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Abstract In this paper, we introduce a measure to ana-

lyse the structural robustness of complex networks, which

is specifically applicable in scenarios of targeted, sustained

attacks. The measure is based on the changing size of the

largest component as the network goes through disinte-

gration. We argue that the measure can be used to quantify

and compare the effectiveness of various attack strategies.

Applying this measure, we confirm the result that scale-free

networks are comparatively less vulnerable to random

attacks and more vulnerable to targeted attacks. Then we

analyse the robustness of a range of real world networks,

and show that most real world networks are least robust to

attacks based on betweenness of nodes. We also show that

the robustness values of some networks are more sensitive

to the attack strategy as compared to others. Furthermore,

robustness coefficient computed using two centrality

measures may be similar, even when the computational

complexities of calculating these centrality measures may

be different. Given this disparity, the robustness coefficient

introduced potentially plays a key role in choosing attack

and defence strategies for real world networks. While the

measure is applicable to all types of complex networks, we

clearly demonstrate its relevance to social network

analysis.

Keywords Complex networks � Robustness � Social

networks

1 Introduction

The study of complex networks is a dominant trend in

recent research that transcends domain boundaries. The

ability of a network to perform its intended function

depends on how it responds to pressures—both internal and

external. Such pressures could include errors, random

attacks, targeted attacks based on some criteria, and

malevolent and sustained attacks which remove nodes in

sequence. The ability of a network to withstand such

pressures has been variously called error tolerance, attack

tolerance, resilience or robustness of a network, depending

on the context (Albert et al. 2000; Crucittia et al. 2004;

Venkatasubramanian et al. 2004; Dekker and Colbert

2004; Ng and Efstathiou 2006; Costa et al. 2007). In this

paper, we are interested in the ability of a network to resist

complete topological disintegration in the face of random

or targeted node removals. We will call this topological/

structural robustness, or simply robustness of a network. It

has been shown that such ability depends on the topolog-

ical structure of the network. For example, scale-free net-

works are more resilient against random attacks, but more

vulnerable to targeted attacks, compared to Erdos–Renyi

random networks (Albert et al. 2000). Small-world struc-

ture (Milgram 1967; Zaidi(2013) found in networks, hier-

archical structure (Gilbert et al. 2011) as well as

community structure (Rees and Gallagher 2012; Cazabet

et al. 2012) may also influence resilience. It can be
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immediately seen that quantifying such resilience (robust-

ness) of a network is vital in a number of disciplines. For

example, computer networks should be designed in such a

way that they should function properly when some nodes

(routers or hosts) fail, by technical faults or under attack.

On the other hand, in a network of terrorist cells, we might

be interested in the best strategy to attack the network so as

it is disabled and disintegrated as quickly as possible.

Therefore, measuring and comparing the robustness of

networks under various failure and attack scenarios is of

vital importance.

Albert et al. (2000) first studied the robustness of net-

works by comparing random and scale-free networks. Let

us briefly recall the definition of scale-free networks here.

Scale-free networks are those networks that display similar

topological features irrespective of scale. Such networks

are described by power law degree distributions, formally

specified as

pk ¼ Ak�cUðk=kmaxÞ ð1Þ

where U is a step function specifying a cut off at k = kmax

(Dorogovtsev and Mendes 2003). Albert et al. considered a

number of metrics, including network diameter, the size of

the largest component, and the average size of the rest of

the components, to study network robustness. Since then, a

host of measures have been proposed and used to under-

stand the structural robustness of networks against attacks

(Crucittia et al. 2004; Costa et al. 2007; Dekker and Col-

bert 2004; Ng and Efstathiou(2006). However, as we will

discuss in the next section, these measures have some

drawbacks. They are either (1) based upon the averaging of

single-node removals, or (2) only consider the point in time

where a phase transition occurs (in terms of quantities such

as the size of the largest component) before the network

begins to disintegrate1. However, as we will show, it is

important to consider the entire history of the disintegration

process to understand the structural robustness of networks.

Albert et al. (2000) consider this history by using plots of

network diameter etc., versus fraction of nodes removed. In

this paper, we introduce a single measure which can cap-

ture information from such plots. Therefore, our measure is

suitable to analyse the topological robustness of networks

under sequential node removals. We are particularly

interested in applying this measure to sustained targeted

attack scenarios.

Since topological robustness is a concept applicable in

many domains of complex networks, we will take a generic

approach in this paper and draw examples from all possible

domains. However it is easy to see that the measure

introduced will be relevant to a number of social networks.

As mentioned above, we might be interested in disinte-

grating a terrorist cell network, and for this purpose might

want to consider its robustness against different attack

strategies. We might want to break up a ‘contact network’

of people in an epidemiological scenario, where ‘attacking’

a node simply means vaccinating a person and thereby

removing that person from the contact network, so that the

spread of infection is slowed down. On the other hand,

there are scenarios where a social network might have to be

defended against malicious forces trying to disintegrate it:

for example, an undemocratic government trying to break

up an online social network, to prevent vital news from

spreading. In all these social network scenarios, it is

important to measure the topological robustness of the

social network, so that best attack and defence strategies

might be devised.

The rest of the paper is organised as follows: In the next

section, we will review the existing structural robustness

measures, and analyse their utility in understanding

sequential node removal. In the following section we will

introduce our robustness measure. We will then apply this

measure to synthesised and real world networks. Con-

firming the result of Albert et al. (2000) regarding scale-

free and random networks, we will then consider networks

under a range of sequential node removal strategies,

including random node removal and targeted attacks,

choosing nodes based on degree, betweenness centrality

and closeness centrality. Finally, we will present our

conclusions.

