new color class Ck (i.e., contains only v). Therefore,

the RECOLOR method is called, which attempts to find v

another color class denoted Ci where Ci\Ck. For this, we

search for a color class Ci that contains a single adjacent

vertex denoted w (known as a conflict). Intuitively, we may

assign v to Ci if we can find w another ‘‘valid’’ color class

denoted Cj. Notice that i\j\k such that the color class Ci

appeared before Cj and so forth. In other words, v can be

assigned to Ci if there exists a valid color class Cj for which

w can be assigned. If such a Cj exists, then the number of

colors is decreased by one.

5 Bounds

Lower and upper bounds on the minimum number of colors

are useful for a number of reasons (see Sect. 6.4). In this

section, we first provide a fast parallel method for com-

puting a lower bound that is especially tight for large sparse

networks. Next, we summarize the upper bounds used in

this work, which are also shown to be strong, and in many

cases matching that of the lower bound, and thus allowing

us to verify the coloring from one of our methods.

5.1 Lower bounds

Let ~xðGÞ be the size of a large clique from a heuristic

clique finder and thus a lower-bound on the size of the

maximum clique xðGÞ. As previously mentioned,

~xðGÞ�xðGÞ� vðGÞ. Since the maximum clique problem

is known to be NP-hard, we use a fast parallel heuristic

clique finder tuned specifically for large sparse complex

networks. Our approach is shown in Algorithm 6 and found

to be efficient while also useful for obtaining a large clique

that is often of maximum or near-optimal size [i.e., ~xðGÞ is

close to xðGÞ] for many types of large real-world

networks.

Given a graph G ¼ ðV ;EÞ, the heuristic obtains a vertex

ordering p ¼ fv1; . . .; vng and searches each vertex vi in the

ordering p for a large clique in NðviÞ. For convenience, let

NRðvÞ be the reduced neighborhood of v defined formally

as,

NRðvÞ ¼ Gðfvg [ fu : ðu; vÞ 2 E;BðuÞ� jCmaxj; u 62 XÞg

where jCmaxj is the largest clique found thus far, BðuÞ is a

vertex upper bound2, and X is a vertex-index array of

pruned vertices [i.e., Oð1Þ time check]. Thus, let P NRðvÞ
be the set of potential vertices and initially we set Cv  ;.
At each step in the heuristic, a vertex u 2 P is selected

according to a greedy selection criterion f ð�Þ such that u 
maxw2P f ðwÞ where f ð�Þ is a graph property. The selected

vertex u is added to Cv  Cv [ fug and Ptþ1  Pt \ NRðuÞ
where t denotes the iteration (or depth of the search tree).

The local clique search terminates if jPtj þ jCvj �Cmax,

since this indicates that a clique of a larger size cannot be

Fig. 3 Repair coloring. Suppose v is the vertex to be recolored since

it is assigned to a new color class Ck , then we find a color class Ci

where v is adjacent to a single vertex w (i.e., NðvÞ \ Ci ¼ fwg). Now,

we find a color class Cj s.t. j [ i and w is not adjacent to any vertex in

Cj, i.e. jNðwÞ \ Cjj ¼ ;. If such a color class exists, then w is removed

from Ci and assigned to Cj. As a result of this reassignment, v can

now be assigned to the Ci color class, therefore reducing the number

of colors by 1

2 The local vertex upper bound for u: denoted by BðuÞ is typically the

maximum k-core number of the vertex u denoted by KðuÞ.
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found from searching further. See Fig. 4 for a simple

example. Notice that Cv is the clique being built and grows

by a single vertex each iteration, whereas Ptþ1 are the

potential vertices remaining after adding u to Cv. Hence,

jPtþ1j\jPtj\jPt�1j is monotonically decreasing with

respect to t. It is clear from Fig. 4 that jPtþ1j and thus the

size of the clique jCvj strongly depends on u selected by the

greedy selection criterion. In Fig. 4, suppose the vertex

without edges to other vertices in P is selected and added to

Cv, then Ptþ1  ; and the search terminates. The proposed

heuristic clique finder is equivalent to searching down a

single branch in a greedy fashion.

Let us also point out that Algorithm 6 is extremely

flexible. For instance, the vertices in G (globally) and P

(locally) are ordered by their k-core numbers (see line 3

and 7), but any ordering from Table 1 may be used. In

addition, while Algorithm 6 is presented using vertex k-

core numbers for pruning (line 5), one may also leverage

stronger bounds such as the triangle-core numbers (See

Rossi 2014). We used k-core numbers for ordering and

pruning since these are relatively tight bounds while also

efficient to compute for large networks. Later in Sect. 6, we

demonstrate the tightness of these bounds on large sparse

real-world networks (See Tables 3, 4).

Complexity The runtime of the heuristic is OðjEj � KðGÞÞ
since it takes

P
v2VðvÞ ¼ 2jEj ¼ OðjEjÞ to form the initial

set of neighbors for each vertex. The HEURISTICCLIQUE is

essentially a greedy depth-first search where the depth is at

most KðGÞ. As an aside, if TðGÞ is used instead, then the

heuristic is computed in OðjEj � TðGÞÞ. Observe that at

each step, the greedy selection criterion u maxv2P f ðvÞ is

evaluated in Oð1Þ time by pre-ordering the vertices prior to

searching. The runtime of the ordering is OðjPjÞ using

bucket sort. A global bound on the depth of the search tree

for any vertex neighborhood is clearly KðGÞ and for a

specific vertex v is no larger than KðvÞ. In practice, the

heuristic is fast and usually terminates after only a few

iterations due to the removal of vertices from P via the

strong upper bounds.

Parallel algorithm The vertex neighborhoods are sear-

ched in parallel for a large clique. Each worker (i.e.,

processing unit, core) is assigned dynamically a block b
of vertices to search. The workers maintain a vertex

neighborhood subgraph for the vertex currently being

searched. In addition, the workers share a vertex-indexed

array X of pruned vertices and the largest clique Cmax

found among all the workers. If a worker finds a clique

Cv larger than Cmax, i.e., jCvj[ jCmaxj (max so far among

all workers), then a lock is obtained, and Cmax  Cv and

the updated Cmax is immediately sent to all workers. As

an aside, this immediate sharing of Cmax typically leads to

a significant speedup, since the updated Cmax allows for

the workers to further prune their search space including

entire vertices.

5.2 Upper bounds

A simple, but not very useful upper bound on the Chro-

matic number vðGÞ is given by the maximum degree:

vðGÞ�DðGÞ þ 1. A stronger upper bound is given by the

maximum k-core number of G denoted by KðGÞ. This gives

the following relationship:

vðGÞ�KðGÞ þ 1�DðGÞ þ 1

Fig. 4 Clique invariant and fast heuristic clique finder. Recall Cv is

the clique being constructed, whereas P is the set of potential vertices

that could be added to Cv to form a clique of jCvj þ 1. Further, after a

vertex u from P is added to Cv, we must then remove u from P and

compute the intersection P \ NRðuÞ. The result of this intersection

depends intrinsically on how well u is connected to the vertices in P.

