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Abstract Recent interest in complex systems and spe-

cially social networks has catalyzed the development of

numerous models to help understand these networks. A

number of models have been proposed recently where they

are either variants of the small-world model, the prefer-

ential attachment model or both. Three fundamental

properties attributed to identify these complex networks are

high clustering coefficient, small average path length and

the vertex connectivity following power-law distribution.

Different models have been presented to generate networks

having all these properties. In this study, we focus on social

networks and another important characteristic of these

networks, which is the presence of community structures.

Often misinterpret with the metric called clustering coef-

ficient, we first show that the presence of community

structures is indeed different from having high clustering

coefficient. We then define a new network generation

model which exhibits all the fundamental properties of

complex networks along with the presence of community

structures.
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1 Introduction

Most of the real-world systems can be modeled as graphs

where different fields of study use extensively the node-

link representation to represent information. Wide use of

this representation has been witnessed in social networks

(Wasserman and Faust 1994). A social network can be

defined as a set of people, or groups of people interacting

with each other (Scott 2000; Wasserman and Faust 1994).

These interactions can be classified into several types like

friendship or business relationship. Although many exam-

ples have been studied for social networks, two classic

examples that have attracted extensive attention in the

computer science community and the social network

community at large, are the Actor collaboration network

from Internet Movie database (IMDB) and the Science

collaboration network.

Social network modeling and analysis allows us to

understand the different types of relationships that can

either facilitate or impede knowledge creation and transfer

in a society on the whole, in an organization in particular,

and in individuals, providing an insight into the underlying

patterns and the social structures present in these networks

(Scott 2011; Cross et al. 2000).

The study of networks in general, and of social networks

in particular, was revived by the pioneering work of Watts

and Strogatz (1998) on the properties of small-world net-

works. Equally important was the work from Barabasi and

Albert on the growth of networks and the property of scale-

free degree distribution (Barabási and Albert 1999).

A. Sallaberry

University of California, San Francisco, USA

e-mail: asallaberry@ucdavis.edu

F. Zaidi (&)

Karachi Institute of Economics and Technology,

Karachi, Pakistan

e-mail: faraz@pafkiet.edu.pk

G. Melançon
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Although random graphs had been studied extensively in

the past (Newman 2003), most of the real-world networks

have the properties of small-world and scale-free networks.

A small-world network, as defined by Watts and Stro-

gatz (1998), is a network when compared with a random

graph of same node–edge density, has higher clustering

coefficient and the typical distance between any two nodes

scales as the logarithm of the number of nodes. The two

structural properties used to define a small-world network

are the average path length and the clustering coefficient.

The most popular manifestation of the concept of low

average path length is the ‘six degrees of separation’,

uncovered by the social psychologist Stanley Milgram,

who concluded that there was a path of acquaintances with

a typical length of about 6 between most pairs of people in

the USA (Milgram 1967). More precisely, the path length

refers to the minimum number of edges traversed to go

from node A to node B. The average path length is the

average calculated for all pair of nodes in a network.

Another important characteristic of these networks is the

average clustering coefficient of nodes (Watts and Strogatz

1998), sometimes referred as Transitivity (Newman 2003)

to avoid confusion from the concept of community struc-

ture (or clusters) (Scott 2000; Wasserman and Faust 1994).

The concept is very well known in social networks and can

be described as the friend of your friend is likely to be your

friend. Mathematically, for a graph G with nodes V and

edges E, the clustering coefficient (CC) for a node v is

defined as:

CCðvÞ ¼ rðNðvÞÞ
jNðvÞjðjNðvÞj � 1Þ=2

where u 2 V and ðu; vÞ 2 E: The neighborhood of a node v

is defined as the set of nodes in the neighborhood of v

denoted by N(v). The number of elements in set N(v) is

given by |N(v)|. And the notation r(N(v)) represents the

number of edges (u, w) such that u;w 2 NðvÞ and

u = w. To calculate the clustering coefficient of the entire

network, we take the average for all nodes in the network.

A scale-free network is a network in which a few nodes

have a very high number of connections (degree) and lots

of nodes are connected to a few nodes. Generally, it was

believed that the degree distribution in most networks

follows a poisson distribution but in reality, real-world

networks have a highly skewed degree distribution. These

networks have no characteristic scales for the degrees,

hence they are called scale-free networks (Päivinen 2007).

