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Abstract The widespread availability of Customer

Relationship Management applications in modern organi-

zations, allows companies to collect and store vast amounts

of high-detailed customer-related data. Making sense of

these data using appropriate methods can yield insights into

customers’ behaviour and preferences. The extracted

knowledge can then be explored for marketing purposes.

Social Network Analysis techniques can play a key role in

business analytics. By modelling the implicit relationships

among customers as a social network, it is possible to

understand how patterns in these relationships translate

into competitive advantages for the company. Additionally,

the incorporation of the temporal dimension in such ana-

lysis can help detect market trends and changes in cus-

tomers’ preferences. In this paper, we introduce a

methodology to examine the dynamics of customer com-

munities, which relies on two different time window

models: a landmark and a sliding window. Landmark

windows keep all the historical data and treat all nodes and

links equally, even if they only appear at the early stages of

the network life. Such approach is appropriate for the long-

term analysis of networks, but may fail to provide a real-

istic picture of the current evolution. On the other hand,

sliding windows focus on the most recent past thus

allowing to capture current events. The application of the

proposed methodology on a real-world customer network

suggests that both window models provide complementary

information. Nevertheless, the sliding window model is

able to capture better the recent changes of the network.

Keywords Customer networks � Dynamic community

mining � Social network analysis � Time window models

1 Introduction

The scientific and technological advances of the last dec-

ades permeated virtually every facet of our everyday lives,

revolutionizing the way how people interact, communicate,

work, buy and access information. These advances also

shaped the market and, as a consequence, how business

organizations operate and relate with their customers. The

proliferation of competitors and the weakening effective-

ness of traditional marketing promotional campaigns had

led companies to evolve from product-centered strategies

to customer-centered strategies. The widespread availabil-

ity of Customer Relationship Management (CRM) appli-

cations in modern organizations, allowed companies to

collect and store vast amounts of high-detailed customer-

related data (e.g. purchasing habits, values of proposals,

demographic variables). Making sense of these data using

appropriate methods can yield insights into customers’

behaviour and preferences. The extracted knowledge can

then be used to support the redesign of marketing promo-

tions tailored to each individual customer, or to a group of

customers showing similar purchasing behaviour/prefer-

ences. This kind of analysis can be effectively performed

using Social Network Analysis (SNA) techniques, by
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modelling the implicit relationships among customers as a

social network. We define customer network as a finite set

of customers who are linked to each other if they bought at

least one similar product during a given timeframe. Mod-

elling customer-related data using this type of customer

networks has the advantage of revealing implicit relation-

ships among customers based on their purchasing behav-

iour over a given time period. Furthermore, since

purchasing events are annotated with timestamps, it is

possible to extract the network state at different moments

in time, thus enabling the study of customer network

evolution. Additionally, if we analyse these dynamics at

the community-level, we may be able to identify evolu-

tionary profiles of groups of customers that show similar

purchasing behaviour.

Albeit the origins of network studies go back a few

centuries ago, in recent years we witnessed an impressive

advance in network-related fields, especially in computer

science and computational physics. Until recently the

analysis of such networks was mainly a static investigation

of the aggregated graph of the network across multiple

snapshots (Takaffoli et al. 2011). Nonetheless, one of the

key features of many networks is that their structure

evolves over time, so approaches focusing on the analysis

of a fixed snapshot of the network may fail to capture the

dynamics of the evolving network.

Since the formation and changes undergone by com-

munities reflect the dynamics at the whole network,

methodologies to model and track the life-cycle of com-

munities within dynamic social networks have been

developed (Falkowski et al. 2006; Palla et al. 2007; Lin

et al. 2009; Asur et al. 2009; Greene et al. 2010; Takaffoli

et al. 2011; Bróka et al. 2013). Common approaches

involve detecting communities at different stages of the

evolving network, by applying a suitable community

detection algorithm to each snapshot of the network that

has been accumulated over the time span. Hence, these

approaches usually consider the whole historical data at

hand when performing the analysis, and typically assign

the same weight to nodes and links, even if they were only

active at a remote time point. Thus, methodologies relying

on accumulated windows (aka landmark windows) can

only discover small changes in communities in consecutive

timeframes and any drastic change in short time may

potentially remain undetected. Unlike landmark windows,

sliding windows focus on the most recent state of the

dynamic network when analysing their evolution, thus

being able to capture more up-to-date events, especially

when dealing with volatile networks.

Despite the significant body of literature addressing the

problem of dynamic network analysis (see Berger et al.

2010, for an overview of the topic), to the best of our

knowledge few works to date have explicitly explored the

effect of selecting different time window models (also

referred to as timeframe types in the literature) on both the

stability of dynamic communities and the type of infor-

mation provided by each approach. The most related work

to ours is the one by Saganowski et al. (2012). In this work,

the authors carry out an empirical study of the influence of

several time window models (e.g. sliding window with no

overlap, overlapping sliding window, landmark window)

on the number of detected community events (e.g. forming,

shrinking, merging, splitting). Based on their experiments,

they conclude that the choice of the granularity at which

the time varying network is snapshotted impacts the results

of the method used to extract community dynamics. While

landmark windows prove to be useful to detect stable

communities, the sliding window model with overlap is

more suitable for extracting community evolution in rap-

idly changing social networks. On the other hand,

extracting network snapshots for disjoint timeframes pre-

cludes the creation of complete evolutionary profile of

communities, since the detected changes are too fast (e.g.

formations followed by dissolutions). In our case study, we

draw similar conclusions. Another relevant research is the

one by Falkowski et al. (2006), who developed a two-

pronged methodology to analyse the evolution of two types

of dynamic communities in social networks: communities

with rather stable membership structure and communities

with high fluctuation of members. For both scenarios, they

use an overlapping sliding window approach to obtain the

snapshots of the underlying network. Asur et al. (2009)

make use of mutually exclusive temporal snapshots to

examine static versions of an evolving interaction graph at

different time points. On the other hand, the work by

Greene et al. (2010) on the same topic suggests that the size

of the timestep window can influence the obtained results,

especially if the network structure is unstable. Kawadia and

Sreenivasan (2012) also stress out the importance of

determining the granularity of the temporal snapshots for

the purpose of detecting temporal communities and argue

that there is a natural multiscale of interest, driven by the

application, for generating these snapshots. However, none

of these works compared distinct time window models,

from the point of view of dynamic community mining,

within the scope of a real-world marketing application.