In the ideal case, the heuristic is guaranteed to find the largest possible

clique as long as the vertices in P that form the largest clique among

each other are added to Cv. For instance, the largest clique in the

above example is jCvj þ 3 ¼ 8 formed by adding the three vertices

forming a 3-clique (triangle) in P to Cv, whereas if u 2 P with 0

degree is added to Cv, then jCvj þ 1 ¼ 6, since Pt \ NRðuÞ ¼ ;
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In this work, we observe that this upper bound is signifi-

cantly stronger than the maximum degree on nearly all

large sparse networks.

Since vðG; pÞ depends on an ordering p then no

relationship exists between vðG; SLO) from SLO and

vðG; pÞ where p gave rise to hpðGÞ. Nevertheless, sup-

pose the vertices are colored using SLO resulting in

vðG; pÞ colors, then using KðGÞ gives the following

relationship:

~xðGÞ�xðGÞ� vðGÞ� vðG; pÞ�KðGÞ þ 1�DðGÞ þ 1

where xðGÞ is the maximum clique in G and ~xðGÞ is a

large clique in G from the fast heuristic clique finder in

Table 3 Network statistics and coloring bounds (color table online)

From the large collection of 100? graphs used in our experiments, we selected a small representative set from the various types (e.g., web, social

networks) to study relationships between key network statistics and lower and upper bounds on the Chromatic number. Here, q is the density, �d is

the average degree, and r is the assortativity coefficient. We also study the following triangle related statistics: j is the global clustering

coefficient, jT j is the total number of triangles, and travg and trmax are the maximum and average number of triangles incident on a vertex,

respectively. Using these fundamental network statistics as a basis, we analyze the relationships between these characteristic network properties

and our derived bounds on the Chromatic number. The lower bound from the heuristic clique finder is denoted ~x. For the upper bounds, we denote

K as the maximum k-core (i.e., the largest degree for a k-core to exist), and similarly, we also upper bound the Chromatic number using the notion

of the maximum triangle-core, which we denote by T . Finally, we also include the maximum and minimum number of colors from a coloring

method in our framework, which we denote vmax and vmin, respectively
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Table 4 Network statistics and coloring bounds (continued from Table 3) (color table online)

Soc. Netw. Anal. Min. (2014) 4:228 Page 13 of 37 228

123



Sect. 5.1. In other words, if a greedy coloring method uses

p from SLO then the resulting coloring of G must use at

most KðGÞ þ 1 colors. Furthermore, KðGÞ þ 1 is also

known as the coloring number denoted colðGÞ (Erd}os and

Hajnal 1966)3.

The above relationship can be further strengthened using

the notion of the maximum triangle core number of G

denoted TðGÞ. This gives rise to the following relationship:

xðGÞ� vðGÞ� TðGÞ�KðGÞ þ 1�DðGÞ þ 1

6 Results and analysis

This section evaluates the proposed methods using a large

collection of graphs. In particular, we designed experi-

ments to answer the following questions:

Section 6.1 Accuracy. Are the proposed greedy coloring

methods effective and accurate for social and informa-

tion networks?

Section 6.2 Scalability. Do the methods scale for

coloring large graphs?

Section 6.3 Impact of recoloring. Is the RECOLOR method

effective in reducing the number of colors used?

Section 6.4 Utility of bounds. Are the lower and upper

bounds useful and informative?

For these experiments we used over 100? networks of

different types (i.e., social vs. biological), sizes, structural

properties, and sparsity. Our main focus was on a variety of

large sparse networks including social, biological, infor-

mation, and technological networks4. Self-loops and any

weights were discarded. For comparison, we also used a

variety of dense graphs including the DIMACs5 graph

collection and the BHOSLIB6 graph collection (bench-

marks with hidden optimum solutions) which were gener-

ated from joining cliques together.

In this work, ties are broken as follows: Given two

vertices vi and vj where f ðviÞ ¼ f ðvjÞ, then vi is ordered

before vj if i [ j. While the importance of tie-breaking was

discussed in Sect. 3, many results in the literature are dif-

ficult to reproduce as key details such as the tie-breaking

strategy are left undefined.

6.1 Accuracy

As an error measure, we compute the frequency (i.e.,

number of graphs) for which each coloring method per-

formed best overall, i.e., used the minimum number of

colors. If two methods used the minimum colors relative to

the other methods, then the score of both are increased by

one. The graphs for which all methods achieved the best

are ignored. The proposed methods are evaluated below

for use on (1) sparse/dense graphs and also (2) for each

type of large sparse network (i.e., social or information

networks).

Best methods for sparse and dense graphs The methods

are compared in Table 5 (columns 2 and 3) independently

on the basis of sparsity. Notice the methods in the first

column of Table 5 are ranked and shaded according to their

accuracy on sparse graphs (following an ascending order).

A few of our general findings from Table 5 are discussed

below.

• Selecting the nodes uniformly at random (RAND)

generally performs the worst for both sparse and dense

graphs. This highlights the importance of selecting

vertices that are more constrained in the number of

Table 5 Accuracy of coloring methods (color table online)

We report the frequency (number of graphs) for which each algorithm

performed the best overall. Graphs for which all algorithms performed

equally were discarded

3 Also referred to as degeneracy (Erd}os and Hajnal 1966), maximum

k-core number (Batagelj and Zaversnik 2003), linkage (Matula and

Beck 1983), among others.

4 http://www.networkrepository.com/.
5 http://iridia.ulb.ac.be/*fmascia/maximum_clique/.
6 http://www.nlsde.buaa.edu.cn/*kexu/benchmarks/graph-bench

marks.htm.
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Table 6 Colors used by the proposed methods (color table online)
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possible colors first, which can’t be achieved by

random selection.

• Nearly all the proposed methods (with the exception of

DEG-VOL) gave fewer colors and found to be signifi-

cantly better than the traditional degree-based methods.

• As expected, the traditional degree-based methods are

more suitable for dense graphs than sparse graphs.

Nevertheless, the triangle and triangle-core methods

performed the best on the majority of dense graphs.

• In both sparse and dense graphs, we find that TCORE-

MAX/VOL, and TRI-VOL gave the fewest colors overall.

• Interestingly, the natural order performed best on 31 of

the dense graphs. Further examination revealed that the

majority of these cases are the BHOSLIB graphs. These

graphs are synthetically generated by forming n distinct

cliques and randomly connect pairs of cliques together.