In other words, the degree distribution of scale-free net-

works follow a power-law distribution (Barabási and

Albert 1999).

Apart from the small-world and scale-free properties,

another important characteristic of real-world systems and

specially social networks is the presence of community

structures. A more generic formalism for the term com-

munity is clusters, where sociologists use the term com-

munity (Coleman 1964) as compared to the statistical and

data mining domain where people use the term clusters

(Tryon 1939) to refer to the same concept. Roughly

speaking, we like to define a community as a decomposi-

tion of a set of entities into ‘Natural Groups’. There is no

universally accepted definition of clustering (Everitt et al.

2009), most researchers describe a cluster by considering

the internal homogeneity and the external separation as the

fundamental criteria for defining a cluster (Gordon 1981;

Almeida et al. 2012; Jain et al. 1999). A number of algo-

rithms are present in the literature to study clusters and

clustering problem in social networks (Newman 2004; Jia

et al. 2011; Gilbert et al. 2011).

Different network generation models have been pro-

posed to generate artificial networks having both the small-

world and scale-free properties. These models do not

generate graphs with community structures by construction

as the probability of connection is based solely on the

degree of a node and, in some cases, the immediate

neighborhood of this node.

In this study, we present a new network generation

model which incorporates the properties of small-world

and scale-free networks with the additional advantage of

having distinct community structures. We explicitly target

social networks and argue that using three fundamental

concepts from the social network study, we can generate

artificial networks replicating real-world social networks.

Clustering or community detection remains an important

technique to organize and understand complex systems

(Girvan and Newman 2002; Jain et al. 1999; Schaeffer

2007; Xu and Wunsch 2005) having a wide range of

applications in various fields. For empirical evaluation of

algorithms, metrics and analytical methods, it is important

to be able to reproduce networks having community

structures with small-world and scale-free properties that

are close to real-world networks. The proposed model, by

construction, incorporates the presence of community

structures as we determine the connectivity of nodes based

on a pre-generated clustering. We explain the details in the

coming sections.

For the sake of discussion and explanatory purposes,

throughout this paper, we are going to discuss four social

networks. Two well-studied and well-structured social

networks are the Actor collaboration network where nodes

represent actors and two actors are connected to each other

if they appear in a movie together. The other network is the

Science collaboration network where nodes represent sci-

entists and two scientists are connected to each other if they

have written an artifact together. Apart from these two

networks, we consider two hypothetical cases from

everyday life. Consider a person joining a new organization
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as an employee and a person joining a sports club as a

leisure activity. We will refer them as Actor, Author, Employee

and Club networks, respectively, throughout this paper.

The rest of the paper is organized as follows: the next

section contains a review of the existing network generation

models for small-world and scale-free networks. In Sect. 3,

we discuss the metric clustering coefficient and compare it

with the presence of community structures as being two

separate concepts. We then discuss assortativity, transitivity

and preferential attachment in social networks in Sect. 4 and

argue that with a little modification to these concepts, we can

understand how networks having community structures

evolve in the real world. We then present a network gener-

ation model in Sect. 5. We introduce three networks in

Sect. 6 that are used for experimentation and comparative

analysis with the artificial network generation models. In

Sect. 7, we show that the existing network generation models

not only produce graphs without community structures but

also have other limitations. Finally, we conclude giving

possible future directions of our research in Sect. 8.

2 Existing network generation models

In this section, we review a number of network generation

models proposed in the literature having small-world and

scale-free properties. A comparative summary of these mod-

els is presented in Table 1.

Holme and Kim (2002) modified the well-known Barabasi

and Albert model (Barabási and Albert 1999) to obtain graphs

that are small world as well as scale free. The idea is pretty

simple and effective. A triad formation step is added after the

preferential attachment step where every node, introduced in

the network, connects not only to node w but also to a ran-

domly chosen neighbor of w, thus resulting in a triad forma-

tion. The idea is similar to another model separately proposed

by Dorogovtsev and Mendes (2002) in the same year where

every new node added to the network is connected to both ends

of a randomly chosen link where one of the nodes of this link is

selected through preferential attachment. These models

inspired Jian-Guo et al. to introduce another similar model

(Liu et al. (2005). The network starts with a triangle and at

each time step, a new node is added to the network with two

edges. The first edge would choose a node to connect pref-

erentially, and the second edge will choose a node connected

to the first node, again based on preferential attachment. This

is different from the model of Holme and Kim where the

second node is randomly chosen. Wang et al. (2006) proposed

a similar model to that of Dorogovtsev et al. where at each

time step, a new node with two edges is added to the network

and the two edges are connected to the two ends of a randomly

chosen existing edge.