2 Existing measures of topological robustness

Albert et al. (2000) considered error and attack tolerance of

complex networks in the following manner. They removed

nodes from complex networks one by one until all nodes

are extracted (we will call this ‘sustained attack’, as

opposed to an attack where only a portion of the nodes are

ever removed), and studied the variation of topological

properties in networks due to these removals. They

removed nodes in two separate orders (1) random order (2)

and ordered by degree (highest degree first). They analyzed

the following three topological properties:

1. Network diameter

2. The size of the largest component

3. The average size of the rest of the components

The analysis of (Albert et al. 2000) was undertaken by

constructing plots of the above three properties against the

proportion of nodes removed. By doing this, they showed

that random topologies are more vulnerable to random

node removals, whereas scale-free networks showed

remarkable resilience to such random removals. Therefore,

1 We will sometimes refer to this phenomena simply as ‘phase

transition’, when the context is clear.
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in the case of scale-free networks, the size of the largest

component decreased slowly, the average network diame-

ter increased slowly, and the average size of the rest of the

components converged towards unity slowly, compared to

random networks. However, when networks are subjected

to targeted sustained attacks, the outcome differed. Ran-

dom networks performed very similarly under random

attacks and targeted attacks. However, scale-free networks

under sustained targeted attacks demonstrated signs of

quick disintegration: such as rapidly decreasing size of the

largest component, rapidly increasing average diameter,

and the average size of the rest of the components con-

verging quickly towards unity. Therefore, compared to

random networks, scale-free networks were shown to have

more resilience towards random attacks and less resilience

towards targeted attacks.

Albert et al. (2000), however, relied on plotting metrics

versus fraction of nodes removed, rather than a single

robustness measure, to demonstrate these facts. Following

their work, a plethora of metrics have been proposed to

measure the topological robustness of networks as a single

measure (Costa et al. 2007; Venkatasubramanian et al.

2004; Dekker and Colbert 2004; Ng and Efstathiou (2006).

However, they typically calculate averaged effects of sin-

gle-node removals, rather than effects of sequential remo-

vals, or are too simplistic. For example, the network

efficiency has been defined as the average of inverted

shortest path lengths (Crucittia et al. 2004), and used for

quantifying the robustness of a network. Node removals are

not explicitly considered in this measure. Another measure

derived from network efficiency is network vulnerability

(Costa et al. 2007). The vulnerability Vi of a given node i is

calculated as (E - Ei)/E, where E is the efficiency of the

network and Ei is the efficiency after a given node i has been

removed. Network vulnerability can be calculated as an

average of individual vulnerability values of nodes, and

therefore relies on averaging over individual node remo-

vals. Similarly, Venkatasubramanian et al. (2004) define

the structural robustness measure for networks. They arrive

at this by defining a series of other metrics. First they define

the accessibility of a node as the number of nodes that are

reachable from this node. The effective accessibility of a

graph is then defined, inter alia, as the sum of accessibilities

of nodes in that graph. Then they define the structural

robustness with respect to vertex j of a graph as the ratio of

the effective accessibility of the graph Sj obtained by

deleting vertex j from the original graph to the maximum

possible effective accessibility. Finally, average-case

structural robustness of a graph is defined as the average of

the structural robustness values computed over all the ver-

tices (Venkatasubramanian et al. 2004). While it is not our

purpose here to explain the measure, it suffices to say that

this measure relies on averaging over single-node removals.

Meanwhile, Dekker and Colbert (2004) introduced two

concepts of connectivity for a graph which can be used to

model network robustness: the node connectivity and link

connectivity, which are the smallest number of nodes and

links respectively, whose removal results in a disconnected

or single-node graph. While these measures are applicable

for networks under sustained attack, they are measured at a

single time point when network disintegration (phase

transition in terms of the size of the largest component)

occurs. Ng and Efstathiou (2006) use two measures,

average shortest path and network diameter, to quantify

network robustness.

Indeed there is a substantial body of work which intro-

duces and analyses structural robustness measures, and it is

beyond the scope of this paper to review them all. How-

ever, it can be seen that none of these measures are ideal

for our purpose of understanding a network’s resilience

under sustained attack (sequential node removal). Some of

these measures, such as network efficiency, do not

explicitly consider node removal at all. Other measures

consider averages of single-node removals, such as vul-

nerability (Costa et al. 2007). Yet other measures, such as

those proposed by (Dekker and Colbert 2004), consider

sustained node removals, but are concerned with only the

time point when the phase transition occurs and network

disintegrates. However, it could be argued that how well

the network resists further disintegration after this phase

transition is also important in determining its structural

robustness. We are therefore interested in proposing a

measure which is applicable to analysing network robust-

ness under sustained attacks, and while being a single

measure, holistically captures the fragmenting behaviour of

the network not just at phase transition but before and after

that as well.

3 Definition of the robustness coefficient

To propose a robustness measure which is a single mea-

sure, let us first observe the following: Among the metrics

that were used by Albert et al. to construct their plots,

network diameter has the disadvantage that, as soon as the

network fragments, it becomes infinity. Therefore it could

not be further used to quantify the robustness of a frag-

menting network. The average size of the rest of the

components, hsi; is small (or even zero) initially, and

increases and peaks at the time when the network starts to

disintegrate. If the network is attacked further, it decreases

again and converges towards unity. As we will demonstrate

later, it is however desirable to consider a metric which

shows a similar trend throughout the fragmentation pro-

cess. The size of the largest component, denoted as S, is

such a metric. It is always finite, and always decreases
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during a persistent attack. It starts from N the network size,

or a value S0\N; and decreases and converges towards

unity. We will therefore use this to define our robustness

coefficient.

