Soc. Netw. Anal. Min. (2014) 4:228
DOI 10.1007/s13278-014-0228-y

ORIGINAL ARTICLE

Coloring large complex networks

Ryan A. Rossi * Nesreen K. Ahmed

Received: 1 April 2014 /Revised: 26 June 2014/ Accepted: 1 August 2014 /Published online: 12 September 2014

© Springer-Verlag Wien 2014

Abstract Given a large social or information network,
how can we partition the vertices into sets (i.e., colors)
such that no two vertices linked by an edge are in the same
set while minimizing the number of sets used. Despite the
obvious practical importance of graph coloring, existing
works have not systematically investigated or designed
methods for large complex networks. In this work, we
develop a unified framework for coloring large complex
networks that consists of two main coloring variants that
effectively balances the tradeoff between accuracy and
efficiency. Using this framework as a fundamental basis,
we propose coloring methods designed for the scale and
structure of complex networks. In particular, the methods
leverage triangles, triangle-cores, and other egonet prop-
erties and their combinations. We systematically compare
the proposed methods across a wide range of networks
(e.g., social, web, biological networks) and find a signifi-
cant improvement over previous approaches in nearly all
cases. Additionally, the solutions obtained are nearly
optimal and sometimes provably optimal for certain classes
of graphs (e.g., collaboration networks). We also propose a
parallel algorithm for the problem of coloring neighbor-
hood subgraphs and make several key observations.
Overall, the coloring methods are shown to be (1) accurate
with solutions close to optimal, (2) fast and scalable for
large networks, and (3) flexible for use in a variety of
applications.

R. A. Rossi (X)) - N. K. Ahmed

Department of Computer Science, Purdue University,
West Lafayette, IN 47907, USA

e-mail: rrossi@purdue.edu

N. K. Ahmed
e-mail: nkahmed @purdue.edu

Keywords Network coloring - Unified framework -
Greedy methods - Neighborhood coloring - Triangle-core
ordering - Social networks

1 Introduction

We study the problem of graph coloring for complex net-
works such as social and information networks. Our focus
is on designing (1) accurate coloring methods that are (2)
fast for large-scale networks of massive size. These
requirements lead us to introduce a unified coloring
framework that can serve as a basis for investigating and
comparing the proposed methods.

Graph coloring is an important fundamental problem
in combinatorial optimization with numerous applica-
tions including timetabling and scheduling (Budiono and
Wong 2012), frequency assignment (Sivarajan et al.
1989; Banerjee and Mukherjee 1996), register allocation
(Chaitin 1982), and more recently to study networks of
human subjects (Kearns et al. 2006; Chaudhuri et al.
2008), among many others (Colbourn and Dinitz 2010;
Moscibroda and Wattenhofer 2008; Ni et al. 2011; Capar
et al. 2012; Schneider and Wattenhofer 2011; Grohe
et al. 2013). The graph coloring problem consists of
assigning colors to vertices such that no two adjacent
vertices are assigned identical colors, while minimizing
the number of colors. However, in general, the coloring
problem is known to be computationally intractable (NP-
hard), even to approximate it within n'~¢ (Garey and
Johnson 1979). Nevertheless, coloring lies at the heart of
many applications where the goal is to partition a set of
entities into classes where two related entities are not in
the same class while also minimizing the number of
classes used.

@ Springer

228 Page 2 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Despite its practical importance in a variety of domains
(e.g., engineering, scientific computing), coloring algo-
rithms for complex networks such as social, biological and
information networks have received considerably less
attention. Majority of work focuses on graphs that are
relatively small, synthetic, or from other domains. How-
ever, these real-world networks (e.g., social networks) are
usually sparse with complex structural patterns (Newman
and Park 2003; Boccaletti et al. 2006; Barabasi and Oltvai
2004; Davidson et al. 2013; Kleinberg 2000; Adamic et al.
2001), while also massive in size and growing at a tre-
mendous rate over time. For instance, the web graph has
well over 1 trillion pages, whereas social networks such as
Facebook have hundreds of millions of users. Unfortu-
nately, coloring algorithms suitable for these large sparse
real-world networks have been largely ignored, even
despite the significance of coloring and its potential for use
in a wide variety of applications. Furthermore, due to the
aforementioned reasons, there has yet to be a systematic
investigation of coloring and its potential applications.

In terms of social networks, coloring has been used for
finding roles (see Everett and Borgatti 1991), but that work
is limited to extremely small instances and does not scale
to the requirements of modern social and information
networks present in the age of big data. Others have used
coloring to study small controlled groups of human sub-
jects and their behavior (Kearns et al. 2006; Chaudhuri
et al. 2008). Nevertheless, coloring methods for large
sparse networks have not been proposed, nor has coloring
been used for applications in these large networks.

The age of big network data has given rise to numerous
opportunities and potential applications for graph coloring
including descriptive and predictive modeling tasks. A few
of the possibilities are discussed below. For instance, the
number of colors, distribution of the size of independent
sets, and other properties derived from coloring are useful
in tasks such as relational classification (as features) (Sen
et al. 2008; De Raedt and Kersting 2008), graph similarity
(Berlingerio et al. 2013), anomaly detection (Akoglu et al
2010; Aggarwal et al. 2011), network analysis (Chaoji et al.
2008; Sun et al. 2008; Kang et al. 2011; Wang and
Davidson 2010), or for evaluating graph generators, among
many other tasks (Sharara et al. 2012). Additionally, vertex
or edge induced neighborhoods may also be colored to
study various questions; similar to the work of Ugander
et al. (2013a) which used neighborhood motifs instead.
Independent sets are also seemingly useful in many
applications. One such application is network sampling,
where vertices/edges may be selected from a large inde-
pendent set to ensure good network expansion (and of
course independence), and may be useful for estimating
properties efficiently in the age of big data (Al Hasan and
Zaki 2009; Ahmed et al. 2014). Indeed, such a sampling

@ Springer

strategy would also be particularly useful for machine
learning problems such as relational active learning
(Sharma and Bilgic 2013), see the work of Bilgic et al.
(2010). It is also easy to find applications in other problem
domains, e.g., network A/B testing (Ugander et al. 2013b)
which requires running randomized experiments on two
independently sampled universes, A and B, to test the
effectiveness of new products and marketing campaigns.

Although some recent work has used coloring in small
social networks (Enemark et al. 2011; Mossel and Scho-
enebeck 2010), there has not been any systematic evalua-
tion or comparison of coloring methods for large complex
networks of various types. Further, this recent work also
used only small networks. Moreover, the majority of pre-
vious work used a single coloring method and therefore
lacked any evaluation or comparison to other coloring
methods. Due to this, the properties and behavior of col-
oring algorithms for social and information networks are
not well understood and are left largely unexplored. This
work attempts to fill this gap by developing a variety of
techniques that exploit the structure of these large networks
while also being fast and scalable for partitioning the
vertices into independent sets.

More specifically, we address the theoretically and
practically important problem of graph coloring with a
focus on coloring large complex networks such as social,
biological and technological networks. For this purpose, we
develop a flexible framework that serves as a foundation
for coloring real-world graphs. The framework is designed
to be fast, scalable, and accurate across a wide variety of
networks (i.e., social, biological). To satisfy these
requirements, we relax the constraint of using the minimum
number of colors, and instead focus on balancing the
competing tradeoffs of accuracy and performance. This
relaxation provides us a framework that scales linearly with
the graph size, while also accurate as demonstrated in Sect.
6. Using this framework, we propose three classes of col-
oring methods designed specifically for the scale and the
underlying structure of these complex networks. These
include social-based methods, multi-property methods, and
egonet-based coloring methods (See Table 1). We also
adapt previous coloring methods/heuristics that have been
widely used on small and/or dense graphs from other
domains (Gebremedhin et al. 2013; Leighton 1979; Matula
and Beck 1983; Coleman and Moré 1983; Welsh and
Powell 1967; McCormick 1983) and unify them under the
greedy coloring framework. This provides us with a basis
for comparing our proposed techniques with those tradi-
tionally used. We also develop static and dynamic ordering
techniques for coloring based on triangle counts, triangle-
cores (Zhang and Parthasarathy 2012; Rossi 2014), and a
variety of egonet properties, and demonstrate the effec-
tiveness of these methods using a large collection of

Soc. Netw. Anal. Min. (2014) 4:228

Page 3 of 37 228

Table 1 Methods used as selection criterion

Name Property f(-)

NATURAL f(v) = index(v), select next uncolored vertex in the order
in which vertices appear in G

RAND F(v) ~Uni(1,|V]), select the next uncolored vertex

uniformly at random from the uncolored vertices

Degree distance-1 methods

DEG f(v) =d(v), no. adjacent vertices of v in G (i.e., degree)
DLF f(v) = no. uncolored adjacent vertices of v
DO f(v) = no. colored adjacent vertices of v (i.e., |[N.(v)|)

KCORE (sLo) f(v) = K(v), k-core number of v

Degree distance-2 methods

DIST-TWO- f(V) = |Njops=2(v)|, no. unique vertices 2-hops away of v
DEG in G

DIST-TWO- f(v) = no. unique uncolored vertices 2-hops away of v
DLF

DIST-TWO- f(v) = no. unique colored vertices 2-hops away of v

DO
Social-based methods
TRI f(v) = tr(v), no. triangles of v in G
TCORE-MAX f(v) = maX,,en(y) T'(v, w), triangle core number of v

Multi-property methods

KCORE-DEG f(v) = K(v) -d(v)

TRI-DEG fv)=1tr(v)-d(v)

TRI-KCORE f(v) = tr(v) - K(v)

TRI-KCORE- f(v) =tr(v) - K(v) -d(v)
DEG

Egonet-based methods

DEG-VOL FO) =2 enm dw)

KCORE-VOL — f(v) = 37, cnqy) K(w)

TRI-VOL FO) = enw tr(w)

TCORE-VOL (V) = 3 enn) T(v;)

KCOREDEG- (1) = Y, ey 1) - ()
VoL

TRI-KCORE- f(V) = 3wy tr(w) - K(w)
VoL

TRI-KC-DEG- £ (V)
voL

=2 weng rw) - K(w) - d(w)

The previously proposed methods are unified under the framework and
categorized into three general classes (i.e., index-based, degree-based
methods, and degree distance-2-based methods). Many of these greedy
coloring methods are considered the state-of-the-art for small and/or rel-
atively dense graphs from other domains (Gebremedhin et al. 2013), and
thus used as a baseline for evaluating our methods. However, this work
proposes three main classes of methods for large complex networks
including social-based methods, multi-property methods, and egonet-
based methods

networks from a variety of domains including social, bio-
logical, and technological networks.

The dynamic triangle ordering techniques proposed here
are likely to be of use in other applications and/or problems
such as for improving community detection (Blondel et al.

2008; Fortunato 2010), distance queries (Jiang et al. 2014),
the maximum clique problem (Prosser 2012; Carraghan
and Pardalos 1990), and numerous other problems that rely
on an appropriate vertex/edge ordering.

We also formulated the problem of coloring neighbor-
hood subgraphs and proposed a parallel algorithm that
leverages our previous methods. One key finding is that
neighborhoods that are colored using a relatively few
number of colors are not well connected, with low clus-
tering and a small number of triangles. While neighbor-
hood colorings that use a relatively large number of colors
have large clustering coefficients and usually contain large
cliques. Nevertheless, we also find linear speedups and
many other interesting results (See Sect. 7 for further
details).

In addition to the technical contributions, the other aim
of this work is a large-scale investigation of coloring
methods for these types of networks. In particular, we
compare the three classes of our proposed coloring meth-
ods to a wide variety of previous methods that are con-
sidered state-of-the-art for relatively small and/or dense
graphs from other domains. Using our unified framework
as a basis, we systematically evaluate our proposed col-
oring methods (with past methods) on over 100 networks
from a variety of types including social, biological, and
information networks.'

The types of graphs differ in their size, semantics,
structure, and the underlying process governing their for-
mation. Overall, we find a significant improve over the
previously proposed methods in nearly all cases. Moreover,
the solutions obtained are nearly optimal and sometimes
provably optimal for certain classes of graphs (e.g., col-
laboration networks). Additionally, the large-scale inves-
tigation on 100+ networks revealed a number of useful and
insightful observations. One main finding of this work is
that despite the pessimistic theoretical results previously
mentioned, large sparse networks found in the real-world
can be colored fast and accurately using the proposed
methods.

The remainder of this article is organized as follows:
Preliminaries are given in Sect. 2. Section 3 introduces the
framework along with the proposed methods while Sect. 4
proposes the more accurate recolor variant. In Sect. 5, we
derive the lower and upper bounds used throughout the
remainder of the article. Section 6 demonstrates the
effectiveness of the proposed methods on over a hundred
networks. Next, Sect. 7 formulates the neighborhood col-
oring problem and proposes a parallel algorithm for col-
oring neighborhood subgraphs. We also provide numerous

' In the spirit of reproducible research, the large 100+ collection of
benchmark graphs used in this article are available for download at
http://www.networkrepository.com.

@ Springer

http://www.networkrepository.com

228 Page 4 of 37

Soc. Netw. Anal. Min. (2014) 4:228

results indicating the scalability and utility of our approach.
Finally, Sect. 8 concludes.

2 Background

Networks are ubiquitous and can be used to represent data
in various domains, from social, biological, and informa-
tion domains. Facebook is a good live example of a real-
world network, where vertices represent people, and edges
represent relationships/communications among them. In
this section, we start by defining the fundamental graph
properties used in the problem of coloring networks.

Assume G = (V, E) is an undirected graph used to repre-
sent some network, such that V is the set of vertices, and E is
the set of edges. We use the term index(v) to refer to the index
of a vertex v. This index represents the unique identifier of a
vertex v as it appears in the graph G. One simple example of an
index could be the unique userid assigned to each user by
online social network providers (e.g, Facebook). Similarly, we
use d(v) to represent the vertex degree, such that d(v) is the
number of adjacent vertices (i.e, neighbors) to v in the graph.
The concept of a vertex degree could simply describe the
number of friends of a Facebook user.

Another property that proved to be useful particularly in
social networks, is transitivity. A transitive edge would
mean that if u is connected to v and v is connected to w,
then u is connected to w. In this case uvw represents a
triangle in G. We use the term 7r(v) to refer to the number
of triangles incident to a vertex v. In common parlance, for
a user x in a social network, the number of pairs of friends
of x that are also friends themselves would represent the
number of triangles. The concept of transitivity can be also
generalized to subgraphs with more than three vertices. In
this case, every vertex in the subgraph is connected by an
edge to every other. These types of subgraphs is typically
called cliques. Note that cliques are maximal subgraphs,
means that no other vertex in the network can be a member
of the clique while preserving the same property that every
vertex in the clique is connected to every other. In social
networks, the occurrence of cliques indicates highly con-
nected subgroups of users, such as co-workers.

Cliques are one example of the more generic concept of
network groups. In networks, vertices can be divided into
various types of groups or communities that help to explain the
underlying network structure. In this section, we introduce
two fundamental concepts of network groups related to the
problem of coloring networks (k-core, and k triangle-core).

A k-core is a maximal subgraph of G, such that every
vertex in the subgraph is connected to at least k others in
the subgraph (Matula and Beck 1983). The concept of
k-core was first introduced in (Szekeres and Wilf 1968).
k-cores are useful for various applications in network

@ Springer

Fig. 1 Triangle cores 4, 3, and 2. A k triangle-core is an edge-induced
subgraph of G such that each edge participates in k — 2 triangles.
Hence, each clique of size k is contained within a k triangle-core of G.
Similarly, the k triangle-core is contained within the (k — 1)-core
(i.e., the k — 1 core from the k-core decomposition)

analysis, such as finding communities and cliques (Rossi
et al. 2014). A simple algorithm to find the k-core of the
graph G is to start with the whole graph, and remove any
vertices that have degree less than k. Clearly, the removed
vertices cannot be members of a k-core (i.e, a core with
order k) under any conditions. Note that by removing these
vertices, naturally, the connected vertices to the removed
ones will reduce their degrees as well. Therefore, the
procedure continues until there are no vertices in the graph
with degree less than k. The output of this procedure is the
k-core (or k-cores) of G.

This procedure can also be repeatedly used to compute
the core decomposition of the graph—this means com-
puting the core number of each vertex v. The core number
of a vertex (denoted by K (v)) is defined as the highest order
k of a maximum k-core that v can possibly belong to. While
simple to implement, this procedure has a worst case
runtime of O(|E| - |[V] - log |V|). However, the runtime can
be efficiently reduced to O(|V|+ |E|) by another imple-
mentation—which we use in this paper (see more details in
Batagelj and Zaversnik 2003).

The concept of k triangle-core has recently emerged in
network analysis research, it was first proposed in (Cohen
2009), and improved in (Zhang and Parthasarathy 2012;
Rossi 2014). A k triangle-core is an edge-induced subgraph
of G such that each edge participates in at least k — 2 tri-
angles and k>2. A subgraph H, = (V|E(F)) induced by
the edge-set F is a maximal triangle core of order k if
V(u,v) € F : try(u,v) >k —2, and Hj is the maximum
subgraph with this property. Most importantly, we define
the triangle core number denoted T (u,v) of an edge e =
(u,v) € E to be the highest order k of a maximum triangle
k-core that e can possibly belong to. See Fig. 1 for further

Soc. Netw. Anal. Min. (2014) 4:228

Page 5 of 37 228

intuition. Computing the triangle core numbers of each
edge e in the graph G is called the triangle core decom-
position of G. In Sect. 3.2, we provide an efficient algo-
rithm for computing the triangle core decomposition with

runtime O(|E[*/?).

3 Greedy coloring framework

In this section, we present a scalable fast framework for
coloring large complex networks and introduce the varia-
tions designed for the structure of these large complex
networks found in the real-world.

3.1 Problem definition

Let G = (V, E) be an undirected graph. A clique is a set of
vertices any two of which are adjacent. The maximum size
of a clique in G is denoted w(G). An independent set C is a
set of vertices any two of which are non-adjacent, thus,
V(v,u) € C iff (v,u) ¢ E. The graph coloring problem
consists of assigning a color to each vertex in a graph G
such that no adjacent vertices share the same color, mini-
mizing the number of colors used. More formally,

Definition 3.1 (Graph Coloring Problem) Given a graph
G, find a mapping ¢ : V — {1,...,k} where ¢(v;) # ¢(v})
for each edge (v;,v;) € E. such that k (the number of col-
ors) is minimum.

This problem may also be viewed as a partitioning of
vertices V into independent sets Ci,C,,...,Cy, where
{1,2,...,k} are called colors and the sets Cy, ..., Cy are
referred to as color classes. Thus, the graph coloring
problem is to find the minimum number k of independent
sets (or color classes/partitions) required to color the graph
G. Nevertheless, graph coloring is NP-hard to solve opti-
mally (on general graphs), and for all € > 0, it is even NP-
hard to approximate to within n' = where n is the number
of vertices (Garey and Johnson 1979).

In this work, we relax the strict requirement of parti-
tioning the vertices into the minimum number of inde-
pendent sets to allow for colorings that are close to the
optimal. This relaxation gives rise to fast linear-time col-
oring algorithms that perform well in practice (See Sect. 6).
Motivated by this, we describe general conditions for
greedy coloring that can serve as a unifying framework in
the study of these algorithms. More formally, we define the
greedy coloring framework as follows:

Definition 3.2 (Framework) Given a graph G = (V,E)
and a vertex property f(-), the greedy coloring frame-
work selects the next (uncolored) vertex v to be colored
such that

v = argmax f(v;)

Vi
The selected vertex v is then assigned to the smallest per-

missible color. This process is repeated until all vertices are
colored.

The main intuition of the greedy coloring framework is
to color the vertices that are more constrained in their
choice of color as early as possible, giving more freedom to
the coloring algorithm to use fewer colors, and thus result
in a tighter upper bound on the exact number of colors. As
an aside, selecting the vertex that minimizes f(v) usually
results in a coloring that uses significantly more colors than
the latter. Notice that a fundamental property of the above
greedy coloring framework is that it is both fast and effi-
cient, thus, providing us with a natural basis for investi-
gating the coloring of large real-world networks, which is
precisely the scope of this work.

The above definition of the framework uses a selection
criterion as the basis for coloring. Instead, we replace the
selection criterion with the more general notion of a vertex
ordering. More specifically, given a graph G = (V,E) and
a vertex ordering

n= {V17v2a"'avia"'avn}
of V, let %(G,n) denote the number of colors used by a

greedy coloring method that uses the vertex ordering © of
G. Hence, the greedy coloring framework selects the next
vertex to color based on the vertex ordering. This formal-
ization allows for a more precise characterization of the
framework that depends on three components:

1. A graph property f(G) for selecting the vertices to
color

2. The direction in which vertices are selected (e.g.,

smallest to largest). For instance, © = {vy,...,v,} is
from max to min if f(v;) > --- >f(v,), or min to max

if f(vi) < - <f(vn)

3. A tie-breaking strategy for the case when the graph

property assigns the same value to two vertices.
Suppose f(v) = f(u), then v is before u in the ordering
n if f*(v) > f*(u) where f*(-) is another graph
property used to break-ties.

Notice that two vertex orderings 7; and m, from the graph
property f(G) may significantly differ in the number of
colors used in a greedy coloring (.e.,
x(G, 1) # %(G, m2) + €). This is due to the direction of the
ordering (smallest to largest) and tie-breaking strategy
selected. Consequently, a specific graph property f(-)
defines a class of orderings where the order direction (from
max to min) and tie-breaking strategy (f*(-)) represent a
specific member of that class of orderings. Note that in

@ Springer

228 Page 6 of 37

Soc. Netw. Anal. Min. (2014) 4:228

general f(G) can be thought simply as a function for
obtaining an ordering .

In addition, we also define a few relationships between
the graph parameters introduced thus far. Clearly, % (G, ©)
from a greedy coloring method is an upper bound on the
exact number of colors required, denoted by x(G), i.e., the
minimum number of colors required for coloring G. Fur-
ther, let w(G) be the size of the maximum clique in G,
which is also a lower bound on the minimum number of
colors required to color G. This gives the following
relationship:

o(G) <2(G) <x(G,m) <A(G) + 1

where A(G) is the maximum degree of G.

An example of the framework is shown in Fig. 2. This
illustration uses a proposed triangle selection criterion,
which is shown later in Sect. 6 to be extremely effective for
large social and information networks.