Table 1 Comparing and summarizing different artificial network generation models for small-world and scale-free networks existing in the

literature

Model Year Nodes added

per step

Edges added

per step

Innovation

Holme and Kim 2002 1 m Triad formation step, forcing a new node to connect to the neighbors of the

first node it links to, in order to have triangles and increase the clustering

coefficient

Dorogovtsev and Mendes 2002 1 2 Randomly chose an edge and attach both ends of this edge with the new node

where the probability of choosing an edge is based on the degree of the

nodes at its ends

Jian-Guo et al. 2005 1 2 Each new node attaches to existing node with preferential attachment and

chooses one of its neighbors again based on preferential attachment (and

not randomly as compared to Holme and Kim)

Wang et al. 2006 1 2 For each edge, a new node with two edges is added, which is attached to both

end nodes of the edge. Produces Fractals rather than a random graph

Fu and Liao 2006 1 m Once a new node attaches to a node, its neighborhood has a higher

probability of connecting to the new node

Klemm and Eguiluz 2002 1 m Activate and deactivate nodes based on node degree where nodes having low

degree have a high probability of getting deactivated

Catanzaro et al. 2004 1 m Assortativity and allows growth in old nodes by allowing new edges

Guillaume and Latapy 2005 1 m Bipartite structure identified as a fundamental characteristic for real-world

graphs

Bu et al. 2007 1 m n-partite structure, where nodes do not connect to similar node types

Wang and Rong 2008 n m Add m new nodes and any two nodes in the m new nodes link together from

each other and they link to existing nodes based on preferential attachment
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Fu and Liao (2006) proposed another extension to the

Barabasi and Albert model which they called the Relatively

Preferential Attachment method. At each time step, the

newly introduced node in the network connects to a node

w with preferential attachment, the nodes in the immediate

neighborhood of w have higher probability of connecting to

this new node as compared to other nodes. The only dif-

ference in this model with the already proposed models is

that the new node can have m edges instead of two edges

where the value of m is chosen as an initial parameter

which remains constant throughout the execution of

algorithm.

Klemm and Eguiluz (2002) also proposed a model,

where each node of the network is assigned a state variable.

A newly generated node is in the active state and keeps

attaching links until eventually deactivated. At each time

step, a new node is added to the network by attaching a link

to each of the z active nodes. The new node is set as active.

One of the existing nodes is deactivated where the proba-

bility of a node being deactivated is inversely proportional

to its degree, i.e., lower the degree, higher the probability

of deactivation. To reduce the average path length of the

entire graph, at every step, for each link of the newly added

node, it is decided randomly whether the link connects to

the active node or it connects to a random node.

Catanzaro et al. (2004) present a model taking into

consideration the assortativity of social networks. Assort-

ativity is the tendency of nodes to preferentially connect to

nodes that are similar to them. This similarity in general

can consider any attribute, but in case of social networks, it

is referred to as the connectivity or the node degree of the

nodes. At every step, a new node is added to the network

based on preferential attachment and a new edge is added

between two existing nodes. These existing nodes are

chosen on the basis of their degree, thus forcing links

between similar degree nodes. The model is innovative as

it allows addition of new links between old nodes.

Another interesting model was proposed by Guillaume

and Latapy (2005). They identify bipartite graph structure

as a fundamental model of complex networks by giving

real world examples. The two disjoint sets of a bipartite

graph are called bottom and top. At each step, a new top

node is added and its degree d is sampled from a prescribed

distribution. For each of the d edges of the new vertex,

either a new bottom vertex is added or one is picked among

the pre-existing ones using preferential attachment. A more

generalized model based on similar principles was pro-

posed by Bu et al. where instead of using the bipartite

structure, a network can contain t disjoint sets (instead of

just two sets, as is the case of the bipartite graph), where

the example of sexual web (Lilijeros et al. 2001) was

considered as a model. A sexual web is a network where

nodes represent men and women having relationships to

opposite sex, and similar nodes do not interact with each

other. At each time step, a new node and m new edges are

added to the network with the sum of the probabilities

equal to 1. The preferential attachment rule is followed as

the new node links with the existing nodes with a proba-

bility proportional to the degree of the nodes.