To partially fill this gap, this paper proposes an appli-

cation-driven methodology to study the community struc-

ture of dynamic social networks based on two different

window models. Our contributions are threefold: (a) appli-

cation of dynamic community mining in a real-world

customer network for the purpose of identifying different

evolutionary profiles of customers; (b) use of a sliding

window model in the study of community evolution as a

complement to the conventional landmark window model

and; (c) extension of a previously proposed event-based
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framework for monitoring clusters dynamics, dubbed MEC

(Oliveira and Gama 2012), to tackle the problem of com-

munity evolution.

The paper proceeds as follows. Section 2 provides the

necessary background on social network analysis, com-

munity detection, dynamic community mining and window

models. In Sect. 3, we outline the proposed methodology

and provide a detailed description of the extended MEC,

termed MECnet. Our case study on a real-world evolving

customer network is presented in Sect. 4. Section 5 con-

cludes the paper.

2 Background

2.1 Social network analysis

SNA is a quantitative methodology whose development

significantly benefited from the collaborative efforts of

researchers from different scientific areas (e.g. sociology,

physics, computer science). SNA offers a powerful means

to model, describe and analyse network structures, groups

of nodes (i.e. communities) and single nodes by focusing

explicitly on the relationships established between them

(Wasserman and Faust 1994). The focus on the relation-

ships rather on the entities themselves is a fundamental

axiom in SNA. This axiom stresses the notion that nodes

are not independent but rather influence each other. Typical

tasks in SNA involve the identification of the most prom-

inent nodes, the estimation of their roles within the overall

network structure, community detection, link prediction

and the discovery of persistent patterns of relationships and

emergent properties that help explain network formation

and growth. Several SNA metrics were proposed to assess

the overall structure of social networks and to measure the

centrality of single nodes. The former encompasses metrics

such as density, clustering coefficient, diameter, average

geodesic distance and average degree. The latter includes

metrics such as degree, betweenness, closeness, eigenvec-

tor centrality and local clustering. We will make use of

these metrics to obtain a description of the network at

different stages of its evolution.

2.2 Community detection

One of the unique features of real social networks is that

they tend to show community structure (Newman 2003).

These mesoscopic structures usually arise as a consequence

of both global and local heterogeneity of links’ distribution

in a graph. Thus, we often find in networks tightly con-

nected groups of nodes, termed communities, which are

sparsely connected to other densely connected groups. The

task of community detection, which aims at finding

meaningful group structures in networks, is itself an

important strand of research on the field of SNA and a

significant number of methods and algorithms have been

proposed for this purpose (for a thorough review, please

refer to Fortunato 2010). In this paper, we resort to the

Louvain method (Blondel et al. 2008) to detect commu-

nities, although we also perform experiments with the

Label Propagation algorithm (LP) (Raghavan et al. 2007).

The Louvain method is a greedy optimization method

that performs a hierarchical modularity (Newman and

Girvan 2004) optimization. This method comprises two

phases. The first phase optimizes modularity in a local way

by looking for positive gains in modularity when moving a

node to a neighboring community. The second phase is

similar to the first one, with the difference that now we deal

with a modified network, where each vertex (or node) is a

supervertex, which represents the previously found com-

munities. Considering this higher-level setting, the steps of

the first phase are repeated iteratively until a maximum of

modularity is attained and new hierarchical levels and su-

pergraphs are yielded. The algorithm stops when modu-

larity converges to a value where no more gains are

possible. This method produces good quality partitions in a

very fast way.

The Label Propagation algorithm is another commonly

used method for extracting communities from networks

that relies on the network structure alone to find densely

connected groups of nodes. The basic idea behind LP is to

explore the information diffusion enabled by the network

structure to identify consensual groups of nodes’ labels. It

starts by labeling every node with unique labels. Then,

through an iterative process, the labels are updated by

majority voting on the neighbourhood of the node. When

this process stops, the communities will correspond to sets

of nodes sharing the same label. LP has similarities with

the Louvain method in the sense that it is computationally

efficient and does not require any a priori information

about the communities (e.g. number or size of communi-

ties, central nodes) to operate. However, while the Louvain

method is modularity-based, relying on a two-stage hier-

archical modularity optimization to detect communities,

the LP algorithm does not require the optimization of a pre-

defined objective function to identify network partitions.

2.3 Dynamic community mining

The structure of most networks (e.g. co-authorship and

friendship networks) are dynamic in nature as they tend to

evolve gradually, through the addition and deletion of links

and nodes. As a consequence, substructures inside the

network, such as communities, also change over time.

Communities are unstable patterns that can evolve in both

membership and content. In dynamic scenarios,
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communities may undergo a series of evolutionary events,

such as growth, split and disappearance, which characterize

their life-cycle. For instance, a community at time point ti

may separate into several communities in time point tðiþ1Þ,

if the former community splits into two or more

communities.

Past research on community mining discarded the tem-

poral information by modelling the dynamic network as a

static graph. This whole graph would depict all the nodes

and links observed in a given time span. The most wide-

spread approach to incorporate the dynamics into the study

of communities is to convert the evolving network into an

ordered sequence of static snapshots, each representing the

state of the network at a given point in time. Recent work

proposes to characterize the evolution of a given commu-

nity by describing its life-cycle, i.e. a series of critical

events undergone by communities over time (Palla et al.

2007; Lin et al. 2009; Asur et al. 2009; Greene et al. 2010;

Takaffoli et al. 2011; Bróka et al. 2013). Typically, these

approaches rely on a landmark window model for the

process of extracting the snapshots of the evolving net-

work, since they take into consideration all the historical

network data collected up to the current time point.

Alternative models, such as the sliding window, are

embedded with forgetting mechanisms that drop older data

from the analysis thus allowing to uncover the most recent

changes occurring in the network. Hitherto, few work

explored these alternative models, although they may prove

more useful than accumulated windows in detecting

changes in rapidly evolving networks.

2.4 Window models

2.4.1 Landmark windows

Landmark windows (Gehrke et al. 2001) encompass all

the data from a specific point in time up to the current

moment. This model is initialized by first selecting a fixed

time point (the so-called landmark), which marks the

beginning of the time window, and then it grows the

window by considering all the data seen so far after the

landmark. In the dynamic social networks setting, a

landmark window will aggregate the network data (e.g.

nodes and links) observed over the entire period of

observation. By keeping track of all the connections and

nodes in the network, this approach does not entail loss of

information. However, since it relies on the accumulation

of data over time, it is not very well suited to find current

trends. Thus, recent interesting phenomena may go

unnoticed due to the smoothing effect on data changes

occurring over time.