3.2 Ordering techniques

In this section, we first review the previous methods used
for coloring relatively small and/or dense graphs from
other domains (see Gebremedhin et al. 2013), which are
unified under our coloring framework. Many are consid-
ered state-of-the-art greedy coloring techniques and shown
to perform reasonably well for those types of graphs.
Despite the past success of these methods, they are not as
well suited for large sparse complex networks (e.g., social,
information, and technological networks) as demonstrated
in this work. As a result, we propose three classes of
methods for greedy coloring based on well-known funda-
mental properties of these large complex networks. In
particular, we propose social-based methods, multi-prop-
erty, and methods based on egonet properties, which are
shown later in Sect. 6 to be more effective than the state-of-
the-art techniques used in coloring graphs from other
domains. A summary and categorization of these methods
are provided in Table 1.

Algorithm 1 Basic Greedy Coloring

1 procedure GREEDYCOLORING(G,)

2 Initialize data structures

3 for v € 7 in order do

4 for w € N(v) do used(color(w)) «— v
5 k «— min{¢ > 0 : used(i) # v}
6
7

if k > max then max < k
color(v) «— k

Index-based methods The simplest arbitrary ordering
techniques under the sequential greedy coloring framework

@ Springer

Greedy Coloring
Framework

Min Triangle

Criterion

Max Triangle
Criterion

Vs [va[va[va [vs |

V2| Vs [va [va | vs |

C1 C2 C3 Cq

Fig. 2 Greedy coloring framework. In this graph, we use the number
of triangles incident to a vertex v € V as the selection criterion. On
the left, vertices are ordered from largest to smallest using the number
of triangles, which results in a greedy coloring that utilizes only three
colors. For this graph, this coloring is also optimal and thus
%(G,n) = %(G). However, when vertices are ordered from smallest
to largest (on the right) results in a coloring that uses four colors. As
an aside, A(G) + 1 is the maximum number of colors that can be used
from any greedy coloring method from the framework and thus
%(G,) <A(G)+ 1. In this graph, A(G)+ 1 =4 and thus, the
ordering used on the right is also the worst possible coloring that can
be obtained. Notice that in this example, we used the vertex index as
the tie breaking strategy, i.e., v; is ordered before v; if i <j. We also
note that if the proposed repair coloring scheme (Sect. 4) were used in
the minimum triangle selection criterion, then only three colors would
be needed. Other selection criterion (e.g., degree) may lead to a
different vertex ranking and as a consequence the greedy coloring
framework may result in an entirely different coloring. For instance,
ranking the vertices by max degree gives {va,vs,vs,v1,vs} which
differs from the ranking given by max triangle counts. Further, if two
nodes have equal degrees, then we break ties using triangle counts
(known as a tie-breaking strategy)

are natural ordering (NATURAL) and random ordering (RAND).
The natural ordering (NATURAL) method selects the vertices
to be colored in their natural order as they appear in the
input graph G, i.e., vi,Vvs,...,v,. We also define the ran-
dom ordering (RAND) as the method that selects the vertices
to be colored randomly. Therefore, the (RAND) method
selects a vertex by drawing an uncolored vertex uniformly
at random without replacement from V.

Degree methods The four simplest, yet most popular
ordering methods under the sequential greedy coloring
framework (Sect. 3) are all based on vertex degree. Spe-
cifically, we use the degree ordering DEG, the incidence
degree ordering (ipo), the dynamic-largest-first (DLF), and
the k-core ordering (kcore) [a.k.a smallest-last ordering
(sLo)]. First, the degree ordering (DEG) (Welsh and Powell ,
1967) orders vertices from largest to smallest by their static
degree as it appears in G. Second, the incidence-degree
ordering (po) (Coleman and Moré 1983) dynamically
orders vertices from largest to smallest by their back

Soc. Netw. Anal. Min. (2014) 4:228

Page 7 of 37 228

degree, such that the back degree of v is the number of its
colored neighbors. In this case, the incidence-degree
method initially starts with all vertices with back degree
equal to zero, and initially selects an arbitrary vertex v to
color. Then, all the neighbors of v will increase their back
degree by one, and the next vertex with largest back degree
will be selected for coloring. This process continues until
all vertices are colored. Third, in contrast to the incidence-
degree method (Do), the dynamic-largest-first (pLF) (Ge-
bremedhin et al. 2013) dynamically orders the vertices by
their forward degree from largest to smallest, where the
forward degree of v is the number of its uncolored neigh-
bors. Thus, the dynamic-largest-first method initially starts
with all vertices with forward degree equal to their original
degree in G, and selects the first vertex v to color, such that
v has the maximum degree in G [i.e, d(v) = A(G)]. Con-
sequently, all the neighbors of v will decrease their forward
degree by one, and the vertex with the largest forward
degree will be selected next to be colored.

Finally, the k-core ordering (KCORE) [also known as the
smallest-last ordering (sLo) (Matula and Beck 1983)]
orders the vertices from lowest to highest by their k-core
number (refer to Sect. 2 for definition). The k-core ordering
method (a.k.a smallest-last ordering) was proposed in
(Matula and Beck 1983), based on the concept of k-core
decomposition, to find a vertex ordering of a finite graph G
that optimizes the coloring number of the ordering in linear
time, by repeatedly removing the vertex of smallest degree.
The k-core ordering dynamically orders the vertices by
their forward degree from smallest to largest, where the
forward degree of v is the number of its uncolored neigh-
bors. The method initially starts with all vertices with
forward degree equal to their original degree in G, and
selects the first vertex v to color, such that v has the
smallest degree in G (i.e, d(v) =(G)). Thus, all the
neighbors of v will decrease their forward degree by one,
and the vertex with the next smallest forward degree will
be selected for coloring. The output of this method is the
vertex ordering for the coloring number, which is

equivalent to ordering vertices by their k-core number as
defined in (Szekeres and Wilf 1968).

These methods (including xcore) were found to be
superior to others, especially for forests and a few types of
planar graphs (Gebremedhin et al. 2013). We also use these
as baselines for evaluating our proposed methods (see Sect.
6).

Distance-2 degree methods We note that the degree-
based methods were defined on the /-hop away neighbors
of each vertex v € V. These methods can also be extended
for the unique 2-hop away neighbors of each vertex v € V
(McCormick 1983), we call these methods distance-2
degree ordering (DIST-TWO-DEG), distance-2 incidence
degree ordering (DIST-TWO-ID), distance-2 dynamic largest
first ordering (DIST-TWO-DLF), and distance-2 k-core order-
ing (DIST-TWO-KCORE) respectively.

Social-based methods While the degree-based meth-
ods were shown to perform well in the past, in this
paper, we compare them to other social-based orderings
such as triangle ordering (TrI), and triangle-core ordering
(TCORE).

First, the triangle ordering (TrR1) method orders vertices
from largest to smallest by the number of triangles they
participate in, i.e. f(v) = #r(v) where tr(v) can be com-
puted fast and in parallel using Algorithm 2. Other triangle-
based quantities such as clustering coefficient may also be
used and computed fast and efficiently using Algorithm 2.
Thus, the triangle ordering initially selects the vertex v with
the largest number of triangles centered around it. This
process continues until all vertices are colored. The intui-
tion behind triangles in social networks is that vertices tend
to cluster, and therefore, triangles were extensively used to
measure the number of vertices adjacent to v that are also
linked together (as explained in Sect. 2). We conjecture
that ordering vertices from largest to smallest by their tri-
angle number would give a chance to those vertices that are
more constrained in their choices of color to be colored first
than those that have more freedom (as we explained
earlier).

Algorithm 2 Parallel Vertex Triangle Counting

procedure PARALLELVERTEXTRIANGLES(G = (V, E))

1
2 Initialize arrays

3 for each v € V in parallel do

4 for each u € N(v) do X(u) < v
5 for each u € N(v) do

6 for each w € N(u) do

7 if v = w then continue
8

>s.t.v>0

if X(w) = v then tr(v) <« tr(v) +1

@ Springer

228 Page 8 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Table 2 Dynamic ordering methods

Methods Operations
Initialization ~ Find Update
Degree
D dp(v) =0 v =maxyey, do(w) dp(w) — dp(w) +1
SLO dp(v) =d(v) v =minyey, do(w) dp(W)— dp(w)—1
Triangles
T T(e;) =0 e; = MaX,cE, T(ej) T(e) — T(ej)+1
SLT T(e;) =tr(e;) e =mingep, T(e;) T(e) — T(e)—1
LFT T(e;) =tr(e;) e = max,eg, T(ej) T(ej) —T(e)—1

Summary of the main dynamic degree-based and dynamic triangle-
based ordering methods. Note that sLT and Tcore are used inter-
changeably. For convenience, let ¢ denote an edge (v, u)

Second, the triangle-core ordering (TCORE) method
orders vertices from largest to smallest by their triangle
core number (as explained in Sect. 2). Using the triangle
core numbers, we obtain an ordering and use it to deter-
mine the next vertex v (or edge) to color, using the criteria:
f(v) = max,en() T(v,w), where N(v) is the set of neigh-
bors of vertex v, and T(v, w) is the triangle core number of
the edge (v,w) € E. Notice that triangle core ordering is
comparable to k-core ordering, however, instead of
removing a vertex and its edges at each iteration, we
remove an edge and its triangles. This gives rise to a
variety of ordering methods based on the fundamental
notion of removing edges and their triangles. We call these
dynamic triangle ordering methods and provide a summary
of the main ones in Table 2 as well as a comparison with a
few of the dynamic degree-based methods. Let us note that
any edge-based quantity may be used for ordering vertices
(and vice-versa). For instance, TcorE-MaX defined in Table
1 computes for every vertex v in the graph, the maximum
triangle core number among the (1-hop)-away-neighbors of
V.

The proposed triangle ordering template is shown in Alg
3 and the key operations are also summarized in Table 2.
The backward (or forward) triangle counts are initialized in
line 2. For sLT, PARALLELEDGETRIANGLES shown in Alg 4 is
used to initialize the triangle counts. Next, line 3 adds (v, u)
to the bucket consisting of the edges with T(v, u) triangles
which is denoted bin[T(v,u)]. Hence, the edges are
ordered in O(|E|) time using a bucket sort. Note that if It is
used then this step can be skipped since each edge (v, u) is
initialized as T(v,u) = 0.

The triangle ordering begins in line 4 by ensuring
|E| > 0 where E initially consists of all edges in G. At each
iteration, a single edge (v,u) is removed from E. Line 5
finds the edge (v,u) with the smallest T(v,u) or largest
T (v, u), see Table 2 for the variants. The neighbors of u that
remain in E are marked in line 7 with the unique edge

@ Springer

identifier ¢; of (v, u) (to avoid resetting the array). In line 8,
we iterate over the triangles that (v, u) participates, i.e., the
pairs of edges (v,w) and (u,w) that form a triangle with
(v,u). Since the neighbors of u are marked in X, then a
triangle is verified by checking if each neighbor w of v has
been marked in X, if so then u,v,w must form a triangle.
Line 9 sets bin[T(v,w)] < bin[T(v,w)]\ (v,w) and
bin[T(u,w)] < bin[T(u,w)] \ (u,w), removing (v,w) and
(u, w) from their previous bins. Next, the triangle counts of
(v,w) and (u, w) are updated in line 10 using an update rule
from Table 2. Afterwards, line 11 adds the edges to the
appropriate bin, i.e., bin[T(v,w)] « bin[T(v,w)] U (v,w)
and bin[T(u,w)] < bin[T(u,w)] U (u,w). This is repeated
for each pair of edges (v, w) and (u,w) that form a triangle
with (v,u). Finally, line 12 implicitly removes the edge
(v,u) from E.

Algorithm 3 Dynamic Triangle Ordering Template

1 for each (v,u) € F in parallel do

2 T(v,u) < Initialize(v, u)

3 bin[T'(v,u)] < bin[T(v,u)] U (v, u)

4 while |E| > 0 do

Find the edge (v,u) with min{7(v,u)} (or max{T (v,u)})

Add the edge (v, u) to the back of 7

for each w € N(v) that remain do X (w) < ¢;

for each w € N(u) such that X(w) = e; do
Remove (v,w) and (u,w) from bin

10 Update T'(v, w) and T'(u,w)

11 Add (v,w) and (u,w) to the appropriate bin

12 E — E\{(v,u)}

13 end while

14 return 7

© 0w N S wo

Algorithm 4 Parallel Edge Triangle Counting
procedure PARALLELEDGETRIANGLES(G = (V, E))

1

2 Initialize arrays

3 for each (v,u) € E in parallel do

4 for each w € N(v) do X (w) < edge pos of (v,u)
5 for each w € N(u) do

6 if v = w then continue

7 if X (w) = edge pos of (v,u) then

8 tr(v, u) « tr(v,u) + 1

Egonet-based methods An egonet is the induced sub-
graph centered around a vertex v and consists of v and all
its neighbors N(v). Assume we are given an arbitrary graph
property f(-) (e.g., triangle-cores, number of triangles)
computed over the set of neighbors of v, i.e., N(v), we
define an egonet ordering criterion for a vertex v as
>_wen(wf (w). In addition, besides using the sum operator
over the egonet, one may use other relational aggregators
such as min, max, var, avg, among many others.

Soc. Netw. Anal. Min. (2014) 4:228

Page 9 of 37 228

Multi-property methods We also propose ordering
techniques that utilize multiple graph properties. For
instance, the vertex to be colored next may be selected
based on the product of the vertex degree and k-core
number, i.e., f(v) = K(v) - d(v).

3.3 Algorithm and implementation

This section describes the algorithms and implementation.
The graph is stored using O(|E| + |V|) space in a structure
similar to compressed sparse column (CSC) format used
for sparse matrices (Tewarson 1973). If the graph is small
and/or dense enough, then it is also stored as an adjacency
matrix for constant time edge lookups. Besides the graph,
the algorithm uses two additional data structures. In par-
ticular, let color be an array of length n that stores the color
assigned to each vertex, i.e., color(v) returns the color class
assigned to v. Additionally, we also have another array to
mark the colors that have been assigned to the neighbors of
a given vertex and thus we denote it as used to refer to the
colors “used” by the neighbors.

The algorithmic framework for greedy coloring is
shown in Alg 1. For the purpose of generalization, we
assume the vertex ordering = is given as input and com-
puted using a technique from Sect. 3.2.

The algorithm starts by initializing each entry of color
with 0. We also initialize each of the entries in used to
be an integer x ¢ V (i.e., an integer that does not match a
vertex id). The greedy algorithm starts by selecting the
next vertex v; in the ordering m to color. For each vertex
v; in order, we first iterate over the neighbors of v;
denoted w € N(v), and set used(color(w)) = v; as shown
in line 4. This essentially marks the colors that have been
used by the neighbors. Afterwards, we sequentially search
for the minimal k such that used(k) # v; (in line 7). Line
5 assigns this color to v;, hence color(v;) = k. Upon ter-
mination, color is a valid coloring and the number of
colors is (G, n) = argmax,pcolor(v). We denote
x(G,n) as the number of colors from a greedy coloring
algorithm that uses the ordering = of V, which is easily
computed in O(l) time by maintaining the max color
assigned to any vertex.

Note that in line 4, the color of w (a positive integer) is
given as an index into the used array and marked with the
label of vertex v;. This trick allows us to avoid re-initial-
izing the used array after each iteration over a vertex
v; € n—the outer for loop. Hence, if w has not yet been
assigned a color, i.e., color(w) =0, then used(0) is
assigned the label of v;, and since 0 is an invalid color, it is
effectively ignored. In addition, each entry in used(k),
1 <k <A+ 1 must initially be assigned an integer x & 7.

3.4 Complexity

The storage cost is only linear in the size of the graph, since
CSC takes O(|E| + |V|) space, the vertex-indexed array
color costs O(|V|), and used costs O(A + 1) space. For the
ordering methods, degree and random take O(|V|) time,
whereas the other “dynamic degree-based” techniques
such as Kcore have a runtime of O(|E|) time. The other
ordering techniques that utilize triangles and triangle-cores

take O(|E |3/ %) time in the worst-case, but are shown to be
much faster in practice. Importantly, we also parallelize the
triangle-based ordering methods by computing triangles
independently for each vertex or edge. We also note the
distance two ordering methods are just as hard as the tri-
angle ordering methods, yet perform much worse as shown
in Sect. 6. Finally, the greedy coloring framework has a
runtime of O(|V| + |E|) and O(|E|) for connected graphs.

4 Recolor variant

This section proposes another coloring variant that
attempts to recolor vertices to reduce the number of colors.
The variant is effective while also fast for large real-world
networks.

4.1 Algorithm

The recoloring variant is shown in Algorithm 5. This var-
iant proceeds in a similar manner as the basic coloring
algorithm from Sect. 3.3. The difference is that if a vertex
is assigned an entirely new color k (i.e., number of colors
used in the coloring increases), then an attempt is made to
reduce the number of colors. Using this as a basis for
RECOLOR ensures that the algorithm is fast, taking advantage
of only the most promising situations that arise.

Suppose the next vertex v in the ordering is assigned a
new color k and thus C, = {v}, then we attempt to reduce
the number of colors by reassigning an adjacent vertex u
that was assigned a previous color i such that i <k. Hence,
if |C; N N(v)| = 1, then C; contains a single adjacent vertex
of v (i.e., a single conflict), and thus, we attempt to recolor
u by assigning it to the minimum color j such that i <j<k
and C; N N(u) = 0. This arises due to the nature of the
sequential greedy coloring and is formalized as follows:
Given vertices v and u assigned to the ith and the jth colors,
respectively, where v is colored first and i <j, then since v
is assigned the minimum possible color, then we know the
colors less than i are invalid, however, v could potentially
be assigned the colors i + 1, .. ., k, since these colors arose
after v was assigned a color.

@ Springer

228 Page 10 of 37

Soc. Netw. Anal. Min. (2014) 4:228

The key intuition of the RECOLOR variant is illustrated in
Fig. 3. In the start of the example, notice that v is assigned
to a new color class Cy (i.e., contains only v). Therefore,
the REcOLOR method is called, which attempts to find v
another color class denoted C; where C; < Cy. For this, we
search for a color class C; that contains a single adjacent
vertex denoted w (known as a conflict). Intuitively, we may
assign v to C; if we can find w another “valid” color class
denoted C;. Notice that i <j <k such that the color class C;
appeared before C; and so forth. In other words, v can be
assigned to C; if there exists a valid color class C; for which
w can be assigned. If such a C; exists, then the number of
colors is decreased by one.

AlgOI‘ithm 5 Fast Greedy Recoloring

1 procedure GREEDYRECOLOR(G,)

2 Initialize data structures

3 for v € 7 in order do

4 for w € N(v) do used(color(w)) «— v

5 k < min{i > 0 : used(i) # v}

6 color(v) «— k

7 if k > max then

8 if RECOLOR(color, v, k) then k — k — 1

9 max «— k

10 procedure RECOLOR(color, v, k)

11 Initialize conflicts to be 0
12 for w € N(v) do
13 conflicts(color(w)) « conflicts(color(w)) + 1
14 used(color(w)) «— w
15 for i =1to (k—1) do
16 if conflicts(i) = 1 then
17 w <+ used (%)
18 for v € N(w) do used(color(u)) «— w
19 ¢ «— min{j > i :used(j) # w}
20 if ¢ < color(v) then
21 color(v) «— color(w) and color(w) « ¢
22 return true
23 return false
S Bounds

Lower and upper bounds on the minimum number of colors
are useful for a number of reasons (see Sect. 6.4). In this
section, we first provide a fast parallel method for com-
puting a lower bound that is especially tight for large sparse
networks. Next, we summarize the upper bounds used in
this work, which are also shown to be strong, and in many
cases matching that of the lower bound, and thus allowing
us to verify the coloring from one of our methods.

5.1 Lower bounds

Let &(G) be the size of a large clique from a heuristic
clique finder and thus a lower-bound on the size of the

@ Springer

Cl LC]. Ck

Fig. 3 Repair coloring. Suppose v is the vertex to be recolored since
it is assigned to a new color class Cy, then we find a color class C;
where v is adjacent to a single vertex w (i.e., N(v) N C; = {w}). Now,
we find a color class Cj s.t. j > i and w is not adjacent to any vertex in
Cj,ie. [N(w) N Cj| = 0. If such a color class exists, then w is removed
from C; and assigned to C;. As a result of this reassignment, v can
now be assigned to the C; color class, therefore reducing the number
of colors by 1

maximum clique ®(G). As previously mentioned,
®(G) <w(G) < %(G). Since the maximum clique problem
is known to be NP-hard, we use a fast parallel heuristic
clique finder tuned specifically for large sparse complex
networks. Our approach is shown in Algorithm 6 and found
to be efficient while also useful for obtaining a large clique
that is often of maximum or near-optimal size [i.e., @(G) is
close to w(G)] for many types of large real-world
networks.

Given a graph G = (V, E), the heuristic obtains a vertex
ordering © = {vy,...,v,} and searches each vertex v; in the
ordering 7 for a large clique in N(v;). For convenience, let
Ng(v) be the reduced neighborhood of v defined formally
as,

Nr(v) = G({v} U{u: (u,v) € E,B(u) > |Crnax|,u € X)}

where |Cpax| is the largest clique found thus far, B(u) is a
vertex upper bound”, and X is a vertex-index array of
pruned vertices [i.e., O(1) time check]. Thus, let P — Ng(v)
be the set of potential vertices and initially we set C,, < 0.
At each step in the heuristic, a vertex u € P is selected
according to a greedy selection criterion f(-) such that u «—
max,cpf(w) where f(-) is a graph property. The selected
vertex u is added to C, — C, U {u} and P, < P, N Ng(u)
where ¢ denotes the iteration (or depth of the search tree).
The local clique search terminates if |P;| + |Cy| < Crans
since this indicates that a clique of a larger size cannot be

2 The local vertex upper bound for u. denoted by B(u) is typically the
maximum k-core number of the vertex u denoted by K (u).