Wang and Rong (2008) proposed a slightly different

model, which is still a modified form of the preferential

attachment model. Instead of adding one node at a time,

the model proposes to add n nodes at each time step which

are connected in a ring formation. Any two nodes in the

n new nodes are connected to the existing network where

these connections are determined through preferential

attachment.

Generation models for clustered graphs exist in the lit-

erature such as the work of Condon and Karp (1999) and

Virtanen (2003), where the idea is to generate graphs that

are already clustered as opposed to random graph models

of Rapoport (1957) and Erdos and Renyi (1960). A recent

work by Zaidi (2012) addresses the issue of generating

clustered small-world networks which are not scale free

and the clusters are randomly connected to each other.

These generation models as such do not produce graphs

with small-world and scale-free properties, which are

fundamental to most real-world networks. Thus, the study

and comparison of these other models remain out of the

scope of the paper.

Comparing the different network generation models

(See Table 1), first five models are quite similar to each

other, as they try to force the triad formation step, one way

or the other. Another common aspect in the first five

models is that, in every step, only one node and two edges

are added to the network. The only other taxonomical

grouping possible is the last two models where the bipartite

and n-partite structures are used as the fundamental prop-

erty of real-world networks. The model of Wang and Rong

is slightly different as it allows the addition of m new nodes

at every time step. The ideas of Klemm and Eguiluz and

Catanzaro et al. are quite original, and provide another way

to look at the evolution and structure of complex networks.

3 Clustering coefficient and community structures

Largely due to the terminology used to define the metric

clustering coefficient, often it is misunderstood that a net-

work having high clustering coefficient suggests the pres-

ence of clusters or community structures in a network.

Clustering coefficient, by definition, determines the local

cohesiveness of a set of nodes, i.e., it focuses on the

immediate neighborhood of nodes but fails to capture the

presence of communities on the whole as argued by dif-

ferent researchers (Brandes and Erlebach 2005; Girvan and
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Newman 2002; Zaidi and Melanço 2010). High clustering

coefficient only indicates the presence of a large number of

triads, i.e., three nodes connected to each other through

three edges. This property is often present in social net-

works where it refers to the phenomena that if you know

two people, there is a high probability that the two people

know each other as well. This metric also measures the

presence of cliques as they are a composition of triads but it

cannot be used to identify the presence of densely or

sparsely connected nodes in a network as we explain below

using examples.

Figure 1 is an example graph that depicts the differences

between clustering coefficient and community structure.

Figure 1a clearly has four communities with high con-

nectivity between nodes of the same community, and

Fig. 1b has several nodes sharing common neighbors, but

visually no distinct groups. Both these graphs have the

same number of nodes and edges where the clustering

coefficient for graph a is 0.70 and b is 0.69. No information

about the presence of four communities can be deduced

from the clustering coefficient of graph a.

Another interesting example is shown in Fig. 2 a and b

as clusters obtained from some graph. Both contain the

same number of nodes and edges. Thus, the density (ratio

of number of edges and number of nodes) of the two

clusters is exactly the same. Cluster (a) is constructed using

Quads instead of triads, where a quad is a set of four nodes

connected through four edges in a ring. We then compare

this cluster with a cluster constructed with triads. Both

these clusters are shown in in Fig. 2a and b. The clustering

coefficient of cluster (a) is 0.0 representing the absence of

triads and as compared to cluster (b) with a value of 0.69.

This is no surprise as clustering coefficient, by definition,

measures the quantity of triads in a graph. Another

important metric used to classify a network as small world

is the average path length. Calculating the average path

lengths of the two clusters, (a) has a lower value with 2.3 as

compared to (b) with a value of 2.6 showing that cluster

(a) is more compact and on average, the nodes lie closer to

each other as compared to cluster (b) and thus is a better

cluster even though its clustering coefficient is 0.

From the above two examples, we can conclude that a

graph having high clustering coefficient does not neces-

sarily suggests the presence of distinct group of nodes

tightly connected to each other and loosely connected

within themselves. Moreover a cluster can be a good

cluster even if its nodes have a low average clustering

coefficient.

4 Assortativity and triads in social networks

In this section, we present three fundamental concepts

associated with the theory of social networks. First, we

briefly introduce these concepts and then argue that com-

bining these concepts, we can produce a network genera-

tion model with small-world and scale-free properties

having distinct clusters.