Now let us consider the size of the largest component of

a network which is under persistent attack. The largest

component size S versus the number of nodes removed (or

number of time steps) plot may look like Fig. 1 for a small

network2 with N = 11.

Now consider an ‘ideal’ network in terms of robustness

under sustained attack. If the network resists disintegration,

the S of such network should decrease by unity each time a

node is removed. That is, the size of largest component

decreases only by the removed node, while all other nodes

remain part of the largest (single) component until they are

themselves removed. S will become unity only when all

nodes except one have been removed/destroyed. The

S versus nodes removed plot of such an ideal network with

N = 11 may look like Fig. 2.

We propose that the ratio of areas under such two plots

define the topological robustness under sustained attack for

any network. The reasoning behind this formulation is that,

for an ideally robust network the size of the largest com-

ponent will decrease linearly, while the more non-robust

the network is, the quicker it will collapse, and the change

in the size of the largest component will reflect this

collapse.

By considering trapeziums of unitary width along the

x axis, the area under first curve could be estimated as:

A1 ¼ 0:5ðS0 þ S1Þ þ 0:5ðS1 þ S2Þ þ � � � þ 0:5ðSN�1 þ SNÞ

¼ 0:5S0 þ
XN�1

k¼1

Sk þ 0:5SN

where Sk is the size of the largest component after k nodes

are removed.

Here S0 is the initial largest component size. Since

SN, the size of the largest component after N nodes are

removed, is by definition zero, we may say that

A1 ¼
XN

k¼0

Sk � 0:5S0 ð2Þ

Meanwhile, the area under the second curve would be

given (by considering a triangle of base N and height N) by

A2 ¼ ð1=2ÞN2 ð3Þ

because after each node removal, the size of the largest

component will reduce only by a single node.

Therefore, we define robustness coefficient R as:

R ¼ A1

A2

¼ 2
PN

k¼0 Sk � S0

N2
ð4Þ

Since R is always less than unity and often is a very

small (non-negative) quantity, it is suitable to define it as a

percentage. That is:

R ¼ A1

A2

¼ 200
PN

k¼0 Sk � 100S0

N2
ð5Þ

It can be verified that the above definition gives

R = 100 % for a fully connected network of any size, as

expected. It should be noted here that similar area under the

curve (AUC) measures are used in a number of disciplines.

For example, in signal detection theory, the area under a

receiver operating characteristic (ROC) curve (Hanley and

Mcneil 1982) denotes the probability that a classifier will

rank a randomly chosen positive instance higher than a

randomly chosen negative one. The curve is generated by

plotting the fraction of true positives out of the positives
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Fig. 1 Size of largest component against the number of nodes

removed for a network under sustained targeted attack
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Fig. 2 Size of largest component against the number of nodes

removed for an ideally robust network under targeted attack

2 Of course, the exact size of the largest component at each time step

will depend on the network topology and the type of attack. The

figure only shows a typical case, to be contrasted with Fig. 2.
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against the fraction of false positives out of the negatives,

therefore both quantities are fractions. In mechanics, the

area under curve of a velocity versus time plot of a moving

object denotes the distance that it has travelled (Kreyszig

2005). In a number of other disciplines, the AUC measure

of a plot has physical meaning or interpretation.

It can be easily noted that the quicker a network begins

to disintegrate, the smaller the robustness coefficient will

be. However, it also captures the largest component curve

before and after the phase transition point by considering

the area under this curve. Therefore this measure is supe-

rior to the phase-transition time Tpt which only indicates

the time-steps (or number of nodes) needed before a net-

work begins to disintegrate.

4 Measuring attack tolerance using the robustness

coefficient

In this section we demonstrate the use of our measure, by

applying it to a number of synthesized and real-world

networks.

4.1 Robustness coefficient of synthesized networks

First of all we confirm the results of (Albert et al. 2000) by

comparing synthesized random and scale-free networks

using our robustness measure. For this purpose, we used 10

synthesized scale-free networks, and 10 synthesized

Erdos–Renyi random networks, each with 500 nodes and

1,200 links, but wired uniquely. We undertook sequential

node removal in (1) random order (2) and ranked by node

degree (highest degree first). We measured the robustness

coefficient in each scenario. Our results are shown in

Fig. 3.

We may see from Fig. 3 that scale-free networks have

comparatively higher robustness coefficient values for

random node removal. However, when ordered node

removals (targeted attacks) based on node degree are

considered, the robustness coefficient values of scale-free

networks are lower as compared to random networks. The

average R for Erdos–Renyi networks are 36.83 % under

random attacks and 22.54 % under targeted (hub-based)

attacks, whereas the average R for scale-free networks are

56.91% under random attacks and 5.88 % under targeted

(hub-based) attacks. This simple example confirms the

results obtained by (Albert et al. 2000) using plots of net-

works metrics, and demonstrates the utility of using the

robustness coefficient to better quantify such results.

4.2 Robustness coefficient of real-world networks

Now we consider the robustness coefficient of some real

world networks. We consider both directed and undirected

networks, including gene regulatory networks, transcrip-

tion networks, cortical networks, neural networks, food

webs, Internet Autonomous Systems (AS) networks and

citation networks. An explanation is necessary to some of

these types of networks, since the usage of names can be

ambiguous. In our transcription networks, nodes are regu-

latory genes and regulated proteins, and the links are the

interactions between them Kepes (2007). These are bipar-

tite and directed networks. On the other hand, by gene

regulatory networks we mean networks where nodes are

genes, and the links are the inhibitory or inducing effects of

one gene on the expression of another gene Alon (2007).