Soc. Netw. Anal. Min. (2014) 4:228

Page 11 of 37 228

Fig. 4 Clique invariant and fast heuristic clique finder. Recall C, is
the clique being constructed, whereas P is the set of potential vertices
that could be added to C, to form a clique of |C,| + 1. Further, after a
vertex u from P is added to C,, we must then remove u from P and
compute the intersection P N Ng(u). The result of this intersection
depends intrinsically on how well u is connected to the vertices in P.
In the ideal case, the heuristic is guaranteed to find the largest possible
clique as long as the vertices in P that form the largest clique among
each other are added to C,. For instance, the largest clique in the
above example is |C,| + 3 = 8 formed by adding the three vertices
forming a 3-clique (triangle) in P to C,, whereas if u € P with 0
degree is added to C,, then |C,| + 1 = 6, since P, N Ng(u) =0

found from searching further. See Fig. 4 for a simple
example. Notice that C, is the clique being built and grows
by a single vertex each iteration, whereas P,.; are the
potential vertices remaining after adding u to C,. Hence,
|P1| <|P:| <|P;—1| is monotonically decreasing with
respect to 7. It is clear from Fig. 4 that |P,,| and thus the
size of the clique |C,| strongly depends on u selected by the
greedy selection criterion. In Fig. 4, suppose the vertex
without edges to other vertices in P is selected and added to
C,, then P, | « () and the search terminates. The proposed
heuristic clique finder is equivalent to searching down a
single branch in a greedy fashion.

Let us also point out that Algorithm 6 is extremely
flexible. For instance, the vertices in G (globally) and P
(locally) are ordered by their k-core numbers (see line 3
and 7), but any ordering from Table 1 may be used. In
addition, while Algorithm 6 is presented using vertex k-
core numbers for pruning (line 5), one may also leverage
stronger bounds such as the triangle-core numbers (See
Rossi 2014). We used k-core numbers for ordering and
pruning since these are relatively tight bounds while also
efficient to compute for large networks. Later in Sect. 6, we
demonstrate the tightness of these bounds on large sparse
real-world networks (See Tables 3, 4).

Algorithm 6 Fast Heuristic Clique Finder
1 procedure HEURISTICCLIQUE(G = (V, E), K)

2 Set Cmax = {}
3 for each v € V in decr. k-core order in parallel do
4 if K(v) > |Cmax| then
5 Let P be the neighs. of v with core numbers > |Ciax|
6 Set Cy, = {}
7 for each vertex u € P by decreasing core number do
8 if Cy U{u} is a clique then
9 Add u to Cy
10 if |Cy| > |Cmax| then
11 Set Cmax = Cy
12 return Chax, a large clique in G

Complexity The runtime of the heuristic is O(|E| - K(G))
since it takes Y ., (v) = 2|E| = O(|E|) to form the initial
set of neighbors for each vertex. The HEURISTICCLIQUE is
essentially a greedy depth-first search where the depth is at
most K(G). As an aside, if T(G) is used instead, then the
heuristic is computed in O(|E| - T(G)). Observe that at
each step, the greedy selection criterion u < max,cpf(v) is
evaluated in O(1) time by pre-ordering the vertices prior to
searching. The runtime of the ordering is O(|P|) using
bucket sort. A global bound on the depth of the search tree
for any vertex neighborhood is clearly K(G) and for a
specific vertex v is no larger than K(v). In practice, the
heuristic is fast and usually terminates after only a few
iterations due to the removal of vertices from P via the
strong upper bounds.

Parallel algorithm The vertex neighborhoods are sear-
ched in parallel for a large clique. Each worker (i.e.,
processing unit, core) is assigned dynamically a block f§
of vertices to search. The workers maintain a vertex
neighborhood subgraph for the vertex currently being
searched. In addition, the workers share a vertex-indexed
array X of pruned vertices and the largest clique Cyx
found among all the workers. If a worker finds a clique
C, larger than Cpyy, i.e., |Cy| > |Cpax| (max so far among
all workers), then a lock is obtained, and Cy,x < C, and
the updated Cp,x is immediately sent to all workers. As
an aside, this immediate sharing of Cp,, typically leads to
a significant speedup, since the updated Cpax allows for
the workers to further prune their search space including
entire vertices.

5.2 Upper bounds

A simple, but not very useful upper bound on the Chro-
matic number y(G) is given by the maximum degree:
7(G) <A(G) + 1. A stronger upper bound is given by the
maximum k-core number of G denoted by K(G). This gives
the following relationship:

7(G)<K(G)+1<A(G) +1

@ Springer

228 Page 12 of 37 Soc. Netw. Anal. Min. (2014) 4:228

Table 3 Network statistics and coloring bounds (color table online)

Graph measures Bounds Colors
graph |V| |E| | T d r K trmax A K+1 T @ Xmin Xmax
bio-celegans 453 2K 9.8K 8 -0.23 0.12 870 237 11 9 9 10 16

S bio-diseasome 516 1.1K 4K 4 0.07 0.43 152 50 11 11 10 11 12
. bio-dmela 7.3K 25.5K 8.6K 6 -0.05 0.01 225 190 12 7 7 8 15
bio-yeast 1.4K 1.9K 618 2 -0.21 0.05 18 56 6 6 5 6 8
ca-AstroPh 17.9K 196.9K 4M 22 0.20 0.32 11.2K 504 57 57 56 57 64
ca-CSphd 1.8K 1.7K 24 1 -0.20 0.00 4 46 3 3 3 3 5

. ca-CondMat 21.3K 91.2K 513.1K 8 0.13 0.26 1.6K 279 26 26 26 26 29
o ca-Erdos992 6.1K 7.5K 4.8K 2 -0.44 0.04 99 61 8 8 8 8 12
5 ca-GrQc 4.1K 13.4K 143.3K 6 0.64 0.63 1.1K 81 44 44 44 44 45
o ca-HepPh 11.2K 117.6K 10M 20 0.63 0.66 39.6K 491 239 239 239 239 239
2 ca-MathSciNet 332.6K 820.6K 1.7M 4 0.10 0.14 1.5K 496 25 25 25 25 28
5 ca-citeseer 227.3K 814.1K 8.1M 7 0.07 0.46 5.3K 1.3K 87 87 87 87 87
3 ca-dblpl0 226.4K 716.4K 4.7M 6 0.30 0.38 5.9K 238 75 75 75 75 75
© ca-dblp12 317K 1M 6.6M 6 0.27 0.31 8.3K 343 114 114 114 114 114
ca-hollywood09 1M 56.3M 14.7T 105 0.35 0.31 3.9M 11.4K 2209 2209 2209 2209 2209
ca-netscience 379 914 2.7K 4 -0.08 0.43 75 34 9 9 9 9 9
ca-sandi-auths 86 124 126 2 -0.26 0.27 7 12 5 5 4 5 6
ia-email-EU 32.4K 54.3K 146.9K 3 -0.38 0.03 1.6K 623 23 13 11 16 27

Z, ia-email-univ 1.1K 5.4K 16K 9 0.08 0.17 261 71 12 12 12 12 15
9 ia-enron-large 33.6K 180.8K 2.1M 10 -0.12 0.09 17.7K 1.3K 44 22 15 28 57
5 ia-enron-only 143 623 2.6K 8 -0.02 0.36 125 42 10 8 8 8 11
S ia-fb-messages 1.2K 6.4K 7.4K 10 -0.08 0.04 242 112 12 5 5 8 15
B ia-infect-dublin 410 2.7TK 21.3K 13 0.23 0.44 280 50 18 16 16 16 18
Z la-infect-hyper 113 2.1K 50.6K 38 -0.12 0.50 1.7K 98 29 18 15 19 28
ia-reality 6.8K 7.6K 1.2K 2 -0.68 0.00 52 261 6 5 4 5 7
ia-wiki-Talk 92.1K 360.7K 2.5M 7 -0.03 0.05 17.6K 1.2K 59 20 9 30 64

< inf-USAir97 332 2.1K 36.5K 12 -0.21 0.40 1.4K 139 27 22 22 22 31
= inf-power 4.9K 6.5K 1.9K 2 0.00 0.10 21 19 6 6 6 6 7
Z inf-roadNet-CA 1.9M 2.7M 361.4K 2 0.12 0.06 7 12 4 4 4 5 6
inf-roadNet-PA 1M 1.5M 201.3K 2 0.12 0.06 8 9 4 4 3 4 6
ASIC-320ks 321.6K 1.5M 5.9M 9 -0.05 0.11 2.2K 822 9 18 5 6 8

2 IMDB-bi 896.3K 3.7TM 13K 8 -0.05 0.00 78 1.5K 24 3 3 11 24
S Reuters911 13.3K 148K 3.5M 22 -0.11 0.11 69.8K 22K 74 40 26 38 77
football 115 613 2.4K 10 0.16 0.41 32 12 9 9 9 9 10

lesmis 77 254 1.4K 6 -0.17 0.50 82 36 10 10 10 10 12
reccamazon 91.8K 125.7K 103K 2 0.19 0.35 9 5 5 5 5 5 5

¢, rt-retweet-crawl 1.1M 2.2M 525.9K 4 -0.02 0.00 1.5K 5K 19 13 13 13 23
~ rt-retweet 96 117 36 2 -0.18 0.07 6 17 4 4 4 4 5
rt-twitter-copen 761 1K 447 2 -0.10 0.06 27 37 5 4 4 5 8

From the large collection of 100+ graphs used in our experiments, we selected a small representative set from the various types (e.g., web, social
networks) to study relationships between key network statistics and lower and upper bounds on the Chromatic number. Here, p is the density, d is
the average degree, and r is the assortativity coefficient. We also study the following triangle related statistics: x is the global clustering
coefficient, |T| is the total number of triangles, and fr,y, and . are the maximum and average number of triangles incident on a vertex,
respectively. Using these fundamental network statistics as a basis, we analyze the relationships between these characteristic network properties
and our derived bounds on the Chromatic number. The lower bound from the heuristic clique finder is denoted @. For the upper bounds, we denote
K as the maximum k-core (i.e., the largest degree for a k-core to exist), and similarly, we also upper bound the Chromatic number using the notion
of the maximum triangle-core, which we denote by 7. Finally, we also include the maximum and minimum number of colors from a coloring
method in our framework, which we denote y,., and y.i,, respectively

%(G,n) colors, then using K(G) gives the following

In this work, we observe that this upper bound is signifi- . .
relationship:

cantly stronger than the maximum degree on nearly all
large sparse networks. ~

Since y(G,n) depends on an ordering 7 then no @(G) <0(G) <1(G) < (G,) <K(G) + 1 <A(G) + 1
relationship exists between x(G, sLo) from sLo and
%(G,n) where n gave rise to 0,(G). Nevertheless, sup-
pose the vertices are colored using sLo resulting in

where w(G) is the maximum clique in G and &(G) is a
large clique in G from the fast heuristic clique finder in

@ Springer

Soc. Netw. Anal. Min. (2014) 4:228 Page 13 of 37 228

Table 4 Network statistics and coloring bounds (continued from Table 3) (color table online)

Graph measures Bounds Colors
graph |V| | E| |T| d r K trmax A K4+1 T & Xmin Xmax
soc-BlogCatalog 88.7K 2M 153M 47 -0.23 804.4K 9.4K 222 101 24 87 170

soc-FourSquare 639K 3.2M 64.9M 10 -0.71
soc-LiveMocha 104.1K 2.1M 10M 42 -0.15
soc-brightkite 56.7K 212.9K 1.4M 7 0.01
soc-buzznet 101.1K 2.7M 92.7TM 54 2.85
soc-delicious 536.1K 1.3M 1.4M 5 -0.07
soc-digg 770.7K 5.9M 188M 15 -0.09

1.9M 106.2K 64 38 25 34 47
36.9K 2.9K 93 27 10 34 76
11.5K 1.1K 53 43 31 39 56
1M 64.2K 154 59 21 62 125
8K 3.2K 34 23 17 21 35
396K 17.6K 237 73 41 64 127

2 soc-dolphins 62 159 285 5 -0.04 17 12 5 5 5 5 7
~ soc-douban 154.9K 327.1K 121K 4 -0.18 394 287 16 11 8 13 19
g soc-epinions 26.5K 100.1K 479K 7 0.06 5.1K 443 33 18 14 20 39
E soc-flickr 513.9K 3.1M 176 M 12 0.16 524K 4.3K 310 153 21 104 208
Z. soc-flixster 2.5M 7.9M 23.6M 6 -0.32 1.4K 69 47 29 40 75
3 soc-gowalla 196.5K 950K 6.8M 9 -0.03 93.8K 14.7K 52 29 29 29 64
5 soc-karate 34 78 135 4 -0.48 18 17 5 5 5 5 6
2 soc-lastfm 1.1M 4.5M 11.8M 7 -0.14 38K 5.1K 71 23 14 24 57

soc-livejournal 4M 27.9M 250.6M 13 0.27 79.7TK 2.6K 214 214 214 214 218

soc-orkut 2.9M 106.3M 1.5T 70 0.02
soc-pokec 1.6M 22.3M 97.6M 27 0.00
soc-slashdot 70K 358.6K 1.2M 10 -0.07
soc-twitter-follows 404.7K 713K 88.6K 3 -0.88
soc-wiki-Vote 889 29K 6.3K 6 -0.03
soc-youtube-snap 1.1M 2.9M 9.1M 5 -0.04
soc-youtube 495K 1.9M 7.3M 7 -0.03

1.3M 274K 231 75 37 83 190
29.2K 14.8K 48 29 29 30 62
13.3K 2.5K 54 35 17 34 60
1.6K 626 29 6 6 7 14
251 102 10 7 7 7 15
180K 28.7TK 52 19 13 30 64
151K 254K 50 19 11 28 61

HFHEWOWURBRFRONRFRUIOREFEUIFWHRFEFOOD
=
o
—_
~

50.2K 4.9K 75 30 23 33 69
36.8K 4.3K 64 31 23 29 60
.11 69.5K 3.4K 65 47 39 48 84
.19 24K 840 70 45 42 49 83

fb-A-anon 3M 23.6M 166M 15 -0.06
fb-B-anon 2.9M 20.9M 155.9M 14 -0.11
fb-Berkeleyld 22.9K 852.4K 16.1M 74 0.01
fb-CMU 6.6K 249.9K 6.9M 75 0.12

QO | OO HOOOOHONOOHOOWOOOrRrOOO

ot ot

" .
< fb-Dukel4 9.8K 506.4K 15.4M 102 0.07 0.17 41.9K 1.8K 86 47 29 47 85
o fb-Indiana 29.7K 1.3M 28.1M 87 0.13 0.14 37.2K 1.3K 77 53 43 52 91
= fo-MIT 6.4K 251.2K 7.1M 78 0.12 27.7K 708 73 41 30 44 78
2 fb-OR 63.3K 816.8K 10.5M 25 0.18 0.15 19.4K 1K 53 36 28 36 63
. fb-Penn94 41.5K 1.3M 21.6M 65 -0.00 0.10 68K 44K 63 48 43 47 78
S fb-Stanford3 11.5K 568.3K 17.5M 98 0.10 0.16 33.1K 1.1K 92 60 47 58 90
2 fb-Texas84 36.3K 1.5M 33.5M 87 -0.00 0.10 141K 6.3K 82 62 44 57 100
3 fb-UCLA 20.4K 747.6K 15.3M 73 0.14 0.14 175K 1.1K 66 54 49 53 78
= fb-UCSB37 14.9K 482.2K 9.2M 64 0.18 0.16 16.1K 810 66 60 51 56 78
fb-UConn 17.2K 604.8K 10.2M 70 0.09 0.13 21.5K 1.7K 66 53 47 51 75

fb-UF 35.1K 1.4M 36.4M 83 -0.01 0.12 159K 82K 84 67 51 61 100

fb-Ulllinois 30.7K 1.2M 28M 82 0.03 0.14 66.1K 46K 86 65 54 59 88
fb-Wisconsin87 23.8K 835.9K 14.5M 70 -0.00 0.12 46.7K 3.4K 61 42 34 42 71

2 tech-RL-caida 190K 607K 1.3M 6 0.02 0.06 6K 1K 33 19 15 18 34
S tech-WHOIS 7.4K 56.9K 2.3M 15 -0.04 0.31 22.2K 1K 89 71 49 66 88
S tech-ascaida07 26.4K 53.3K 109K 4 -0.19 0.01 3.8K 26K 23 16 9 18 30
2 tech-as-skitter 1.6M 11M 86.3M 13 -0.08 0.01 564.6K 35.4K 112 68 41 70 115
Z tech-internet-as 40.1K 85.1K 189K 4 -0.18 0.01 8.5K 33K 24 17 14 18 28
E tech-p2p-gnutella 62.5K 147K 6K 4 -0.09 0.00 17 95 7 4 4 7 11
2 tech-routersrf 2.1K 6.6K 31.2K 6 0.02 0.23 588 109 16 16 16 16 20
web-BerkStan 12.3K 19.5K 30.9K 3 0.12 0.28 384 59 29 29 29 29 29
web-arabic05 163.5K 1.7M 65M 21 0.15 0.95 5.8K 1.1K 102 102 102 102 102

. web-edu 3K 6.4K 30.1K 4 -0.17 0.27 523 104 30 30 30 30 31
< web-google 1.2K 27K 152K 4 -0.05 0.53 189 59 18 18 18 18 19
& web-indochina04 11.3K 47.6K 630.2K 8 0.12 0.57 1.4K 199 50 50 50 50 50
z web-it04 509K 7.1M 1T 28 0.99 0.95 93.3K 469 432 432 431 432 432
3 web-polblogs 643 22K 9K 7 -0.22 0.16 392 165 13 10 9 10 15
- web-sk-2005 121.4K 334.4K 2.9M 5 0.08 0.47 3.4K 500 82 82 82 82 82
3 web-spam 4.7K 37.3K 387K 15 0.00 0.15 6.2K 477 36 23 20 22 42
= web-uk-2005 129K 11.7M 2.5T 181 1.00 1.00 124.2K 850 500 500 500 500 500
web-webbase01 16K 25.5K 63.3K 3 -0.10 0.02 1.3K 1.6K 33 33 33 33 33

[
0d]

web-wikipedia09 1.8M 4.5M 6.6 M 4 0.05 0.05 12.4K 2.6K 67 31 31 31 32

@ Springer

228 Page 14 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Table 5 Accuracy of coloring methods (color table online)

Types of Sparse Graphs

Sparse

Biological
Collaboration
Interaction

Social networks
Facebook networks
Technological

Web networks

Algorithm

KCORE-DEG
KCORE-VOL
DEG-KCO-TRI-VOL
KCORE-TRI-VOL
DEG-TRI
KCORE-TRI
DEG-KCORE-VOL

We report the frequency (number of graphs) for which each algorithm
performed the best overall. Graphs for which all algorithms performed
equally were discarded

Sect. 5.1. In other words, if a greedy coloring method uses
7 from sLo then the resulting coloring of G must use at
most K(G)+ 1 colors. Furthermore, K(G)+ 1 is also
known as the coloring number denoted col(G) (Erd6s and
Hajnal 1966)°.

The above relationship can be further strengthened using
the notion of the maximum triangle core number of G
denoted T(G). This gives rise to the following relationship:

(G) < 7(G) T(G) <K(G) + 1 < A(G) + 1

6 Results and analysis

This section evaluates the proposed methods using a large
collection of graphs. In particular, we designed experi-
ments to answer the following questions:

Section 6.1 Accuracy. Are the proposed greedy coloring
methods effective and accurate for social and informa-
tion networks?

3 Also referred to as degeneracy (Erdés and Hajnal 1966), maximum
k-core number (Batagelj and Zaversnik 2003), linkage (Matula and
Beck 1983), among others.

@ Springer

Section 6.2 Scalability. Do the methods scale for
coloring large graphs?

Section 6.3 Impact of recoloring. Is the RECOLOR method
effective in reducing the number of colors used?
Section 6.4 Utility of bounds. Are the lower and upper
bounds useful and informative?

For these experiments we used over 1004 networks of
different types (i.e., social vs. biological), sizes, structural
properties, and sparsity. Our main focus was on a variety of
large sparse networks including social, biological, infor-
mation, and technological networks®. Self-loops and any
weights were discarded. For comparison, we also used a
variety of dense graphs including the DIMACs® graph
collection and the BHOSLIB® graph collection (bench-
marks with hidden optimum solutions) which were gener-
ated from joining cliques together.

In this work, ties are broken as follows: Given two
vertices v; and v; where f(v;) = f(v;), then v; is ordered
before v; if i > j. While the importance of tie-breaking was
discussed in Sect. 3, many results in the literature are dif-
ficult to reproduce as key details such as the tie-breaking
strategy are left undefined.

6.1 Accuracy

As an error measure, we compute the frequency (i.e.,
number of graphs) for which each coloring method per-
formed best overall, i.e., used the minimum number of
colors. If two methods used the minimum colors relative to
the other methods, then the score of both are increased by
one. The graphs for which all methods achieved the best
are ignored. The proposed methods are evaluated below
for use on (1) sparse/dense graphs and also (2) for each
type of large sparse network (i.e., social or information
networks).

Best methods for sparse and dense graphs The methods
are compared in Table 5 (columns 2 and 3) independently
on the basis of sparsity. Notice the methods in the first
column of Table 5 are ranked and shaded according to their
accuracy on sparse graphs (following an ascending order).
A few of our general findings from Table 5 are discussed
below.

e Selecting the nodes uniformly at random (RAND)
generally performs the worst for both sparse and dense
graphs. This highlights the importance of selecting
vertices that are more constrained in the number of

4 hitp://www.networkrepository.com/.
S http://iridia.ulb.ac.be/ ~ fmascia/maximum_clique/.