The theory of Assortativity or Assortative Mixing refers

to the principle that in a network, similar nodes tend to

attach to each nodes. This similarity can be based on one or

more than one attributes. An important application of this

theory is the assortative mixing in social networks where

nodes attach to other nodes having similar degree. This

differs from biological and technological networks that

exhibit disassortative mixing (Newman 2002, 2003). Dis-

assortative mixing refers to the phenomena where dissim-

ilar nodes tend to connect to each other. A good example

is the Sexual Web (Lilijeros et al. 2001) where nodes

representing men or women connect to nodes with

opposite sex.

Fig. 1 Two graphs with the same number of nodes and edges. a Four

groups of nodes well connected within and sparsely connected with

other groups. b Nodes sharing neighbors in the form of triads.

Clustering coefficient for graph a is 0.70 and b is 0.69. High values

for clustering coefficient do not necessarily imply the presence of

community structures in a network as shown in graph (b)

Fig. 2 Consider two clusters of some graph with same number of

nodes and edges and thus having the same density in terms of number

of nodes and number of edges. a Nodes well connected to each other

forming quads, b nodes sharing neighbors to form triads. Clustering

coefficient for cluster a is 0.0 and b is 0.69 representing the absence

of triads in cluster (a). The average path length of a is 2.3 and of b is

2.6 showing that cluster (a) is more compact and on average, the

nodes are much closer to each other than cluster (b). This example

shows that a cluster can exist even with a low value of clustering

coefficient as shown in a
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We move on to another important concept in social

networks, the formation of triads introduced by Simmel

and Wolff (1950) as a fundamental structure for social

networks. In fact, the smallest and most elementary social

unit, a dyad is a social group composed of two members

while a triad is a social group composed of three members.

Groups of larger size are also possible but since a variety of

relationships can form in them, they are less stable (Sim-

mel and Wolff 1950) and often less studied in sociology.

Finally, the principle of Preferential Attachment intro-

duced by Barabasi and Albert (1999) has an ingredient for

growing network model with power-law degree distribu-

tion. Some times, referred to as the ‘Rich gets richer’, the

idea is that in real-world networks, nodes having high

degree have a high probability of attracting more connec-

tions as compared to nodes with low connectivity. In terms

of social networks, this means that a famous person is

likely to become more famous as compared to a person

who is not well known in the social community. The idea is

the direct implication of the human trait of extraversion–

introversion (Jung 1921). Extroverts, who are open to

meeting new people and developing new relationships are

expected to have high degree of connectivity in a social

network as compared to Introverts, who tend to be more

reserved, less outgoing, and less sociable.

Extending the principle of assortativity, we argue that in

theory, since nodes tend to connect to similar nodes, it is

not always the case that the similarity is based on node

degree. We consider examples from two of the most

studied social networks in computer science, the actor

network and the authorship network (Watts and Strogatz

1998; Barabási and Albert 1999; Freeman 2004; Wasser-

man and Faust 1994). If the degree was the only criteria for

associating to other nodes, in case of an actor network,

actors beginning their career will never get to play a role in

a movie with well-known actors. This is contrary to the

reality as often, new actors are given supporting roles along

with well-known actors and thus the similarity is based on

some other criteria. Similarly, for the authorship network,

if degree was the only criteria, an experienced professor

will never take a doctorate student who has only a few

publications under his supervision which is generally not

the case.

Our deduction from the above two examples is that the

nodes tend to associate to other nodes having similarity

based on the context and not the node degree. For example,

an actor starting his career as a comedian has a higher

probability to act in a comedy film and thus act with a well-

known actor in the domain of comedy films. In this case,

the similarity is based on the domain of the two actors.

Similarly, for the case of authorship network, a student

having done a masters in a particular domain such as

computer networks, has a high probability of collaborating

with a well-know researcher of the same domain, probably

as a doctorate student. Again, the connectivity preference is

due to the domain or subject of research. Generalizing from

this concept, for other social networks in real world, con-

sider the example of a person joining a new organization as

employee. He has a high probability of interaction with his

fellow employees, people working on the same project or

sharing the same office. Another example is that of a

person joining a sports club. He has a high probability of

interaction with people sharing the same sports activity like

Tennis.

