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Abstract Social networks, which are made of social

entities (e.g., individual users) linked by some specific

types of interdependencies such as friendship, have become

popular to facilitate collaboration and knowledge sharing

among users. Such interactions or interdependencies can be

dependent on or influenced by user characteristics such as

connectivity, centrality, weight, importance, and activity in

the networks. As such, some users in the social networks

can be considered as highly influential to others. In this

article, we propose a computational model that integrates

data mining with social computing to help users discover

influential friends from a specific portion of the social

networks that they are interested in. Moreover, our social

network analysis and mining model also allows users to

interactively change their mining parameters (e.g., scopes

of their interested portions of the social networks).

Keywords Applications on social networks �
Computational aspects of social networks � Influential

person � Knowledge discovery and data mining � Social

network analysis and mining � Social network computing

1 Introduction and related work

Recent advancements in internet technology and social

awareness have increased the popularity and momentum

for the social network analysis in many different types of

social networks (Ding et al. 2010 ; Leung and Carmichael

2010; Horak et al. 2011; Bhagat et al. 2012; Lee et al.

2012) such as co-authorship, friendship, professional and

organizational networks. Social networking sites such as

Facebook, Google?, LinkedIn, MySpace, Twitter and

Weibo (Fan and Yeung 2010; Nasirifard and Hayes 2011;

Lin et al. 2012; Yang et al. 2012) are providing valuable

social information about their entities (e.g., individuals,

corporations, collective social units, or organizations),

contacts and their relationships (e.g., kinship, friendship,

common interest, beliefs, or financial exchange). For

instance, a social network user p can create a personal

profile in Facebook, add other Facebook users as friends,

and exchange messages with these friends. Similarly, p can

connect with friends and family members (e.g., find and

connect with people from p’s high school or hometown) in

Google?, categorize his friends into different circles, and

share ideas and thoughts with other Google? users.

Moreover, p can also create a professional profile in

LinkedIn, establish connections to other LinkedIn users,

endorse the skills of his connections, and be recommended

by someone in his contact network. There are many users

in these social networks, and each user may have different

number of users connected/linked to his network. Among

all users in these social networks, some can (i) have a

strong relationship or (ii) be very significant or important to

others depending on different parameters such as the

number of interactions made between them.

Over the past few years, social computing and its

applications have become an emerging research area in the

field of computer science. Data mining techniques have

been applied to social computing to extract implicit, pre-

viously unknown, and potentially useful information or

interesting knowledge from social networks (Alsaleh et al.

2011; Baatarjav and Dantu 2011; Ferreira et al. 2012).

Examples include clustering and classification of tweets,

mining and analysis of co-authorship networks,
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visualization of social networks (Leung and Carmichael

2010; Górecki et al. 2011), prediction of social links

(Liaghat et al. 2013), and mining opinions (Muhammad

et al. 2013). The current article, on the other hand, focuses

on a different but also important aspect—namely, pattern

mining on social networks.

In recent years, there have been a few publications on

pattern mining from social networks. Examples include the

mining of strong friends (Cameron et al. 2011; Leung et al.

2013) and significant friends (Leung and Tanbeer 2012;

Tanbeer et al. 2013). The mining of many of these types of

friends depends on the number of messages posted by users

in social networking sites such as Facebook. However, there

are situations in which one may want to find friends based on

their relevant information (e.g., status of a friend in a social

network) other than the number of messages or wall postings.

For instance, a Facebook user may want to identify those

prominent friends who have high impact (e.g., in terms of

knowledge or expertise about a subject matter) in the social

network. As another example, a LinkedIn user may want to

get introduced to those second-degree connections who have

rich experience in some profession. Similarly, a Twitter user

may also be interested in following (and subscribing to a

Twitter feed from) those who are highly influential in the

whole network. Furthermore, finding influential friends from

social networks may also help corporations and business

organizations in making important business decisions. For

example, when promoting and marketing a product to

potential customers in a social network, it may be helpful to

consider influential people (i.e., person having high impact)

in a social network because products advertised to these

people are likely to reach a large target group (e.g., his fol-

lowers). Hence, it is desirable to discover influential friends

from the social network.

A key contribution of the current article is our integra-

tion of data mining with social computing to build a social

network mining model—called DIFSoN—for discovering

the group of influential friends from a large volume of

social network data. Here, we focus on the social entities

who have high impact and/or are linked to many other

entities in the network. The DIFSoN uses (i) a prefix-tree

based data structure called Influential Friend tree (IF-tree)

to effectively capture the social network data and (ii) a

mining routine to efficiently discover the set of influential

friend groups from the IF-tree.

Moreover, it is not unusual that users are interested in

exploring some portions of their social networks to find

groups of influential friends. Another key contribution of

the current article is our extension of DIFSoN for handling

efficient interactive mining of influential friends when

users change the mining parameters (e.g., change the scope

of their interested portions of social networks). In other

words, the current article deals with interactive mining. In

contrast, the recent publications on mining popular friends

(Jiang et al. 2012), significant friends (Leung and Tanbeer

2012; Tanbeer et al. 2013), and diverse friends (Tanbeer

and Leung 2013) have not yet handled the interactive

mining.

As the current article is an expanded version of our

CASoN 2012 paper (Tanbeer et al. 2012), additional novel

contributions beyond the basic DIFSoN model for mining

influential friends from social networks includes (i) an

enhancement to the basic DIFSoN model to speed up the

mining process by reducing the number of generated can-

didates, (ii) an extension to handle the interactive broad-

ening of users’ interested portions of social networks,

(iii) an extension to handle the interactive narrowing of

users’ interested portions of social networks, (iv) additional

theoretical results (e.g., proofs to lemmas), as well as

(v) additional experimental results on the basic, enhanced

and extended models for efficient discovery of influential

friends from an interesting focused portion of social net-

works and when the scope of the focused portion of social

networks is broadened and/or narrowed.