Note the subtlety that unlike transcription networks, only

genes are considered as nodes in these directed networks.

Similarly, by cortical networks we denote the networks of

dependencies between various regions of the cerebral

cortex (in a set of primates) (Tang et al. 2008, 4). The

nodes are regions in the cortex, and the links are functional

dependencies. Note that the nodes are not individual neu-

rons. On the other hand, neural networks are networks

where nodes are individual neurons belonging to an

organism’s neural system and links are anatomical con-

nections between neurons (Junker and Schreiber 2008). In

citation networks, nodes are research papers (or other cit-

able documents) and links denote citations between these

documents. In food webs, nodes are organisms in an eco-

system and the links represent predator–prey relationships

between them (Solé and Valverde 2004). These networks
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measured using the robustness coefficient. The squares denote Erdos–

Renyi random networks under random node removals, whereas the
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ordered node removals. It could be seen that the robustness coefficient

is comparatively high for scale-free networks under random node

removals. However, when ordered attacks are considered, the

robustness coefficient for scale-free networks is comparatively low
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can be considered undirected or directed (prey–predator).

In internet AS networks, the nodes represent an autono-

mous system present in the Internet and the edges represent

a commercial agreement between two Internet Service

Provides (who own the two ASs). Such an agreement

defines whether they agree to exchange data and how to

charge each other (Piraveenan et al. 2009).

4.3 Ordering of targeted attacks

It has been demonstrated that most of the networks

described above, as well as a vast number of other real

world networks, are scale-free (Dorogovtsev and Mendes

2003; Kepes 2007; Alon 2007; Albert and Barabási 2002;

Solé and Valverde 2004). Therefore, it could be expected

that they will all be quite resilient against random attacks,

and display high robustness coefficients under sequential

random removal of nodes. For this reason, we have mainly

considered targeted attacks in determining their robustness

coefficients, in the following analysis. However, we have

considered three different orderings for such targeted

attacks, namely (1) degree-based ordering (2) betweenness-

centrality-based ordering (3) and closeness-centrality-

based ordering. By considering these three orderings, we

intend to demonstrate that the robustness coefficient can be

a valuable tool in choosing a strategy to attack/defend a

network.

The three metrics mentioned above are properties of

individual nodes. The degree of a node, as is well known, is

the number of links it possesses. The Betweenness Cen-

trality measures the fraction of shortest paths that pass

through a given node, averaged over all pairs of node in a

network. It is formally defined, for a directed graph, as

BCðvÞ ¼ 1

ðN � 1ÞðN � 2Þ
X

s 6¼v 6¼t

rs;tðvÞ
rs;t

ð6Þ

where rs,t is the number of shortest paths between source

node s and target node t, while rs,t(v) is the number of

shortest paths between source node s and target node t that

pass through node v. On the other hand, closeness

centrality is a measure of how long it will take for

information to spread from a given vertex to all others in

the network (Newman 2005). It essentially measures the

average geodesic distance between a given node and all

other nodes in the network It is defined as

CCðvÞ ¼ 1P
i6¼v dgðv; iÞ

ð7Þ

where dg (v, i) is the shortest path (geodesic) distance

between nodes v and i. Note that the average is ‘inverted’

so that the node which is ‘closest’ to all other nodes will

have the highest measure of closeness centrality. We used

these three metrics to order nodes which are subjected to

targeted sequential removal, and measured the robustness

coefficient under each scenario.

As an example of our results, we show the disintegration

profiles for the six food webs that we analysed in Figs. 4, 5,

and 6 for the three types of attack orderings that we con-

sidered (degree-based, betweenness-based, and closeness-

based orderings). It can be seen that, the higher the area

under these plots are, the larger the robustness coefficient

is. However, it should be noted that the network sizes are

different, and some plots have more points in them com-

pared to others.
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Fig. 4 The size of the largest components (as a proportion of network

size) against the number of nodes removed (also as a proportion of

network size) for six food webs. The nodes to be removed were

chosen in the order of node degree. Note that the plots for Chrystal C

and Chrystal D foodwebs overlap
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chosen in the order of betweenness centrality
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4.4 Summary of results

A list of real world networks that we have studied is shown

in Table 1. The robustness coefficient values, for the three

types of attacks mentioned above, for all considered net-

works is also summarised in Table 1. We may note from

this table, in general, that cortical networks, neural net-

works, food webs, and a few miscellaneous networks

including primary school interactions, show the highest

robustness, while Internet AS networks are among the least

robust to targeted attacks. This itself is a significant result,

showing that man-made or rapidly evolving networks are

likely to be less robust compared to biological networks

evolved over millennia. In some instances, such as in

cortical networks, the high robustness could be explained

by the large links to node (M/N) ratio, or network density.

For example, the human cortical network has N = 994

nodes and M = 27,040 links, giving it a density of 27.20

links per node. Similarly, we may see that the network

density is quite high for the primary school interactions

(30.00 and 23.27 for the two networks, respectively). In

other cases, topological design is responsible for the

robustness. For example, the Chrystal C food web has a

density of 5.12 links per node, yet shows a robustness

coefficient of above 60% for all types of attack, which is

remarkable. We postulate that this is probably the case if

the network has a low scale-free exponent.