S http://www.nlsde.buaa.edu.cn/ ~ kexu/benchmarks/graph-bench
marks.htm.

http://www.networkrepository.com/
http://iridia.ulb.ac.be/~fmascia/maximum_clique/
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

Soc. Netw. Anal. Min. (2014) 4:228 Page 15 of 37 228

Table 6 Colors used by the proposed methods (color table online)

Stats & Bounds Coloring Methods

=
o
IO
0 . N
] o o ~
3 S 5oz £ o3 2§
T e 0w 7 =2 % 2 % ¢ g i o8
S5 8 5§ % 32§48 ¢8 8¢

= M M = = =
A SOz 2 2 2 2 £ 2 2 % g2 X
Z 22 2 £ g £ 8 2828828 ¢ &g
graph |[E|] & A K+1 T @ £ a 8 & & & & & & a & & Ao ¥ a

bio-dmela 25.5K 0.00 190 12 7 7 12 9 9

©
©
©
©
©
©
©
©
©
[04]
[04]
©

ia-email-EU 54.3K 0.09 623 23 13 11 23 19 19 19 18 18 17 17 17 17 17 17 17 17 16
ia-enron-large 180K 0.34 1.3K 44 22 15 40 31 31 31 30 30 28 28 28 28 28 28 28 28 37
ia-fb-messages 6.4K 0.02 112 12 5 5 12 9 9 9 8 8 8 8 8 9 9 8 9 8 9
ia-infect-dublin 2.7K 0.05 50 18 16 16 16 17 17 17 17 17 16 16 16 17 17 17 17 17 16

ia-wiki-Talk 360K 0.03 1.2K 59 20 9 45 35 35 35 34 34 30 30 30 31 31 31 31 31 40

soc-BlogCatalog 2M 0.09 9.4K 222 10124124 89 89 89 88 88 87 87 87 88 90109108 115117
soc-LiveMocha 2.1M 0.01 29K 93 27 10 53 38 38 38 39 39 34 34 34 36 36 37 38 36 45
soc-brightkite 212K 0.07 1.1K 53 43 31 49 40 40 40 40 40 39 39 39 42 42 41 41 41 46
soc-buzznet 2.7M 0.01 64.2K 154 59 21 89 63 63 63 62 62 63 63 63 64 65 79 80 87 86
soc-delicious 1.3M 0.02 3.2K 34 23 17 26 22 22 22 22 22 22 22 22 21 21 21 21 21 22
soc-digg 5.9M 0.04 17.6K 237 73 41 93 66 66 66 67 67 71 71 71 64 64 81 82 89 90
soc-douban 327K 0.01 287 16 11 8 17 14 14 14 13 13 13 13 13 13 13 13 13 13 13
soc-epinions 100K 0.06 443 33 18 14 30 25 25 25 25 25 20 20 20 20 20 20 20 20 21
soc-flickr 3.1M 0.08 4.3K 310 153 21 146 109 109 109 108 108 104 104 104 105 106 129 126 138 142
soc-flixster 7.9M 0.05 1.4K 69 47 29 57 47 47 47 47 47 47 47 47 44 44 40 40 40 49
soc-gowalla 950K 0.09 14.7K 52 29 29 44 30 30 30 30 30 30 30 30 30 30 29 29 29 37
soc-lastfm 4.5M 0.03 5.1K 71 23 14 43 26 26 26 26 26 27 27 27 24 24 28 28 27 40
soc-pokec 22.3M 0.02 14.8K 48 29 29 43 33 33 33 33 33 33 33 33 33 33 30 30 30 38
soc-slashdot 358K 0.03 2.5K 54 35 17 44 39 39 39 40 40 34 34 34 35 35 35 35 35 43
soc-twitter-fol 713K 0.01 626 29 6 6 13 8 &8 8 7 7 7 7 7 8 8 9 12 12 8
soc-wiki-Vote 2.9K 0.04 102 i0 7 7 11 9 9 9 9 9 8 8 8 8 8 7 7 8 8
soc-youtube 1.9M 0.05 25.4K 50 19 11 42 32 32 32 32 32 30 30 30 30 30 28 28 29 37

fb-A-anon 23.6M 0.04 49K 75 30 23 52 35 35 35 35 35 34 34 34 33 33 34 34 35 45
fb-B-anon 20.9M 0.04 4.3K 64 31 23 47 30 30 30 30 30 30 30 30 29 29 29 29 30 41
fb-Berkeleyl3 852K 0.01 3.4K 65 47 39 57 49 49 49 49 49 50 50 50 48 48 49 49 49 56
fb-CMU 249K 0.02 840 70 45 42 58 50 50 50 50 50 49 49 49 51 51 50 50 51 55
fb-Dukel4 506K 0.02 1.8K 86 47 29 64 56 56 56 55 55 47 47 47 52 52 49 49 49 61
fb-Indiana 1.3M 0.01 1.3K 77 53 43 66 58 58 58 58 58 56 56 56 54 54 54 54 52 62
fo-MIT 251K 0.02 708 73 41 30 59 50 50 50 48 48 44 44 44 46 46 46 46 47 55
fb-OR 816K 0.04 1K 53 36 28 46 41 41 41 41 41 37 37 37 37 37 37 37 36 44
fb-Penn94 1.3M 0.01 4.4K 63 48 43 56 52 52 52 53 53 48 48 48 50 50 48 48 47 52
fb-Stanford3 568K 0.02 1.1K 92 60 47 68 63 63 63 63 63 59 59 59 58 58 59 59 60 67
fb-Texas84 1.5M 0.01 6.3K 82 62 44 74 64 64 64 64 64 57 57 57 60 60 60 60 61 71
fb-UCLA 747K 0.02 1.1K 66 54 49 61 54 54 54 56 56 53 53 53 54 54 54 54 54 57
fb-UCSB37 482K 0.01 810 66 60 51 63 59 59 59 60 60 56 56 56 56 56 56 56 56 62
fb-UConn 604K 0.01 1.7K 66 53 47 60 56 56 56 57 57 56 56 56 51 51 52 52 52 57
fb-UF 1.4M 0.01 82K 84 67 51 75 66 66 66 65 65 64 64 64 61 61 62 62 61 72
fb-Ulllinois 1.2M 0.01 4.6K 86 65 54 72 64 64 64 63 63 62 62 62 59 59 60 60 61 68
fb-Wisconsin87 835K 0.01 3.4K 61 42 34 54 48 48 48 47 47 46 46 46 44 44 43 43 42 51

@ Springer

228 Page 16 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Table 6 continued

Stats & Bounds

Coloring Methods

3

A >

) = — = a3 i

2 3 22 E % g E

a &) < 1 1 [l

R = T T = T - I ORI

6o m @ = o L 2 02 @2 02 & &

z 4 9 § » = g 8 a g B 8

o © 2 0% 2 g g B o2 o2 & 4 8

835 ::: 28888t

graph |[E|] & A K+1 T @ £ a 8 & & & & & & a & & Ao ¥ a
tech-RL-caida 607K 0.06 1K 33 19 15 25 20 20 20 20 20 20 20 20 19 19 19 19 19 18
tech-WHOIS 56.9K 0.26 1K 89 71 49 72 67 67 67 67 66 67 67 67 66 66 67 67 66 72
tech-as-skitter 11M 0.08 35.4K 112 68 41 &1 71 71 71 71 71 71 71 71 70 70 77 76 73 T4
tech-internet-as 85.1K 0.15 3.3K 24 17 14 22 19 19 19 19 19 19 19 19 19 19 18 18 19 20
tech-routers-rf 6.6K 0.11 109 16 16 16 18 17 17 17 16 16 17 17 17 17 17 16 16 17 17
web-polblogs 2.2K 0.06 165 3 10 9 12 11 11 11 11 11 10 10 10 11 11 10 10 11 10
web-spam 37.3K 0.08 477 36 23 20 31 24 24 24 24 24 22 22 22 23 23 24 24 24 22

For comparison, we used RAND, DEG, 1DO, and DIST-TwWo-1D0. We also provide the strong upper bounds and lower bound for additional insights. For
each network, we bold the best solution among all methods. Note that we removed the less interesting networks (i.e., Ymin = Xmax» Since those are

effectively summarized in Tables 3 and 4

3 -
ol ® Sparse Networks -
® Dense Networks °
1 o .
g o T 1.0
° Ry &
-1 o0 ...
£ o o g
c °op ®
g > gt
& "
°?
-3 I.n-l#
o " "
4+ ®o -]
P =
2 3 4 5 6 7 8 0
log([V| + |E)

Fig. 5 Scalability of the proposed coloring methods. The x axis
represents the log of the size of the graph whereas the y axis is the log
runtime (in seconds). For both large sparse and dense networks, find
that the proposed methods scale linearly as the size of the graph
increases and thus practical for a variety of applications

possible colors first, which can’t be achieved by
random selection.

e Nearly all the proposed methods (with the exception of
DEG-voL) gave fewer colors and found to be signifi-
cantly better than the traditional degree-based methods.

e As expected, the traditional degree-based methods are
more suitable for dense graphs than sparse graphs.
Nevertheless, the triangle and triangle-core methods
performed the best on the majority of dense graphs.

@ Springer

e In both sparse and dense graphs, we find that TCORE-
MAX/VOL, and TRI-voL gave the fewest colors overall.

e Interestingly, the natural order performed best on 31 of
the dense graphs. Further examination revealed that the
majority of these cases are the BHOSLIB graphs. These
graphs are synthetically generated by forming n distinct
cliques and randomly connect pairs of cliques together.
We found that the vertices in these cliques are ordered
consecutively and thus give rise to this unexpected
behavior found when using the natural order.

For additional insights, we provide the coloring bounds and
various statistics for the DIMACs and BHOSLIB graph
collections are provided in Tables 13 and 15. The coloring
numbers from the various algorithms for the DIMACSs and
BHOSLIB graph collections are also shown in Tables 16
and 17, respectively. We find that in all cases, the proposed
methods improve over the previous methods. In some
graphs, the proposed methods offer drastically better
solutions with much fewer number of colors, for instance,
see MANN-a81 which is currently an unsolved instance.

Best methods: from social to information networks The
sparse graphs are examined further by their respective
types (i.e., social networks). For each network of a specific
type, we apply the coloring methods in Table 1 and mea-
sure their accuracy just as before. This allows us to
determine the coloring methods that are most accurate for
each type of network. The results are shown in Table 5
(columns 4-10). The greedy coloring methods are ranked
and colored according to their overall rank shown previ-
ously in the first two columns of Table 5.

Page 17 of 37 228

(1°0> "99s) A11A21q J0J paAOWAI 2IoM sawnunl Juno[od juedyrugisur yim sydein) ‘uonosa[jod ayy ur ydeid yoes 10§ pajiodal SI SPUOIIS UT dWUNI Y],

pringer

A

9Ce 06¢ T0¢ 9°¢C £9¢ v'1c 0c 081 691 01T €6 Lec 9C ¢¢ 1€ NSV elpadiiim-gam
79 09 Y Sy <y 6'¢ vy 8¢ Le I'c Sl 0 ¥0 +0 00S INII 3N-gam
6’1 Sl 7'l €1 Cl vl 60 80 80 S0 70 I'0 10 TI'0 T8 3Ivee XS-gam
Y 1Y s 0°¢ 9Y vy I'e 9¢ e I'c Sl €0 ¥0 €0 v8 NIC Juohjey-gom
88 L6 76 98 98 L'L 69 9°¢ 69 I'v L'c L0 80 90 ¢y WI'L H-gam
I'e 0¢ L'c e €T [L1 6’1 L1 01 L0 ¢0 TO0 1I'0 ol LI dlgere-gam
60 60 60 80 80 Lo 90 g0 0] €0 0 I'o 10 - v SLyT |19Inub-dgd-yosy
L'vy 'y V'LE % 8'¢ce cle 6'1¢ 6'SC S'Ly 6'¢l 8Ll Lo S N A T 4 ITI JapMs-se-yos}
€T ge ge 6C LT 9C 94 8¢C ST 01 I'1 0 S0 90 6 P (%Y Epled-se-yos}
£'e I'e 0¢ 9C I'c e 0¢C 6’1 6'l 01 80 0 ¢To0 To SI 3ILO9 epled-14-yos}
60 'l 80 L0 Lo 90 80 L0 90 ¥'0 0] I'o 10 10 IS WPl 4N-a}
60 60 'l €1 L0 'l 90 S0 60 ¥'0 0 o 10 10 ¢ WNET yeuusd-a}
'l €1 <l 80 'l L0 01 60 80 €0 0 1o 10 10 8¢ 3918 H40-94
L0 90 90 90 S0 S0 S0 70 70 €0 o 10 10 - NEIT euelpul-q}
80 80 80 L0 90 90 90 S0 S0 0 [4Y I'o 10 T'0 6¢ MCS8 €L Aoloxiag-a)
S9 99 09 145 0¢ 9y ov 9¢ £€e 0¢ L1 0 ¥0 ¥0 11 61 aqninoA-oos
6v 9Y 4 8¢ 9°¢ €e 0¢ 67 €T S1 8’1 €0 €0 €0 9 AETL [10}-191IM}-00S
80 L0 L0 90 90 S0 S0 S0 70 0 0 - - - LT 8SE Jopyse|s-o0s
L9y Ley 6'1S 6'9¢ I'vy 8’1y §'6C (2% 6°¢ce 'St |4} 0y 8v Lt 6C INCC 98¥0d-008
8’61 I'LT 0°¢I 144! I'el Lel 9¢l ! Ll 9°¢ 19 172 S 20 S O B 4 B 4% 4 Wi1Se|-00s
Ley 1oy (413 Lee 8'1¢ 1"8¢ c6c €ve Tee 14! 001 9¢ 9¢ 67T 6C 6L 191sX1|}-00s
06 €8 €L '8 S'L 09 09 Sy Sy e ' L0 90 €S0 Ic NIt I4OI)}-00S
e [[0¢ 8’1 L1 S1 4! 'l 60 90 I'0 10 10 8 dLee ueqnop-o0s
8¢l EaA! £l 8¢l 8¢l 801 9'6 S'L €8 vy £'e €l 0l 80 Iy JWN6S B61p-o0s
9'8 T8 '8 S'L 9L I'9 6'S Y SY 0¢ €T 90 90 €S0 LI INEI
e 0¢ 0¢ 6'C 6C 9C €T [0¢ V'l 01 0 TO TO0 It LT 18uzzng-o0s
L1 ¥ Sl 14! 61 L1 (4! 9l 91 60 L0 ¢0 TO0 T1'0 Ol NI'T BUOIONSBAIT-O0S
96 S0l ¢'8 €8 9L V'L ¥'9 €01 6'8 e 94 80 L0 S0 ST CE 8senbginog-00s
8’1 9l 9l Sl ! [['l I'1 90 S0 I'o 10 10 ¥¢C Nc Boferegbo|g-oos
TOA-RIL TOA-HIONVIIL TOA-FI0DM RL-08d STTONVIIL STTONVRIL XVIN-T00 TOA-T0D TOA BL] 0dI-OML
-2400)-DAd -24003 -0ad -24003 -0 -Dad -TIONVIIL -EIONVIIL -ZIONVIIL -2¥0D STIONVIIL -1SId odl Ddd ® || ydein

Soc. Netw. Anal. Min. (2014) 4:228

swnuni Aq swyoge 3uriojoo Ay Surredwo) £ d[qeL,

228 Page 18 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Table 8 Recolor statistics

Percentage Difference

Improved (%) Same (%) Max diff. Mean diff.
Sparse 40.9 59.1 11 1.01
Dense 84.4 14.6 313 14.65

We compare the variants that use RECOLOR to those that do not. The
statistics in the table are computed over all graphs and greedy col-
oring methods. The max and mean improvement are measured as the
maximum/average difference between the number of colors used
before and after recoloring

e In nearly all types of networks, the proposed methods
are more accurate than the traditional degree-based
methods (i.e., use fewer colors).

e For social and Facebook networks, the triangle and
triangle-core methods performed the best (i.e., accu-
racy), using fewer number of colors.

In the majority of cases, we found that the proposed methods
are significantly better than the traditional degree-based
methods (i.e., Do, DEG) at p <0.01 level. More specifically,
greedy coloring methods that use triangle properties or tri-
angle-core based methods significantly improve over the
other methods, resulting in a better coloring with fewer
number of colors. In addition, the colors used by the pro-
posed methods for each network are compared in Table 6.

6.2 Scalability

Now, we evaluate the scalability of the proposed methods. In
particular, do the methods scale as the size of the graph
increases (i.e., number of vertices and edges)? To answer this
question, we use the proposed greedy coloring methods to
color a variety of networks including both large sparse social
and information networks as well as a variety of dense
graphs. Figure 5 plots the size of the graph versus the runtime
in seconds (both are logged). Overall, we find the proposed
greedy coloring methods scale linearly with the size of the
graph. Moreover this holds for both large sparse and dense
networks. Nevertheless, coloring dense graphs is found to be
slightly faster with less variance in the runtime, as compared
to social networks which exhibit slightly more variance in
the runtime of graphs that are approximately equal size.

We also compare the wall clock time (i.e., runtime in
seconds) between a representative set of methods on a variety
of networks. Results are provided in Table 7. For brevity, we
removed the graphs for which all methods took less than 0.1
seconds to color. Not surprisingly, the simple degree-based
methods (distance-1 and 2) are the fastest to compute.

These results indicate that in practice, the proposed
methods are fast, scaling linearly as the size of the graph
increases. Hence, these methods are well-suited for use in a
variety of applications including network analysis,

@ Springer

relational machine learning, sampling, among many others.
See Sect. 7.3 for details on the scalability of the neigh-
borhood coloring methods.

6.3 Effectiveness of recolor

This section investigates the effectiveness of the RECOLOR
method. In particular, how often does it reduce the number of
colors? For this, we investigate and compare greedy coloring
variants that utilize RECOLOR to the methods that do not.
Given a graph G and a vertex ordering © from one of the
proposed selection strategies in Sect. 3.2, we color the graph
using the basic coloring framework (Algorithm 1) and then
we color the graph again using the RECOLOR method. From
these two colorings, we measure the difference in the number
of colors (after recoloring and before recoloring) and number
of times the REcoLOR method improved over the basic
method. The results are shown in Table 8. Note that the
statistics are computed over all graphs and greedy coloring
methods, including the methods that do not perform well
(i.e., degree-based methods). Note that the maximum
improvement (i.e, max diff. in Table 8) and average
improvement (i.e, mean diff. in Table 8) are measured as the
maximum/average difference between the number of colors
used before and after recoloring.

In sparse graphs, the recolor method results in fewer
colors 40.9 % of the time whereas the improvement for dense
graphs is 84.4%. We find that the improvement for dense
graphs is much larger since the number of colors initially
(before recoloring) used on average is usually far from the
optimal number. Note that for sparse graphs, this includes the
graphs where the greedy coloring methods was able to find
the optimal number of colors (and thus, it is impossible for
RECOLOR to improve over the basic coloring). Additionally,
the sparse graphs use fewer colors than the dense graphs and
also the number of colors used from the greedy coloring
methods tends to be closer to the optimal. These results
indicate that RECOLOR is both fast and effective for reducing
the number of colors used by any of the proposed methods.

In addition, we also provide results for both recolor and
basic variants on a variety of large sparse real-world net-
works, see Tables 9 and 10. These can be used to infer
additional insights. In Tables 18 and 19, we also compare
the recolor variant to the faster but less accurate basic
coloring variant of each coloring method for the DIMACs
and BHOSLIB graph collections.

6.4 Bounds and provably optimal coloring

This section describes two ways to leverage the bounds.
Results are then provided in Tables 3 and 4 for a repre-
sentative set of graphs from the collection.

Page 19 of 37 228

Soc. Netw. Anal. Min. (2014) 4:228

uonN[os 1$3q A} PAUTEIO Jey) SWIYILIOS[e Ay} AJedIPUl SAN[EA P[og “JUBLIEA JO[OI Y} WIOIJ SI MOI WOYI0q A} SLAIYM JUBLIEA OISEQ A} WOIJ S)Nsax oy sT mox doy oy ‘yders yoea 1o

9¢ 8¢ LT LT 8¢ 8¢ 6¢ 6¢ 6¢ 0¢ 0¢ 6C 6C 60 oy
LE 6C 8T 8T 0€ 0¢ 0€ 0€ 0€ [43 [43 (44 T4 (42 § | 0S IFST W61 8gqninoA-oos
LE 6C 8T 8T 0€ 0¢ 1€ 1€ 1€ I 1€ e 1¢ I¢ (44
[Ui% 53 0€ 0€ Ie 53 €€ (33 €€ €e €€ €€ €¢ €€ 420 %) 7S ML8t 6T us-ninof-oos
8 L L L 8 8 8 8 8 8 8 8 8 8 0l
8 8 L L 8 8 8 8 8 6 6 6 6 6 m L L 01 01 A6'C SIOA-HIM-00S
144 [43 [43 [43 (43 [43 1€ 1€ 1€ 9¢ 9¢ 9¢ 9¢ 9¢ (44
94 33 33 33 53 33 4% e 4% (tig [U% 6¢ 6t 6¢ vy L1 SE ¥S ST M8SE 1OPYSE[S-00S
LE 67 6T 6T [43 [43 1€ 1€ 1€ 1€ 1€ e 1¢e I¢€ 184
8¢ 0€ 0€ 0€ 139 23 € €€ 139 € € €€ €E € & 6C 6C 8y J8YI INETT 09)0d-00s
9¢ LT 8¢ 8¢ €T €7 94 54 Y4 9¢ 9¢ 9¢ 9¢ 9¢ 6¢
[U% LT 8¢ 8¢ 144 14 Le LT LT 9¢ 9¢ 9¢ 9¢ 9¢ £ 20 4 S ¢ IL Al'S NSY WISe|-00s
LE 67 67 6T 6T 67 6T 6T 6T 6T 6T 0 0 0¢ (44
LE 6T 6T 6T 0€ 0¢ 0€ 0€ 0€ 0¢ 0€ 0 0 0¢ ¥r 6T 6C s ILvE o 3I0S6 ellemof-00s
9 8¢ 8¢ 8¢ w w 9 9 9 id 9 9 9 Or €S
6 oy oy oy 144 124 Ly Ly Ly Ly Ly Ly Ly Ly LS 6T Ly 69 AT N6'L I8)sXl)}-008
£ LTI 611 8T1 66 001 001 001 001 01 01 0l ¥0I ¥OI 8¢l
ol 8¢l 9Tl 6Cl 901 SOt (U8 o1 o1 801 801 60T 60T 60T 9%T 1T €SI ore Mev NI'E I[}-00s
0T (114 (114 0T 0T (114 0T 0T 0T (44 (44 @ w «@ 8¢
Ic (114 (114 0T 0T (114 0T 0T 0T 4 194 §¢ St ST 0oc ¥l 8I €€ €y 3001 suoluide-oos
<l €l €l €l €l €l €l el €l €l €l 4 4. 4! LT
€1 €1 €1 €1 €1 €1 €1 €1 €1 €1 €1 40 4. 4| LT 8 11 91 L8C JILTE ueqnop-00s
€8 08 LL SL 19 19 €9 €9 €9 €9 €9 €9 €9 €9 88
06 68 8 18 9 9 1L 1L 1L L9 L9 99 99 99 €6 Iy €L LEC J9LT WW6'S B61p-o0s
Ic 1< 1< Ic | 4 | 4 < [44 [44 (44 < @ @ 4
(44 | 4 |4 |4 |4 | 4 C (44 (44 C (44 @ w @ 9¢ L1 €T 123 ATE INE'T Snoilsp-d0s
€8 8 SL YL 8¢ 6S 65 6S 65 8¢S 65 65 65 65 ¢8
98 L8 08 6L S9 ¥9 €9 €9 €9 9 9 €9 €9 €9 68 1T 65 PSl MCTY9 LT 18BUZzZnQg-00s
w 23 LE 9¢ 139 23 0€ 0€ 0€ 9¢ 9¢ 9¢ 9¢ 9¢ 0s
IS4 9¢ 8¢ LE 9¢ 9¢ 123 123 123 6¢ 6¢ 8¢ 8¢ 8¢ € 01 LT €6 A6'C INI'C "ON®AIT-00S
(48! (U8 01 01 68 S8 ¥8 78 78 78 €8 68 S8 68 8II1
LTT SIT 801 601 06 88 L8 L8 L8 88 88 68 68 68 yer o v 101 (442 14 N yeDbojg-oos
TOA TOA TOA oar
STIONVIIL -2IONVIRIL -2¥00¥ IML-DHA SHIONVRIL STIONVIIL XVIN-2¥0D TOA-H¥0D TOA Dad -OML
~2I00N-0dd -0 -0d -H¥0DN -HI0DN -DHd -HIONVIIL -ZIONVRIL -STONVRIL -H¥0DM SHIONVIIL -ISId 0dl DId ANV @ I 1+X v e ydein