The remainder of the current article is organized as

follows. We introduce the concept of influential friends in

the next section. In Sect. 3, we propose the IF-tree structure

and the corresponding mining routine, which first mines

potentially influential friends from the IF-tree and then

verifies if they are truly influential. Section 4 discusses how

to speed up the mining process by bringing the number of

potentially influential friends closer to that of the truly

influential ones. Section 5 explains how we discover

influential friends when the scope of the focused portion of

social networks is broadened and/or narrowed. Section 6

shows the experimental results. Finally, conclusions are

presented in Sect. 7.

2 Notion of influential friends

In this section, we present the basic definitions and notations

for discovering influential friends from social networks.

Recall that social networks are made of social entities (e.g.,

individual users) linked by some specific types of interde-

pendencies such as friendship. Let us consider a sample

portion of a social network as shown in Table 1, which

consists of n = 7 lists of friends (i.e., friend lists L1–L7).

Each friend list Lj records all the friends of an individual

social entity. For example, L1 records that Ana, Beto, Carlos

and Eva are friends of some individual social entity (say,

Davi). L2 records that Ana, Beto and Carlos are friends of

another individual social entity (say, Eva).

Note that we define the friend lists in an unrestrictive

way such that the lists can be—but do not need to be—

symmetric. For applications such as capturing mutual
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friends in social networks like Facebook, the friend lists are

symmetric. For instance, if Ana is a friend of Beto, then

Beto is a friend of Ana. In other words, as Ana and Beto are

mutual friends, they are on each other’s list (i.e., Ana is on

Beto’s friend list and Beto is on Ana’s friend list). How-

ever, for applications such as capturing publish–‘‘sub-

scribe’’ relationships in Facebook or the ‘‘follow’’

relationships in Twitter, the friend lists are not necessarily

symmetric. For instance, if Ana follows Beto, then Beto is

on Ana’s friend list or watch list but Ana may not be on

Beto’s list unless Ana is also followed by Beto.

Moreover, our notion of friend lists is not confined to the

lists of friends of individual social entities. It can be

defined as the lists of friends in interest-groups. For

instance, Table 1 may consist of n = 7 interest-group lists

(L1–L7). Each list Lj captures all individual social entities

who are connected as friends due to some common inter-

ests. For example, L1 records members of a common

interest group (e.g., on social computing)—namely,

Ana, Beto, Carlos and Eva. L2 records members of another

common interest group (e.g., on data mining)—namely,

Ana, Beto and Carlos.

More formally, given a set F ¼ ff1; f2; . . .; fmg of

m users in a social network media, a friend list (i.e., a list of

friends of an individual user or a list of friends in a com-

mon interest group) Lj � F of a person p [ F contains all

social network users who are connected with p as friends.

Let G ¼ ff1; f2; . . .; fkg � F be a group of friends (or a

friend group) with k friends. The size size(G) of G indicates

the number of friends in G (e.g., size(G) = k). Usually,

users are interested in some portions of the social network.

These user interested portions are represented by a list

collection LC of friend lists (e.g., fL1; L2; . . .; Lng). The

projected list of G (denoted as LCG) is the set of friend lists

in LC that contain the group G. We use Freq(G, LC) to

represent the frequency of G (i.e., number of lists con-

taining or supporting G) in LC.

Example 1 Consider the LC shown in Table 1, which

consists of n = 7 friend lists for the m = 7 friends in

Table 2. For group G = {Ana, Carlos}, its size is 2 (i.e.,

size(G) = |{Ana,Carlos}| = 2), and its projected list

LCG = {L1, L2, L5, L7} with frequency Freq(G, LC) of 4

(i.e., {Ana, Carlos} appears in four lists—namely,

L1, L2, L5 & L7—out of the n = 7 lists in LC).

Similarly, if group G = {Ana, Carlos, Eva}, then

(i) size(G) = |{Ana, Carlos, Eva}| = 3 and (ii) LCG =

{L1, L5, L7} implying that Freq(G, LC) = 3.

Recall that Table 1 shows a collection LC of n = 7

lists. These lists involve m = 7 social entities (i.e., Ana,

Beto, Carlos, Davi, Eva, Fabio and Gil). Table 2 shows

the individual prominence of these m = 7 social entities.

Here, we assume that the conflict of same name for dif-

ferent users (if any) has been resolved using a unique

identification scheme. The prominence, which is repre-

sented by a non-negative number, indicates the status

(such as importance, weight, value, reputation, belief,

position, or significance) of a friend in a social network.

The prominence values can be measured using a common

scale, which could be user-defined or automatically cal-

culated based on user-centric parameters (e.g., connec-

tivity, centrality, expertise in the domain of the network,

membership duration in the network, and the activity in

the network). In this article, we consider the prominence

in a scale between 0.0 and 1.0. For example, the promi-

nence of Ana (denoted as Prom(Ana), which equals to

0.60) is higher than Prom(Beto) = 0.50, which implies

that Ana is a more influential friend than Beto in this

social network.

Definition 1 The prominence Prom(G) of a group

G measures the average of all prominence values for all

friends in the group:

PromðGÞ ¼
PsizeðGÞ

i¼1 PromðfiÞ
sizeðGÞ : ð1Þ

Example 2 Consider the prominence table shown in

Table 2. The prominence of friend group {Ana, Carlos}

can be computed as
PromðAnaÞþPromðCarlosÞ

2
¼ 0:60þ0:40

2
¼ 0:5:

Similarly, the prominence of friend group {Ana,

Carlos, Eva} is 0:60þ0:40þ0:42
3

� 0:473:

Table 1 A collection LC of friend lists

List ID Friend list (L)

L1 {Ana, Beto, Carlos, Eva}

L2 {Ana, Beto, Carlos}

L3 {Beto, Eva, Fabio}

L4 {Ana, Beto, Davi}

L5 {Ana, Beto, Carlos, Eva}

L6 {Beto, Eva, Fabio}

L7 {Ana, Beto, Carlos, Eva}

Table 2 Prominence of friends in a social network

Friend (fi) Prominence (Prom(fi))

Ana 0.60

Beto 0.50

Carlos 0.40

Davi 0.70

Eva 0.42

Fabio 0.57

Gil 0.11
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Definition 2 The influence Inf(G, LC) of a group G in a

collection LC of friend lists measures an aggregated

prominence degree of G in all friend lists in LC. It is

defined as the product of the prominence value of G and its

appearance frequency in LC [i.e., Freq(G, LC)]:

InfðG;LCÞ ¼ PromðGÞ � FreqðG;LCÞ: ð2Þ

Example 3 Recall from (i) Example 2 that Prom({Ana,

Carlos}) = 0.5 and (ii) Example 1 that Freq({Ana, Carlos},

LC) = 4. So, the overall social network influence of

{Ana, Carlos} can be calculated as Inf({Ana, Carlos},

LC) = Prom({Ana, Carlos}) 9 Freq({Ana, Carlos},

LC) = 0.5 9 4 = 2.0.