We found that the vertices in these cliques are ordered

consecutively and thus give rise to this unexpected

behavior found when using the natural order.

For additional insights, we provide the coloring bounds and

various statistics for the DIMACs and BHOSLIB graph

collections are provided in Tables 13 and 15. The coloring

numbers from the various algorithms for the DIMACs and

BHOSLIB graph collections are also shown in Tables 16

and 17, respectively. We find that in all cases, the proposed

methods improve over the previous methods. In some

graphs, the proposed methods offer drastically better

solutions with much fewer number of colors, for instance,

see MANN-a81 which is currently an unsolved instance.

Best methods: from social to information networks The

sparse graphs are examined further by their respective

types (i.e., social networks). For each network of a specific

type, we apply the coloring methods in Table 1 and mea-

sure their accuracy just as before. This allows us to

determine the coloring methods that are most accurate for

each type of network. The results are shown in Table 5

(columns 4–10). The greedy coloring methods are ranked

and colored according to their overall rank shown previ-

ously in the first two columns of Table 5.

Sparse Networks

Dense Networks

2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

1

2

3

log(|V| + |E|)

R
un

tim
e 

(s
ec

.)

Fig. 5 Scalability of the proposed coloring methods. The x axis

represents the log of the size of the graph whereas the y axis is the log

runtime (in seconds). For both large sparse and dense networks, find

that the proposed methods scale linearly as the size of the graph

increases and thus practical for a variety of applications

Table 6 continued

For comparison, we used RAND, DEG, IDO, and DIST-TWO-IDO. We also provide the strong upper bounds and lower bound for additional insights. For

each network, we bold the best solution among all methods. Note that we removed the less interesting networks (i.e., vmin ¼ vmax, since those are

effectively summarized in Tables 3 and 4
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• In nearly all types of networks, the proposed methods

are more accurate than the traditional degree-based

methods (i.e., use fewer colors).

• For social and Facebook networks, the triangle and

triangle-core methods performed the best (i.e., accu-

racy), using fewer number of colors.

In the majority of cases, we found that the proposed methods

are significantly better than the traditional degree-based

methods (i.e., IDO, DEG) at p\0:01 level. More specifically,

greedy coloring methods that use triangle properties or tri-

angle-core based methods significantly improve over the

other methods, resulting in a better coloring with fewer

number of colors. In addition, the colors used by the pro-

posed methods for each network are compared in Table 6.

6.2 Scalability

Now, we evaluate the scalability of the proposed methods. In

particular, do the methods scale as the size of the graph

increases (i.e., number of vertices and edges)? To answer this

question, we use the proposed greedy coloring methods to

color a variety of networks including both large sparse social

and information networks as well as a variety of dense

graphs. Figure 5 plots the size of the graph versus the runtime

in seconds (both are logged). Overall, we find the proposed

greedy coloring methods scale linearly with the size of the

graph. Moreover this holds for both large sparse and dense

networks. Nevertheless, coloring dense graphs is found to be

slightly faster with less variance in the runtime, as compared

to social networks which exhibit slightly more variance in

the runtime of graphs that are approximately equal size.

We also compare the wall clock time (i.e., runtime in

seconds) between a representative set of methods on a variety

of networks. Results are provided in Table 7. For brevity, we

removed the graphs for which all methods took less than 0.1

seconds to color. Not surprisingly, the simple degree-based

methods (distance-1 and 2) are the fastest to compute.

These results indicate that in practice, the proposed

methods are fast, scaling linearly as the size of the graph

increases. Hence, these methods are well-suited for use in a

variety of applications including network analysis,

relational machine learning, sampling, among many others.

See Sect. 7.3 for details on the scalability of the neigh-

borhood coloring methods.

6.3 Effectiveness of recolor

This section investigates the effectiveness of the RECOLOR

method. In particular, how often does it reduce the number of

colors? For this, we investigate and compare greedy coloring

variants that utilize RECOLOR to the methods that do not.

Given a graph G and a vertex ordering p from one of the

proposed selection strategies in Sect. 3.2, we color the graph

using the basic coloring framework (Algorithm 1) and then

we color the graph again using the RECOLOR method. From

these two colorings, we measure the difference in the number

of colors (after recoloring and before recoloring) and number

of times the RECOLOR method improved over the basic

method. The results are shown in Table 8. Note that the

statistics are computed over all graphs and greedy coloring

methods, including the methods that do not perform well

(i.e., degree-based methods). Note that the maximum

improvement (i.e, max diff. in Table 8) and average

improvement (i.e, mean diff. in Table 8) are measured as the

maximum/average difference between the number of colors

used before and after recoloring.

In sparse graphs, the recolor method results in fewer

colors 40:9 % of the time whereas the improvement for dense

graphs is 84:4 %. We find that the improvement for dense

graphs is much larger since the number of colors initially

(before recoloring) used on average is usually far from the

optimal number. Note that for sparse graphs, this includes the

graphs where the greedy coloring methods was able to find

the optimal number of colors (and thus, it is impossible for

RECOLOR to improve over the basic coloring). Additionally,

the sparse graphs use fewer colors than the dense graphs and

also the number of colors used from the greedy coloring

methods tends to be closer to the optimal. These results

indicate that RECOLOR is both fast and effective for reducing

the number of colors used by any of the proposed methods.

In addition, we also provide results for both recolor and

basic variants on a variety of large sparse real-world net-

works, see Tables 9 and 10. These can be used to infer

additional insights. In Tables 18 and 19, we also compare

the recolor variant to the faster but less accurate basic

coloring variant of each coloring method for the DIMACs

and BHOSLIB graph collections.

6.4 Bounds and provably optimal coloring

This section describes two ways to leverage the bounds.

Results are then provided in Tables 3 and 4 for a repre-

sentative set of graphs from the collection.

Table 8 Recolor statistics

Percentage Difference

Improved (%) Same (%) Max diff. Mean diff.

Sparse 40.9 59.1 11 1.01

Dense 84.4 14.6 313 14.65

We compare the variants that use RECOLOR to those that do not. The

statistics in the table are computed over all graphs and greedy col-

oring methods. The max and mean improvement are measured as the

maximum/average difference between the number of colors used

before and after recoloring
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First, the lower bound can be used to verify that the

coloring from a greedy method is optimal. Let ~xðGÞ be a

lower bound of vðGÞ (i.e., optimal number of colors), then

we have the following simple relationship:

~xðGÞ�xðGÞ� vðGÞ� vðG; pÞ�DðGÞ þ 1

where vðG; pÞ is the number of colors from a greedy col-

oring that uses p and DðGÞ þ 1 is the maximum degree of

G. Consequently, if ~xðGÞ ¼ vðG; pÞ, then as a result of the

above, we know vðG; pÞ must be optimal.