spoyjowr SurIo[o)

spunoq pue sjels

uostredwods 10j spoylow snotad1d Inojy apnjour os[e 9Ay ‘spoyleuwt pasodoid ay) Jo Yoo I0J JUBLIBA JISeq QJBINOOE SSI INQ I3)Se) Yy 0) paredwod sI jueLreA I0[00Y ¢ qEL

pringer

A

228

Soc. Netw. Anal. Min. (2014) 4

228 Page 20 of 37

9 8S 8S 8¢ 8S 8¢S 8¢S 8S 8¢S 19 19 09 09 09 89
89 19 09 09 6S 6S 4% 9 9 €9 €9 9 9 ¥9 L SS9 98 39Y INCTI
99 6S 19 19 6S 6S 09 09 09 9 9 9 9 1L
L 9 9 9 19 9 9 9 9 <9 S9 9 99 99 SL IS L9 ¥8 T8 AP d4Nn-a}
129 0s 0s 0s 0s 0s 159 1< IS €S 39 s Is IS 8¢S
LS [43 [43 (43 Is IS 9¢ 9¢ 9¢ LS LS 9¢ 9¢ 9¢ 09 Ly €S 99 LT V09 uuoon-a4
6S Vs 99 59 sS 99 99 59 ss 8¢ LS 9¢ 9¢ 9¢ 9
9 9s 9s 9s 9s 9s 9s 98 9s 09 09 65 65 65 €9 IS 09 99 0I8 M8y ££4S0N-a}
S9 98 LS LS LS LS 98 9s 98 19 19 9 W IL
IL 19 09 09 09 09 LS LS LS ¥9 9 9 ¥9 19 vL v 79 8 9 ST ¥8SEX9 -0}
19 9¢ sS ss sS sS SS sS sS 8¢ 8¢S 8¢ 8¢ 8¢ 9
L9 09 6S 6S 8¢S 8¢S 6S 6S 6S €9 €9 €9 €9 €9 89 Lv 09 6 'l 89S €pJojuelS-q4
159 9 9% W 9w 9% Ly Ly Ly 6 6 6y o6v oF 39
[43 Ly 8 8 0S 0s 8y 8 8 €S 39 ¢ T§ TS 9¢ &¥ 8p €9 My WEL yeuusd-aj
(4% ve ve 143 re ve e 4% re 8¢ 8¢ Le Le LE 144
144 9¢ LE LE LE LE LE LE LE 44 184 v v Iy 9% 8T 9¢ €S Al 918 H0-a4
0s 34 144 144 134 34 134 34 134 144 144 Ly Ly Ly LS
99 Ly 9 9 oY 9 144 144 144 8 8y 0s 05 0Ss 65 0¢ I¥ €L 80L MIST LIN-a}
LS 1s 1s 18 185 1s [y (43 (43 123 123 §¢ ¢SS 9
9 (4 129 19 ¥S 129 9¢ 9¢ 9¢ 8¢ 8¢S 8¢ 8¢ 8¢ 99 €F €S LL MAETT JACN BUBIpU|-q}
129 Ly Ly Ly 9y g IS4 Fig 4 0S 0s 0s 0SS 0S 19
19 6% 67 (94 s [4g Ly Ly Ly SS 59 9¢ 9 96 ¥9 6T Ly 98 8T 3908 yioxna-aj
€5 Ly 6V 6 Ly Ly Ly Ly Ly 8 8y 6y ov oF 9¢
99 s 0s 0s Is s (94 (14 (14 0s 0s 0s 0SS 0S 8¢ T Sv oL 0¥8 3eévc NND-a4
[43 9 9 W Ly Ly 8y 8 8 6 6 Ly Ly LYy 59
9¢ 6 67 94 14 id 0s 0s 0S 6 6 6y 6y oF LS 6 Ly [SYRED: VAN (4%] €Lhoex1eg-ay
LE 8T LT LT 8¢ 8T 8T 8¢ 8¢ 8¢ 8T 8C 8¢ 8C 54
184 0€ 6T 6T 6T 6T 0€ 0€ 0€ 0€ 0¢ 0c 0¢ 0¢ Ly €T 1€ ¥9 ey N60C uoue-g-qj
LE 8¢ 6C 6C 8T 8¢ 8T 8T 8T [43 [43 [XS X . 19 v
[U% Ie Ie Ie Ie Ie 0€ 0€ 0€ 1 143 ge S¢ o€ Sv 6 0C 65 JTT 309¢ deL-Him-el
6 6 6 8 8 8 8 8 8 8 8 6 6 6 !
6 8 6 8 6 6 8 8 8 8 8 6 6 6 a s ¢ cl 18! Mr'9 sebessew-qj-el
123 8T LT LT Le LT 9T 9 9T 6¢ 6C 6C 6T 6C 8¢
LE 8¢ 8T 8T 8T 8¢ 8T 8T 8T 0€ 0¢ e Ie 1€ oy SI <C vy el 08I abuej-uolus-el
ST 91 91 91 91 91 Ll L1 L1 81 81 LT LT LT (44
91 L1 Ll LT L1 Ll Ll L1 L1 81 81 6l 61 6l € Il ¢l € €9 EPS Nn3-llews-el
T0A T0A oar
TOA-TTIONVRIL -ITONVIRIL -H0D0M RIL-D3A SHIONVIIL SEIONVIRIL XVIN-230D TOA-2M0D T0A 03ad -OML
-H¥00)-DHA -TI00N -odd -0 -H400) -odd -TIONVIIL -HIONVRL -HIONVIIL -H¥0DM SHTIONVRIL -ISla odl DEA ANV ® [[+ Y v, led] ydein

spoyjowr SuLI0[0)

spunoq pue sjers

(6 2IqeL WwoIy panunuod) spoyiowr pasodoid ay) Jo Yo I0J JUBLIEA OISEq 9)BINOOE SSI] Inq Id)ISeJ 9y} 0) paredwrod SI juerIea 10[003y () el

pringer

A's

Soc. Netw. Anal. Min. (2014) 4:228

Page 21 of 37 228

Table 10 continued

Coloring methods

Stats and bounds

DEG-KCORE-

KCORE-

KCORE-

KCORE-

DEG-

TRIANGLE-
CORE-MAX

TRIANGLE-
CORE-VOL

TRIANGLE-
VOL

KCORE-
DEG

TRIANGLES

RAND DEG IDO DIST-

@

T

IE| K+1

Graph

TRIANGLE-VOL

TRIANGLE-
voL

DEG-TRI KCORE-
VoL

TRIANGLES

TRIANGLES

TWO-
DO

51

43 43)

44
42

46 44

46
43

46
43

47

47

54 48 48 48
52

25
24

34
9 72

42

34K 61

835K

fb-Wisconsin87

48

42

42

42

42

43

45

45

45 45

45

18
18
72

19
17
66
63

19
18
67
62

19
18
67

19
19
66
63

19
19
66
63

20
19
67
60

20

20

20
19
66
61

20
19
67

15 20 20 20
19
67
62

19

33

1K

607K

tech-RL-caida

19
67

19
67

19
67

19
67

IK 89 71

56.9K

tech-WHOIS

64
20

62

60

60

62 61

62

66
14 22

19
18
17
17

18
17
16
16

18
17
16
16

19
18
17
17

19
18
17
17

19
18
17
17

19
18
17
17

19
18
17
17

19
18
16
16

19
18
16
16

19
18
17
17

19
18
17
17

17

33K 24

85.1K

tech-internet-

18
17
16

18
17
17

21

as

18
16

109 16 16 16

6.6K

tech-routers-rf

We also include four previous methods for comparison. For each graph, the top row is the results from the basic variant whereas the bottom row is from the recolor variant. Bold values indicate the algorithms that obtained the best

solution

First, the lower bound can be used to verify that the
coloring from a greedy method is optimal. Let &(G) be a
lower bound of y(G) (i.e., optimal number of colors), then
we have the following simple relationship:

(G) <w(G) < x(G) <y(G,m) <A(G) + 1

where (G,) is the number of colors from a greedy col-
oring that uses @ and A(G) + 1 is the maximum degree of
G. Consequently, if @(G) = y(G, n), then as a result of the
above, we know (G, 7) must be optimal.

Second, we may also use the bounds to characterize the
accuracy of a greedy coloring method or prove that a solution
is not optimal. For instance, suppose @(G)<
K(G) <y%(G,), then we know (G, m) is not optimal.

We find the optimal number of colors is directly
obtained and verified via both lower and upper bounds for
nearly all collaboration networks and web graphs as shown
in Table 3. In 6 of the 13 collaboration networks, we found
that 3(G) = %in(G,) = Y (G, %) = K(G) + 1 = T(G)
where ¥,,in(G,n) and ¥, (G,n) are the min and max
number of colors used by any of the coloring methods. This
implies that the ordering is insignificant for these networks
as all the methods resulted in a coloring that is provably
optimal. Notably, from the 7 other networks, 5 of them
differ only in ¥,,.«(G, 7). In addition, many other inter-
esting observations and insights may be drawn from Tables
4 and 3.

To summarize we find that:

1. For some types of information networks, the pro-
posed greedy coloring methods produce an optimal
coloring.

2. The upper and lower bounds are effective for proving

the optimality or suboptimality of a solution from a
greedy coloring heuristic.

3. For the majority of graphs that are significantly skewed

and power-lawed, the optimal number of colors is
directly obtained and verified via both lower and upper
bounds.

7 Finding colorful neighborhoods

Given a large graph or a collection of neighborhood sub-
graphs, how can we define a domain-independent basis that
succinctly characterizes the common structural properties
of the neighborhood subgraphs? For this task, we define the
problem of coloring local neighborhood subgraphs and
propose a fast parallel flexible approach for solving it.
Formally, a neighborhood subgraph can be defined as the
induced subgraph centered around a vertex v and induced
by all neighbors of v. Our parallel neighborhood coloring

@ Springer

228 Page 22 of 37

Soc. Netw. Anal. Min. (2014) 4:228

(a) Star (b) Star w/ Triangles

Fig. 6 Neighborhood coloring extremes: from stars to cliques. For a—
¢, the vertex v in the center is the vertex in which the neighborhood
was induced, thus the other vertices are in the set N(v). In a the vertex
neighborhood is a simple star—no connections between the neighbors
of v, and thus can be colored using only 2 colors. The neighborhood
subgraph in b is essentially a star with a few neighbors of v with edges
among each other, thus, forming triangles. Similarly, in ¢ we find
more neighbors forming connections among each other giving rise
numerous triangles and two cliques of size 4. Finally, the neighbor-
hood subgraph in d represents a single large clique. Node v was

framework makes heavy use of the proposed coloring
methods from Table 1 as well as the basic coloring variant
in Alg 1 and the more accurate recolor variant shown in
Alg 5. In particular, we propose parallel methods for col-
oring neighborhoods that are (1) fast and scalable for large
networks, (2) space-efficient, (3) flexible for a variety of
applications, (4) and accurate, finding in many cases nearly
optimal or provably optimal solutions.

One of the main observations we make is that neigh-
borhoods that are colored using a relatively few number of
colors are not well connected, with low clustering and a
small number of triangles. To understand this fundamental
finding and the key intuition, we provide a series of simple
neighborhood colorings shown in Fig. 6. We also observe
that neighborhoods that are colored using a relatively large
number of colors have large clustering coefficients and
usually contain large cliques relative in size to the other
neighborhood colorings. Therefore, the set of neighbor-
hood colorings is an important fundamental graph property,
giving a number of key insights into the structural prop-
erties of the network at large and its local neighborhoods.
In a similar manner as we have demonstrated above, one
can also use neighborhood coloring to draw a number of
other interesting insights and ultimately use it for charac-
terizing the structure and behavior of many types of large
networks. Besides these key benefits, we demonstrate that
neighborhood coloring is fast and scalable to compute for
large networks, and more specifically, it is linear in the
number of edges. This is clearly much faster than com-
puting the frequency of vertex/edge triangles (Rossi 2014)
or counting the frequency of other subgraph patterns and
motifs (Przulj 2007; Shervashidze et al. 2009; Rahman
et al. 2012). We also show that it is straightforward to

@ Springer

S

(d) Large Clique

(¢) Small Cliques

removed for clarity. These neighborhood subgraphs go from the least
constrained neighborhood representing a star a to the most con-
strained neighborhood representing a clique d. The neighborhood
subgraphs shown in b, ¢ are better representatives of neighborhood
subgraphs found in large real-world networks (e.g., Facebook or other
social networks). Note that in reality, the vertex v in which the
neighborhood subgraph corresponds may be removed from the
coloring, since v must be connected to every other vertex. Thus, the
neighborhood subgraphs above are (k — 1)-colorable when v is
removed

parallelize for both shared-memory (CPU and GPU) and
distributed architectures.

Local neighborhood coloring consists of assigning a
color to every vertex in a vertex neighborhood such that no
two vertices linked by an edge share the same color while
minimizing the number of colors used. The most colorful
neighborhood is the one that requires the maximum num-
ber of colors. In this section, we propose parallel methods
for coloring neighborhoods that are (1) fast and scalable for
large networks, (2) space-efficient, (3) flexible for a variety
of applications, (4) and accurate, finding in many cases
nearly optimal or provably optimal solutions.

The neighborhood colorings may be useful for finding
better communities, especially in local community detection
methods (Malliaros et al. 2012). Besides community meth-
ods, neighborhood coloring may also be used in prediction
tasks such as detecting anomalous patterns in graphs, see
(Akoglu et al 2010) for one such egonet-based method. Other
prediction tasks such as relational classification may also
benefit from neighborhood coloring. For instance, one may
construct a set of node features such as from these neigh-
borhood colorings to improve the accuracy of classification
(e.g., number of colors, largest independent set).

The results of our neighborhood coloring have direct and
immediate implications on exact algorithms for the maxi-
mum clique problem (Bomze et al. 1999; Prosser 2012). In
fact, the most successful approaches have used coloring as a
bound, but vary in the ordering and method used (Konc and
Janezic 2007; San Segundo et al. 2011; Tomita and Kameda
2007; Tomita et al. 2011, 2010; Rossi et al. 2012). For
instance, suppose vertex neighborhoods are searched in
parallel, similar to our heuristic in Alg 6, then the

Soc. Netw. Anal. Min. (2014) 4:228

Page 23 of 37 228

10 | —®— soc-orkut (62)
—o— fb-texas (61) -
—&— bio—human-gene2 (1362)
8 —e— dimacs—kelleré (702) L

7z

Speedup

12 4 6 8 10 12
Number of processing units

(a) Representative Graphs

Fig. 7 Scalability. The speedup of our methods on different types of
graphs are shown in a, whereas the speedup of different coloring
variants for soc-flickr are shown in b. It is clear that all proposed
variants are scalable for large graphs, while vertex-centric coloring

neighborhood coloring results may be used for bounding the
search space in branch-n-bound algorithms, for pruning
entire neighborhoods directly, and for ordering vertices via
the number of colors from the vertex neighborhood coloring,
among many other vertex level features that could be
derived from such a set of neighborhood colorings. These
may enhance recent parallel algorithms such as pmc (Rossi
et al. 2014) that utilizes degeneracy ordering giving a worst-
case runtime of O(2%*) on sparse graphs with bounded
degeneracy. In addition, super-linear speedups may become
more frequent using the ordering from neighborhood col-
oring/pruning, i.e., these were observed using pMc (Rossi
et al. 2014) and later confirmed again using a parallel ver-
sion of Mcs (Tomita et al. 2010; McCreesh and Prosser
2013). Nevertheless, the set of vertex neighborhood color-
ings may also be used for pruning in other ego-centric search
methods. They also provide a basis for a variety of ordering
methods which may have applications, e.g., graph com-
pression (Boldi and Vigna 2004).

7.1 Problem formulation

Our focus is on coloring vertex neighborhoods. Let N(v) =
{v} U{u: (u,v) € E} be the closed neighborhood of a ver-
tex v and we define H, as the neighborhood subgraph induced
from N(v), consisting of v, the neighbors of v, and any edges
between them. Suppose H, is a neighborhood subgraph of G
and G is k-colorable, then H, must also be k-colorable.
Consequently, if H, is a subgraph of G, then y(H) < x(G).

The local chromatic number of G is the maximum
number of colors appearing in the closed neighborhood
(subgraph) of a vertex minimized over all proper colorings.
More formally,

10 i

Speedup

—&— vc + basic (103)
—&— vc + recolor (99)
—&— cc + basic (103)
—&— cc + recolor (100)

12 4 6 8 10 12
Number of processing units

(b) Coloring Variants

(vc) using RECOLOR scales slightly better than the others for the large
sparse flickr social network. Processing units are cores (one thread per
core)

2(G) = min max |{c(u) : u € N(v)}|

where the minimum is taken over all proper colorings ¢ and
%,(G) is the number of colors appearing in the most col-
orful closed neighborhood of a vertex. Clearly,
%(G) < x(G) and we find for large real-world graphs (i.e.,
social and information networks (Mislove et al. 2007,
Ahmed et al. 2013)) these two numbers are usually close.
Despite this result, we note that for general graphs y,(G)
may be small while y(G) can be arbitrarily large (Erdds
et al. 1986; Godsil et al. 2001).

We relax the strict requirement above from consider-
ing all proper colorings to considering only a single
proper coloring for each neighborhood. In particular, this
article proposes a framework of local greedy coloring
methods designed for dense and large sparse graphs
found in real-world (e.g., social networks). Given a
neighborhood subgraph of v denoted H, and a graph
property f(-), let f(H,) = x where x € R" is a vector of
vertex weights and x; is the value of vertex u; € N(v).
Using the weight vector x as a basis for ordering the
vertices in the closed neighborhood, we denote this
ordering as m, = {uy,uy, ...}. Further, let y(H,x,) be the
number of colors used by a local greedy coloring algo-
rithm that uses the ordering =, to color H. Consequently,
an approximation of the local chromatic number of G is
defined as:

1(G, IT) = max y(N[V], m,)

where ¥, (G, IT) is the maximum number of colors used by a
local greedy coloring method that uses the set of neigh-
borhood vertex orderings II = {m, ,m,,,..., 7, }. Intui-
tively, the above gives rise to the following relationship:

@ Springer

228 Page 24 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Table 11 Upper and lower bounds of the chromatic number for the graphs

Graph stats Bounds

Graph V| |E| |T| d r K Fimax A K+1 T @ x(G,n)
soc-flickr 513K 3.IM 176M 12 0.16 0.15 524K 43K 310 153 21 104
soc-orkut 2.9M 106M 1.5B 70 0.02 0.04 1.3M 274K 231 75 37 83
soc-youtube 495K 1.9M 7.3M 7 —0.03 0.01 ISIK 254K 50 19 11 28
tech-as-skitter 1.6M 11M 86.3M 13 —0.08 0.01 564K 354K 112 68 41 70
bio-human-gene2 14K oM 14.7B 1.2K 0.8 059 69M 72K 1,903 1,681 1,267 1,329
kelleré 33K 4.6M 10.3B 27K —0.02 082 35M 29K 2,691 2,084 45 148

We denote (G, n) as the maximum number of colors used from the set of neighborhood colorings. Note that (G, 7) is computed using none of

the pruning steps and thus is larger than if pruning is used

Table 12 Comparing the space of neighborhood coloring methods.
We evaluate a representative set of methods from the framework. The
local coloring number denoted y,(G,n) is given for each of the
variations. We present results for a representative sample of methods
from the framework. In all methods, the local ordering is from largest
to smallest, whereas the global ordering is from smallest to largest. For
the global ordering we used kcore-voL for simplicity, while varying
the local ordering method (color figure online)

Ordering Techniques

s
-
) o JCR
= &} S s g
S x £ v & 5§ & &
IS 5 & 5 £ &2 = =z 5
. ~ s S £ 8 8 £ 84
Variant] 5 X & & X & & Q
Basic v' |60 |58 |54 |58 |54 |54 |58 |54
X les |62 |58 |62 |57 |57 |62 |56
2 2
Recolor v |57 |57 |53 |57 |53 |52 |57 |5
X |67 |61 |56 |61 |57 |56 |61 |56

o(G) <1(G) <y, (G, IT)

Also, if we consider a vertex neighborhood subgraph H,,
then:

w(H,) <y(H,) <y(H,,m,) <A(H,) + 1

where w(H,) is the size of the maximum clique, y(H,) is
the optimal number of colors required to color H, (mini-
mized over all proper colorings of N(v)), and y(H,, r,) is
the number of colors from a greedy coloring of N(v) using
n, € I1.

7.2 Neighborhood coloring
The parallel framework is shown in Alg 7. Here, B(-) is
assumed to be normalized with respect to cliques, hence,

B(v) = K(v) + 1. This allows us to generalize the algo-
rithm over any arbitrary upper bound.