Similarly, recall from Example 2 that Prom({Ana,

Carlos, Eva}) & 0.473. Then, we observe from Table 1

that {Ana, Carlos, Eva} appears together in L1, L5 and L7.

So, Freq({Ana, Carlos, Eva}, LC) = 3. Hence, we com-

pute Inf({Ana, Carlos, Eva}, LC) = 0.473 9 3 = 1.42.

A group of friends is considered influential in a social

network media if its influence in the user-interested portion

LC of the social network is no less than a user-specified

minimum influence threshold minInf, which is a non-neg-

ative real number. The influence threshold can also be

expressed as a percentage in terms of the number of lists in

LC.

Definition 3 Given a user-specified minimum social

network influence threshold minInf, a group G is consid-

ered influential in a collection LC of friend lists if its

influence value is at least minInf:

InfðG;LCÞ�minInf : ð3Þ

Example 4 Recall from Example 3 that (i) Inf({Ana,

Carlos}, LC) = 2.0 and (ii) Inf({Ana, Carlos, Eva},

LC) = 1.42. If the user-specified minInf = 2.0, then

group {Ana, Carlos} is influential in LC as shown in

Table 1 because Inf({Ana, Carlos}, LC) = 2.0 C 2.0 =

minInf. But, group {Ana, Carlos, Eva} is not influential

because Inf({Ana, Carlos, Eva}, LC) = 1.42 \ 2.0 =

minInf. In other words, based on the influence of

aggregated weights and links with other friends in the

network, friend group {Ana, Carlos} plays an important

(or influential) role in the network, but the group

{Ana, Carlos, Eva} does not.

Example 5 Recall from Table 2 that Prom({Ana}) =

0.60. As {Ana} appears in five friend lists (namely, L1, L2,

L4, L5 and L7), Freq({Ana}, LC) = 5. Thus, Inf({Ana},

LC) = 0.60 9 5 = 3.0.

Similarly, recall from Table 2 Prom({Carlos}) = 0.40.

As {Carlos} appears in four friend lists (namely, L1, L2, L5

and L7), Freq({Carlos},LC) = 4. Thus, Inf({Carlos},

LC) = 0.40 9 4 = 1.6.

With the same minInf = 2.0, {Ana} is an influential

friend group, but {Carlos} is not. However, as observed

from Example 4, their superset {Ana, Carlos} (with

Inf({Ana, Carlos}, LC) = 2.0) is an influential friend

group. In other words, the group influence does not satisfy

the downward closure property.

3 The DIFSoN model for mining influential friends

When mining frequent patterns, the frequency measure

(Agrawal and Srikant 1994; Han et al. 2000) satisfies the

downward closure property: if a pattern is frequent, then all

its subsets are also frequent. Equivalently, if a pattern is

infrequent, then all its supersets are also infrequent.

Knowing that the frequency measure satisfies the down-

ward closure property helps reduce the search/solution

space by pruning infrequent patterns, and thus speeds up

the mining process. However, when mining influential

friend groups, one may observe from Example 5 that

influence does not satisfy the downward closure property.

For instance, a group (e.g., {Carlos}) is not influential, but

its superset (e.g., {Ana, Carlos}) can be influential. Hence,

the mining of influential friend groups can be challenging.

To handle the challenge, we calculate the upper bound

InfUB(G, LC) to the influence of a group G in a collection

LC of friend lists by multiplying its frequency with the

highest prominence value available in the prominence

table. We denote the highest prominence value among all

the social entities in LC (in the prominence table) as global

maximum prominence value PromGMax(LC):

InfUBðG;LCÞ ¼ PromGMaxðLCÞ � FreqðG;LCÞ ð4Þ

where

PromGMaxðLCÞ ¼ maxfPromðfiÞ j fi in LCg ð5Þ

and

InfðG;LCÞ� InfUBðG;LCÞ: ð6Þ

Equation (4)—on the upper bound InfUB(G, LC) to the

influence of a group G in a collection LC of friend lists—

leads to the following lemma.

Lemma 1 The upper bound InfUB(G, LC) to the influ-

ence satisfies the downward closure property.

Proof As the frequency measure satisfies the downward

closure property,

FreqðG0;LCÞ� FreqðG;LCÞwhere G � G0 ð7Þ

for any given collection LC of friend lists. Based on

Eq. (4) that InfUB(G, LC) = PromGMax(LC) 9 Freq

(G, LC), we get
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InfUBðG0;LCÞ� InfUBðG;LCÞwhere G � G0: ð8Þ

If the upper bound InfUB(G, LC) \ minInf (i.e., a friend

group G is uninfluential in LC), then InfUB(G0,
LC) \ minInf (i.e., every super-group G0 of G is also

uninfluential in LC) because

InfUBðG0;LCÞ� InfUBðG;LCÞ\minInf :

Hence, the upper bound InfUB(G, LC) to the influence

satisfies the downward closure property.

Knowing that the upper bound InfUB(G, LC) to the

influence satisfies the downward closure property helps

reduce the search/solution space by pruning uninfluential

friend groups, and thus speeds up the mining process.