In Table 2, we show the amount of physical time taken

(in seconds) to simulate complete decomposition of each of

these networks under sustained targeted attacks. Obviously,

this time depends on the computer system used to simulate

the decomposition process. However, given that we used

the same computing machine to simulate all decomposi-

tion, this time can be an indicator of how well the network
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Table 1 Robustness coefficients of real world networks against tar-

geted persistent (sequential) attacks

No Network R(D) (%) R(BC)

(%)

R(CC)

(%)

Neural networks

1 C. elegans 58.83 41.79 55.92

Internet AS networks

2 Internet AS-1998 1.4 1.8 12.99

3 Internet AS-1999 1.71 1.91 13.34

4 Internet AS-2000 2.14 2.26 14.45

Transcription networks

5 C. glutamicum 1.52 1.35 13.12

6 E. coli 1.64 1.46 11.95

Cortical connectivity networks

7 Human 83.50 51.38 71.01

8 Cat 88.14 69.21 81.33

9 Macaque 69.27 52.65 69.19

Gene regulatory networks

10 R. norvegicus 53.64 22.52 50.45

11 C. elegans 24.45 14.25 32.93

12 A. thaliana 8.35 5.91 31.18

Foodwebs

13 Bay dry 77.72 71.73 83.26

14 Bay wet 77.64 72.07 86.33

15 Chess upper 60.92 55.08 75.38

16 Chess lower 49.23 45.58 52.30

17 Chrystal C 62.50 60.42 71.18

18 Chrystal D 44.79 44.10 47.57

Citation networks

19 Smart grid 28.49 24.80 37.03

20 Small world 20.71 14.09 25.70

Metabolic networks

21 Human 4.93 1.94 35.68

22 Rhesus monkey 3.54 1.56 32.54

23 Chimpanzee 3.83 1.57 33.34

24 Acholeplasma laidlawii 2.30 1.29 31.95

25 Ashbya gossypii 5.46 3.67 35.42

26 Acaryochloris marina 4.44 3.98 16.27

PPI

27 H.Pylori 14.43 13.59 27.69

28 Human 2.45 1.31 26.89

29 Mouse 1.35 1.22 7.85

US Airlines

30 US Air lines-1997 22.06 15.02 35.45

Collaboration networks

31 Netscience 1.68 1.79 27.21

Cell signalling networks

32 CA 1 20.93 16.66 32.44

Miscellaneous networks

33 Dolphins 45.32 32.57 53.43

34 Jazz Musicians 78.60 50.08 76.72
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resists sustained targeted attacks. We used a MacBook Pro

i5 machine with 4GB RAM to simulate the decomposition

process.

Obviously, the time it takes to completely destroy the

network depends on its initial size as well. Therefore, we

normalized the time by network size, computing the

average time it took (in seconds) for a node to get

destroyed. While this measure is still not a sound indicator

of a network’s robustness because the proxy measure used

here is the execution time of node destruction, it can be

obtained without additional computation and gives useful

supplementary information. The Table 2 shows that the

following networks have relatively high ‘destruction time’

per node: Human cortical, Rat GRN, Smart Grid citation,

Sixteen hospital, and the primary school interactions. We

may see that there is strong correlation between networks

of high robustness and networks that have high per-node

destruction times.

However, it is of more interest to us, in demonstrating

the utility of robustness coefficient, to compare the

robustness of the same network under different attack

types. It could be seen from Table 1 that in most cases,

betweenness-centrality-based attack is a better strategy to

disintegrate networks quickly and thoroughly. However,

some networks are less sensitive to the type of attacks

compared to others, and the robustness coefficient enables

us to quantify this difference. For example, C. elegans

neural network is only about two-thirds as robust against

betweenness-centrality-based attack as compared to

degree-based attack. The E. coli transcription network

offers an even bigger contrast, where the robustness to

degree-based attack is 1.64 %, yet the robustness to

closeness-based attack is 11.95 %. In other networks, such

as food webs, the mode of attack makes less difference.

This information is important because any centrality

measure is much more computationally expensive com-

pared to node degrees, and require ‘global’ (network level)

information whereas node degree only requires local (node

level) information. In any case, there are some networks,

such as Internet AS networks, where the degree centrality-

based attack seems a marginally better strategy. Therefore,

being able to quantify and compare the effectiveness of

various strategies is vital, and the robustness coefficient

enables us to do this.

We can also observe that closeness centrality often

performs worse even than degree centrality. This is mostly

the case in metabolic networks, transcription networks,

foodwebs, and many others. However there are cases, such

as in H. sapien cortical network, where degree centrality is

by far the worst strategy (robustness against degree cen-

trality-based attack is 83.5 % and robustness against

closeness centrality-based attack is 71.01 %). It would be

an interesting research question to analyse what topological

characteristics make a network far less robust to any type

of centrality-based attack as compared to degree-based

attack. It can be postulated that this would be related to the

assortativity of the networks (Newman 2002; Piraveenan

et al. 2008). However, this is clearly subject to future

research and verification.

In terms of destruction time per node, we may however

note that the betweenness and closeness centrality mea-

sures perform typically worse than node degree. This is

presumably because calculating shortest paths takes up

computation time. In Table 2, we can note that in some

cases, such as human cortical network and the primary

school interaction networks, the betweenness-based attack

takes almost double the time to disintegrate networks as

compared to the degree-based attack. In other networks, the

difference is not as pronounced. This observation stresses

the fact that, while most networks may be least robust to

betweenness-based attacks, it may not be worthwhile to

utilise a betweenness-based strategy if the robustness dif-

ference is small, because it may take more computational

effort. This again highlights the need to exactly quantify

network robustness against different types of attacks,

which we have done in this paper.

As an example, we show in Fig. 7 the attack profile of

the C. elegans neural networks in terms of physical time.