2.4.2 Sliding windows

Unlike landmark windows, the sliding window model

(Datar et al. 2002) incorporates a time-based forgetting

mechanism, keeping only the latest information inside the

window and disregarding all the data falling outside the

window. The simplest approach are sliding windows of

fixed length. The window length is a user-defined param-

eter which influences the amount of data taken into con-

sideration in the model. The time-based length sets the

window length as a fixed time span. By deeming only the

most recent past, this model proves useful in finding cur-

rent trends. As a drawback, it might be hard to determine

the right parameter settings. It is important to note that

there is a trade-off between the window length and the

ability to capture changes. Small windows will capture

rapid changes, but lose information (memory) about net-

work stability. Within the scope of our work, this kind of

window configuration is reflected in a set of network

snapshots representing the state of the network for a

sequence of fixed, typically short, timeframes. Due to its

forgetting mechanism, this approach provides a more up-

to-date representation of the network, thus allowing to

capture the most current events, which would otherwise be

smoothed out by the whole historical data accommodated

in a landmark window.

3 Methodology

In this section, we detail our methodology for analysing the

structure of evolving customer networks, in terms of

community evolution. The motivation for developing this

methodology was driven by the need of one of largest

Portuguese companies in the electric field to tap the

potential of the customer-related data they have been

accumulating over time, using SNA techniques. The idea is

to carry out an exploratory analysis of the implicit cus-

tomer network, in order to identify profiles of customers

(given in the form of communities) and their evolution over

a given time period. This information can be further

explored for the design of marketing promotions tailored to

each profile.

The proposed methodology comprises three main

sequential steps that are independently applied to two dif-

ferent window models. The main steps are:

1. Analysis and description of the dynamic network, at

both the network-level and node-level, using well-

known SNA metrics;

2. Application of our extended community evolution

framework, dubbed MECnet, to each window setting;
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3. Interpretation of the dynamics of customers’ commu-

nities (or profiles).

Finally, the results of these three main steps for each

window model are compared.

3.1 Network analysis

Network analysis is performed by computing and inter-

preting popular SNA metrics. The interpretation of these

metrics provide us insight about the structure of the net-

work and the role of each node in the network, without the

need to look at its graphical representation. They are usu-

ally divided according to the level of analysis one wants to

perform: at the level of the basic entities (nodes) or at the

level of the whole network. The former measures how a

single node is embedded in a network from that single

node’s perspective. The latter computes how the overall

network links are organized from the perspective of an

observer that has a bird’s eye view of the network. In this

methodology, we resort to both levels of analysis to get a

description of the network. At the node-level, we analyse

the following metrics for undirected networks: eigenvector

centrality and betweenness. At the network-level, we focus

on density and modularity (Newman and Girvan 2004).

3.2 MECnet for tracking community evolution

MECnet is the term we use to refer to the extension of

MEC to the community evolution setting. MEC can be

easily extended to deal with communities, which is the

equivalent of clusters for networks, due to its relative

independence from the algorithm used to extract clusters/

communities. We say relative independence, in the sense

that MEC is not restricted to a single clustering algorithm,

although it requires that the adopted algorithm partitions

the data into disjoint groups (i.e. each object/node is

assigned to a single cluster/community). MEC is a frame-

work proposed by Oliveira and Gama (2012) to monitor the

evolution of clusters. MEC traces evolution through the

detection and categorization of clusters transitions, such as

births, splits and merges. The clusters are extensionally

defined, i.e. each cluster is defined by the objects that were

assigned to it by a given clustering algorithm. It takes as

input a set of clusterings, each one generated at a different

time point. It performs pairwise mappings, between clus-

ters obtained at time point ti (i ¼ 1; :::; T , with T denoting

the last analysed time point) and at a later time point tiþDt:

The mapping process explores the concept of conditional

probability and is restricted by a user-defined threshold—

the survival threshold s; where s 2 ½0:5; 1�: This threshold

indicates the proportion of mutual objects two cluster

instances have to share in order for them to be considered

instances of the same cluster. If s\1; then it is assumed

that a cluster can survive even without keeping all of its

objects.

Similarly to the frameworks developed by Palla et al.

(2007), Asur et al. (2009), Greene et al. (2010), Takaffoli

et al. (2011) and Bróka et al. (2013), MECnet is an event-

based framework that relies on a two-stage approach. The

first stage consists in independently discovering commu-

nities at each snapshot of the network. The framework is

not restricted to a specific community detection algorithm,

as long as the chosen algorithm partitions the network into

disjoint communities. In the second stage, for each pair of

successive snapshots, MEC compares the communities

extracted at distinct time points based on the proportion of

mutual nodes shared by them. This proportion can be

obtained by computing the following conditional

probability:

weightðCm
ti
;Cu

tiþDt
Þ ¼ PðX 2 Cu

tiþDt
jX 2 Cm

ti
Þ

¼
P

Pðx 2 Cm
ti
\ Cu

tiþDt
Þ

P
Pðx 2 Cm

ti
Þ

ð1Þ

where X is the set of entities assigned to community Cm
ti

(m ¼ 1; :::; kti ; with kti being the number of communities

returned by a given community detection algorithm at time

point ti) and PðX 2 Cu
tiþDt
jX 2 Cm

ti
Þ represents the proba-

bility of X belonging to community Cu from tiþDt

(u ¼ 1; :::; ktiþDt
with ktiþDt

denoting the number of com-

munities extracted at tiþDt) knowing that X belongs to

community Cm obtained at a previous time stamp ti:

Based on this information, MECnet then models the

communities and their transitions as nodes, respectively

weighted edges, in an evolution graph (i.e. consecutive sets

of weighted bipartite graphs). Figure 1 illustrates this model.

3.3 Window models

Our methodology makes use of two well-known window

models to analyse the dynamics of the network at the

Fig. 1 Illustration of an evolution graph, for the time span ½t1; t3�;
depicting several types of events: split, merge, survival and death
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community-level: the landmark window and the overlap-

ping sliding window. Although we have also carried out

experiments with non-overlapping sliding windows of size

90 days, we considered that the obtained results were not

interesting for our application due to the loss of informa-

tion regarding the temporal continuity of customers’

communities and consequent difficulty in finding persistent

customer profiles. In other words, there were too few

customers buying in consecutive timeframes, which

reflected in a very irregular behaviour of the network. The

specific reasons for discarding the non-overlapping sliding

window from our application-driven methodology are

related to: (a) the nature of the business of the company

under analysis, which operates in the Business-to-Business

(B2B) market, with the great majority of customers being

other companies; and (b) the nature of the products sold by

the company, which have long life-cycles and a low pur-

chase frequency (see Sect. 4.1 for a more detailed

description of the company’s products). In this scenario,

the non-overlapping sliding window model proved of

limited usefulness, since it only confirmed what was

already known, thus not being able to provide actionable

insights into the evolution of customers. Note, however,

that these conclusions only hold for this specific customer-

related data. Therefore, if this methodology was applied to

other types of customer-related data, the non-overlapping

sliding window model could provide relevant information.