Example 6 In Table 2, PromGMax(LC) = 0.70, which is

Prom(Davi). Either recall from Example 5 or read directly

from Table 1 that Freq({Ana}, LC) = 5 and Freq({Car-

los}, LC)=4; recall from Example 3 or read directly from

Table 1 that Freq ({Ana, Carlos}, LC) = 4. Then, we

compute upper bounds to influence of three groups:

(i) InfUB({Ana}, LC) = PromGMax(LC) 9 Freq({Ana},

LC) = 0.70 9 5 = 3.5, (ii) InfUB({Carlos}, LC) =

PromGMax(LC) 9 Freq({Carlos}, LC) = 0.70 9 4 =

2.8, and (iii) InfUB({Ana, Carlos}, LC) = PromG

Max(LC) 9 Freq({Ana, Carlos}, LC) = 0.70 9 4 = 2.8.

With user-specified threshold minInf=2.0, we do not prune

the group {Carlos} at the early stage. Otherwise, we could

have missed {Ana, Carlos}.

At the final stage, after finding all potentially influential

friend groups, all such overestimated groups (e.g., {Car-

los}) will be pruned by calculating their actual influence

(using the prominence table and the frequency obtained

from the mining phase).

In the remaining part of this section, we present our

proposed DIFSoN model, which consists of two key

components: (i) a memory-effective prefix tree structure to

capture the important contents of the collection LC of

friend lists representing the user-interested portion of the

social network and (ii) an efficient routine to mine influ-

ential friend groups from the tree.

3.1 An IF-tree

A key component of our proposed DIFSoN model is a tree

structure—called Influential Friend tree (IF-tree)—which

captures the complete information from the collection LC

of friend lists with only one scan of LC. To construct an IF-

tree, we scan the friend lists in LC one-by-one and insert

each list into the IF-tree in a fixed predefined friend order.

Because influential friend groups will be identified based on

the global maximum prominence value, we use the promi-

nence value in ascending order for friends in our IF-tree.

The basic construction process of an IF-tree is similar,

but not identical, to that of an FP-tree (Han et al. 2000).

There are several differences between the two trees. First,

the FP-tree captures only the frequent itemsets and is

constructed with two database scans, while our IF-tree

captures the complete collection LC of friend lists with a

single scan. Second, each node in an IF-tree maintains the

friend information and the appearance frequency in the

respective path. We use the following example to demon-

strate the IF-tree construction process.

Example 7 Let us show how to construct an IF-tree for

the collection LC of friend lists shown in Table 1 with

minInf = 2.0. At the first stage of constructing the IF-tree,

a header table is built with the information available in the

prominence table (i.e., Table 2). This table includes all the

friends in LC according to their prominence value in

ascending order. Thus, we obtain the header table order as

hGil, Carlos, Eva, Beto, Fabio, Ana, Davii.

Next, we scan each list, sort it according to the header

table order, and insert it into the IF-tree. As such, the first

list (i.e., L1) in LC is inserted in hCarlos, Eva, Beto, Anai
order. Similar to an FP-tree, the IF-tree also maintains the

horizontal node traversal pointers from the header table so

as to facilitate a fast tree traversal. The status of the IF-tree

after capturing L1 is shown in Fig. 1a, where the header

table includes the frequency (Freq) and the first pointer

(Ptr) information for each friend fi.

Figure 1b shows the contents of the header table, hori-

zontal node traversal pointers, as well as the IF-tree

structure after inserting L2. Note that L1 and L2 share a

common prefix Carlos. Hence, the common prefix part of

L2 (i.e., Carlos) is inserted by following the existing path

and the remaining part (i.e., Beto, Ana) is inserted by

creating a new path from Carlos. The frequency count of

node Carlos is also updated (i.e., 2) to indicate that this

node is shared by two paths. In addition, we update the

header table for the frequencies of friends in L2. The next

list (i.e., L3) does not share any common prefix path with

the existing tree (in Fig. 1b), hence it is inserted as a new

branch from the root, as shown in Fig. 1c. (For the sim-

plicity of figures, though the horizontal node traversal

pointers are maintained in trees, we do not show them in

Fig. 1c and subsequent figures.) The remaining lists are

inserted in the IF-tree in similar fashion and the resultant

IF-tree after inserting all lists is shown in Fig. 1d.

Once all lists in LC are inserted into the IF-tree, we

obtain the frequency of each friend from the header table.

This frequency information can be used to identify the set

of friends who will not form influential friend groups with

other friends. Knowing the value of PromGMax(LC) from

Table 2, we calculate the upper bound InfUB(fi, LC) to the

influence value of each friend fi in the header table. So, the
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upper bound to the influence of all friends in the header

table will be Gil: 0.11 9 0 = 0, Carlos: 0.70 9 4 =

2.8, Eva: 0.70 9 5 = 3.5, Beto: 0.70 9 7 = 4.9, Fa-

bio: 0.70 9 2 = 1.4, Ana: 0.70 9 5 = 3.5, and Davi:

0.70 9 1 = 0.7. Gil, Fabio and Davi are found not to be

influential friends and they will not appear in any influ-

ential friend group, as their upper bound to the influence

values (i.e., 0, 0.7 and 1.4, respectively) is less than minInf.

Therefore, we can safely remove Gil, Fabio and Davi from

the IF-tree. In the next phase of IF-tree construction, we

removed all such uninfluential friends from the IF-tree.

Figure 1e shows the final IF-tree after removing Davi and

Fabio from the header table and the tree structure as well.

Let F(Lj) be the set of friends in a friend list Lj that are

found influential after constructing the IF-tree. Based on

the above IF-tree construction procedure, we observed the

following:

Observation 1 An IF-tree registers the projection of F(Lj)

for Lj in LC only once.

Observation 2 The total frequency of any node in an IF-

tree is greater than or equal to the sum of frequencies of its

children.

Lemma 2 The size of an IF-tree on LC for minInf is

bounded above by
P

L_j [ LC|F(Lj)|.

Proof Following the steps in the IF-tree construction, all

friend lists in LC are inserted into an IF-tree. Guaranteed

uninfluential friends in any friend list Lj [ LC are then

identified and safely removed. As each remaining friend

(i.e., influential friend) in each Lj is represented by a tree

node, the number of tree nodes is bounded above by the

total number of influential friends in all friend lists in LC.