We show both the amount of time it took for each node

removal (Fig. 7a), and the cumulative time (Fig. 7b), for

Table 1 continued

No Network R(D) (%) R(BC)

(%)

R(CC)

(%)

35 Karate 26.30 24.05 38.75

36 Pharmaceutical 31.58 18.86 53.57

37 Primary school interaction 1 94.04 82.68 95.21

38 Primary school interaction 2 94.22 78.33 88.90

39 Sixteen story hospital 30.69 23.27 59.39

40 Software 17.12 14.63 30.71

41 Vehicle 48.06 40.68 53.90

Three modes of node removal are used, namely (a) degree-based

removal (b) betweenness-based removal and (c) closeness-based

removal. It can be seen that some networks have nearly equal

robustness against all removal strategies, whereas the robustness of

other nodes can vary greatly. The network data is taken from (Col-

lections of connectivity data on the Macaque brain 2009; Baumbach

2007; Michigan Molecular Interaction Database (2008; Watts and

Strogatz 1998; Pajek datasets (2007; Zachary 1977; Gleiser and

Danon 2003; Primary school cumulative networks 2011; Lusseau

et al. 2003; New England complex systems institute research projects.

URL:http://necsi.edu/projects/braha/largescaleengineering.html) R(D)

robustness under degree-based targeted attacks, R(BC) robustness

under betweenness-based targeted attacks, R(CC) robustness under

closeness-based targeted attacks
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Table 2 Times taken to simulate disintegration of real world networks under targeted persistent (sequential) attacks

No Network R(D) R(BC) R(CC)

Tot. Avg. Tot. Avg. Tot. Avg.

Neural networks

01 C. elegans 61.07 0.21 89.25 0.30 95.44 0.32

Internet AS networks

2 Internet AS-1998 10,526 3.27 21,627 6.72 38,688 12.03

3 Internet AS-1999 23,647 5.24 41,682 9.23 58,672 13.00

4 Internet AS-2000 27,657 4.27 47,681 7.36 64,980 10.03

Transcription networks

5 C. glutamicum 17.54 0.03 20.44 0.04 53.59 0.10

6 E. coli 100.54 0.09 197.77 0.17 1,088.06 0.95

Cortical connectivity networks

7 Human 14,766 14.86 26,224 26.38 84,329 84.84

8 Cat 3.180 0.05 4.172 0.06 4.356 0.06

9 Macaque 2.93 0.04 3.28 0.04 3.37 0.04

Gene regulatory networks

10 R. norvegicus 4,609 5.63 4,662 5.69 9,810 11.98

11 C. elegans 155.9 0.27 216.6 0.37 362.7 0.62

12 A. thaliana 23.41 0.06 26.66 0.07 91.28 0.23

Foodwebs

13 Bay dry 13.27 0.10 18.87 0.15 17.78 0.14

14 Bay wet 13.47 0.10 18.69 0.15 18.27 0.14

15 Chess upper 1.15 0.03 1.248 0.03 0.943 0.03

16 Chess lower 1.05 0.03 1.16 0.03 0.762 0.03

17 Chrystal C 0.66 0.04 0.73 0.04 0.75 0.04

18 Chrystal D 0.39 0.04 0.38 0.04 0.392 0.04

Citation networks

19 Smart grid 1,579 1.54 2,719 2.66 3,120 3.05

20 Small world 12.89 0.06 14.81 0.06 15.07 0.06

Metabolic networks

21 Human 264.2 0.21 297.8 0.23 3,175 2.47

22 Rhesus monkey 152.0 0.12 189.8 0.16 2,052.3 0.17

23 Chimpanzee 152.9 0.13 180.6 0.15 1,944.1 1.59

24 Acholeplasma laidlawii 162 0.16 103 0.10 1,026 1.02

25 Ashbya gossypii 195.6 0.18 318.9 0.30 1,983.1 1.86

26 Acaryochloris marina 4.11 0.205 4.23 0.025 3.16 0.019

PPI

27 H.Pylori 132 0.19 245 0.35 384 0.54

28 Human 223 0.15 286 0.19 2,761 2.53

29 Mouse 13.43 0.03 15.36 0.03 13.55 0.03

US Airlines

30 US Air lines-1997 27.6 0.083 34.9 0.105 50.2 1.51

Collaboration networks

31 Netscience 198.98 0.14 301.96 0.21 2,943.09 2.01

Cell signalling networks

32 CA1 83.9 0.15 140 0.26 179 0.33

Miscellaneous networks

33 Dolphins 1.81 0.029 1.94 0.031 1.43 0.029

34 Jazz Musicians 37.136 0.187 51.56 0.260 59.54 0.260
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all three types of attacks we considered. It could be seen

that the betweenness and closeness centrality plots remain

‘above’ the degree-based attack profile, highlighting that

these attacks take more computational time in comparison.

Let us also note here that, it is tempting to use the phase

transition time in an attack profile as an indicator to mea-

sure the robustness of networks under sustained attacks.

The phase transition time Tps could be defined, in one

possible way, as the number of node removals (which

could be also calculated as a percentage compared to net-

work size) it takes before the largest component begins to

reduce in size. However, such a measure does not capture

what happens after the transition to the largest component.

A network may have a better ability to resist total

decomposition even after it begins to disintegrate, and such

a network has to be classified as having better robustness.

To illustrate this, we show the disintegration profiles of

Small world citation network and C. glucamitum tran-

scription network in Fig. 8. The nodes are sequentially

removed in closeness centrality order. We can see that the

largest component of the citation network immediately

begins to decrease in size, and thus the phase transition

time Tps = 1 node removal = 0.1 % of network size.