Second, we may also use the bounds to characterize the

accuracy of a greedy coloring method or prove that a solution

is not optimal. For instance, suppose ~xðGÞ�
KðGÞ� vðG; pÞ, then we know vðG; pÞ is not optimal.

We find the optimal number of colors is directly

obtained and verified via both lower and upper bounds for

nearly all collaboration networks and web graphs as shown

in Table 3. In 6 of the 13 collaboration networks, we found

that ~xðGÞ ¼ vminðG; pÞ ¼ vmaxðG; pÞ ¼ KðGÞ þ 1 ¼ TðGÞ
where vminðG; pÞ and vmaxðG; pÞ are the min and max

number of colors used by any of the coloring methods. This

implies that the ordering is insignificant for these networks

as all the methods resulted in a coloring that is provably

optimal. Notably, from the 7 other networks, 5 of them

differ only in vmaxðG; pÞ. In addition, many other inter-

esting observations and insights may be drawn from Tables

4 and 3.

To summarize we find that:

1. For some types of information networks, the pro-

posed greedy coloring methods produce an optimal

coloring.

2. The upper and lower bounds are effective for proving

the optimality or suboptimality of a solution from a

greedy coloring heuristic.

3. For the majority of graphs that are significantly skewed

and power-lawed, the optimal number of colors is

directly obtained and verified via both lower and upper

bounds.

7 Finding colorful neighborhoods

Given a large graph or a collection of neighborhood sub-

graphs, how can we define a domain-independent basis that

succinctly characterizes the common structural properties

of the neighborhood subgraphs? For this task, we define the

problem of coloring local neighborhood subgraphs and

propose a fast parallel flexible approach for solving it.

Formally, a neighborhood subgraph can be defined as the

induced subgraph centered around a vertex v and induced

by all neighbors of v. Our parallel neighborhood coloringT
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framework makes heavy use of the proposed coloring

methods from Table 1 as well as the basic coloring variant

in Alg 1 and the more accurate recolor variant shown in

Alg 5. In particular, we propose parallel methods for col-

oring neighborhoods that are (1) fast and scalable for large

networks, (2) space-efficient, (3) flexible for a variety of

applications, (4) and accurate, finding in many cases nearly

optimal or provably optimal solutions.

One of the main observations we make is that neigh-

borhoods that are colored using a relatively few number of

colors are not well connected, with low clustering and a

small number of triangles. To understand this fundamental

finding and the key intuition, we provide a series of simple

neighborhood colorings shown in Fig. 6. We also observe

that neighborhoods that are colored using a relatively large

number of colors have large clustering coefficients and

usually contain large cliques relative in size to the other

neighborhood colorings. Therefore, the set of neighbor-

hood colorings is an important fundamental graph property,

giving a number of key insights into the structural prop-

erties of the network at large and its local neighborhoods.

In a similar manner as we have demonstrated above, one

can also use neighborhood coloring to draw a number of

other interesting insights and ultimately use it for charac-

terizing the structure and behavior of many types of large

networks. Besides these key benefits, we demonstrate that

neighborhood coloring is fast and scalable to compute for

large networks, and more specifically, it is linear in the

number of edges. This is clearly much faster than com-

puting the frequency of vertex/edge triangles (Rossi 2014)

or counting the frequency of other subgraph patterns and

motifs (Pržulj 2007; Shervashidze et al. 2009; Rahman

et al. 2012). We also show that it is straightforward to

parallelize for both shared-memory (CPU and GPU) and

distributed architectures.

Local neighborhood coloring consists of assigning a

color to every vertex in a vertex neighborhood such that no

two vertices linked by an edge share the same color while

minimizing the number of colors used. The most colorful

neighborhood is the one that requires the maximum num-

ber of colors. In this section, we propose parallel methods

for coloring neighborhoods that are (1) fast and scalable for

large networks, (2) space-efficient, (3) flexible for a variety

of applications, (4) and accurate, finding in many cases

nearly optimal or provably optimal solutions.

The neighborhood colorings may be useful for finding

better communities, especially in local community detection

methods (Malliaros et al. 2012). Besides community meth-

ods, neighborhood coloring may also be used in prediction

tasks such as detecting anomalous patterns in graphs, see

(Akoglu et al 2010) for one such egonet-based method. Other

prediction tasks such as relational classification may also

benefit from neighborhood coloring. For instance, one may

construct a set of node features such as from these neigh-

borhood colorings to improve the accuracy of classification

(e.g., number of colors, largest independent set).

The results of our neighborhood coloring have direct and

immediate implications on exact algorithms for the maxi-

mum clique problem (Bomze et al. 1999; Prosser 2012). In

fact, the most successful approaches have used coloring as a

bound, but vary in the ordering and method used (Konc and

Janezic 2007; San Segundo et al. 2011; Tomita and Kameda

2007; Tomita et al. 2011, 2010; Rossi et al. 2012). For

instance, suppose vertex neighborhoods are searched in

parallel, similar to our heuristic in Alg 6, then the

v

(a) Star

v

(b) Star w/ Triangles

v

(c) Small Cliques (d) Large Clique

Fig. 6 Neighborhood coloring extremes: from stars to cliques. For a–

c, the vertex v in the center is the vertex in which the neighborhood

was induced, thus the other vertices are in the set NðvÞ. In a the vertex

neighborhood is a simple star–no connections between the neighbors

of v, and thus can be colored using only 2 colors. The neighborhood

subgraph in b is essentially a star with a few neighbors of v with edges

among each other, thus, forming triangles. Similarly, in c we find

more neighbors forming connections among each other giving rise

numerous triangles and two cliques of size 4. Finally, the neighbor-

hood subgraph in d represents a single large clique. Node v was

removed for clarity. These neighborhood subgraphs go from the least

constrained neighborhood representing a star a to the most con-

strained neighborhood representing a clique d. The neighborhood

subgraphs shown in b, c are better representatives of neighborhood

subgraphs found in large real-world networks (e.g., Facebook or other

social networks). Note that in reality, the vertex v in which the

neighborhood subgraph corresponds may be removed from the

coloring, since v must be connected to every other vertex. Thus, the

neighborhood subgraphs above are (k � 1)-colorable when v is

removed
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neighborhood coloring results may be used for bounding the

search space in branch-n-bound algorithms, for pruning

entire neighborhoods directly, and for ordering vertices via

the number of colors from the vertex neighborhood coloring,

among many other vertex level features that could be

derived from such a set of neighborhood colorings. These

may enhance recent parallel algorithms such as PMC (Rossi

et al. 2014) that utilizes degeneracy ordering giving a worst-

case runtime of Oð2d=4Þ on sparse graphs with bounded

degeneracy. In addition, super-linear speedups may become

more frequent using the ordering from neighborhood col-

oring/pruning, i.e., these were observed using PMC (Rossi

et al. 2014) and later confirmed again using a parallel ver-

sion of MCS (Tomita et al. 2010; McCreesh and Prosser

2013). Nevertheless, the set of vertex neighborhood color-

ings may also be used for pruning in other ego-centric search

methods. They also provide a basis for a variety of ordering

methods which may have applications, e.g., graph com-

pression (Boldi and Vigna 2004).