Moreover, as IF-tree is a tree structure, its tree paths rep-

resenting the common prefix of friend lists are shared. This

further reduces the number of tree nodes, and thus reduces

the size of the IF-tree. Hence, the size of an IF-tree on LC

for minInf is bounded above by
P

L_j [ LC|F(Lj)|.

Lemma 3 Given LC and minInf, the complete set of all

influential friend groups can be obtained from an IF-tree

for the minInf on LC.

Proof An IF-tree can be considered as an alternative

representation of LC because the IF-tree captures all

friend lists in LC with only guaranteed uninfluential

friends fi (i.e., InfUB(fi, LC) \ minInf) safely removed.

We know that the complete set of all influential friend

groups can be obtained from LC. Consequently, given LC

and minInf, the complete set of all influential friend

groups can be obtained from the corresponding IF-tree

representing LC with minInf.

Lemma 3 proves the completeness of an IF-tree for

mining influential friend groups. Based on this lemma,

influential friend groups can be found by mining our IF-

tree.

3.2 A routine for mining influential friend groups

Another key component of our proposed DIFSoN model is a

mining routine. Once the IF-tree is constructed, this mining

routine then mines influential friend groups by applying a

tree-based pattern mining technique (Han et al. 2000) to the

IF-tree. Based on this IF-tree, the mining routine recursively

constructs the projected tree for potential influential friend

groups and mines their extensions. It examines all the

Fig. 1 The IF-tree construction
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conditional IF-trees consisting of the set of potential influ-

ential friend groups occurring with a suffix group. In other

words, the mining routine proceeds to recursively mine the

IF-tree of decreasing size to generate candidate influential

friend groups without additional scans of the interested

portion LC of social networks.

More specifically, the mining routine recursively mines

the projected trees of all friends in the header table starting

from the bottommost friend in the header table. Unlike the

header table in the IF-tree, the header table in a projected

tree maintains the upper bound to influence value for each

friend fi in the projected tree using Eq. (4). Uninfluential

friends are then removed from the projected tree. The

resulting tree becomes the corresponding conditional tree.

See the following example.

Example 8 Let us mine influential friend groups from the

IF-tree in Fig. 1e with minInf = 2.0. Again, as observed

from Table 2 that PromGMax = 0.70, which is Prom(Davi).

The projected tree for {Ana} (i.e., {Ana}-projected tree) is

constructed first by accumulating the contents in the tree

paths hCarlos:3 Eva: 3 Beto: 3i, hCarlos:1 Beto:1i, and

hBeto: 1i. The resulting {Ana}-projected tree is shown in

Fig. 2a. The upper bound to influence values for other friends

with {Ana} (i.e., Carlos, Eva, and Beto) are calculated

using this PromGMax, and are shown in the last column of

the header table in Fig. 2a. Then, the {Ana}-projected con-

ditional tree is constructed by removing all uninfluential

friends (none in this case) from the {Ana}-projected tree.

Thus, the {Ana}-projected conditional tree is identical to the

{Ana}-projected tree. Potentially influential friend groups

{Ana, Beto}:3.5, {Ana, Eva}:2.1 and {Ana, Carlos}:2.8 are

generated from this conditional tree. In the next iteration, the

{Ana, Beto}-projected conditional tree (as shown in Fig. 2b)

is constructed in the same fashion. Figure 2c shows the

{Ana, Beto, Eva}-projected conditional tree, which gener-

ates group {Ana, Beto, Eva, Carlos}:2.1. Figure 2d shows

the {Ana, Eva}-projected conditional tree, which generates

group {Ana, Eva,Carlos}: 2.1.

Figure 2e shows the next friend {Beto}-projected condi-

tional tree. Again, PromGMax is used for calculating the

upper bounds to influence values for all friends in the sub-

tree. The {Beto, Eva}-projected tree, which is identical to its

projected conditional tree, is shown in Fig. 2f. The

remaining mining process is performed in a similar manner

for all the friends in the header table, and it terminates when

we reach the top of the header table of the original IF-tree.

After the generation of all potentially influential friend

groups, we eliminate those uninfluential friend groups

from the list by calculating the true influence value for

each group. The set of 15 potentially influential friend

groups generated by the mining routine and the seven

truly influential groups among them are presented in

Table 3.

4 The enhanced DIFSoN model with tightened upper

bounds to influence values

Recall from Sect. 3 that DIFSoN uses PromGMax to

compute the upper bound to the influence value for

removing the set of uninfluential friends from further

consideration in our IF-tree. As a loose upper bound may

lead to many potentially influential friends who are not

truly influential, we enhance DIFSoN by tightening such an

upper bound with the use of a local maximum prominence

value—called PromLMax—instead of PromGMax. For

LCG, PromLMax is calculated as

PromLMaxðGÞ ¼ maxfPromðfiÞ j fi 2 Gg: ð9Þ

Let F ¼ ff1; . . .; fhg and G0 ¼ ffhþ1; . . .; fkg such that

G = F [ G0. Then, for any F-projected tree containing a

set of friends G0, the PromLMax value for the F-projected

tree is the maximum of the prominence values among all

friends in G0 ¼ ff1; f2; . . .; fkg and that among all friends in

F. With the use of PromLMax, we obtain a tighter upper

bound InfTUB(G, LC) to the influence of a group G in a

collection LC of friend lists:

Fig. 2 The IF-tree mining with

PromGMax
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InfTUBðG;LCÞ ¼ PromLMaxðGÞ � FreqðG;LCÞ ð10Þ

and

InfðG;LCÞ� InfTUBðG;LCÞ� InfUBðG;LCÞ: ð11Þ

The number of potentially influential friends would be

closer to that of the truly influential ones. This, in turn,

speeds up the mining process.

As a global maximum, PromGMax(LC) can be com-

puted once and used multiple times during the mining

process. One concern about using the local maximum

PromLMax(LC) for the prominence value is its computa-

tion cost. Fortunately, because we arrange the friends in the

IF-tree in ascending order of prominence values and we

mine the tree in a bottom-up manner, it is guaranteed that

Prom(fi) is always the PromLMax in the F-projected tree.