@ Springer

Algorithm 7 Parallel Neighborhood Coloring Framework

1 Initialize data structures

2 Compute upper bounds B(G)

3 Obtain a lower bound w(G) « HEUCLIQUE(G)
4 Prune vertices and edges from G (explicitly)

5 Obtain a vertex ordering m = {v1,...,vn}

6 for each v; in an ordering 7 in parallel do
7 if B(v;) > max then

8

9

P —{uv}
for w € N(v;) do
10 if B(w) > max then P — P U {w}
11 Set x to be the computed graph property f(P)
12 Order vertices in P using x
13 k < COLORINGVARIANT(G, P)
14 if £ > max then max — k

-

5 return x,(G, 7) < max

Upper and lower bounds are computed in line 2 and 3,
respectively, and used for pruning in line 4. The vertices
remaining in G are ordered in line 5, and then each vertex
neighborhood in that order are colored (line 6). For each
vertex in order, we first try to avoid coloring v; by checking
if the local vertex upper bound B(v;) is smaller than max. If
not, then lines 810 form the “reduced” set P of neigh-
boring vertices. In line 12, we obtain the local vertex
ordering m,, by ordering the vertices in P using an arbitrary
property f(P) computed in line 11. Next, the subgraph H,
induced by the ordered vertex set P are colored using a
coloring variant and color assignment/search strategy (line
13). Finally, line 14 updates the maximum number of
neighborhood colors required, if necessary.

Note that the three pruning steps are shown in lines 4, 7,
and line 10, respectively. If the goal is to compute y,(G, n),
then the pruning steps can significantly reduce the search
space leading to faster and more accurate colorings. For the
problem of computing the complete set of neighborhood
colorings, then we can simply avoid using the pruning
steps. In other words, the pruning steps and their utility are
application dependent, and thus may be turned on/off
accordingly. We also note that these pruning steps are also

Soc. Netw. Anal. Min. (2014) 4:228

Page 25 of 37 228

10
107
<
A
X
o 107 —— soc—flickr
soc—orkut
soc-youtube
tech-skitter
— web-wiki
10° : : ' : '
0 20 40 60 80 100

Number of Colors

Fig. 8 Properties of the neighborhood colorings. Using the parallel
neighborhood coloring algorithm, we color each vertex-induced
neighborhood and record the number of colors used for that
neighborhood as well as the maximum independent set size (i.e.,
largest such coloring class given by the neighborhood coloring of that

bio—human-gene2

bio—human-gene2

10
soc—flickr
soc—-orkut
soc-youtube
1072 tech—skitter
web-wiki

P(X > x)

1000 2000 3000 4000 5000

Max Independent Set Size

vertex). We use the complementary cumulative distribution function
(CCDF) to study the coloring properties of a few large sparse real-
world networks. The max independent set size is with respect to the
coloring (largest such coloring class)

bio—human-gene2

600 600 8
(7]
500 500 g 25
B 400 & 400 =
c c o 20
() ()
S 300 S 300 e
o o &
o o a
o 200 & 200 o
210
100 100 <
x
0 “"A_A 0 g 5
800 900 1000 1100 1200 1300 1400 1500 5 10 15 20 25 30 800
Number of Neighborhood Colors Size of Largest Independent Set Number of Colors
kelleré kelleré ° kelleré
500 600 R 70
(7]
400 500 g 60
& g 400 =
S 300 5 @ 50
=) 3 300 °
g 200 19 8 40
[& 200 g
T
100 100 £ 30
3
0 0 s 20 . . '
0 200 400 600 800 20 30 40 50 60 70 0 200 400 600 800

Number of Neighborhood Colors

Size of Largest Independent Set

Number of Colors

Fig. 9 Characterizing and comparing the various types of networks using statistics from neighborhood coloring. The number of colors used to
color each of the neighborhoods are shown along with the size of the largest independent set in the coloring of the neighborhoods

useful for finding the max clique, computing a graph
property for which the upper and lower bounds apply, and
for finding dense subgraphs, among many other tasks.

In addition to the coloring variants from Sects. 3 and 4,
we also investigate two types of search procedures for
coloring (i.e., color-centric and vertex-centric) that differ in
their implementation, but may result in significantly dif-
ferent runtimes depending on the structural properties of
the input graph. In particular, the search procedure in the
basic and recolor variants may be performed by searching
color-classes (i.e., the independent sets) or by searching the
vertex neighborhoods (i.e., adjacent vertices) and thus, we

term these search procedures as color-centric and vertex-
centric, respectively.

7.2.1 Parallelization

The neighborhood coloring problem is parallelized by
considering each neighborhood subgraph as independent
and coloring each of these subgraphs in parallel. We use
dynamic scheduling and assign each processing unit a single
neighborhood at a time. This helps ensure the vertex
neighborhoods are colored in approximately the correct
order. Our approach requires a single lock to ensure that the

@ Springer

228 Page 26 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Number of Colors

Number of Colors

o soc—-youtube o tech—as—skitter o soc—orkut

N 120 N 140 : N 6000 :

[79) (7] [75)

g 100 g 1% % 5000

[09] (0] [09]

= 80 = 100 = 4000

S g 80 5

e 60 P E w0 % 3000

S 40 P P o $ 2000

3 . o 4 8

£ 2 i - £ 5 £ 1000

3 o l i = o § i % . :
= 5 10 15 20 = o0 10 20 40 5 60 70 = 0 10 20 30 40 50 60

Number of Colors

Fig. 10 Exploring the relationship between two statistics from the neighborhood coloring. The number of colors used in each local coloring is

compared with the size of the largest independent set from that coloring

largest number of colors used thus far is consistent and avoid
potential race conditions when updating it (see line 14).
Importantly, as soon as a processing unit updates max, we
immediately broadcast it to all other processing units. We
observed that this can significantly improve performance as
the tighter lower bound may be used for additional
pruning or result in terminating a search early. As an
aside, if the pruning rules are used, then two subsequent
runs may result in slightly different y,(G, 7). This is due
to possible variations in the global vertex ordering which
determines the underlying order in which the neighbor-
hoods are colored.

The parallel framework has many other advantages. For
instance, each processing unit only requires a neighbor-
hood subgraph and therefore the framework is space effi-
cient for streaming or graphs too large to reside in memory
and thus a good candidate for GPU parallelization as well.

7.3 Experiments

We now analyze the effectiveness of our approach on a
variety of real-world networks. The network statistics
including lower and upper bounds are provided in Table 11.

A number of observations are made from the experi-
ments. First and foremost, the scalability of our parallel
framework is demonstrated in Fig. 7 where we observe that
significant speedups are possible across a range of different
types of graphs and coloring variants. Importantly, Fig. 7a
demonstrates the scalability of our methods on a diverse set
of graphs, from large sparse graphs (e.g., social and bio-
logical networks) to dense networks found in scientific
computing. Besides density, these graphs are known to
contain very different structural properties. We used the
large Orkut social network that is sparse and power-lawed,
the sparse Facebook Texas network, a slightly more dense
biological network of a human gene, and a very dense
unsolved instance from the clique/coloring DIMAC’s
challenge. The last two graphs were found to be more
difficult to obtain nearly optimal local colorings. Never-
theless, these two graphs, but especially the human gene,

@ Springer

scale slightly stronger than the more sparse networks.
These graphs were colored using the basic coloring method
with color-centric search and no pruning. Further, vertices
were ordered globally by kcore-vol (f(v) = 3, ey K(W))

and ordered locally using kcore-deg-vol and both orderings
are from largest to smallest for simplicity.

Finally, we also investigated the scalability of a few
different coloring variants using the large sparse flickr
social network, see Fig. 7b for details. In particular, all the
proposed variants are shown to scale well for large graphs,
while vertex-centric coloring (vc) using RECOLOR scales
slightly better than the others. Similar results were also
observed using other types of graphs and methods.

Now, we investigate a representative sample of coloring
methods from the large space defined by the framework. For
this experiment, we use the three pruning steps and order
the vertices globally using KCORE-vOL and are searched from
smallest to largest. The vertices in each neighborhood are
ordered from maximum to minimum and thus the vertices
more constrained in their choice of color are assigned colors
early allowing more flexibility in the color assignment
whereas vertices that are not as constrained take lower
precedence in their color assignment since these vertices are
usually easily assigned to a color. In both global and local
ordering, ties are broken using vertex ids such that if f(v) =
f(u) and v > u, then v is ordered before u.

The results from a single graph (soc-flickr) are shown in
Table 12, others were removed for brevity. The first row
represents the family of methods that use the basic variant
with pruning, whereas the second row uses no pruning.
Likewise, the third and fourth rows use recolor with
pruning and without it, respectively. There are several
interesting observations. First, the coloring number from
the recolor variant is at least as accurate and usually better
than the basic variant. This result is independent of whether
pruning is used or not and it shows how much improve-
ment can be achieved by using the recolor variant. Second,
pruning is generally effective in obtaining a better coloring
number. Note that using both pruning and the recolor
variant clearly improves on the basic coloring method

Soc. Netw. Anal. Min. (2014) 4:228

Page 27 of 37 228

(without pruning or recolor). For example, using the Tri-
voL method, we get a ~9 % improvement in the number of
colors, when we apply both pruning and recolor variant.
Finally, we observe that the Tri-voL and DgG-Kcorg-voL
methods perform the best among all other methods (mini-
mum number of colors). These results are consistent with
the pervious discussion in Sect. 6.

In this section, we use neighborhood coloring to charac-
terize the various types of networks as well as gain insight
into the structural properties of the networks. We view the
neighborhood coloring as a process for discovering mean-
ingful features that capture some underlying properties of the
graph that arise from the notion of coloring. From this, we
first derive two vertex features. Specifically, for each vertex
v, the first feature represents the number of colors used in the
neighborhood coloring of the vertex v, and the second feature
represents the size of the maximum independent set resulting
from the neighborhood coloring of the vertex v. Figure 8
shows the complementary cumulative distribution (CCDF)
of these features across all the nodes in the graph. We observe
that those graphs that are denser and more clustered (such as
soc-flickr) typically use many colors for neighborhood col-
oring of the vertices. For example, the soc-flickr dataset uses
100 colors to color the largest vertex neighborhood in the
graph. On the other hand, graphs that are more sparse and less
clustered (such as soc-youtube) typically use fewer colors for
neighborhood coloring of the vertices. Further, we observe
that the maximum independent set size is inversely propor-
tional to the maximum number of neighborhood colors.
Clearly, this observation is due to the rate of dependence
among the graph vertices. For example, the soc-flickr dataset
has a small independent set size ~400 vertices. On the other
hand, a graph that is as large and as sparse as soc-orkut
typically has a large independent set size ~5,000 vertices.
These observations show how significant the two features
(number of colors and maximum independent set size) for
capturing the underlying structural properties of various
types of graphs. Note that in Fig. 8, we show only some of the
datasets as examples, and we omit the others for brevity.

As an aside, egonet-based clique methods were proposed
for sparse graphs (Rossi et al. 2012) and sampling methods
and estimators based on egonets were developed in the same
spirit (Gjoka et al. 2013; Ahmed et al. 2013). One may also
straightforwardly use egonets to obtain an accurate estimate
of the distribution of local coloring numbers.

In Fig. 9, we focus the attention on the other denser graphs,
bio-human-gene?2 and keller6. Figure 9 shows the histograms
of the number of colors, maximum independent set size, and
the correlation between them, for both bio-human-gene2 and
keller6 graphs. We observe that the histograms of the number
of colors and maximum independent set size are highly
skewed. For example, bio-human-gene2 graph shows that 600
vertices uses more than 1,400 colors for their neighborhood.

Moreover, the size of the maximum independent set size has a
small range (5-25). The keller6 graph, however, is one of the
clique DIMAC’s challenge graphs. We observe that the his-
togram of the keller6 graph consists of two groups, one group
with small number of colors (<200), and the other group with
higher number (/= 600) of colors. This observation is clearly
shown in the histogram of the maximum independent set size.
Similarly, we show the correlation plots between the number
of colors and the maximum independent set size for several
datasets in Fig. 10. The observations are similar to what we
discussed before.

8 Conclusion

Despite the obvious practical importance of graph coloring,
existing works have not systematically investigated or
designed methods for large complex networks. In this work,
we defined a unified framework that can serve as a funda-
mental basis for studying coloring on large networks. Using
this framework, we proposed three classes of fast and accurate
methods including social-based, multi-property based, and
egonet-based methods. We demonstrated the effectiveness of
the proposed methods on over 1004 networks and among 7
different types of networks (e.g., social, technological net-
works). In the majority of cases, we found these methods to be
more accurate than other widely used heuristics thathave been
used for coloring in other domains. Importantly, we find that
the solutions obtained from our methods are nearly optimal
and sometimes provably optimal for certain types of networks.
Furthermore, the coloring methods were shown to be effective
for the task of finding graph outliers as well as predicting the
type of graph (e.g., social vs. biological network). We also
investigated the problem of coloring neighborhood subgraphs
and proposed a parallel algorithm that leverages the proposed
unified framework and methods. One key finding is that
neighborhoods that are colored using a relatively few number
of colors are not well connected, with low clustering and a
small number of triangles. While neighborhood colorings that
use a relatively large number of colors have large clustering
coefficients and usually contain large cliques. In future work,
we plan to explore the neighborhood coloring further as it has
proven to provide a number of key insights into the structural
properties of the network and neighborhoods at large, while
also fast to compute for large networks. Overall, this work
demonstrated the practical significance, accuracy, and scala-
bility of our methods for coloring and analyzing large complex
networks.

Acknowledgments We thank the anonymous reviewers for their
constructive and helpful comments. This material is based upon work
supported by the National Science Foundation GRFP Fellowship
under Grant No. DGE-1333468.

@ Springer

228 Page 28 of 37 Soc. Netw. Anal. Min. (2014) 4:228

Appendix

See Tables 13, 14, 15, 16, 17, 18 and 19.

Table 13 Network statistics and coloring bounds for DIMACs (color figure online)

Graph measures Bounds Colors
graph |V| |E| |T| d K trmax A K+1 T @ Xmin Xmax
C1000-9 1K 450K 364.6M 900 0.90 385K 925 875 764 51 311 327
C125-9 125 6.9K 691.8K 111 0.90 6.3K 119 103 86 27 54 59
C2000-5 2K 999.8K 499.7M 999 0.50 287.8K 1K 941 435 14 217 231
C2000-9 2K 1.7M 2.9T 1.7K 0.90 1.5M 1.8K 1759 1549 59 570 603
C250-9 250 27.9K 5.6M 223 0.90 24.8K 236 211 181 36 92 103
C4000-5 4K 4M 4T 2K 0.50 1.1M 2.1K 1910 899 15 391 408
C500-9 500 112.3K 45.3M 449 0.90 98.4K 468 433 373 44 168 183

DSJC1000-5 1K 249.8K 62.3M 499 0.50 75.9K 551 460 207 13 120 130
DSJC500-5 500 62.6K 7.8M 250 0.50 20.5K 286 226 99 11 67 75
MANN-a27 378 70.5K 26M 373 0.99 69K 374 365 352 125 138 144
MANN-a45 1K 533.1K 546.6M 1K 1.00 529K 1K 1013 991 341 367 375
MANN-a81 3.3K 5.5M 18.2T 3.3K 1.00 5.4M 3.3K 3281 3241 1096 1134 1161
MANN-a9 45 918 33.7K 40 0.92 757 41 41 37 16 19 21
brock200-1 200 14.8K 1.6M 148 0.75 10.1K 165 135 91 17 54 59
brock200-2 200 9.8K 479.6K 98 0.49 3.1K 114 85 35 9 33 37
brock200-3 200 12K 873.3K 120 0.61 5.4K 134 106 56 12 41 46
brock200-4 200 13K 1.1M 130 0.66 7K 147 118 68 14 44 52
brock400-1 400 59.7K 13.3M 298 0.75 38.1K 320 278 192 20 96 107
brock400-2 400 59.7K 13.3M 298 0.75 40.1K 328 279 193 20 97 104
brock400-3 400 59.6K 13.2M 298 0.75 38.5K 322 279 192 20 95 105
brock400-4 400 59.7K 13.3M 298 0.75 39.6K 326 278 193 22 95 107
brock800-1 800 207.5K 69.7TM 518 0.65 101.4K 560 488 292 17 139 149
brock800-2 800 208.1K 70.4M 520 0.65 104K 566 487 292 18 139 150
brock800-3 800 207.3K 69.6M 518 0.65 100.8K 558 484 289 17 138 148
brock800-4 800 207.6K 69.9M 519 0.65 103.2K 565 486 291 17 141 146
c-fat200-1 200 1.5K 16.2K 15 0.73 100 17 15 12 12 13 16
c-fat200-2 200 3.2K 76.7TK 32 0.76 429 34 33 24 24 24 28
c-fat200-5 200 8.4K 546.2K 84 0.77 2.8K 86 84 58 58 69 85
c-fat500-1 500 4.4K 55.7TK 17 0.74 141 20 18 14 14 14 18
c-fat500-10 500 46.6K 6.6M 186 0.77 13.6K 188 186 126 126 126 188
c-fat500-2 500 9.1K 247K 36 0.76 534 38 36 26 26 26 33
c-fat500-5 500 23.1K 1.6M 92 0.77 3.4K 95 93 64 64 64 79

gen200-p0-9-44 200 17.9K 2.8M 179 0.90 16.1K 190 168 141 34 65 81
gen200-p0-9-55 200 17.9K 2.8M 179 0.90 16.1K 190 167 142 34 72 83
gen400-p0-9-55 400 71.8K 23.1M 359 0.90 63.1K 375 337 287 41 120 147
gen400-p0-9-65 400 71.8K 23.1M 359 0.90 64.1K 378 337 286 41 129 150
gen400-p0-9-75 400 71.8K 23.1M 359 0.90 64.8K 380 337 287 45 125 154

hammingl0-2 1K 518.6K 519.7M 1K 0.99 507.5K 1K 1014 1004 512 512 540

hammingl0-4 1K 434.1K 301.8M 848 0.82 294.7K 848 849 674 32 105 128

hamming6-2 64 1.8K 92.1K 57 0.90 14K 57 58 52 32 32 35

hamming6-4 64 704 2.8K 22 0.19 45 22 23 8 4 8 9

hamming8-2 256 31.6K 7.5M 247 0.97 29.4K 247 248 240 128 128 138

hamming8-4 256 20.8K 2M 163 0.60 7.8K 163 164 82 16 29 33

Recall p is the density, d is the average degree, and r is the assortativity coefficient. The global clustering coefficient is denoted by r, |T| is the total number of triangles, and ravg
and try.x are the maximum and average number of triangles incident on a vertex, respectively. The lower bound from the heuristic clique finder is denoted @. For the upper
bounds, we denote K as the maximum k-core and similarly, we denote the maximum triangle-core by 7. The maximum and minimum number of colors among all coloring
methods are denoted ¥, and i, respectively

@ Springer

Soc. Netw. Anal. Min. (2014) 4:228

Page 29 of 37 228

Table 14 Statistics and bounds for DIMACs (cont. from Table 13)

Graph Graph measures Bounds Colors

|V |E| T d K Finax A K+1 T 0] Yomin Yimax
johnson16-2-4 120 5.4K 360.3K 91 0.73 3K 91 92 68 8 14 15
johnson32-2-4 496 107.8K 40.7M 435 0.87 82.2K 435 436 380 16 30 34
johnson8-2-4 28 210 1.2K 15 0.43 45 15 16 8 4 6 7
johnson8-4-4 70 1.8K 71.8K 53 0.74 1K 53 54 38 14 19 22
keller4 171 9.4K 649.7K 110 0.63 47K 124 103 54 9 24 37
keller5 776 2259K 98M 582 0.75 151.2K 638 561 379 22 61 176
kelleré 3.3K 4.6M 10.3T 2.7K 0.82 3.5M 29K 2,691 2,084 45 148 783
ph1000-1 1K 122.2K 9.2M 244 0.28 22.6K 408 164 47 9 55 78
ph1000-2 1K 244.7K 73.9M 489 0.57 157.6K 766 328 196 33 116 181
ph1000-3 1K 371.7K 211.3M 743 0.76 301.7K 895 610 388 49 194 269
ph1500-1 1.5K 284.9K 34.3M 379 0.29 53.2K 614 253 75 10 78 110
ph1500-2 1.5K 568.9K 273.5M 758 0.58 372.3K 1.1IK 505 314 44 167 266
ph1500-3 1.5K 847.2K 741.1M 1.1IK 0.77 675.7K 1.3K 930 597 60 281 388
ph300-3 300 33.3K 5.6M 222 0.76 26.7K 267 181 118 26 73 94
ph500-1 500 31.5K 1.2M 126 0.29 5.7K 204 87 25 9 34 48
ph500-2 500 62.9K 9.9M 251 0.58 40.8K 389 171 102 32 68 104
ph500-3 500 93.8K 27.1M 375 0.77 77.2K 452 304 197 39 111 150
ph700-1 700 60.9K 3.3M 174 0.29 11.5K 286 118 34 8 42 60
ph700-2 700 121.7K 26.6M 347 0.58 79.2K 539 236 143 26 91 141
ph700-3 700 183K 73.6M 522 0.76 147.9K 627 427 273 40 145 201
s1000 1K 250.5K 86.3M 501 0.69 100.7K 550 465 399 10 15 46
s$200-0-7-1 200 13.9K 1.4M 139 0.73 8.5K 155 126 93 16 35 52
s200-0-7-2 200 13.9K 1.4M 139 0.74 9.7K 164 123 112 14 18 40
5200-0-9-1 200 17.9K 2.8M 179 0.90 16.3K 191 163 134 49 71 97
s200-0-9-2 200 17.9K 2.8M 179 0.90 15.8K 188 170 143 34 76 89
5200-0-9-3 200 17.9K 2.8M 179 0.90 15.6K 187 170 145 31 69 80
s400-0-5-1 400 39.9K 5.2M 199 0.66 15.8K 225 184 154 8 13 29
s400-0-7-1 400 55.8K 11.3M 279 0.73 32.3K 301 262 182 22 71 82
s400-0-7-2 400 55.8K 11.2M 279 0.73 32.8K 304 260 179 18 51 71
s400-0-7-3 400 55.8K 11.1M 279 0.72 33.6K 307 254 182 16 22 63
s400-0-9-1 400 71.8K 23.1M 359 0.90 62.7K 374 345 294 57 151 168
sr200-0-7 200 13.8K 1.3M 138 0.70 8.8K 161 125 78 16 48 55
sr200-0-9 200 17.8K 2.8M 178 0.90 159K 189 167 141 34 76 85
sr400-0-5 400 39.9K 39M 199 0.50 13.5K 233 178 77 10 56 64
sr400-0-7 400 55.8K 10.9M 279 0.70 33.5K 310 259 164 17 86 94