However, for the transcription network, the size of the

largest component is stable for Tps = 28 node removals =

5.19 % of network size, before it begins to decrease.

However, Table 1 shows that the robustness of the citation

network is 25.7 %, whereas the robustness of the tran-

scription network is only 13.12 %, against closeness-cen-

trality-based targeted attacks. Considering the plots in
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Fig. 7 The disintegration profile of the C. elegans neural network in

terms of physical time taken in a MacBook Pro i5 machine. It could

be seen that betweenness and closeness based attacks are more time

consuming as compared to a degree-based attack, even though they

might be more efficient in making the network disintegrate with fewer

node removals. a Time for individual node removals. b Cumulative

time for node removals

Table 2 continued

No Network R(D) R(BC) R(CC)

Tot. Avg. Tot. Avg. Tot. Avg.

35 Karate 0.971 0.029 0.895 0.026 0.534 0.016

36 Pharmaceutical 290.2 0.501 394.3 0.681 637.2 1.100

37 Primary school interaction 1 127.4 0.540 224.8 0.953 235.1 0.996

38 Primary school interaction 2 115 0.483 212 0.890 212 0.891

39 Sixteen Story Hospital 1,408 1.72 2,436 2.97 3,807 4.64

40 Software 27.93 0.068 40.35 0.099 59.11 0.144

41 Vehicle 5.33 0.044 6.87 0.044 5.99 0.050

Time measured in Seconds. Both the total time, and the average time per node are shown. Three modes of node removal are used, namely

(a) degree-based removal (b) betweenness-based removal and (c) closeness-based removal. The network data is taken from (Collations of

connectivity data on the Macaque brain 2009; Baumbach 2007; Michigan Molecular Interaction Databse 2008; Watts and Strogatz 1998; Pajek

datasets 2007; Zachary 1977; Gleiser and Danon 2003; Primary school cumualtive networks 2011; Lusseau et al. 2003; New England complex

systems institute research projects. URL:http://necsi.edu/projects/braha/largescaleengineering.html

R(D) robustness under degree-based targeted attacks, R(BC) robustness under betweenness-based targeted attacks, R(CC) robustness under

closeness-based targeted attacks
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Fig. 8, it is clear this is the case because the citation net-

work resists total disintegration better, even after it begins

to disintegrate. This example makes clear that simple

measures such as the phase transition time cannot give the

full picture about a networks’ disintegration profile, and the

robustness coefficient proposed here is necessary.

5 Comparison with existing robustness measures

In this section, we compare our robustness coefficient

measure with some of the existing measures described in

Sect. 2 From the set of measures which compute the

average of individual node removals, we consider the

average vulnerability (Costa et al. 2007), which is derived

from the network efficiency measure, and is convincing in

its logic and easy to implement. Among the group of

measures which do not compute average of node removals,

we consider the average of shortest path lengths, and net-

work diameter, as suggested by (Ng and Efstathiou 2006).

We computed these metrics for all the real world networks

we considered and the results are shown in Table 3. For

comparison, the robustness coefficient based on between-

ness-based attack is also shown.

We can immediately see from the table that there are

significant differences in the ordering of networks based on

each of these metrics. Let us consider the comparison

between average vulnerability and robustness coefficient. It

could be assumed that networks which have relatively high

vulnerability would also have low robustness, and vice versa.

Indeed, this is true for some networks in the table. For

example, all the metabolic networks have relatively high

vulnerability and relatively low robustness coefficient.

Similarly, the primary school interaction networks have

relatively low vulnerability and relatively high robustness

coefficient. However, there are many cases where there is no

such correlation. A prominent example is the case of Internet

AS networks, which have very low vulnerability (they are

among the least vulnerable of all the networks we studied in

terms of average vulnerability, as the Table 3 shows), yet

their robustness coefficient is very low also. Therefore, we

might surmise that while these networks are very resilient to

individual node removals, they are not at all robust to tar-

geted sequential attacks. We might postulate that since the

Internet displays the so-called rich-club phenomenon (Coli-

zza et al. 2006; Zhou and Mondragón 2004), once the rich

club has been removed by a sequential attack, the rest of the

network very quickly disintegrates. The average vulnerabil-

ity measure, which does not consider sequential removals, is

not able to capture this. Similarly, we may see that Chesa-

peake upper, Chesapeake lower, Chrystal C and Chrystal D

foodwebs all have relatively high average vulnerability, yet

they also have high robustness coefficient. This means that

even though the first node removal, especially if targeted,

may severely effect the networks’ integrity, they are able to

better cope with consequential node removals.

Similarly, if we consider the average shortest path

length, and assume that a smaller average shortest path

length signifies higher robustness (the average path lengths

of the networks studied vary from 1.6 to 13.72), we can see

that in many cases such as the foodwebs, it is true that

networks with lower average path lengths have higher

robustness coefficient, and vice versa. However, there are

cases such as the Internet AS Networks, transcription net-

works and PPI (protein–protein interaction) networks,

where networks with low average path length have very

low robustness coefficient; therefore the average path

length fails to capture robustness against sequential tar-

geted attacks. Furthermore, in the case of network diame-

ter, if we consider that networks with lower diameter are

more robust (the diameter values we studied range from 2

to 42), we may see that there is not always correlation

between robustness measured by network diameter and our

robustness coefficient. For example, E. coli transcription

network and Rat gene regulatory network have very similar

network diameters (9 and 10), but significantly different

robustness coefficients (1.46 and 22.52 %). Similarly, A.

laidlawii metabolic network and house mouse protein–

protein interaction network have similar robustness coef-

ficients (1.29 and 1.22 %), but significantly different net-

work diameters (42 and 9). Therefore there is no

correlation between the two metrics.