This property helps us avoid repeatedly calculating

PromLMax while constructing projected trees. Getting this

advantage during the mining process is the primary reason

of arranging our IF-tree in ascending order of prominence

values. To describe our mining routine, in Example 9, we

revisit our running example (as shown in Example 8) of the

LC in Table 1 and the IF-tree in Fig. 1e.

Example 9 Let us mine influential friend groups from the

IF-tree in Fig. 1e with minInf = 2.0. The projected tree for

{Ana} (i.e., {Ana}-projected tree) is constructed first by

accumulating the contents in the tree paths hCarlos:3 Eva:3

Beto:3i, hCarlos:1 Beto:1i, and hBeto:1i. For the {Ana}-

projected tree presented in Fig. 3a, PromLMax = 0.6 (i.e.,

Prom(Ana)). Thus, the potential influence values for other

friends with {Ana} (i.e., Carlos, Eva, and Beto) are cal-

culated using this PromLMax, and are shown in the last

column of the header table in Fig. 3a. Then, the {Ana}-

projected conditional tree is constructed by removing all

uninfluential friends (i.e., Eva because Eva’s potential

influence value = 1.8 \ minInf) from the {Ana}-projected

tree. Fig. 3b illustrates the {Ana}-projected conditional

tree after removing Eva. The influential friend groups

{Ana, Beto}:3.0 and {Ana, Carlos}:2.4 are generated from

this conditional tree. In the next iteration, the {Ana, Beto}-

projected conditional tree is constructed in the same

fashion. See Fig. 3c, which shows the {Ana, Beto}-pro-

jected conditional tree that generates group {Ana,

Beto,Carlos}:2.4.

Afterwards, Fig. 3d shows the next friend {Beto}-pro-

jected conditional tree where Prom(Beto) (instead of Pro-

m(Ana)) is considered as PromLMax to calculate the

potential influence values for all friends in the sub-tree.

Fig. 3e shows the {Beto, Eva}-projected tree, in which the

only friend (i.e., Carlos) is uninfluential. Hence, the

{Beto, Eva}-projected conditional tree is not formed. The

remaining mining process is performed in a similar manner

for all the friends in the header table, and it terminates when

we reach the top of the header table of the original IF-tree.

After the generation of all potentially influential friend

groups, we eliminate those uninfluential friend groups from

the list by calculating the true influence value for each

group. The set of eight potentially influential friend groups

generated by this enhanced DIFSoN model (cf. 15 poten-

tially influential friend groups generated by the original

Table 3 Influential friend group calculation

G:Freq(G, LC) InfUB(G, LC) InfTUB(G, LC) Prom(G) Inf(G, LC) Truly influential?

{Ana}:5 3.5 3.0 0.60 95 = 3.0 Yes

{Ana, Beto}:5 3.5 3.0 0:6þ0:5
2

= 0.55 95 = 2.75 Yes

{Ana, Beto, Eva}:3 2.1 1.8 0:6þ0:5þ0:42
3

�0.51 93 = 1.52 No*

{Ana, Beto, Eva, Carlos}:3 2.1 – 0:6þ0:5þ0:42þ0:4
4

= 0.48 93 = 1.44 No*

{Ana, Beto, Carlos}:4 2.8 2.4 0:6þ0:5þ0:4
3

= 0.50 94 = 2.0 Yes

{Ana, Eva}:3 2.1 1.8 0:6þ0:42
2

= 0.51 93 = 1.53 No*

{Ana, Eva, Carlos}:3 2.1 – 0:6þ0:42þ0:4
3

�0.47 93 = 1.42 No*

{Ana, Carlos}:4 2.8 2.4 0:6þ0:4
2

= 0.50 94 = 2.0 Yes

{Beto}:7 4.9 3.5 0.50 97 = 3.5 Yes

{Beto, Eva}:5 3.5 2.5 0:5þ0:42
2

= 0.46 95 = 2.3 Yes

{Beto, Eva, Carlos}:3 2.1 1.5 0:5þ0:42þ0:4
3

= 0.44 93 = 1.32 No*

{Beto, Carlos}:4 2.8 2.0 0:5þ0:4
2

= 0.45 94 = 1.8 No

{Eva}:5 3.5 2.1 0.42 95 = 2.1 Yes

{Eva, Carlos}:3 2.1 1.26 0:42þ0:4
2

= 0.41 93 = 1.23 No*

{Carlos}:4 2.8 1.6 0.40 94 = 1.6 No*

* These seven potentially influential friend groups are generated by the original, but not the enhanced, DIFSoN model
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DIFSoN model) and the seven truly influential groups

among them are presented in Table 3.

If the user-specified minInf were set to 2.4 (or 2.5), the

number of potentially influential friend groups generated by

the enhanced DIFSoN model would be substantially smaller.

Our mining routine is efficient because it applies a

pattern-growth based mining technique on an IF-tree.

5 The extended DIFSoN model for handling interactive

mining

In the previous section, we presented how we find influ-

ential friend groups from a collection LC of friend lists in a

portion of a social network with the user-specified minInf

threshold. In many social networks, users are classified into

different categories based on their status, degree of con-

nectivity, sociability, activity (e.g., first-degree vs. second-

degree connection, circle vs. extended circles, friends vs.

friends-of-friends, basic vs. premium or expert users). In

addition, there are common-interest groups of different

categories as well. When mining influential friend groups, it

is not uncommon that a user may want to interactively

expand or shrink their scope or the interested portion of the

social network so as to include or exclude some lists of

friends of certain individual social entities from other

categories (e.g., second-degree connection, extended cir-

cles, friends-of-friends) or some lists of friends in certain

common-interest groups from other categories (e.g.,

database group in addition to the social computing and the

data mining groups). A naive solution to handle these

interactive changes is to rebuild an IF-tree from scratch.

However, we can do better. In this section, we present how

we effectively maintain the IF-tree when LC is changed

interactively.