Recall p is the density, d is the average degree, and r is the assortativity coefficient. The global clustering coefficient is denoted by r, |T| is the
total number of triangles, and #r,yg and try.x are the maximum and average number of triangles incident on a vertex, respectively. The lower
bound from the heuristic clique finder is denoted @. For the upper bounds, we denote K as the maximum k-core and similarly, we denote the
maximum triangle-core by 7. The maximum and minimum number of colors among all coloring methods are denoted 7., and ¥,;,, respectively

@ Springer

228 Page 30 of 37

Soc. Netw. Anal. Min. (2014) 4:228

Table 15 Statistics and bounds for BHOSLIB

Graph measures Bounds Colors

Graph V| |E| 7| d K Finax A K+1 T @ Yiin Yimax
frb100-40 4K 7.4M 25.5T 37K 0.93 6.9M 3.8K 3,572 3,468 78 106 558
frb30-15-1 450 83.1K 252M 369 0.82 67.4K 407 340 257 25 41 90
frb30-15-2 450 83.1K 25.1IM 369 0.82 66.7K 404 338 257 24 36 93
frb30-15-3 450 83.2K 252M 369 0.82 65.2K 400 337 254 25 38 95
frb30-15-4 450 83.1K 252M 369 0.82 65.7K 401 340 255 25 36 94
frb30-15-5 450 83.2K 25.2M 369 0.82 66.4K 403 333 254 24 34 87
frb35-17-1 595 148.8K 62.5M 500 0.84 123.9K 544 463 361 29 41 118
frb35-17-2 595 148.8K 62.5M 500 0.84 122.2K 541 465 362 28 41 113
frb35-17-3 595 148.7K 62.5M 500 0.84 126.2K 549 451 352 28 38 113
frb35-17-4 595 148.8K 62.6M 500 0.84 131.1K 560 456 354 30 41 118
frb35-17-5 595 148.5K 62.2M 499 0.84 126.3K 550 461 355 29 45 115
frb40-19-1 760 247.1K 137.5M 650 0.86 210.6K 703 595 465 32 45 136
frb40-19-2 760 247.1K 137.5M 650 0.86 209.9K 702 598 477 33 45 145
frb40-19-3 760 247.3K 137.6M 650 0.86 210.2K 702 613 491 31 41 141
frb40-19-4 760 246.8K 136.8M 649 0.85 203.9K 692 600 481 32 50 144
frb40-19-5 760 246.8K 136.8M 649 0.85 203.6K 691 596 476 32 43 143
frb45-21-1 945 386.8K 274.2M 818 0.87 331.5K 876 769 626 36 51 187
frb45-21-2 945 387.4K 275.3M 819 0.87 326.9K 870 769 625 34 48 174
frb45-21-3 945 387.7K 276.2M 820 0.87 329.6K 872 764 624 35 48 182
frb45-21-4 945 387.4K 275. 1M 820 0.87 331.2K 875 757 618 35 50 170
frb45-21-5 945 387.4K 275.4M 820 0.87 330.5K 874 771 629 37 49 175
frb50-23-1 1.1K 580.6K 514.4M 1K 0.88 496.1K 1K 950 786 39 52 202
frb50-23-2 1.1IK 579.8K 512.4M 1K 0.88 504.6K 1K 936 771 39 53 204
frb50-23-3 1.1IK 579.6K 511.5M IK 0.88 508K 1K 953 792 40 55 210
frb50-23-4 1.1IK 580.4K 513.9M 1K 0.88 502.6K IK 950 786 40 58 196
frb50-23-5 1.1IK 580.6K 514.6M 1K 0.88 510.8K 1K 949 790 41 56 200
frb53-24-1 1.2K 714.1K 707.5M 1.1IK 0.88 619.3K 1.1IK 1,054 881 43 58 220
frb53-24-2 1.2K 714K 707.1M 1.1IK 0.88 615.3K 1.1IK 1,057 884 43 57 228
frb53-24-3 1.2K 714.2K 707.7M 11K 0.88 616.5K 1.1IK 1,050 878 42 61 216
frb53-24-4 1.2K 714K 707M 1.1K 0.88 622.1K 1.1IK 1,063 890 43 59 217
frb53-24-5 1.2K 714.1K 707.2M 1.1IK 0.88 633K 1.1IK 1,071 900 42 58 217
frb59-26-1 1.5K IM 1.2T 1.3K 0.89 921K 1.4K 1,282 1,084 48 63 255
frb59-26-2 1.5K IM 1.2T 1.3K 0.89 914.6K 1.4K 1,285 1,086 46 61 247
frb59-26-3 1.5K IM 1.2T 1.3K 0.89 942.7K 1.4K 1,296 1,098 45 64 256
frb59-26-4 1.5K IM 1.2T 1.3K 0.89 916.6K 1.4K 1,284 1,085 48 61 259
frb59-26-5 1.5K IM 1.2T 1.3K 0.89 937.8K 1.4K 1,302 1,105 46 67 256

Recall p is the density, d is the average degree, and r is the assortativity coefficient. The global clustering coefficient is denoted by r, |T| is the
total number of triangles, and 7,y and fry,x are the maximum and average number of triangles incident on a vertex, respectively. The lower
bound from the heuristic clique finder is denoted . For the upper bounds, we denote K as the maximum k-core and similarly, we denote the
maximum triangle-core by 7. The maximum and minimum number of colors among all coloring methods are denoted y,,,,x and Ymin. respectively

@ Springer

Page 31 of 37 228

Soc. Netw. Anal. Min. (2014) 4:228

I91°] o't ‘wopuel
uey) 103)9q OU Sem UONNJOS AY) Jey) SAOUP —,, |gB-NNVIN U ‘0S[Y "(s9[qes snoradid ur pozirewruns A[oA10dJJ a1 asot) aours XY = Y <91) syjIom)ou SunsoIojur ssaf) POAOWAT dM JBY) 20N ‘spoyioul [[e Suowre
UoIN|oS 152q AY) P[Oq M IOMIAU [IB J0 "W} woi d[qissod sSULIO[0D dU) pue SYI0MIAU 3y} JO JYSISUI pue SUIPUBISIIPUN 1)) © J23 0) punoq I9Mo[Ino yim uofe spunoq 1oddn 103uons ay) Jo maJ B PIPN[OUl OS[e A

68 88 6 76 88 88 98 98 98 83 83 06 06 06 6 LI $91 6S¢T 01¢ /-0-00%4s
Y91 ¥S1 ¥S1 129! €61 €61 IST IST IST 81 861 09T 091 091 LSI LS 6 She ¥LE 1-6-0-00%S
ST w s¢ s¢ w w (44 (44 w ¥ ¥ S¢S ¢ €9 91 81 ST LOE €-/-0-00%S
S9 €9 0L 0L 79 79 s Is Is ¥9 ¥9 69 69 69 OL 81 6L1 09¢ ¥0€ 2-2-0-00%S
LL 6L 6L 08 6L 6L 18 18 18 8L 8L 8 I8 T8 8L (44 81 9t 10€ 1-2-0-00%S
6C €1 €1 €1 €1 €1 €1 €1 €1 €1 €1 0c 0T 0T 8¢ 8 $ST #81 STt 1-G-0-00vS
69 €L €L €L €L €L €L €L €L 0L 0L 0L 0L OL LL £3 Sl OLT L8T €-6-0-002S
8 43 8 43 78 8 6L 6L 6L 9L 9L 8L 8L 8L 18 ve 34t OLT 881 2-6-0-002S
8 YL YL YL YL YL IL IL IL LL LL LL LL LL 88 6t PEl €91 161 1-6-0-002S
9¢ LE 9¢ 9¢ LE LE S¢ S¢ S¢ (4% 44 o 9 9 8 91 €6 9TI SST 1-2-0-002S
LE €€ 6C 6C ST ST ST ST ST ST ST e Lt LT Sk o1 66€ Sov 0SS 0001s
6 87 (372 [[97% (372 W W W a4 a4 vw vb v €S 8 7€ 811 98¢ 1-002yd
LE s¢ 9¢ 9¢ <3 <3 13 ¥e ¥e ¥e ¥e S¢ s¢ se T 6 ST L8 0T 1-oosyd
$0€¢ 86¢ 06¢ S6T €8¢ (%14 18T 187 182 8¢ 8¢ 68T S8C S8C 8TE 09 L6S 0€6 €T €-0051yd
86 86 6 S6 6L 6L 6L 6L 6L 8L 8L 6L 6L 6L 96 01 SL €6T #19 1-005Lyd
0ce 1414 L0T 60T ¥61 y61 661 661 661 ¥61 ¥61 661 661 661 8IC 6F 88¢ 019 S68 €-0001yd
ovl Tl 43! PEl 911 91T 911 911 911 811 811 LIT LIT LIT LT €€ 961 8T¢ 9L 2-000+yd
9 9 9 9 9 9 9 9 9 9 9 L L L L 12 8 91 SI y-2-gyol
0€ 0€ 0€ 0€ 0€ 0€ 0€¢ 0€ 0€ 0€ 0€ € 1€ 1€ ¥¢ 91 08¢ 9¢h 434 y-g-geyol
24! 91 9¢1 8¢€1 6C1 6C1 971 971 971 PEl Pel SET SEI SE1 v¥I Sh L8T LeE 08¢ G/-6-ueh
24! 8¢1 8¢l ovl 91 9€¢1 8¢l 8¢l 8¢l 621 671 Il T€1 T1€1 6€l |84 98¢ LeE 8LE G9-6-ueh
Sel o€l o€l Iel 12l K4 0TI (1748 (1748 9z1 9zl1 €Cl €Tl €Tl 9¢l It L8T LEE SLE GG-6-ush
€L S9 S9 S9 S9 S9 S9 S9 S9 99 99 99 99 99 L e 84! 891 061 y-6-ueh
148 4! 24! 24! i [44! 4 148 jias 44! 44! [44SR 2 SR 2 S | 16T 98% S9S $-008%00iq
44! ovl 71 [44! ovl ovl 71 vl 84! SET SET Tl Tl THI Shl L1 68¢ 8% 855 £-008%004q
[a4! 24! Tl 24! 24! 24! 6€1 6€T 6€T (44! Tl Tl Tl Tl i LI T6¢ 88% 09S 1-008X00iq
86 96 96 L6 L6 L6 S6 S6 6 86 86 9% 96 96 10l 0T 61 6LT e €-007M001q
66 001 001 L6 66 66 L6 L6 L6 66 66 00T 00T 00T 00I 0T €61 6LT 8¢ 2-00¥X001q
[972 [97% 1w 17 [97% (372 w T w 172 17 [S S A 4! 9 901 €I €£-002%004q
8¢ 9 vs ¥s 9 96 LS LS LS LS LS 96 9 9¢ 8¢ Ll 16 <31 S91 1-00200iq
PET'T PET'T - PET'T - - - - - - - - - - I9T°T 960°T IvT'e 18CT°€ MEE L8e-NNVIN
¥Cl STl Sl (44 (1748 (174} €l 4 €Tl (14! Tl el cel Tl LTl €l LOT 09% 1SS -000 Foﬂmo
PLI TLI 0LI OLI TLI TLI 891 891 891 L1 1L OLT OLT OLI LLTL ¥% €LE (X34 891 6-00S0
€6¢ s6¢ 86¢ 86¢ S6¢ 16€ L6E L6€E L6E 96€ 96€ S6E S6¢€ S6¢ TOv S 668 016'T MI'C 5-0000
8LS yLS €8¢ T8¢ 0LS 0LS 0LS 0LS 0LS €LS €LS 9LS 9LS 9LS S8S 65 6VS' T 6SL'T 8T 6-00020
61¢ 81¢ 1€ LIg 61¢ 61¢ 61¢ 61¢ 61¢ LIE LIg SIe SIe SIe 6IE IS 9L GL8 ST6 6-000L0
TOA
TOA-TIL TOA-TIL -HIODA RIL-Ddd SHTONVIIL SHTONVIIL XVIN-290D TOA-HIO0D TOA Daa OodI-oML
~HJ0DN-Ddd =HJ0DA -Ddd -HJ00 =HI0DA -Ddd -HTONVIRIL -HTONVIIL -HTONVIIL ~HI0DA SHTONVIIL -LS1a odr DHA ANVY Q Az T =+ ' < smmuo

spoyow 3urI0[0)

Spunoq pue syels

0dI-OML-LSId PUB ‘Odl ‘DEd ‘ANVY pasn am ‘uostredwod 10 ‘uonod[joo ydeid sOVINIQ 2yl 10} spoyiow pasodoid ayy £q pasn s10[0) 9T dqeL

pringer

A

Soc. Netw. Anal. Min. (2014) 4:228

228 Page 32 of 37

¥ pue ¢ so[qe, ut

pazirewwins A[OATIOR))9 aIe 9soyy 2ours XY = “Y <a97T) syom)ou Funsorelur SSA]) POAOWAI IM Jel) AJON 'SPOYIAW [[e Suouwre UonN|os 15aq A} P[Oq aM I0MIAU Yord J0] "Wy wolj dqrssod s3urro[od
YY) pue $YIoMIaU 3Y) JO JYSIsuI pue SuIpue)sIspun 19))aq & 133 0} punoq Jamof Ino yym Suoe spunoq Joddn 193uons ay) Jo M3J B pIpN[OUL OS[E A\ "OAI-OML-LSIA PUE ‘OdI ‘DA ‘ANVY pasn am ‘uostredwiod 104

9¢¢ 9¢C 80¢C 80¢C 01 01 SOt Nui SOt 601 601 801 801 801 ¥ST 8¥ ¥80°1 TST'T AP 1-92-65)
00¢ Sol 181 981 101 101 86 86 86 el el ¢cl el el LIT Ty 006 ILO'T I'1 S-v¢-€G}
60¢C Sol 891 881 SOI1 SOl 8 8 8 01 01 Y0l ¥01 +0I SIC ¢€F 068 €90°T 1’1 V-v2-€S4
80¢C G81 891 ¢8I <6 <6 01 Y01 01 L6 L6 L6 L6 L6 I1c ¢vr 8L8 0SO°T MI'I €-v2¢-€S4
60¢C SLT €91 L8I1 SOI1 SOl <6 S6 S6 Y01 701 €0l €0l €0l 9IT ¢cv 88 LSO'T MAT'T ¢ve-€G4
Sol L61 SLT ¥61 6 6 86 86 86 89 89 69 69 69 0cc ¢v 188 ySO'T MI'I L-¥2-€G)
061 081 91 181 69 69 18 18 18 8L 8L 6L 6L 6L 661 I 06L 6v6 Al G-€2¢-0SG4
€81 Sol OLIT 8LI 011 oIt ¥6 ¥6 ¥6 <6 <6 LOT LOT LOT s61 Ov 98L 056 Al ¥-€2¢-0SG4
L8I [€9)! oSl L81 68 68 68 68 68 611 611 €6 €6 €6 10c 0¥ <6L €56 Al €-€2-0G4
V61 €61 991 681 66 66 69 69 69 86 86 86 86 86 ¥61 6¢ ILL 9¢6 Al ¢-€¢-0G}
g8l 41! L91 181 €L €L LL LL LL 06 06 I6 16 16 0T 6¢ 98L 056 Al 1-€2-09)
LS1 6v1 94! ovl LL LL 0L 0L 0L 08 08 6L 6L 6L 691 <S¢ 819 LSL SL8 V-1e-Sv
6Vl 123 vl 8yl 8 [43 6L 6L 6L 43 8 08 08 08 691 st ¥79 YL L8 €-lec-a
o1 991 o1 L91 €01 €01 L6 L6 L6 00T 001 00T 00T o0 vLT 9¢€ 979 69L 9L8 kLSS
eyl 8CI vel 6¢l €8 €8 €L €L €L 0L 0L L IL 1L Sel ¢ 9Ly 96¢ 169 G-61-04
6¢l 6¢l Scl 0¢l 16 16 ¥6 ¥6 ¥6 8 2] 68 68 S8 vl Ce 18Y 009 w69 V-61-0%4
8CI LEL Iel 9¢l 89 89 9L oL oL 1L 1L L 1L 1L vl 1€ 16¥ €19 L €-61-0%4
6C1 el 0cl 611 0s 0s €s €S €S Y 99 S Y 9¢l C¢ Sov S6S €0L L-61-07
(41! 011 001 86 (4% 29 8S 8S 8¢ 19 19 9 79 09 ¥I1 6T 6S¢ 19v (USY G-/L1-S¢€4
LT1 S6 06 16 Ly VA 4 VA 4 Ly Ly 99 99 L9 L9 L9 cIl 0e vS¢e 9Sv 09¢ Y-L1-G€4
€01 01 6 ¥6 8¢ 8¢ (114 6¥ 6¥ 9¢ 9¢ 9¢ 96 9¢ ¢l 8¢ Tse 1594 6vS €-/L1-G¢4
801 801 101 L6 0oL 0L 69 69 69 9 9 9 9 99 LOT 8T 1T9¢ SOy Ivs c-L1-S¢}
811 901 601 8! 6S 6S 0L 0L 0L 09 09 09 09 09 8I1 6C 19¢ 394 443 b-L1-G€}
S6 (4% 129 67 I W [43 [43 [4 6 67 0s 0s 0S 6 ST vSe LEE 00¥ €-G1-0¢4
€8 19 8¢ 09 144 144 194 354 354 Ly Ly Ly Ly Ly €6 YT LST 8¢¢ 1404 ¢-G1-0¢}
T0A T0A T0A L oal
-EIONVIIL -IONVIIL -3¥0DM -04d STIONVIIL STIONVRIL XVIN-8¥0D TOA-EY0D TOA Dad -OML
-2400)-Dad 24003 -08d -2Y0O3 24003 -D3d -FIONVRIL -TIONVRIL -TIONVRIL -8¥0DM STIONVIIL -ISId Oodl Ddd ANVY @ I 1+XY v, ydein

spoyjew 3uLI0[0)

spunoq pue sjei§

uonoaoo ydeid grISOHY 2ui 10y spoylow pasodord oy £q pasn s10[0) L] dqe],

pringer

A's

Page 33 of 37 228

[16 88 68 9L SL 9L 9L 9L 9L 9L 9L 9L 9L 06
86 86 [S6 6L 6L 6L 6L 6L 8L 8L 6L 6L 6L 9 01 SL €T 19 1-00G+yd
0¢ 961 €61 s61 981 <81 881 881 881 681 881 881 881 881 80T
0cc 14%4 LOT 60¢ Y61 r61 661 661 661 r61 Y61 661 661 661 8CC oF 88¢ 019 568 €-0001yd
gel 8¢CI 9¢1 144! (4141 (4141 (4181 (4141 (411 €l (411 €Ir €Ir €11 9¢l
orl [44! el Pel 911 911 911 911 911 811 811 LIT LIT LIT LPD €€ 961 8¢ 99L 2-0001yd
9Tl 0cl 0cl 811 €11 €11 148! 148! 148! ST1 141! 811 8IT 8I1 €I
ed! 9¢l 9¢l 8¢l 6¢l 6C1 971 971 971 yel el ST Sel SE€T vvl S¥ L8T LEE 08¢ G/-6-ueb
41! cl cl [41! 101 €01 ol ort1 orl1 01 01 0T <S0T SOl 611
ed! 8¢l 8¢l (14} 9¢l 9¢l 8¢l 8¢l 8¢l 671 (Y4 I¢r 1€r 1€l 6€1 I¥ 98C LeEE 8LE G9-6-uab
LO1 901 901 LOT <6 6 01 ¥01 Y01 €01 66 1or 1or 101 101
sel o€l o€l Iel 1cI 1t 01 (114 0zI 9Tl 9¢l €Cl ecl €l 9¢l Iy L8T LEE SLE GG-6-uab
€9 65 8¢ 8¢ 65 6S €S €S €S SS 99 S Y S9
€L <9 <9 <9 <9 <9 <9 <9 <9 99 99 9 99 99 vL e vl 891 061 ¥1-6-ueh
cel eel Yel el 43! 0€T el (43! (43! 0€T 0€T 1€l 1€l 1€l Sel
Wi 144! 144! 44! (44! wl 1wl 1141 1141 ol ol vl eyl eyl vvl LT 16T 98t S9¢ ¥-008X901q
el 1€l 0€T (43! eel el 0€T 0€T 0€T el (43! cer celr cel el
ol ovl 4! wl ovl orl 4! 84 84! SET 8€T wl ol vl Syl L1 68C 1214 86¢ €-008X001q
1€l 1€l 0€T 0€T 0€T 0€T 43! 43! 43! K31 £ el Ter el ggl
(44! 144! wl 144! 144! 144! 6€1 6€T 6€1 wl (44! il Tl Trl ¥l LT T6T 881 09¢ 1-00890.1q
06 06 06 88 88 06 88 88 88 06 06 16 16 16 16
86 96 96 L6 L6 L6 S6 <6 $6 86 86 9% 96 96 10T 0T <6l 6LC (443 €-00%X00.19
06 06 06 06 16 06 06 06 06 6 6 6 W T6 ¥6
66 001 001 L6 66 66 L6 L6 L6 66 66 00T 00T 001 001 O0OC c¢o6l 6LC 2143 2-00%X00.1q
(1% 6¢ 6¢ 6¢ LE LE 8¢ 8¢ 8¢ 6¢ 6¢ 6 6¢ 6¢ oy
(34 (34 84 v (34 94 w w w 84 84 £ NN AN 3 4 ¥ Tl 9S 901 el €-00220.9
9¢S1 091 LS1 9¢1 861 6S1 861 861 8S1 651 8S1 091 091 091 191
VLI CLI 0LT 0LT CLI CLl 891 891 891 IL1 ILI OLT OLT OLT LLT ¥ €LE [294 89% 6-00S0
€LE Le SLE SLE Le SLE LE TLE LE SLE SLE YLE YLE YLE 6LE
£6¢ So6¢ 86¢ 86¢ So6¢ T6€ L6E Lot Lot 96¢ 96¢ S6e S6E S6E CO¥ SI 668 0167 MI'T G-000¥0
€TS 8¢S LTS 9¢s £es €es £es £es £es 1€s 1S 6CS 6CS 6TS TES
8LS YLS €86 8¢ 0Ls 0LS 0LS 0LS 0LS €LS €LS 9LS 9LS 9LS S8S 6S 6VST 6SLT 81 6-000¢0
88¢ 68¢C 16¢ 68¢ 88¢ 88¢ 16C 16C 16C 68¢C 68¢C 16C 16T 16T ¥6C
61¢ 81¢ TI€ L1g 61¢ 61¢ 61¢ 61¢ 61¢ LI€ LI¢ SIe ¢Ie SIE 6l¢ IS V9L GL8 §co 6-000+0
T0A TOA T0A RIL oar
-HIONVRL -TTONVIIL -2d0D) -DAA SHTIONVIIL SHIONVRIL XVIN-Z¥0D TOA-2d0D TOA DA -omL
-4Y0DM-DEA -HA00N -DHA -HOON 00N -DHA -AIONVIL -IIONVIIL -FIONVIML -H¥00M SHIONVIML -ISId Odl D3d ANVY I 1+Y v ydein
spoyjewr 3urIo[0) Spunoq pue sjel§