In this section, we explain how we formulate this

problem for each type of window model considered in this

study, on the context of MECnet.

Several taxonomies for categorizing the transitions, or

critical events, that a cluster/community, may experience

during its life-cycle (Falkowski et al. 2006; Palla et al.

2007; Asur et al. 2009; Greene et al. 2010; Bróka et al.

2013) were proposed in the literature. In this work, we will

use the one proposed in MEC. Thus, we consider that

communities can undergo five different types of events:

birth, merge, split, survival and death.

3.3.1 Landmark window

The dynamic social network is modelled as an ordered

sequence of T graphs fG1;G2; :::;GTg; where Gi ¼ ðVi;EiÞ

represents a static cumulative snapshot of the network at a

given discrete time point ti ði ¼ 1; :::; TÞ; depicting all the

nodes and links observed up to the current time point (e.g.

G3 comprises all the nodes and edges observed in t1; t2 and

t3). The landmark window approach successively aggre-

gates these static snapshots into a unique graph, as illus-

trated in Fig. 2a. MECnet is then applied to the

accumulated network observed at each time point by:

1. First detecting the communities using a static commu-

nity detection algorithm (e.g. Louvain method, Label

Propagation algorithm) and then,

2. Modelling the evolution of these communities, for a

sequence of T time windows, through an evolution

graph.

The kti communities found at time point ti are denoted by

Cm
ti

(m ¼ 1; :::; ktiÞ: MECnet allows the characterization of

the life-cycle of each dynamic community. The commu-

nities found at each time point are referred to as instances

of a dynamic community or, alternatively, as step com-

munities (Falkowski et al. 2006; Greene et al. 2010). A

dynamic community is described as a sequence of step

communities, whereas the life-cycle is defined as a

sequence of events.

3.3.2 Sliding window

The dynamic social network is also modelled as an ordered

sequence of T graphs fG1;G2; :::;GTg; where Gi ¼ ðVi;EiÞ
represents a static snapshot of the network at a given dis-

crete time point ti ði ¼ 1; :::; TÞ: In contrast with the

landmark window, where all static graphs are accumulated

over time, in the sliding window approach only a pre-

defined number of static graphs are considered for the

temporal analysis. We propose the use of an overlapping

sliding window in order to guarantee that there is always a

mutual time point between consecutive instances of the

window. This condition prevents highly disruptive transi-

tions. The overlapping sliding window approach first par-

titions the time axis into time slots of fixed length w and

then it employs a forgetting mechanism by considering

only the static graphs falling within each one of these slots.

Thus, whenever a graph Gi is observed and inserted in the

Fig. 2 Illustration of a a

landmark window, and b a

sliding window with length

three time points and a step

width of one time point.

a Landmark window and

b sliding window
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window, another graph Gi�w (i [ w and w\T) is forgot-

ten. Such catastrophic forgetting allows us to focus only on

current events, by considering in the analysis only the most

recent nodes and links of the dynamic network. Commu-

nity evolution is then studied by applying MECnet to the

set of time windows (e.g. time windows G1�3; G2�4; G3�5

for a window length w ¼ 3). In Fig. 2b we illustrate three

timesteps (Wk; k ¼ 1; :::; 3) of an overlapping sliding

window of length three time points (w ¼ 3) and step width

of one time point.

4 Case study

In this section, we proceed to validate the feasibility of

our methodology using a real-world customer network,

extracted from one of the largest Portuguese Groups

operating in the electric field. The goal of the company

was to use, for the first time, SNA techniques to perform

an exploratory analysis of their customers purchasing

behaviour, so as to identify differentiable customers’

profiles (or customers’ communities) and their evolution

over a given year. Since it is known that some customers

are frequent buyers, whereas others engage in more spo-

radic purchases, we considered relevant the analysis of

the community dynamics using two distinct time window

models, in an attempt to capture the behaviour of both

types.

4.1 Network data

The network data is imported from the company’s Cus-

tomer Relationship Management (CRM) application and

corresponds to a time span of 12 months (year 2011). We

model the network based on the similarity of the pur-

chasing behaviour between customers of the company.

Thus, there is a link between a pair of customers in ti

(i ¼ 1; :::; 12) if they both purchased the same product

during ti: This link is weighted by the number of co-pur-

chased products. The resulting network is undirected and

weighted. For the chosen time span, the company’s product

portfolio comprised nearly 200 different products, from

which 152 products were actually bought by the set of

customers under analysis. The company’s main products

are related to the electric field and, thus, some degree of

technological evolution can be observed. These products

are typically supported by other products sold by the

company in the form of service/maintenance contracts. The

company also sells additional products related to engi-

neering and high-tech projects. Two distinctive character-

istics of these products are their long lifespan and low

purchase frequency. The products’ nature has impact in the

dynamics of customers’ profiles and, consequently, in the

number and type of detected events. The total number of

nodes (active customers) and links in the whole network

G1�12 is 1,014 and 12,259, respectively. The manipulation,

visualization and analysis of the network is performed on

Gephi (Bastian et al. 2009) by making use of its dynamic

network analysis features.

4.2 Experimental setting

We apply our methodology to the customer network by

sequentially following the steps outlined in Sect. 3.

Instead of analysing a single snapshot of the entire

available network G1�12; we explore the dynamics of the

network at a coarse-grained level (i.e. community-level),

by making use of two window approaches. For the

landmark model, we start with a window of 3 months and

then we cumulatively grow the window by adding one

month at each step. For the overlapping sliding model, we

set the window length to 3 months (w ¼ 3) and its step

width to one month. In both cases, the total number of

timesteps is 10. The length and step width were set by the

company’s Business Intelligence analyst. Each timestep,

denoted as Wk (k ¼ 1; :::; 10), is a time interval starting at

ti and ending at tiþw: The timesteps for the landmark

window are: W1 ¼ ½t1; t3�; W2 ¼ ½t1; t4�; W3 ¼ ½t1; t5�;
W4 ¼ ½t1; t6�; W5 ¼ ½t1; t7�; W6 ¼ ½t1; t8�; W7 ¼ ½t1; t9�;
W8 ¼ ½t1; t10�; W9 ¼ ½t1; t11� and W10 ¼ ½t1; t12�: The time-

steps for the sliding window are: W1 ¼ ½t1; t3�; W2 ¼
½t2; t4�; W3 ¼ ½t3; t5�; W4 ¼ ½t4; t6�, W5 ¼ ½t5; t7�,
W6 ¼ ½t6; t8�, W7 ¼ ½t7; t9�, W8 ¼ ½t8; t10�, W9 ¼ ½t9; t11� and