Rather than belabouring this point further, we leave it to

the interested reader to rank the networks according to each
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Fig. 8 The size of the largest components (as a proportion of network

size) against the number of nodes removed (also as a proportion of

network size) for C. glucamitum transcription and Small world

citation networks. The nodes to be removed were chosen in the order

of closeness centrality. It could be observed that while the size of the

largest component begins to decrease immediately for the Small

world citation network, it stays stable for a short while for the C.

glucamitum transcription network
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Table 3 Comparing robustness coefficient with other robustness measures. The average vulnerability (Costa et al. 2007) is given in units of

10-4

No Network Avg. vulnerability Avg. short. path Diameter R(BC)

Neural networks

1 C. elegans 9.94 1.99 2 41.79

Internet AS networks

2 Internet AS-1998 3.76 3.76 9 1.8

3 Internet AS-1999 2.43 3.74 10 1.91

4 Internet AS-2000 1.39 3.70 9 2.26

Transcription networks

5 C. glutamicum 39.14 4.69 10 1.35

6 E. coli 11.18 3.60 9 1.46

Cortical connectivity networks

7 Human 2.43 3.12 6 51.38

8 Cat 43.45 1.7 3 69.21

9 Macaque 40.96 2.24 5 52.65

Gene regulatory networks

10 R. norvegicus 5.85 3.78 10 22.52

11 C. elegans 15.49 4.23 12 14.25

12 A. thaliana 29.92 4.12 15 5.91

Foodwebs

13 Bay dry 8.60 1.77 3 71.73

14 Bay wet 9.03 1.78 3 72.07

15 Chess upper 53.38 1.70 3 55.08

16 Chess lower 56.63 1.75 3 45.58

17 Chrystal C 99.31 1.60 3 60.42

18 Chrystal D 97.98 1.72 3 44.10

Citation networks

19 Smart grid 6.45 2.98 6 24.80

20 Small world 22.44 2.37 4 14.09

Metabolic networks

21 Human 30.24 10.51 32 1.94

22 Rhesus monkey 27.41 10.17 25 1.56

23 Chimpanzee 30.95 9.49 29 1.57

24 Acholeplasma laidlawii 47.59 13.72 42 1.29

25 Ashbya gossypii 47.59 8.77 24 3.67

26 Acaryochloris marina 80.85 3.50 9 3.98

PPI

27 H.Pylori 15.13 4.14 9 13.59

28 Human 19.99 6.50 20 1.31

29 Mouse 37.41 3.36 9 1.22

US Airlines

30 US Air lines-1997 27.21 2.74 6 15.02

Collaboration networks

31 Netscience 19.72 5.82 17 1.79

Cell signalling networks

32 CA 1 15.85 4.21 10 16.66

Miscellaneous networks

33 Dolphins 80.85 3.36 8 32.57

34 Jazz Musicians 20.40 2.23 6 50.08

35 Karate 202.5 2.41 5 24.05
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metric of robustness in Table 3, and compare the rankings.

We have done this and seen that there are significant dif-

ferences on the ranking based on each of the other metrics

and our robustness coefficient, highlighting that our

robustness coefficient particularly captures a network’s

ability to maintain topological integrity againstsequential

attacks, which the other metrics do not.

6 Conclusions

In this paper, we introduced a new measure for quantifying

robustness of networks under sustained targeted attacks.

The robustness coefficient measure has the advantage of

providing information about the entire decomposition

profile of the network, at the same time being a single

measure. While we took a generic approach, we explained

how the measure is relevant to social network analysis.

Using this measure and synthesized networks, we con-

firmed the result that scale-free networks are more resilient

to random attacks and more vulnerable to targeted attacks

compared to random topologies. We then analysed the

robustness of a number of real world networks under sus-

tained targeted attacks, comparing various attack strategies.

We specifically considered attack strategies based on (1)

node degree (2) node betweenness (3) node closeness. We

highlighted that most networks are least robust against

betweenness-centrality-based attack, and most robust

against closeness-centrality-based attack, as shown in

Table 2. However, there were networks for which a degree-

based attack was the most effective. Furthermore, we

pointed out that, since betweenness analysis is computa-

tionally expensive, it may not make sense to adapt a

betweenness-based attack strategy if the robustness of the

network is only marginally lower against betweenness-

based attacks. We illustrated this point by computing and

comparing the physical time taken for simulating network

disintegration. This analysis demonstrated the utility of our

robustness measure as a tool in designing and comparing

attack strategies.

Sustained attacks based on other node properties could

be conceived. Topologically, there exist a host of other

centrality measures, such as Eigenvector centrality and

information centrality (Bonacich 2001; Noh and Rieger

2004). Attacks also could be designed based on other

topological properties such as local assortativity (Piravee-

nan et al. 2010). Non-topological attributes of nodes, such

as the age or importance of people in social networks, or

the amount of data stored in computers in computer net-

works etc., also could be used to rank nodes to be chosen

for attacks. It is clear that the robustness coefficient we

have introduced could be effectively used to compare all

these attack strategies.

We need to be mindful here that network vulnerability

cannot be considered totally in isolation from the nature of

the network. The structural elements explain robustness,

other things being equal. Furthermore, the overall proce-

dure of generating the largest component size against

number of nodes removed plot and calculating the

robustness coefficient from it has high time complexity,

and research is ongoing in search of algorithms to improve

this. That said, we believe that this measure will be

extensively utilised in analysing structural robustness of

networks by the scientific community.
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