5.1 Mining influential friends from the expanded scope

First, let us consider the case in which users expand the scope

of their interested portion of the social network (i.e., to

include additional friend lists LC? beyond the old LC). As

the new LC subsumes the old LC and the collection LC? of

additional friend lists, instead of rebuilding a new IF-tree

(corresponding to this new LC) from scratch, we build the

new IF-tree based on the old IF-tree (corresponding to the

LC). Note that we cannot just trivially insert those friend lists

in LC? into the old IF-tree to form the new IF-tree because of

the following issue. Recall from previous sections that we

removed those uninfluential individual friends from the IF-

tree. Such pruning is sound in a static environment, in which

users are interested in a specific portion of the social network.

However, in a dynamic environment in which users may

interactively change their scope of interested portion of the

social network, an individual friend who was uninfluential in

the old LC may become influential in the new LC (due to the

additional friend lists in LC?). Hence, to ensure the sound-

ness of our extended DIFSoN model, we safely skip the extra

work of pruning those uninfluential individual friends when

handling interactive user changes of scope.

Once we established the soundness of our extended

DIFSoN model, we further improved its performance as

follows. Recall from previous sections that two main pur-

poses of the first scan of LC in the static environment are to

(i) prune uninfluential individual friends and (ii) sort

influential individual friends in ascending order of their

prominence values. Here, in the dynamic environment, to

ensure the soundness of our extended DIFSoN model, we

no longer need to prune those uninfluential individual

friends. Regarding the sorting of individual friends in

ascending order of their prominence values, it can be done

once and for all mining. To elaborate, the prominence

values of individual social entities are independent of the

changes in LC or minInf. Hence, these prominence values

can be read and sorted in the ascending order once. No

more sorting is needed for subsequent mining, even if the

scope of LC were changed (e.g., broaden or narrow the

scope) or the user-specified minInf were changed (e.g.,

raise or lower the threshold). As such, we improve the

performance of our extended DIFSoN model by skipping

the first scan of LC for subsequent execution of the model.

Fig. 3 The IF-tree mining with

PromLMax
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Next, we scan LC? and insert every friend list Lj [ LC?

into the old IF-tree to form a new IF-tree. During the

insertion, in addition to inserting each friend fi [ Lj into

the IF-tree, we also flag fi in the header table. So, at the end

of the insertion process, the flagged friends in the header

table are those whose frequencies got updated (i.e.,

increased) due to insertion of friend lists in LC?. For the

unflagged friends, their frequency values (and thus their

influential values or upper bounds to their influential val-

ues) remain unchanged. With this information from the

construction of IF-tree, we improve the performance of our

extended model in mining influential friends by projecting

only those flagged friends (instead of projecting every

flagged and unflagged friend). The rationale is that poten-

tially influential friend groups mined from projections of

these unflagged friends would have the same (upper bounds

to) influential values in the new LC as those mined from

the old LC. We safely avoid the redundant mining on these

unflagged friends for the same potentially influential friend

groups having the same upper bounds to influential values.

Afterwards, we then check each potentially influential

friend group to verify if it is truly influential (i.e., eliminate

false positives). More specifically, if the user-specified

minInf threshold is expressed in relative percentage of the

new LC, we check each potentially influential friend group

G—mined from (i) the new LC for the above flagged

friends and (ii) the old LC for those unflagged friends—to

see if its Inf(G, new LC) C minInf. On the other hand, if

minInf is expressed in absolute number (and does not

change during the interactive mining), we improve the

performance of our extended DIFSoN model by checking

only those potentially influential friend groups mined from

the new LC for the above flagged friends.

5.2 Mining influential friends from the shrunk scope

Next, let us consider the case in which users shrink the

scope of their interested portion of the social network (i.e.,

to exclude some friend lists LC- from the old LC). As the

old LC subsumes the new LC and the collection LC- of

excluded friend lists, instead of rebuilding a new IF-tree

(corresponding to this new LC) from scratch, we build the

new IF-tree based on the old IF-tree (corresponding to the

old LC) by removing those friend lists in LC- from the old

IF-tree. Again, we first improve the performance of our

extended model by skipping one scan of LC- as we do not

need to remove uninfluential friends.

Next, we scan LC-, delete every friend list Lj [ LC-

from the old IF-tree, and adjust the tree path to form a new

IF-tree. During the deletion, we also flag each friend fi [ Lj

in the header table. These flagged friends in the header

table are those whose frequency values (and thus influence

values) got updated (i.e., decreased). We improve the

performance of our extended model in mining influential

friends by projecting only those flagged friends (instead of

projecting every flagged and unflagged friend).

This safely avoids the redundant mining on those un-

flagged friends for the same potentially influential friend

groups having the same upper bounds to influential values.

Finally, we eliminate false positives by verifying each

potentially influential friend group.

6 Experimental results

In this section, we present the experimental results on

DIFSoN. To the best of our knowledge, our IF-tree is the

first to mine such influential friend groups from a user-

interested portion of social networks. Hence, there is no

existing work to compare with our DIFSoN model. How-

ever, as mining weighted frequent patterns can be related to

our mining of influential friend groups, we compare our

DIFSoN model with a well-known weighted frequent

itemset mining algorithm WFIM (Yun and Leggett 2005).

The WFIM is an FP-tree based weighted frequent pattern

mining algorithm that requires two database scans. Similar

to our approach, it uses a minimum weight value. However,

the main difference between the two approaches is that we

use a fixed weight for each friend in the social network,

while the WFIM uses different weights for each domain

item which are given randomly from a weight range.

Moreover, WFIM uses a secondary support threshold to

calculate weighted frequent patterns.

Since the weighted frequent pattern mining algorithms

were not designed for social network mining, we used the

datasets that are mostly used in frequent pattern mining

domain for fair comparison. Fortunately, we observed

similar characteristics of lists (as we defined in this article)

in the datasets where each transaction consists of an ID and

a set of items. We map the ID and the set of items of each

transaction as list ID and the set of friends in the list,

respectively. More specially, we used (i) IBM synthetic

datasets (e.g., T10I4D100K) from http://www.almaden.

ibm.com/cs/quest (or http://www.cs.loyola.edu/*cgiannel/

assoc_gen.html) and (ii) real datasets (e.g., mushroom,

pumsb*, kosarak). from the Frequent Itemset Mining

Dataset Repository (http://fimi.ua.ac.be/data). See Table 4

for the characteristics of the datasets. These datasets do not

provide the prominence values of each item. Hence, we

generated random numbers, ranging from 0.0 to 1.0, for the

prominence values of each item in a dataset.