W10 ¼ ½t10; t12�: We detect the communities at each Wk

using the Louvain method (Blondel et al. 2008) since it

produces disjoint partitions of good quality, in a very fast

way. Due to space constraints, we do not present here the

characterization of customers’ profiles. Next, we apply

MECnet to identify the critical events undergone by the

found communities. We set the survival threshold of

MECnet to s ¼ 0:5 and the events are detected for suc-

cessive snapshots of the network (i.e. timestep intervals

½Wk;Wkþ1�). The reason for choosing a low value for s is

related to the low purchasing frequency of the company’s

products and the consequent need to ensure a reasonable

persistance of customers’ communities. This choice of the

survival threshold value was also supported by the results

of the sensitivity analysis presented in Sect. 4.4.1. Finally,

we evaluate both approaches based on a double per-

spective. First, we compute a quantitative measure,

namely the Survival Ratio proposed by Spiliopoulou et al.

(2006), to measure network volatility and the frequency

of community transitions in both scenarios. This ratio is

given in Eq. (2) and it basically computes the portion of

communities found at timestep Wk (k ¼ 1; :::; 10) that

survived in WkþDt.
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Survival RatioðWkÞ ¼
#Survived CommunitiesðWkþDtÞ

#CommunitiesðWkÞ
ð2Þ

Then, we qualitatively assess the actionable insights

derived from the analysis of each window model, from the

business viewpoint.

4.3 Results

Following the experimental procedure described before, we

obtain two dynamic networks. In Fig. 31 we show two

snapshots of each one of these dynamic networks, for

timesteps W7 and W9. For the first scenario (Fig. 3a/b), the

number of nodes varies between 336 (first timestep) and

1,014 (last timestep), whereas the number of links ranges

from 3,509 to 12,259 (see Fig. 4). In contrast, in the second

scenario (Fig. 3c/d), the number of nodes and links is more

unstable over time, ranging from 227 to 336 customers and

from 1519 to 3509 links, as can be ascertained from Fig. 4.

This is explained by the forgetting mechanism employed

by the sliding window model.

We compute the following SNA metrics, which were

considered to be of higher relevance within the scope of

this case study: eigenvector centrality, betweenness, den-

sity and modularity. Since the former two are node-level

metrics and, thus, need to be computed for each node, for

simplicity we only present their average. The meaning of

these metrics within the scope of our application is as

follows:

– Eigenvector Centrality: when computed at the node-

level, high values of this measure are associated with

the so-called storefront customers. Due to their high

visibility, storefront customers can be regarded as a

proxy for the product’s perceived quality, thus influ-

encing the purchasing behaviour of other customers in

the network.

– Average Betweenness: measure of the number of

customers occupying gatekeeper positions in the net-

work. Its temporal analysis can help identify trends in

the customer network (e.g. diversification, change of

technology) which, in turn, can help unveil overall

trends in the market itself.

Fig. 3 Two snapshots of a

dynamic customer network

obtained using a landmark (top

figures) and a sliding (bottom

figures) window model, for two

distinct timesteps. a Landmark

at W7, b landmark at W9,

c sliding at W7, d sliding at W9

1 A video version of this figure is available online at http://www.

youtube.com/watch?v=eEQpjspkj_8 (landmark window) and http://

www.youtube.com/watch?v=X4_jI8Q4cWQ (sliding window).
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– Density: measure of the network connectedness level.

When taking a dynamic view of the network, a high

density reveals a certain ‘‘maturation’’ of the network,

both in terms of customers and their purchasing

behaviour. On the other hand, a sparser network

indicates a less mature network, since customers

exhibit different product preferences.

– Modularity Q: quality function that attempts to measure

the merit of a given partition of the network into

communities. Measures the difference between the

number of within-community edges in a given set of

communities and the expected number of within-

community edges in a random network with the same

degree distribution. Large modularity values (Q [ 0:3)

indicate the existence of meaningful community

structures.

The obtained values are presented in Figs. 5 and 6.

Regarding the landmark window, the eigenvector centrality

averaged over all customers in the network increases until

Fig. 4 Order and size of each network snapshot, for the landmark and

the sliding window models. a Number of nodes and b number of links

Fig. 5 Number of communities returned by the Louvain method at

each timestep Wk (k ¼ 1; :::; 10) of the landmark and the sliding

window models, and the corresponding modularity. a Number of

communities and b modularity
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W5 ¼ ½t1; t7� and then it starts exhibiting a downward trend,

which persists until the end of the year. This behaviour

makes sense because, as the network grows, there is a

heightened probability that customers decrease their rela-

tive importance and, thus, their network centrality. Con-

versely, the average value of betweenness increases as the

window covers more time intervals, due to the existence of

a few temporally consistent hubs linking distinct commu-

nities. Concerning density, the low values indicate a sparse

dynamic network, with different sets of customers exhib-

iting different buying behaviour. We also observe a

decrease in density over time, which might be explained by

a non-linear increase in both customers and links. These

values reveal that the customer network under analysis

might not yet be mature and, thus, has still space for

growth.

Concerning the sliding window, we observe an overall

instability in the metrics values. This was expected due to

the time-based forgetting mechanism incorporated in the

model. The fluctuation of the eigenvector centrality sug-

gests a lack of customers’ purchasing activity. This is

related to the company’s business nature, which relies on

long-term projects and high added value products which, in

turn, are typically associated with low-frequency pur-

chases. Once again, the density of the network is close to

zero, due to the sparsity of links between customers.

4.3.1 Communities dynamics

MECnet detects several types of events which mirror the

dynamics of communities. In this paper, we focus only on

survivals, births and deaths since they were found to be

more representative of the dynamics occurring at the

community-level. Given the high number of communities

detected by the Louvain algorithm at each timestep (the

initial number of communities ranged from 22 to 25, for

different timesteps and for both window models), we

restricted our analysis to the number of communities rep-

resenting, at least, 75 % of the total number of customers in

each network snapshot. The motivation for imposing a

threshold on the representativeness of communities was to

ensure that communities formed by isolated nodes, or by a

small number of nodes, were discarded from the analysis.