Soc. Netw. Anal. Min. (2014) 4:228

uonoaoo yders sOVINIQ 2Y) J0y AeINdde SSI[Inq I9ISeJ ST Jey) Jueliea SULIo[od oIseq dy) 0) JUeLIeA J0[odaI o) Surredwo) QY d[qe],

pringer

A

Soc. Netw. Anal. Min. (2014) 4:228

228 Page 34 of 37

uonnjos

1529) paure)qo Jey) SWYILIoS[e) 2)edIpul sanfea pjog ‘uostreduwod 10j spoyrour snoradxd oy s Suore spoyiow Suriood pasodoid o) Jo Yoea J0J SINSAT J0[0OT pue d1seq 2y} apraoid om ‘rernonied uf

I8 €8 78 98 08 18 18 18 18 18 18 ¢ 8 8 78
68 88 76 ¥6 88 88 98 98 98 88 88 06 06 06 6 L1 ¥91 65¢ 0l¢ £-0-00%1s
LET 8¢l 8¢l 8¢l 9¢1 9¢1 9¢1 9¢1 9¢1 14! 84} |54 S 674 SR 6 4 SR 1) |
91 12! 12! PS1 €61 €51 IST IST IST 8S1 8S1 091 091 091 LSI LS ¥6C Sve PLE }-6-0-00%S
¥C (44 LE LE (44 (44 (44 (44 (44 4 94 0e 0¢e O¢ 9
Y4 (44 33 ce (44 (44 (44 (44 (44 ¥C €4 S T 5 €9 91 T8I ¥eC LOE €-/-0-00%S
(14 (39 99 99 0s 0s 5Y 15y IS 1S IS (44 AN 8¢
<9 €9 0L 0L 9 9 159 IS IS 9 9 69 69 69 0L 81 6Ll 09C +0€ ¢-L-0-001S
89 99 L9 L9 89 69 9 9 9 9 9 69 69 69 S9
LL 6L 6L 08 6L 6L 18 18 I8 8L 8L ¢ T8 T8 8L CC T8I T 10¢ k-/-0-00%S
€C 4! 4! 4! 4! 4! 4! 4! 14! 4! 48 6l 61 6l €
6¢ €l €l €1 €l €1 €l €1 €1 €1 €1 0c 0c O0Oc¢ 8¢ 8 ¥SI 81 STC 1-G-0-00%S
L €L IL IL 1L €L YL YL YL IL 1L YL vL VL YL
8 8 8 8 8 8 6L 6L 6L 9L 9L 8L 8L 8L ¥8 ¥e vl OLT 881 ¢-6-0-00¢s
LE 9¢ 6¢ 6¢ 9¢ 9¢ S€ S€ S€ oy or 8¢ 8¢ 8¢ €
9¢ LE 9¢ 9¢ LE LE € € € (44 [44 9% 9 9 8 91 €6 9l SCl }-/-0-00cs
[43 8¢ 6¢ 9C ST ST ST €I <1 5§ ST veo ve ve 8¢
LE (33 6¢ 6C ST 5§ ST 5§ 5§ 5§ ST Lc LT LT Sy 0l 66¢ o9y 0SS 000ts
T0A T0A T0A RIL oar
-IIONVIIL -ZIONVIIL -0 -DEA STIONVRIL STIONVRIL XVN-Z0D TOA-2d0D T0A ealel -OML
-200N-DEd -2003 -03d -2Y0OY -0 -DAd -TIONVRIL -TIONVRIL -TIONVRIL -8¥0DM STIONVIIL -ISId Oodl Ddd ANVY @ I+ v, ydein

spoyjewr 3urI0[0)

Spunoq pue sjel§

penunuod g1 dqe],

pringer

A's

Page 35 of 37 228

Soc. Netw. Anal. Min. (2014) 4:228

911 €Il €l 911 0L 0L €L €L €L L <L L CTL TL 124!
80¢C S81 891 G81 76 <6 01 Y01 01 L6 L6 L6 L6 L6 e ¢ 8L8 0SO°T MI'T €-v2-€G}
8¢l SCl Ort1 901 6S 6S 29 29 9 19 19 9 79 09 ocl
S6l L6l SLI ¥61 6 6 86 86 86 89 89 69 69 69 0cc ¢v 188 YSO'T MIII L-2-€G}
48! 01 SoI 601 19 19 L9 L9 L9 09 09 €9 €9 ¢ 8¢l
061 081 91 181 69 69 18 18 I8 8L 8L 6L 6L 6L 661 1 06L 676 Al G-€¢-0G4
611 48! SOl LO1 vL vL SL SL SL 8L LL 6L 6L 6L 9C1
€81 sol 0LT 8L (8! (181 6 ¥6 ¥6 <6 <6 L0l LOT LOT S61 OF 98L 0S6 Al y-€¢-0G}
48! LT1 Or1 901 6S 6S 09 09 09 €9 €9 €9 €9 €9 Scl
S81 (42 L91 181 €L €L LL LL LL 06 06 I6 16 16 0T 6¢ 98L 0S6 Al 1-€2-0G}
86 601 So1 86 LS LS sS ss 5 19 19 19 19 19 48!
LST 14! Syl orl1 LL LL 0L 0L 0L 08 08 6L 6L 6L 691 ¢¢ 8I9 LSL SL8 V-12-Gv}
Y01 16 06 06 s< 9¢ 6S 6S 6S L9 L9 €9 €9 €9 86
6v1 124 44! 871 8 [6L 6L 6L 43 8 08 08 08 691 S¢ ¥79 YL L8 €-12-5t}
€6 S8 ¥6 18 IS 159 58S 58S IS 6v (14 oS 05 0S Ul
vl 8CI vel 6¢cl €8 €8 €L €L €L 0L 0L L IL 1L SEI C¢ 9Ly 968 169 S-61-0%4
16 L8 S8 €8 19 19 €S €S €S 09 09 €9 €9 9 6
6¢cl 6¢cl Sel ocl 16 16 ¥6 ¥6 ¥6 8 2] 68 68 S8 yrl Ce 18y 009 69 ¥-61-01}
88 06 6 €8 144 144 o 9 9 Ly Ly 8 8y 8¥ 96
6Cl el 0cCl 611 0s 0s €S €S €S 59 99 g6 ¢ S¢ 9¢l ¢ S9v S6S €0L 1-61-0%}
LL 6L <9 19 144 144 144 144 144 [4S [[4 08
48! OrT1 001 86 9 9 8¢S 8¢S 8¢ 19 19 9 9 0 Y11 6T 66¢ 19v 0ss G-/ 1-G¢}
SL 99 IL 89 Ly Ly |84 84 84 5Y 159 [4 78
LTI g6 06 16 Ly a4 A4 VA4 Ly 99 99 L9 L9 L9 CcIT 0e vS¢e 194 09¢ Y-L1-G€E}
0L L9 <9 €9 oy 9 14 14 4 0S 0s 0s 05 0S 6L
€01 01 6 ¥6 8¢ 8¢S (14 (114 6¥ 9¢ 9¢ 9¢ 96 9¢ Ccll 8¢ Tee 894 6vS €-/1-G¢}
9L 78 8L L 4 Rld Rld W 9w 14 14 Is 1S IS 08
801 801 101 L6 oL 0oL 69 69 69 9 9 9 <9 <9 LOT 8T 179¢ Sov Ivs ¢-L1-5¢}
8 18 I8 8L 34 194 8 8 8y 39 €S 1 N N 4 78
811 901 601 ST 6S 6S oL 0L 0L 09 09 09 09 09 811 6C 19¢ (3% 1445 b-L1-G€}
19 0s {94 (V% 8¢ 8¢ oY 9y o 8¢ 8¢ 6€ 6¢ 6¢ 99
S6 9 143 6 9% L4 14 143 s 6% 6y 0s 05 0S 6 ST ¥ST LEE 00¥ €-91-0¢}
09 6y Ly 6 w [4% S€ 1% S€ 9¢ 9¢ 9 9¢ 9¢ 9
€8 19 8¢ 09 1244 144 154 194 34 Ly Ly Ly Ly Ly €6 VO LST 8¢E Y0¥ ¢-G1-0¢}
T0A TOA T0A L oal

-TIONVIIL -TIONVIIL -H¥0DM -DAA STIONVRIL STIONVRIL XV-ZN0O TOA-ZM0D T0A 0ad -OML

-2I00M-D49a -0 -DA -EIOON -TA0DN -DAd -TIONVRL -TIONVRIL -TIONVRIL -3¥0DM STIONVIIL -ISId Odl Ddd aNvy @ I+ \v, ydein

spoyjowr 3uLI0[jo))

spunoq pue sjeis

uostredwos 10 spoyjow snoradid ay) ym Suofe spoylowr 3uriojod pasodoid oy jo yoea
10J $3[NSAI J0[00AI pue d1seq oy} ap1aoid am ‘rernonred uy ‘uonos9[[0d ydeis SOVINIQ Y} 10J 9eInode ssI[Inq I9)se] SI Jey) JuelieA SULIO[0D d1skq aY) 03 JueLIeA J0[09a1 Ay Surredwo) @1 dqel

pringer

A

228 Page 36 of 37 Soc. Netw. Anal. Min. (2014) 4:228

5 References
E Z.]la wo wwe m Adamic LA, Lukose RM, Puniyani AR, Huberman BA (2001) Search
geEsls =g =28 C in power-law networks. Phys Rev E 64(4):046-135
. Aggarwal CC, Zhao Y, Yu PS (2011) Outlier detection in graph
. g streams. In: ICDE, pp 399409
g Z.lwvwvwvawo = Ahmed NK, Neville J, Kompella R (2013) Network sampling: from
geEggl2exdaa static to streaming graphs. Trans Knowl Discov Data (TKDD)
8(2):7:1-7:56
, E Ahmed NK, Duffield N, Neville J, Kompella R (2014) Graph sample and
E é § § % § § § % hold: a framework for big graph analytics. In: SIGKDD, pp 1-10
Akoglu L, McGlohon M, Faloutsos C (2010) Oddball: spotting
5) anomalies in weighted graphs. In: Advances in knowledge
§ E Z § E‘ § E § g discovery and data mining, Springer, pp 410-421
Al Hasan M, Zaki MJ (2009) Musk: uniform sampling of k maximal
4 patterns. In: SDM, pp 650-661
E g Banerjee D, Mukherjee B (1996) A practical approach for routing and
g :Et gegzsgegx wavelength assignment in large wavelength-routed optical
networks. Sel Areas Commun 14(5):903-908
4 Barabasi AL, Oltvai ZN (2004) Network biology: understanding the
. % cell’s functional organization. Nat Rev Genet 5(2):101-113
% E § g § 8 § = Batagelj V, Zaversnik M (2003) An o(m) algorithm for cores
decomposition of networks. arXiv: ¢s/0310049
4 2 Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2013) Network
2 E similarity via multiple social theories. In: International conference
< T N ® 0 v F
E S ® - - o on advances in social networks analysis and mining, pp 1439-1440
Bilgic M, Mihalkova L, Getoor L (2010) Active learning for
é § networked data. In: Proceedings of the 27th international
é E o o o o conference on machine learning (ICML-10), pp 79-86
g 8 ® - o Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast
. unfolding of communities in large networks. J Stat Mech:
‘g Theory Exp (10):P10008
E B o o o 0o Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex
g9 LN networks: structure and dynamics. Phys Rep 424(4):175-308
. Boldi P, Vigna S (2004) The webgraph framework: compression
& G e < oo o techniques. In: WWW, pp 595-602
g8 S v adx o9 Bomze I, Budinich M, Pardalos P, Pelillo M et al (1999) The
" maximum clique problem. Handb Comb Optim 4(1):1-74
g Budiono TA, Wong KW (2012) A pure graph coloring constructive
z e 4 o o o heuristic in timetabling. ICCIS 1:307-312
E S v a«x g9 Capar C, Goeckel D, Liu B, Towsley D (2012) Secret communication
in large wireless networks without eavesdropper location
Lol m o o a information. In: INFOCOM, pp 1152-1160
ggg|l2vdez9 = Carraghan R, Pardalos PM (1990) An exact algorithm for the
2| o 4 ~ & o % A ~§ maximum clique problem. Oper Res Lett 9(6):375-382
2|2 g v d®g |3 Chaitin GJ (1982) Register allocation and spilling via graph coloring.
g o To g% % éCM Sigplan Not 17(6):98—10§ ‘
w8 = = = ﬁ Chaoji V, Al Hgsan M (20.05'5) An mtegrat'ed, generic apProach to
. S pattern mining: data mining template library. Data Min Knowl
8 E c"_: ‘é“ E % E g '§ Dlscgv 17(3):457-495 .
3= Chaudhuri K, Graham FC, Jamall MS (2008) A network coloring
3) @ % % game. In: Internet and network economics, Springer, pp 522-530
o o < 3 Cohen J (2009) Graph twiddling in a mapreduce world. Comput Sci
N = X - Eng 11(4):29-41
&~ — g Colbourn CJ, Dinitz JH (2010) Handbook of combinatorial designs.
_ @ = o 'g CRC Press, Boca Raton, FL. USA
i‘ < < a 2 Coleman TF, Moré JJ (1983) Estimation of sparse jacobian matrices
2 and graph coloring blems. SIAM J Numer Anal 20(1):187-209
2 M M ﬁ o Davidson I, Gilpin S, Carmichael O, Walker P (2013) Network
21, | — — — ki discovery via constrained tensor analysis of fmri data. In:
=R "é Proceedings of the 19th ACM SIGKDD international conference
5 § 5 on Knowledge discovery and data mining, ACM, pp 194-202
) k= < 0 - = De Raedt L, Kersting K (2008) Probabilistic inductive logic
% ; = §I §I &i Z programming. In: Probabilistic inductive logic programming—
& 2 g .,8_ .,8_ g g theory and applications, Springer (LNCS), pp 1-27

@ Springer

http://arxiv.org/abs/cs/0310049

Soc. Netw. Anal. Min. (2014) 4:228

Page 37 of 37 228

Enemark DP, McCubbins MD, Paturi R, Weller N (2011) Does more
connectivity help groups to solve social problems. In: EC,
pp 21-26

Erd6s P, Hajnal A (1966) On chromatic number of graphs and set-
systems. Acta Math Hung 17(1):61-99

Erdés P, Fiiredi Z, Hajnal A, Komjith P, Rodl V, Seress A (1986)
Coloring graphs with locally few colors. Discrete Math
59(1):21-34

Everett MG, Borgatti S (1991) Role colouring a graph. Math Soc Sci
21(2):183-188

Fortunato S (2010) Community detection in graphs. Phys Rep
486(3):75-174

Garey MR, Johnson DS (1979) Computers and intractability, vol 174.
Freeman, New York

Gebremedhin AH, Nguyen D, Patwary MA, Pothen A (2013)
Colpack: software for graph coloring and related problems in
scientific computing. ACM Trans Math Softw 40(1):1-30

Gjoka M, Smith E, Butts CT (2013) Estimating clique composition and
size distributions from sampled network data. arXiv:13083297

Godsil CD, Royle G, Godsil C (2001) Algebraic graph theory, vol 8.
Springer, New York

Grohe M, Kersting K, Mladenov M, Selman E (2013) Dimension
reduction via colour refinement. arXiv:13075697

Jiang M, Fu AWC, Wong RCW, Cheng J, Xu Y (2014) Hop doubling
label indexing for point-to-point distance querying on scale-free
networks. arXiv:14030779

Kang U, Meeder B, Faloutsos C (2011) Spectral analysis for billion-
scale graphs: Discoveries and implementation. Advances in
knowledge discovery and data mining. Springer, Berlin, Heidel-
berg, pp 13-25

Kearns M, Suri S, Montfort N (2006) An experimental study of the
coloring problem on human subject networks. Science
313(5788):824-827

Kleinberg JM (2000) Navigation in a small world. Nature
406(6798):845-845

Konc J, Janezic D (2007) An improved branch and bound algorithm
for the maximum clique problem. Proteins 4:5

Leighton FT (1979) A graph coloring algorithm for large scheduling
problems. J Res Natl Bur Stand 84(6):489-506

Malliaros FD, Megalooikonomou V, Faloutsos C (2012) Fast
robustness estimation in large social graphs: communities and
anomaly detection. In: SDM, pp 942-953

Matula DW, Beck LL (1983) Smallest-last ordering and clustering
and graph coloring algorithms. J] ACM 30(3):417-427

McCormick ST (1983) Optimal approximation of sparse hessians and
its equivalence to a graph coloring problem. Math Program
26(2):153-171

McCreesh C, Prosser P (2013) Multi-threading a state-of-the-art
maximum clique algorithm. Algorithms 6(4):618-635

Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007)
Measurement and analysis of online social networks. In: IMC

Moscibroda T, Wattenhofer R (2008) Coloring unstructured radio
networks. Distrib Comput 21(4):271-284

Mossel E, Schoenebeck G (2010) Reaching consensus on social
networks. In: ICS, pp 214-229

Newman ME, Park J (2003) Why social networks are different from
other types of networks. Phys Rev E 68(3):036122

Ni J, Srikant R, Wu X (2011) Coloring spatial point processes with
applications to peer discovery in large wireless networks. TON
19(2):575-588

Prosser P (2012) Exact algorithms for maximum clique: a compu-
tational study. arXiv:12074616v1

Przulj N (2007) Biological network comparison using graphlet degree
distribution. Bioinformatics 23(2):e177-e183

Rahman M, Bhuiyan M, Hasan MA (2012) Graft: an approximate
graphlet counting algorithm for large graph analysis. In:

Proceedings of the 21st ACM international conference on
Information and knowledge management, ACM, pp 1467-1471

Rossi RA (2014) Fast triangle core decomposition for mining large
graphs. In: Advances in knowledge discovery and data mining.
Springer, Berlin, Heidelberg, pp 1-12

Rossi RA, Gleich DF, Gebremedhin AH, Patwary MA (2012) A fast
parallel maximum clique algorithm for large sparse graphs and
temporal strong components. arXiv:13026256:1-9

Rossi RA, Gleich DF, Gebremedhin AH, Patwary MA (2014) Fast
maximum clique algorithms for large graphs. In: WWW
companion

San Segundo P, Rodriguez-Losada D, Jiménez A (2011) An exact bit-
parallel algorithm for the maximum clique problem. Comput
Oper Res 38:571-581

Schneider J, Wattenhofer R (2011) Distributed coloring depending on
the chromatic number or the neighborhood growth. In: Structural
information and communication complexity, Springer,
pp 246-257

Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T
(2008) Collective classification in network data. Al Mag
29(3):93

Sharara H, Singh L, Getoor L, Mann J (2012) Stability vs. diversity:
Understanding the dynamics of actors in time-varying affiliation
networks. In: Social informatics (Sociallnformatics), 2012
international conference on, IEEE, pp 1-6

Sharma M, Bilgic M (2013) Most-surely vs. least-surely uncertain. In:
ICDM, pp 667-676

Shervashidze N, Petri T, Mehlhorn K, Borgwardt KM, Vishwanathan
S (2009) Efficient graphlet kernels for large graph comparison.
In: International conference on artificial intelligence and statis-
tics, pp 488495

Sivarajan KN, McEliece RJ, Ketchum J (1989) Channel assignment in
cellular radio. In: Vehicular technology conference, 1989, IEEE
39th, IEEE, pp 846-850

Sun J, Tsourakakis CE, Hoke E, Faloutsos C, Eliassi-Rad T (2008)
Two heads better than one: pattern discovery in time-evolving
multi-aspect data. Data Min Knowl Discov 17(1):111-128

Szekeres G, Wilf HS (1968) An inequality for the chromatic number
of a graph. J] Comb Theory 4(1):1-3

Tewarson RP (1973) Sparse matrices, vol 69. Academic Press, New
York

Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments.
J Glob Optim 37:95-111

Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A
simple and faster branch-and-bound algorithm for finding a
maximum clique. In: WALCOM: algorithms and computation,
Springer, pp 191-203

Tomita E, Akutsu T, Matsunaga T (2011) Efficient algorithms for
finding maximum and maximal cliques: effective tools for
bioinformatics. Biomedical engineering, trends in electronics,
communications and software, pp 978-953

Ugander J, Backstrom L, Kleinberg J (2013a) Subgraph frequencies:
mapping the empirical and extremal geography of large graph
collections. In: WWW, pp 1307-1318

Ugander J, Karrer B, Backstrom L, Kleinberg J (2013b) Graph cluster
randomization: network exposure to multiple universes.
arXiv:13056979

Wang X, Davidson I (2010) Active spectral clustering. In: ICDM,
pp 561-568

Welsh DJ, Powell MB (1967) An upper bound for the chromatic
number of a graph and its application to timetabling problems.
Comput J 10(1):85-86

Zhang Y, Parthasarathy S (2012) Extracting analyzing and visualizing
triangle k-core motifs within networks. In: ICDE, pp 1049-1060

@ Springer

http://arxiv.org/abs/13083297
http://arxiv.org/abs/13075697
http://arxiv.org/abs/14030779
http://arxiv.org/abs/12074616v1
http://arxiv.org/abs/13026256
http://arxiv.org/abs/13056979

	Coloring large complex networks
	Abstract
	Introduction
	Background
	Greedy coloring framework
	Problem definition
	Ordering techniques
	Algorithm and implementation
	Complexity

	Recolor variant
	Algorithm

	Bounds
	Lower bounds
	Upper bounds

	Results and analysis
	Accuracy
	Scalability
	Effectiveness of recolor
	Bounds and provably optimal coloring

	Finding colorful neighborhoods
	Problem formulation
	Neighborhood coloring
	Parallelization

	Experiments

	Conclusion
	Acknowledgments
	Appendix
	References