7.1 Problem formulation

Our focus is on coloring vertex neighborhoods. Let NðvÞ ¼
fvg [ fu : ðu; vÞ 2 Eg be the closed neighborhood of a ver-

tex v and we define Hv as the neighborhood subgraph induced

from NðvÞ, consisting of v, the neighbors of v, and any edges

between them. Suppose Hv is a neighborhood subgraph of G

and G is k-colorable, then Hv must also be k-colorable.

Consequently, if Hv is a subgraph of G, then vðHÞ� vðGÞ.
The local chromatic number of G is the maximum

number of colors appearing in the closed neighborhood

(subgraph) of a vertex minimized over all proper colorings.

More formally,

v‘ðGÞ ¼ min
c

max
v2V
jfcðuÞ : u 2 NðvÞgj

where the minimum is taken over all proper colorings c and

v‘ðGÞ is the number of colors appearing in the most col-

orful closed neighborhood of a vertex. Clearly,

v‘ðGÞ� vðGÞ and we find for large real-world graphs (i.e.,

social and information networks (Mislove et al. 2007;

Ahmed et al. 2013)) these two numbers are usually close.

Despite this result, we note that for general graphs v‘ðGÞ
may be small while vðGÞ can be arbitrarily large (Erdös

et al. 1986; Godsil et al. 2001).

We relax the strict requirement above from consider-

ing all proper colorings to considering only a single

proper coloring for each neighborhood. In particular, this

article proposes a framework of local greedy coloring

methods designed for dense and large sparse graphs

found in real-world (e.g., social networks). Given a

neighborhood subgraph of v denoted Hv and a graph

property f ð�Þ, let f ðHvÞ ¼ x where x 2 R
n is a vector of

vertex weights and xi is the value of vertex ui 2 NðvÞ.
Using the weight vector x as a basis for ordering the

vertices in the closed neighborhood, we denote this

ordering as pv ¼ fu1; u2; . . .g. Further, let vðH; pvÞ be the

number of colors used by a local greedy coloring algo-

rithm that uses the ordering pv to color H. Consequently,

an approximation of the local chromatic number of G is

defined as:

v‘ðG;PÞ ¼ max
v2V

vðN½v�; pvÞ

where v‘ðG;PÞ is the maximum number of colors used by a

local greedy coloring method that uses the set of neigh-

borhood vertex orderings P ¼ fpv1
; pv2

; . . .; pvn
g. Intui-

tively, the above gives rise to the following relationship:
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(b) Coloring Variants

Fig. 7 Scalability. The speedup of our methods on different types of

graphs are shown in a, whereas the speedup of different coloring

variants for soc-flickr are shown in b. It is clear that all proposed

variants are scalable for large graphs, while vertex-centric coloring

(vc) using RECOLOR scales slightly better than the others for the large

sparse flickr social network. Processing units are cores (one thread per

core)
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xðGÞ� vðGÞ� v‘ðG;PÞ

Also, if we consider a vertex neighborhood subgraph Hv,

then:

xðHvÞ� vðHvÞ� vðHv; pvÞ�DðHvÞ þ 1

where xðHvÞ is the size of the maximum clique, vðHvÞ is

the optimal number of colors required to color Hv (mini-

mized over all proper colorings of NðvÞ), and vðHv; pvÞ is

the number of colors from a greedy coloring of NðvÞ using

pv 2 P.

7.2 Neighborhood coloring

The parallel framework is shown in Alg 7. Here, Bð�Þ is

assumed to be normalized with respect to cliques, hence,

BðvÞ ¼ KðvÞ þ 1. This allows us to generalize the algo-

rithm over any arbitrary upper bound.

Upper and lower bounds are computed in line 2 and 3,

respectively, and used for pruning in line 4. The vertices

remaining in G are ordered in line 5, and then each vertex

neighborhood in that order are colored (line 6). For each

vertex in order, we first try to avoid coloring vi by checking

if the local vertex upper bound BðviÞ is smaller than max. If

not, then lines 8–10 form the ‘‘reduced’’ set P of neigh-

boring vertices. In line 12, we obtain the local vertex

ordering pvi
by ordering the vertices in P using an arbitrary

property f ðPÞ computed in line 11. Next, the subgraph Hv

induced by the ordered vertex set P are colored using a

coloring variant and color assignment/search strategy (line

13). Finally, line 14 updates the maximum number of

neighborhood colors required, if necessary.

Note that the three pruning steps are shown in lines 4, 7,

and line 10, respectively. If the goal is to compute v‘ðG; pÞ,
then the pruning steps can significantly reduce the search

space leading to faster and more accurate colorings. For the

problem of computing the complete set of neighborhood

colorings, then we can simply avoid using the pruning

steps. In other words, the pruning steps and their utility are

application dependent, and thus may be turned on/off

accordingly. We also note that these pruning steps are also

Table 11 Upper and lower bounds of the chromatic number for the graphs

Graph stats Bounds

Graph jV j jEj jTj �d r j trmax D K þ 1 T ~x vðG;pÞ

soc-flickr 513K 3.1M 176M 12 0.16 0.15 524K 4.3K 310 153 21 104

soc-orkut 2.9M 106M 1.5B 70 0.02 0.04 1.3M 27.4K 231 75 37 83

soc-youtube 495K 1.9M 7.3M 7 -0.03 0.01 151K 25.4K 50 19 11 28

tech-as-skitter 1.6M 11M 86.3M 13 -0.08 0.01 564K 35.4K 112 68 41 70

bio-human-gene2 14K 9M 14.7B 1.2K 0.8 0.59 6.9M 7.2K 1,903 1,681 1,267 1,329

keller6 3.3K 4.6M 10.3B 2.7K -0.02 0.82 3.5M 2.9K 2,691 2,084 45 148

We denote vðG;pÞ as the maximum number of colors used from the set of neighborhood colorings. Note that vðG;pÞ is computed using none of

the pruning steps and thus is larger than if pruning is used

Table 12 Comparing the space of neighborhood coloring methods.

We evaluate a representative set of methods from the framework. The

local coloring number denoted v‘ðG; pÞ is given for each of the

variations. We present results for a representative sample of methods

from the framework. In all methods, the local ordering is from largest

to smallest, whereas the global ordering is from smallest to largest. For

the global ordering we used KCORE-VOL for simplicity, while varying

the local ordering method (color figure online)
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useful for finding the max clique, computing a graph

property for which the upper and lower bounds apply, and

for finding dense subgraphs, among many other tasks.