From a business viewpoint, this choice warrants the iden-

tification of a more manageable number of customer pro-

files while helping the company focus on the most

b Fig. 6 Node- and network-level metrics obtained at each timestep Wk

(k ¼ 1; :::; 10) for the landmark and the sliding window models. The

node-level metrics (eigenvector centrality and betweenness) were

averaged over all nodes. a Eigenvector centrality, b betweenness and

c density
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representative purchasing patterns of its customers’ uni-

verse. This way, the company is able to focus its analysis

on those customers who buy their core products, while

helping the marketing team wisely manage the resources

(time and money) needed to improve the customer rela-

tionship. The minimum threshold was set by the Business

Intelligence analyst and its choice was guided by his

business knowledge. In our experiments, the representa-

tiveness of communities ranges from 76 % to 85 %: The

effect of using this threshold is a drop on the number of

communities. In our experiments, this results in a minimum

of 8 and a maximum of 12 communities, for the landmark

window model, and in a consistent number of 9 commu-

nities for the sliding window model (see Fig. 5a). For both

cases, the average modularity Q was 0:61 for the sliding

window, and 0:67 for the landmark window, which sug-

gests the existence of well-defined and meaningful com-

munities of customers (see Fig.5b).

Due to its greedy nature, the Louvain method is not

completely deterministic. If we change the order of the

nodes, this method might return different results. This

variability in the outcome is partly explained by the

sequential nature of the analysis of modularity gains, which

makes the method highly dependent on the starting node.

Bearing this in mind, we evaluated the stability of the

Louvain method results, in terms of modularity, number of

communities and normalized mutual information (NMI)

(Danon et al. 2005), by first shuffling the nodes IDs and

then running the algorithm on the resulting network. Note

that the NMI is a well-known measure of similarity bor-

rowed from information theory, which has proved to be

reliable in comparing data partitions. The closer NMI is to

1, the more similar the two data partitions are. We resort to

the NMI to compare a baseline community structure, i.e.

the partition returned by the Louvain method without

shuffling the nodes IDs, with the community structure

returned by each run of the Louvain method. We perform

our evaluation using the network corresponding to time

window G1�3, which is exactly the same for both window

approaches. For 50 runs of the algorithm (i.e. 50 shuffles of

nodes IDs), the average modularity was 0:67 (standard

deviation ¼ 0:002), the average number of communities,

without considering the 75 % threshold, was 23 (standard

deviation ¼ 1) and the average NMI was 0:93 (standard

deviation ¼ 0:03). These values suggest a high stability of

the Louvain’s outcomes for the analysed network, since we

obtain similar community structures, as revealed by the

b Fig. 7 Events detected by MECnet (survival threshold s ¼ 0:5) for

the landmark and sliding window approaches. a Survivals, b births

and c deaths
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large NMI value and by the identical number of commu-

nities, without compromising their quality, as indicated by

the large modularity value.

The total number of survival, birth and death events

detected by MECnet (with a survival threshold of s ¼ 0:5)

for both window approaches, at each timestep interval, is

provided in Fig. 7. From the analysis of these figures, we

can deduce that the overlapping sliding window model is

able to capture the unstable community structure of the

customer network, by focusing only on the most recent

past. This volatility is reflected on the high number of

births and deaths and relatively low number of survivals

and is captured by the values of the survival ratio (see Fig.

7). These differences on the number of events show the

potential of the sliding window in capturing temporary

acute changes occurring in the network, reflecting more

closely the changes in customers’ preferences for products.

At the community-level, these changes manifest them-

selves through sequences of death and birth events. Please

note that nodes that are forgotten in the sliding window

approach might re-appear at later temporal snapshots. In

these cases, they are assumed as newborn nodes. Regarding

the landmark window, the large number of survivals, as

captured by the survival ratio, suggests little volatility

between timesteps (Fig. 8). The few birth/death detected

events are related to more stable and long-lasting changes

at the customer network.

4.3.2 Qualitative evaluation and discussion

Cliques: our definition of customer network implies that

customers who buy the same product in a given time frame

are all linked to each other. Thus, it is likely that cliques are

formed between customers who buy the same products. A

closer look at the customer networks provides empirical

evidence that supports this hypothesis. In fact, most

members of a given community bought the same product

or, alternatively, bought products of the same type. This

finding suits our initial purpose of identifying customers

with similar profiles in terms of products’ preferences. On

the other hand, when taking into account the temporal

dimension of these networks, it can be hypothesized that

these customers’ cliques shift over time from the usage of a

given product to the usage of another product. Due to the

nature of this company’s business, its products’ charac-

teristics and the availability of data for a single year, it is

not possible to properly test this hypothesis. However, this

shifting behaviour can be observed at the micro-level for

several customers, signaling the possibility of observing

this behaviour for whole communities in the case we had

access to a longer timeframe of data.

Effect of the network model on the results: we model

the implicit relationships among customers based on the

similarity of their buying behaviour. In this kind of net-

work model the type of products bought by these cus-

tomers plays an important role on both the network

structure and the nature of the detected events. The

diversity of the company’s product portfolio, in terms of

products’ categories, products’ function and price ranges,

is able to meet the needs of different types of customers,

thus reflecting in a more idiosyncratic purchasing

behaviour. This distinctive behaviour, shared by different

sets of customers, partly explains the existence of well-

defined communities revealed by the large modularity

values. Furthermore, the long life-cycle of products

(typically, more than 10 years) reflects in low replacement

rates and low purchase frequencies. According to our

data, 50 % of customers made a single purchase, whereas

17 % made only two purchases during 2011. This explains

the high number of births and deaths of communities

when using the overlapping sliding window model.

Exceptions to this rule are customers that are large

companies. These large corporations usually engage in

repeated purchase, since they buy a product several times,

as well as its associated products (e.g. service contracts).

On the other hand, the merges, the splits and the indi-

vidual customer’s migration from one community to

another, can be partly explained by the associated pro-

ducts the company sells (e.g. the purchase of a typical

electric product is usually followed by the acquisition of a

maintenance/service contract). Based on this qualitative

analysis, it became clear that the choice of the network

model influences the obtained results, so a careful study

of the most appropriate model should precede the appli-

cation of the proposed methodology.

Fig. 8 Survival ratio for the landmark and sliding window

approaches
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Comparison between the landmark and the sliding

window models: the analysis of the dynamics of the cus-

tomer network using the sliding window approach, as a

complement of the traditional landmark window, allows us

to identify the migration of customers between communi-

ties. This kind of business events remains potentially

undetected when relying only on a landmark window

approach since, in such a case, the customer would appear

as belonging to both communities. We exemplify this type

of event (i.e. customer’s migration) in Fig. 9.2 In this fig-

ure, we take a closer look of the dynamic network (sliding

window approach) by focusing on the movement of a

specific customer. The identified customer is initially a

member of a community characterized by customers who

buy specific products. As time unfolds, this customer starts

buying other products which are associated to a different

community. As a consequence, the customer begins to

gradually approach the second community and, as the old

connection is forgotten, the customer moves to the only

community it is now connected to. Due to the forgetting

mechanism of the sliding window, the most up-to-date

membership is highlighted thus enabling the detection of

the customer’s transition from one community to the other.