All programs were written in C?? and run on the

Windows XP operating system with a 2.13 GHz CPU and

2 GB main memory. The runtime specified indicates the

total execution time (i.e., CPU and I/Os). The reported

results are based on the average of multiple runs for each
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case. We obtained consistent results for all of these

datasets.

6.1 Runtimes of our DIFSoN model

In the first experiment, we study the execution time per-

formance of our DIFSoN over WFIM for datasets of

different types and changes in minInf. The execution time

for DIFSoN includes all the steps of IF-tree building,

cleaning the tree for uninfluential friends, the corre-

sponding mining, and final influence value calculation for

all generated groups. The results on two sparse datasets

(e.g., T10I4D100K and pumsb*) and one dense dataset

(e.g., mushroom) are presented in Fig. 4. As expected,

both approaches required more execution time when

mining larger datasets and/or for lower thresholds. As size

of LC increased and minInf decreased, the tree structure

size and number of influential friend groups increased.

Hence, a comparatively longer time was required to

generate a large number of influential friend groups from

larger trees.

However, it can be observed from the graphs that

DIFSoN outperforms the WFIM in all three datasets. The

primary reason of this performance improvement of DIF-

SoN is constructing the tree with a single scan of

LC, whereas the WFIM scanned the database twice to

construct the tree. As both trees organized the tree nodes in

the same order, the overall mining process of the two

approaches were similar. However, WFIM took longer

mining time for handling multiple weight range (for items)

and the additional support threshold. This was another

issue for the comparatively poor performance of WFIM.

6.2 Compactness of the IF-tree

We tested the memory requirement of our IF-tree to cap-

ture contents of the collection LC of friend lists. In Fig. 5,

we show the amount of memory required by our IF-tree

when capturing the entire LC without considering any

minInf (i.e., before the removal of uninfluential friends

having upper bounds to the influence \ minInf), which

could be the worst-case size of our IF-tree. From this result,

we can observe that the IF-tree can be handled within a

very reasonable amount of memory—low enough for

recently available gigabyte-range memory.

6.3 Scalability of our DIFSoN model

To test the scalability of DIFSoN by varying the number of

transactions, we used the kosarak dataset, since it is a huge

sparse dataset with a large number of distinct items and

transactions (ref. Table 4). We divided this dataset into five

Table 4 Dataset characteristics

Dataset #Transactions #Items Max

trans

length

Avg

trans

length

Density

T10I4D100K 100,000 870 29 10.10 Sparse

pumsb* 49,046 2,088 63 50.48 Sparse

kosarak 990,002 41,270 2,498 8.10 Sparse

mushroom 8,124 119 23 23.00 Dense

Fig. 4 Runtimes of our

DIFSoN model
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portions of 0.2 million transactions each. Then, we tested

the performance of DIFSoN after accumulating each por-

tion with previous parts and performing the mining each

time with minInf = 5 %. The time in the y-axis of Fig. 6

specifies the total required time with increasing database

size. Clearly, as the size of the database increases, the

overall time increases. However, as shown in the figure,

DIFSoN showed a linear scalability over the database size.

To recap, the above experimental results show that the

proposed DIFSoN approach can mine the set of influential

friend groups in both time- and memory-efficient manners

over different types of datasets. Furthermore, it is scalable

for dataset size.

6.4 Maintenance of IF-trees for interactive mining

To test the performance of interactive mining and main-

tenance of our IF-tree, we divided the kosarak dataset into

five equal-sized portions, each consisting of 200 K trans-

actions. Then, we applied our influential friend mining

algorithm on one portion, and then interactively expanded

our LC. At each stage, we mined influential friends with

various minInf thresholds (e.g., 4, 5 and 6 %) of the

accumulative portions. Experimental results in Fig. 7a

show that the overall runtime increased when the size/

scope of interest networks increased.

Similarly, to test the effect of shrinking of the size/

scope of interested networks, we also used the kosarak

dataset. This time, we started with all transactions (i.e., all

friend lists) in the dataset and gradually reduced its size by

deleting 100 K transactions at every stage. Again, at each

stage, we mined influential friends with various minInf

thresholds (e.g., 4, 5 and 6 %) of the accumulative por-

tions. Figure 7b shows that, when the size/scope of interest

networks decreased, the runtime decreased. As an ongoing

work, we plan to add experimental results on real social

network data.

7 Conclusions

In this article, we introduced a new notion of influential

friends for social network databases and presented the

DIFSoN model to discover influential friends (or entities)

from social networks. The DIFSoN comprises the IF-tree

and a mining routine. Information about the lists of friends

of individual social entities or lists of friends in common-

interest groups are captured in the IF-tree, from which sets

of influential friend groups can be mined efficiently.

Although the notion of influential friends does not satisfy

Fig. 5 Compactness of the IF-tree

Fig. 6 Scalability of our DIFSoN model

Fig. 7 Runtimes of our

extended DIFSoN model for

interactive mining
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the downward closure property, we addressed this issue

using the global maximum prominence values of users. To

enhance the model, we proposed to use the local maximum

prominence values, which give a tighter upper bound to

values for influence measures and thus reduce the number

of generated potentially influential friend groups. More-

over, we further extended our DIFSoN model by allowing

users to change the mining parameters (i.e., broaden or

shrink the scope of their interested portion of social net-

works) and efficiently handling their changes. Experi-

mental results showed that (i) the IF-tree is compact and

space efficient and (ii) the tree-based mining routine within

the DIFSoN model is fast and scalable for both sparse and

dense data. For ongoing and future work, we plan to

incorporate other computational metrics (e.g., popularity,

significance, strength) with prominence to discover useful

information from social networks.
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