In addition to the coloring variants from Sects. 3 and 4,

we also investigate two types of search procedures for

coloring (i.e., color-centric and vertex-centric) that differ in

their implementation, but may result in significantly dif-

ferent runtimes depending on the structural properties of

the input graph. In particular, the search procedure in the

basic and recolor variants may be performed by searching

color-classes (i.e., the independent sets) or by searching the

vertex neighborhoods (i.e., adjacent vertices) and thus, we

term these search procedures as color-centric and vertex-

centric, respectively.

7.2.1 Parallelization

The neighborhood coloring problem is parallelized by

considering each neighborhood subgraph as independent

and coloring each of these subgraphs in parallel. We use

dynamic scheduling and assign each processing unit a single

neighborhood at a time. This helps ensure the vertex

neighborhoods are colored in approximately the correct

order. Our approach requires a single lock to ensure that the
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Fig. 8 Properties of the neighborhood colorings. Using the parallel

neighborhood coloring algorithm, we color each vertex-induced

neighborhood and record the number of colors used for that

neighborhood as well as the maximum independent set size (i.e.,

largest such coloring class given by the neighborhood coloring of that

vertex). We use the complementary cumulative distribution function

(CCDF) to study the coloring properties of a few large sparse real-

world networks. The max independent set size is with respect to the

coloring (largest such coloring class)
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Fig. 9 Characterizing and comparing the various types of networks using statistics from neighborhood coloring. The number of colors used to

color each of the neighborhoods are shown along with the size of the largest independent set in the coloring of the neighborhoods
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largest number of colors used thus far is consistent and avoid

potential race conditions when updating it (see line 14).

Importantly, as soon as a processing unit updates max, we

immediately broadcast it to all other processing units. We

observed that this can significantly improve performance as

the tighter lower bound may be used for additional

pruning or result in terminating a search early. As an

aside, if the pruning rules are used, then two subsequent

runs may result in slightly different v‘ðG;pÞ. This is due

to possible variations in the global vertex ordering which

determines the underlying order in which the neighbor-

hoods are colored.

The parallel framework has many other advantages. For

instance, each processing unit only requires a neighbor-

hood subgraph and therefore the framework is space effi-

cient for streaming or graphs too large to reside in memory

and thus a good candidate for GPU parallelization as well.

7.3 Experiments

We now analyze the effectiveness of our approach on a

variety of real-world networks. The network statistics

including lower and upper bounds are provided in Table 11.

A number of observations are made from the experi-

ments. First and foremost, the scalability of our parallel

framework is demonstrated in Fig. 7 where we observe that

significant speedups are possible across a range of different

types of graphs and coloring variants. Importantly, Fig. 7a

demonstrates the scalability of our methods on a diverse set

of graphs, from large sparse graphs (e.g., social and bio-

logical networks) to dense networks found in scientific

computing. Besides density, these graphs are known to

contain very different structural properties. We used the

large Orkut social network that is sparse and power-lawed,

the sparse Facebook Texas network, a slightly more dense

biological network of a human gene, and a very dense

unsolved instance from the clique/coloring DIMAC’s

challenge. The last two graphs were found to be more

difficult to obtain nearly optimal local colorings. Never-

theless, these two graphs, but especially the human gene,

scale slightly stronger than the more sparse networks.

These graphs were colored using the basic coloring method

with color-centric search and no pruning. Further, vertices

were ordered globally by kcore-vol (f ðvÞ ¼
P

w2NðvÞ KðwÞ)
and ordered locally using kcore-deg-vol and both orderings

are from largest to smallest for simplicity.

Finally, we also investigated the scalability of a few

different coloring variants using the large sparse flickr

social network, see Fig. 7b for details. In particular, all the

proposed variants are shown to scale well for large graphs,

while vertex-centric coloring (vc) using RECOLOR scales

slightly better than the others. Similar results were also

observed using other types of graphs and methods.

Now, we investigate a representative sample of coloring

methods from the large space defined by the framework. For

this experiment, we use the three pruning steps and order

the vertices globally using KCORE-VOL and are searched from

smallest to largest. The vertices in each neighborhood are

ordered from maximum to minimum and thus the vertices

more constrained in their choice of color are assigned colors

early allowing more flexibility in the color assignment

whereas vertices that are not as constrained take lower

precedence in their color assignment since these vertices are

usually easily assigned to a color. In both global and local

ordering, ties are broken using vertex ids such that if f ðvÞ ¼
f ðuÞ and v [ u, then v is ordered before u.

The results from a single graph (soc-flickr) are shown in

Table 12, others were removed for brevity. The first row

represents the family of methods that use the basic variant

with pruning, whereas the second row uses no pruning.

Likewise, the third and fourth rows use recolor with

pruning and without it, respectively. There are several

interesting observations. First, the coloring number from

the recolor variant is at least as accurate and usually better

than the basic variant. This result is independent of whether

pruning is used or not and it shows how much improve-

ment can be achieved by using the recolor variant. Second,

pruning is generally effective in obtaining a better coloring

number. Note that using both pruning and the recolor

variant clearly improves on the basic coloring method

soc−youtube soc−orkut

0 5 10 15 20
0

20

40

60

80

100

120

Number of Colors

M
ax

 In
de

pe
nd

en
t S

et
 S

iz
e tech−as−skitter

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

Number of Colors

M
ax

 In
de

pe
nd

en
t S

et
 S

iz
e

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

M
ax

 In
de

pe
nd

en
t S

et
 S

iz
e

Number of Colors

Fig. 10 Exploring the relationship between two statistics from the neighborhood coloring. The number of colors used in each local coloring is

compared with the size of the largest independent set from that coloring
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(without pruning or recolor). For example, using the TRI-

VOL method, we get a �9 % improvement in the number of

colors, when we apply both pruning and recolor variant.

Finally, we observe that the TRI-VOL and DEG-KCORE-VOL

methods perform the best among all other methods (mini-

mum number of colors). These results are consistent with

the pervious discussion in Sect. 6.

In this section, we use neighborhood coloring to charac-

terize the various types of networks as well as gain insight

into the structural properties of the networks. We view the

neighborhood coloring as a process for discovering mean-

ingful features that capture some underlying properties of the

graph that arise from the notion of coloring. From this, we

first derive two vertex features. Specifically, for each vertex

v, the first feature represents the number of colors used in the

neighborhood coloring of the vertex v, and the second feature

represents the size of the maximum independent set resulting

from the neighborhood coloring of the vertex v. Figure 8

shows the complementary cumulative distribution (CCDF)

of these features across all the nodes in the graph. We observe

that those graphs that are denser and more clustered (such as

soc-flickr) typically use many colors for neighborhood col-

oring of the vertices. For example, the soc-flickr dataset uses

100 colors to color the largest vertex neighborhood in the

graph. On the other hand, graphs that are more sparse and less

clustered (such as soc-youtube) typically use fewer colors for

neighborhood coloring of the vertices. Further, we observe

that the maximum independent set size is inversely propor-

tional to the maximum number of neighborhood colors.