Having the knowledge of the underlying data and of the

company’s business model, we are able to identify that the

purchasing of the second product is a natural action after

the purchasing of the first one. However, there are other

companies which also supply the latter and, if this transi-

tion could be predicted, the company could have sold both

products as a package in the first instance. This type of

proactive commercial actions would reduce the company’s

commercial risk and increase its sales volume.

4.4 Additional experiments

4.4.1 Sensitivity analysis of MECnet’s survival threshold

As mentioned in Sect. 3.2, the mapping process underlying

MECnet relies on a user-defined threshold—the survival

threshold s—which takes values from the interval ½0:5; 1�.
Here, we perform a sensitivity analysis of s in order to

assess the influence of choosing different values for the

survival threshold in both the number and type of detected

Fig. 9 Illustration of a

customer’s migration from one

community to another. The

customer’s movement is marked

by an arrow

2 A video version of this figure is available online at http://www.

youtube.com/watch?v=SyR5jmU6OUk.
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events. We run experiments with different values of s, for

both window models. The results are reported in Fig. 10.

The analysis of results for both window models suggests

that higher values of s increases the number of births and

deaths and decreases the number of survivals and merges.

We also observe a rise in the total number of events. This

finding agrees with the intuition behind the concept of

survival threshold. When s increases, we are imposing a

stricter condition on MECnet for detecting communities’

matches. If we set s ¼ 1, MECnet will only consider a

Fig. 10 Influence of MECnet’s

survival threshold (s) on the

number of detected events

(births, deaths, splits, merges

and survivals). a Landmark

window and b sliding window
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match between two step communities Cm
ti

and Cu
tiþDt if all

nodes pertaining to community Cm
ti

migrate to community

Cu
tiþDt. This implies that, what was once categorized as a

single survival event, will now be replaced by two events: a

death and a birth. As a consequence, the total number of

events increases. An analogous rationale applies to the

merge events, since our definition requires that there are at

least two community’s matches for a merge to be detected.

So, if the match condition (s) becomes more demanding,

the detection of merges becomes less likely.

Based on this analysis, we conclude that the choice of

the threshold s influences both the number and the type of

events detected by MECnet. Lower values of s are more

flexible, allowing the detection of more survivals, which

reflects in longer communities’ life-cycles. In turn, setting

more demanding values for s shortens the communities’

life-cycles due to the detection of disruptive events, such as

births and deaths. The survivals detected for strict values of

s are, however, indicative of highly stable communities,

whose detection might be useful for certain applications.

4.4.2 MECnet with label propagation algorithm

In order to assess the influence of the choice of the com-

munity detection method on the MECnet results, we con-

ducted experiments using the LP algorithm. We applied the

LP algorithm to each network snapshot of each window

model. In order to ensure a fair comparison with the

Louvain method, we selected the communities containing

at least 75 % of nodes and we discarded the remaining

ones. For the landmark windows, LP detected an average

of five communities (standard deviation ¼ 2), a maximum

of ten and a minimum of three communities, depending on

the considered timestep. The average size of communities

was 109 nodes, with the smallest group having ten nodes,

at timestep W1, and the largest group containing 381 nodes,

at timestep W8. Regardless of the variability observed in

both the number and size of communities, all community

structures were meaningful, as indicated by the average

modularity of 0:66 (standard deviation ¼ 0:02). We obtain

slightly different results for the sliding window. Using LP,

we extracted an average of ten communities (standard

deviation ¼ 2), a maximum of 13 and a minimum of 6

communities. From the whole set of communities, the

smallest one was found at timestep W5 and comprised only

six nodes, whereas the largest community was detected at

timestep W6 and contained 106 nodes. The average mod-

ularity was 0:58 (standard deviation ¼ 0:09). Although the

modularity’s average value decreased, when compared to

the landmark window scenario, it is still high and indica-

tive of the existence of meaningful community structures.

Comparing these results with the ones obtained by the

Louvain method (Fig. 5), we conclude that, although we do

not observe a stark contrast in the values of these indicators

for each algorithm, a higher variability in the number of

communities over timesteps of the LP algorithm is appar-

ent. Besides, according to the modularity criterion, the

quality of the network partitions is on average higher for

the Louvain method.

Regarding community dynamics, we followed the same

procedure used for the Louvain method. The number of

events returned by MECnet for each community detection

algorithm, and for each window model, are shown in Fig.

11. Starting with the landmark window model (Fig. 11a),

we observe that when using the community structures

discovered by the LP algorithm the number of splits and

births is much higher than the ones detected using the

Louvain method. This increase in splits and births is

compensated by a reduction in the number of survivals.

The apparent inverse relationship between the splits/births

and survivals might be a consequence of the higher vari-

ability on the number of communities detected by the LP

algorithm. In fact, if the number of groups is small in a

given time interval and large in the next time interval, the

communities either split into several groups or new com-

munities were born. Concerning the sliding window (Fig.

11b), the total number of events detected by MECnet for

the LP algorithm is consistently larger than the ones dis-

covered for the Louvain method. By taking a closer look at

the graphs, we can deduce that this large number of events

is a reflection of the higher number of detected births,

deaths and splits. Despite this high dynamicity on the

evolution of communities, which can be explained by the

forgetting mechanism employed by the sliding window

model and is captured by both community detection algo-

rithms, LP appears to extract more unstable community

structures than the Louvain method. Once again, a possible

justification for this difference resides on the variability of

both the number and the composition of LP’s communities.

Based on the performed comparison, we conclude that

the choice of the community detection method influences

the perceived dynamicity of communities and the number

and type of events captured by MECnet.

4.4.3 Comparison of MECnet with the GED method

In this section, we compare the results returned by MECnet

with the ones obtained using the GED method (Bróka et al.

2013). Similarly to MECnet, GED is an event-based

framework for group evolution discovery in social net-

works that relies on a two-stage approach. During the first

stage, communities (or groups) are discovered at each

snapshot of a given temporal social network by resorting to

an arbitrary community detection algorithm. Then, the
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relevance of nodes pertaining to each community is com-

puted using any node importance measure (e.g. centrality

degree, betweenness degree, page rank, social position). In

the second stage, the inclusion measure is calculated for

each pair of step communities found at consecutive time-

points. Inclusion takes into account not only the proportion

of nodes shared by both step communities, but also the

quality of nodes migrating from one step community to

another. Based on the values of the inclusion measure and

the values of three user-defined parameters (a, b and

forming/dissolving threshold, also referred to as fd), the

method looks for the presence of seven types of events:

Fig. 11 Influence of the

community detection method

(label propagation algorithm

and Louvain method) on the

number of events identified by

MECnet. a Landmark window

and b sliding window
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continuing (equivalent to MECnet’s survival), splitting

(equivalent to MECnet’s split), merging (equivalent to

MECnet’s merge), forming (equivalent to MECnet’s birth),

dissolving (equivalent to MECnet’s death), growing and

shrinking. The two additional events considered in the

GED method (growing and shrinking) are internal events,

in the sense that they capture changes concerning the

contents of each community. In MECnet we focus only on

external events, which relate to changes occurring in the

whole community structure. Nevertheless, MECnet can be

easily extended to accommodate these kind of internal

events.

In order to ensure a fair comparison between MECnet

and GED, we considered the same set of communities

returned by the Louvain method, which were used as input

for MECnet. Regarding the node importance measure

required by GED, we selected the page rank (Brin and Page

1998) instead of other centrality measures, such as degree

or betweenness, due to its ability to take into account both

the quantity and quality of the nodes’ connections within

the network. Page rank was computed for the whole set of

nodes that were active at each timestep. We run the original

implementation of GED method available in Piotr Bród-

ka’s web page.3 For our experiments, we used the default

values of GED’s parameters: a ¼ 50 %, b ¼ 50 % and fd ¼
10 %: Since the parameter a is the GED’s equivalent to

MECnet’s s, the chosen a value (i.e. a ¼ 50 %) is consis-

tent with the value chosen for s in our case study experi-

ments (i.e. s ¼ 0:5). Such consistency guarantees a similar

level of flexibility in both methods when looking for

communities’ matches.

We run the GED method for each window model. A

comparison of the number and type of events detected by

MECnet and the GED method is presented in Table 1. For

the landmark windows, the GED method detected a total of

5,934 events for all timestep intervals

(½W1;W2�; :::; ½W9;W10�). MEcnet extracted a total of 409

events for the same data. The stark contrast between the

total number of events of MECnet and the ones returned by

GED are explained by GED’s assumption that a single step

community found at timepoint ti might be involved in

several events with other step communities at a later

timepoint tiþDt: For instance, while MECnet categorizes a

split of one community into three communities as a single

event (i.e. one split), the GED method considers this

occurrence as three splitting events. From the 5,934 events

discovered by GED, 2,376 were dissolving, 2,088 were

forming, 1,344 were splitting, 36 were growing and 90

were shrinking. Contrary to MECnet, no continuing events

were detected by the GED method. This might be influ-

enced by the fact that, while MECnet only takes into

account the quantity of nodes shared by two step com-

munities, the mapping process of the GED method also

considers the position and importance of the nodes

belonging to the step communities, as measured by page

rank. A possible explanation to this is the fact that GED

method considers as dissolving events communities that

remain inactive over several timeframes, which is likely to

happen in our data due to the company’s business nature.

When these communities become active again, the GED

method categorizes their evolution as a forming event.

Such cases are considered as survivals when using MEC-

net. Regarding the overlapping sliding windows, the

application of the GED method for all timestep intervals

returns a total of 7,100 events. This raise in the number of

total events, with respect to the landmark windows,

somehow reflects the higher dynamicity of the networks

obtained by the sliding window approach. This increase in

the overall number of extracted events for the sliding

window is consistent in both MECnet and GED. These

7,100 events discovered by GED are broken down into

2,880 dissolving, 2,736 forming, 1,241 splitting, 72

merging, 93 growing and 78 shrinking events. As expected,

the number of forming/dissolving events is much larger for

Table 1 Number and type of events detected by two dynamic community mining methods: MECnet and GED method, for all timestep intervals

of the dynamic customer network

Method/ event type Birth/forming Death/ dissolving Split/splitting Merge/

merging

Survival/

continuing

Growing Shrinking Total

Landmark Window

MECnet 72 (17:6 %) 46 (11:2 %) 24 (5:9 %) 11 (2:7 %) 256 (62:6 %) – – 409

GED method 2,088 (36 %) 2,376 (40:9 %) 1,344 (23:1 %) 0 0 36 90 5,934

Sliding Window

MECnet 338 (42:6 %) 347 (43:8 %) 20 (2:5 %) 1 (0:1 %) 87 (11 %) – – 793

GED method 2,736 (39:5 %) 2,880 (41:6 %) 1,241 (17:9 %) 72(1 %) 0 93 78 7,100

The proportion of external events (i.e. growing and shrinking events were excluded from the computation) with relation to the total number of

external events, for both methods, is shown inside brackets

3 http://www.ii.pwr.wroc.pl/*brodka/ged.php.
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the sliding window than for the landmark window. This

finding agrees with the results of MECnet for the sliding

window, as suggested by the identical proportions of births/

deaths (forming/dissolving in the terminology of GED)

obtained by both methods (see Table 1).

Computation times of both methods for such small

networks are not relevant, given that the experiments took

only a few seconds.

5 Conclusions and future work

We introduce a methodology to analyse community struc-

ture dynamics in evolving customer networks, based on two

window models: a landmark and a sliding window. This

methodology was devised to tackle a real-world problem of

one of the largest Portuguese companies on the field of

electricity. The goal of the company was to explore social

network research techniques in an attempt to tap the

potential of their time-stamped customer base data, for

marketing purposes. In this paper, we present the first results

of our exploratory analysis on the company’s customer

network. This network uncovers the similarities of pur-

chasing behaviour among the company’s customers. The

application of dynamic community mining using two dif-

ferent time window models allowed us to identify the evo-

lutionary profile of groups of customers and grasp insights

into the customer base. The results suggest that both window

models provide complementary information regarding the

dynamics of the underlying network. While the landmark

window considers all the historical data, the sliding window

employs a catastrophic forgetting of older data, focusing

only on the most recent past. Given these distinct perspec-

tives, the sliding window approach proves to be more suit-

able for, e.g. detecting changes in customers’ purchasing

behaviour, whereas landmark windows are more appropriate

to identify persistent customers’ profiles. As future work, we

intend to perform experiments using alternative time win-

dow approaches (e.g. accumulated time windows with fad-

ing links) and a few larger datasets, with longer timeframes,

in order to assess the feasibility, performance and suitability

of MECnet for dealing with large networks.
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