Clearly, this observation is due to the rate of dependence

among the graph vertices. For example, the soc-flickr dataset

has a small independent set size�400 vertices. On the other

hand, a graph that is as large and as sparse as soc-orkut

typically has a large independent set size �5;000 vertices.

These observations show how significant the two features

(number of colors and maximum independent set size) for

capturing the underlying structural properties of various

types of graphs. Note that in Fig. 8, we show only some of the

datasets as examples, and we omit the others for brevity.

As an aside, egonet-based clique methods were proposed

for sparse graphs (Rossi et al. 2012) and sampling methods

and estimators based on egonets were developed in the same

spirit (Gjoka et al. 2013; Ahmed et al. 2013). One may also

straightforwardly use egonets to obtain an accurate estimate

of the distribution of local coloring numbers.

In Fig. 9, we focus the attention on the other denser graphs,

bio-human-gene2 and keller6. Figure 9 shows the histograms

of the number of colors, maximum independent set size, and

the correlation between them, for both bio-human-gene2 and

keller6 graphs. We observe that the histograms of the number

of colors and maximum independent set size are highly

skewed. For example, bio-human-gene2 graph shows that 600

vertices uses more than 1,400 colors for their neighborhood.

Moreover, the size of the maximum independent set size has a

small range (5–25). The keller6 graph, however, is one of the

clique DIMAC’s challenge graphs. We observe that the his-

togram of the keller6 graph consists of two groups, one group

with small number of colors (\200), and the other group with

higher number (�600) of colors. This observation is clearly

shown in the histogram of the maximum independent set size.

Similarly, we show the correlation plots between the number

of colors and the maximum independent set size for several

datasets in Fig. 10. The observations are similar to what we

discussed before.

8 Conclusion

Despite the obvious practical importance of graph coloring,

existing works have not systematically investigated or

designed methods for large complex networks. In this work,

we defined a unified framework that can serve as a funda-

mental basis for studying coloring on large networks. Using

this framework, we proposed three classes of fast and accurate

methods including social-based, multi-property based, and

egonet-based methods. We demonstrated the effectiveness of

the proposed methods on over 100? networks and among 7

different types of networks (e.g., social, technological net-

works). In the majority of cases, we found these methods to be

more accurate than other widely used heuristics that have been

used for coloring in other domains. Importantly, we find that

the solutions obtained from our methods are nearly optimal

and sometimes provably optimal for certain types of networks.

Furthermore, the coloring methods were shown to be effective

for the task of finding graph outliers as well as predicting the

type of graph (e.g., social vs. biological network). We also

investigated the problem of coloring neighborhood subgraphs

and proposed a parallel algorithm that leverages the proposed

unified framework and methods. One key finding is that

neighborhoods that are colored using a relatively few number

of colors are not well connected, with low clustering and a

small number of triangles. While neighborhood colorings that

use a relatively large number of colors have large clustering

coefficients and usually contain large cliques. In future work,

we plan to explore the neighborhood coloring further as it has

proven to provide a number of key insights into the structural

properties of the network and neighborhoods at large, while

also fast to compute for large networks. Overall, this work

demonstrated the practical significance, accuracy, and scala-

bility of our methods for coloring and analyzing large complex

networks.
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Appendix

See Tables 13, 14, 15, 16, 17, 18 and 19.

Table 13 Network statistics and coloring bounds for DIMACs (color figure online)

Recall q is the density, �d is the average degree, and r is the assortativity coefficient. The global clustering coefficient is denoted by j, jT j is the total number of triangles, and travg

and trmax are the maximum and average number of triangles incident on a vertex, respectively. The lower bound from the heuristic clique finder is denoted ~x. For the upper

bounds, we denote K as the maximum k-core and similarly, we denote the maximum triangle-core by T . The maximum and minimum number of colors among all coloring

methods are denoted vmax and vmin, respectively
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Table 14 Statistics and bounds for DIMACs (cont. from Table 13)

Graph Graph measures Bounds Colors

jV j jEj jT j �d j trmax D K þ 1 T ~x vmin vmax

johnson16-2-4 120 5.4K 360.3K 91 0.73 3K 91 92 68 8 14 15

johnson32-2-4 496 107.8K 40.7M 435 0.87 82.2K 435 436 380 16 30 34

johnson8-2-4 28 210 1.2K 15 0.43 45 15 16 8 4 6 7

johnson8-4-4 70 1.8K 71.8K 53 0.74 1K 53 54 38 14 19 22

keller4 171 9.4K 649.7K 110 0.63 4.7K 124 103 54 9 24 37

keller5 776 225.9K 98M 582 0.75 151.2K 638 561 379 22 61 176

keller6 3.3K 4.6M 10.3T 2.7K 0.82 3.5M 2.9K 2,691 2,084 45 148 783

ph1000-1 1K 122.2K 9.2M 244 0.28 22.6K 408 164 47 9 55 78

ph1000-2 1K 244.7K 73.9M 489 0.57 157.6K 766 328 196 33 116 181

ph1000-3 1K 371.7K 211.3M 743 0.76 301.7K 895 610 388 49 194 269

ph1500-1 1.5K 284.9K 34.3M 379 0.29 53.2K 614 253 75 10 78 110

ph1500-2 1.5K 568.9K 273.5M 758 0.58 372.3K 1.1K 505 314 44 167 266

ph1500-3 1.5K 847.2K 741.1M 1.1K 0.77 675.7K 1.3K 930 597 60 281 388

ph300-3 300 33.3K 5.6M 222 0.76 26.7K 267 181 118 26 73 94

ph500-1 500 31.5K 1.2M 126 0.29 5.7K 204 87 25 9 34 48

ph500-2 500 62.9K 9.9M 251 0.58 40.8K 389 171 102 32 68 104

ph500-3 500 93.8K 27.1M 375 0.77 77.2K 452 304 197 39 111 150

ph700-1 700 60.9K 3.3M 174 0.29 11.5K 286 118 34 8 42 60

ph700-2 700 121.7K 26.6M 347 0.58 79.2K 539 236 143 26 91 141

ph700-3 700 183K 73.6M 522 0.76 147.9K 627 427 273 40 145 201

s1000 1K 250.5K 86.3M 501 0.69 100.7K 550 465 399 10 15 46

s200-0-7-1 200 13.9K 1.4M 139 0.73 8.5K 155 126 93 16 35 52

s200-0-7-2 200 13.9K 1.4M 139 0.74 9.7K 164 123 112 14 18 40

s200-0-9-1 200 17.9K 2.8M 179 0.90 16.3K 191 163 134 49 71 97

s200-0-9-2 200 17.9K 2.8M 179 0.90 15.8K 188 170 143 34 76 89

s200-0-9-3 200 17.9K 2.8M 179 0.90 15.6K 187 170 145 31 69 80

s400-0-5-1 400 39.9K 5.2M 199 0.66 15.8K 225 184 154 8 13 29

s400-0-7-1 400 55.8K 11.3M 279 0.73 32.3K 301 262 182 22 71 82

s400-0-7-2 400 55.8K 11.2M 279 0.73 32.8K 304 260 179 18 51 71

s400-0-7-3 400 55.8K 11.1M 279 0.72 33.6K 307 254 182 16 22 63

s400-0-9-1 400 71.8K 23.1M 359 0.90 62.7K 374 345 294 57 151 168

sr200-0-7 200 13.8K 1.3M 138 0.70 8.8K 161 125 78 16 48 55

sr200-0-9 200 17.8K 2.8M 178 0.90 15.9K 189 167 141 34 76 85

sr400-0-5 400 39.9K 3.9M 199 0.50 13.5K 233 178 77 10 56 64

sr400-0-7 400 55.8K 10.9M 279 0.70 33.5K 310 259 164 17 86 94

Recall q is the density, �d is the average degree, and r is the assortativity coefficient. The global clustering coefficient is denoted by j, jT j is the

total number of triangles, and travg and trmax are the maximum and average number of triangles incident on a vertex, respectively. The lower

bound from the heuristic clique finder is denoted ~x. For the upper bounds, we denote K as the maximum k-core and similarly, we denote the

maximum triangle-core by T . The maximum and minimum number of colors among all coloring methods are denoted vmax and vmin, respectively
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Table 15 Statistics and bounds for BHOSLIB

Graph measures Bounds Colors

Graph jV j jEj jT j �d j trmax D K þ 1 T ~x vmin vmax

frb100-40 4K 7.4M 25.5T 3.7K 0.93 6.9M 3.8K 3,572 3,468 78 106 558

frb30-15-1 450 83.1K 25.2M 369 0.82 67.4K 407 340 257 25 41 90

frb30-15-2 450 83.1K 25.1M 369 0.82 66.7K 404 338 257 24 36 93

frb30-15-3 450 83.2K 25.2M 369 0.82 65.2K 400 337 254 25 38 95

frb30-15-4 450 83.1K 25.2M 369 0.82 65.7K 401 340 255 25 36 94

frb30-15-5 450 83.2K 25.2M 369 0.82 66.4K 403 333 254 24 34 87

frb35-17-1 595 148.8K 62.5M 500 0.84 123.9K 544 463 361 29 41 118

frb35-17-2 595 148.8K 62.5M 500 0.84 122.2K 541 465 362 28 41 113

frb35-17-3 595 148.7K 62.5M 500 0.84 126.2K 549 451 352 28 38 113

frb35-17-4 595 148.8K 62.6M 500 0.84 131.1K 560 456 354 30 41 118

frb35-17-5 595 148.5K 62.2M 499 0.84 126.3K 550 461 355 29 45 115

frb40-19-1 760 247.1K 137.5M 650 0.86 210.6K 703 595 465 32 45 136

frb40-19-2 760 247.1K 137.5M 650 0.86 209.9K 702 598 477 33 45 145

frb40-19-3 760 247.3K 137.6M 650 0.86 210.2K 702 613 491 31 41 141

frb40-19-4 760 246.8K 136.8M 649 0.85 203.9K 692 600 481 32 50 144

frb40-19-5 760 246.8K 136.8M 649 0.85 203.6K 691 596 476 32 43 143

frb45-21-1 945 386.8K 274.2M 818 0.87 331.5K 876 769 626 36 51 187

frb45-21-2 945 387.4K 275.3M 819 0.87 326.9K 870 769 625 34 48 174

frb45-21-3 945 387.7K 276.2M 820 0.87 329.6K 872 764 624 35 48 182

frb45-21-4 945 387.4K 275.7M 820 0.87 331.2K 875 757 618 35 50 170

frb45-21-5 945 387.4K 275.4M 820 0.87 330.5K 874 771 629 37 49 175

frb50-23-1 1.1K 580.6K 514.4M 1K 0.88 496.1K 1K 950 786 39 52 202

frb50-23-2 1.1K 579.8K 512.4M 1K 0.88 504.6K 1K 936 771 39 53 204

frb50-23-3 1.1K 579.6K 511.5M 1K 0.88 508K 1K 953 792 40 55 210

frb50-23-4 1.1K 580.4K 513.9M 1K 0.88 502.6K 1K 950 786 40 58 196

frb50-23-5 1.1K 580.6K 514.6M 1K 0.88 510.8K 1K 949 790 41 56 200

frb53-24-1 1.2K 714.1K 707.5M 1.1K 0.88 619.3K 1.1K 1,054 881 43 58 220

frb53-24-2 1.2K 714K 707.1M 1.1K 0.88 615.3K 1.1K 1,057 884 43 57 228

frb53-24-3 1.2K 714.2K 707.7M 1.1K 0.88 616.5K 1.1K 1,050 878 42 61 216

frb53-24-4 1.2K 714K 707M 1.1K 0.88 622.1K 1.1K 1,063 890 43 59 217

frb53-24-5 1.2K 714.1K 707.2M 1.1K 0.88 633K 1.1K 1,071 900 42 58 217

frb59-26-1 1.5K 1M 1.2T 1.3K 0.89 921K 1.4K 1,282 1,084 48 63 255

frb59-26-2 1.5K 1M 1.2T 1.3K 0.89 914.6K 1.4K 1,285 1,086 46 61 247

frb59-26-3 1.5K 1M 1.2T 1.3K 0.89 942.7K 1.4K 1,296 1,098 45 64 256

frb59-26-4 1.5K 1M 1.2T 1.3K 0.89 916.6K 1.4K 1,284 1,085 48 61 259

frb59-26-5 1.5K 1M 1.2T 1.3K 0.89 937.8K 1.4K 1,302 1,105 46 67 256

Recall q is the density, �d is the average degree, and r is the assortativity coefficient. The global clustering coefficient is denoted by j, jT j is the

total number of triangles, and travg and trmax are the maximum and average number of triangles incident on a vertex, respectively. The lower

bound from the heuristic clique finder is denoted ~x. For the upper bounds, we denote K as the maximum k-core and similarly, we denote the

maximum triangle-core by T . The maximum and minimum number of colors among all coloring methods are denoted vmax and vmin, respectively
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