Returning to the formation of triads in social networks,

our perspective is that usually when a person enters a new

social network, it is not just the triads that are formed but

groups of larger size, or cliques are formed. From the actor

example, it is quite clear that a new actor will probably act

with a well-known actor, but the social interaction will take

place within the entire cast of the movie. This interaction

will be represented with a clique where all the nodes rep-

resenting the actors will be connected to each other. The

authorship network is no different as people co-authoring

an artifact will form a clique. Similarly, in real world,

usually groups of larger size are formed. Continuing with

the two examples, a new employee will interact with not

just only one or two more people, but with different col-

leagues in the same organization which work together on

the same project or with whom he shares an office, and for

a person joining a sports club, he will interact with people

sharing similar activities instead of just one or two others.

Addressing the principle of Preferential Attachment, we

argue that for every node in a group (or clique), few nodes

have a higher number of connectivity with other nodes. For

example, in a group representing the actors playing in the

same movie, the famous actors will have many connections

with others as they would have played a role in many

movies. Similarly, in the authorship network, an experi-

enced researcher would have published an artifact with

many other researchers and thus would have a high number

of connections.

Combining the above principles together, we claim that

People in social networks are most likely to interact with

similar people where similarity is based on the context and the

domain. People form groups of larger size and not just triads,

there are few people who have a very high degree of con-

nectivity as compared to others. Based on these ideas, we

present a new network generation model in the next section.

5 Proposed network generation model

with communities

The basic idea of the proposed algorithm comprises three

major steps. Instead of adding one node at a time, we add
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cliques of various sizes. This results in the network having

high clustering coefficient. Next, we associate a possible

connectivity attribute drawn from a degree distribution

following power law. This insures that the degree distri-

bution of the final network follows a scale-free property.

Finally, to obtain community structures where some nodes

are densely connected within and sparsely connected to

other nodes, we generate a cluster tree which represents the

possible communities for this network. Based on the con-

nectivity attribute, and the distances in the cluster tree,

nodes within the cliques are merged together creating

highly dense groups of nodes well connected within and

sparsely connected to nodes distant in the cluster tree.

The proposed algorithm comprises several steps where

each of these steps is explained in detail below. The fol-

lowing mathematical notations are used throughout the

explanation: G(V, E) represents an undirected multigraph

where V is a set of n nodes and E is a set of e edges. The

graph G is initially empty and the nodes and edges are

added as the algorithm progresses. C represents a set of

cliques such that C ¼ fC1;C2; . . .;Ckg are different cliques

each comprising one or several nodes. T represents a tree

where its leaves are equal to k (the number cliques in set C).

5.1 Step 1: Clique generation

In contrast to existing network generation models, instead

of adding one node or triads at a time, to generate the

network, we start by adding cliques of variable sizes to G.

The algorithm takes as parameter, the number of cliques to

be generated (k), the minimum (minSize) and the maxi-

mum size (maxSize) of the cliques to be generated. A

random number is generated between these two limits and

for each random number, a clique Ci is added to the graph

G such that nodes and edges of the clique become member

of V and E, respectively. As a result, G contains nodes that

are well connected to each other within a clique, and nodes

from different cliques are not connected to each other.

G becomes a graph comprising C ¼ fC1;C2; . . .;Ckg as

shown in Fig. 3.

5.2 Step 2: Scale-free degree distribution

To have the degree distribution of G follow a scale-free

behavior, we generate a separate scale-free graph G0 with

the same number of nodes as in G, using (Barabási and

Albert 1999). Next, we assign the degree of a node in G0 as

an attribute of a node in G chosen randomly and call this

attribute sf Deg. Nodes once processed are not reconsidered

for another assignment. The Pseudo Code for the process is

given in Algorithm 1. Every time the procedure getNode is

called, it picks a unique and randomly selected node from a

given graph until all the nodes have been selected. The

assignment of values from nodes of G0 to G is random but

since there are few nodes with very high node degree, there

is a high probability that they are divided among the cli-

ques sparsely. Thus, we end up with one or two nodes in a

clique with a high node degree as shown in Fig. 4. This

step assures that the final graph G has a scale-free degree

distribution.

5.3 Step 3: Merger of nodes

The next step is the merger of nodes from different cliques

to form a single connected network. The merger is a simple

step where two nodes to be merged are replaced by a single

node and all the edges connected to the two merged nodes

are connected to this new node. Figure 5 shows how two

nodes from two different cliques are merged forming a

connected network of two cliques. The exact details of how

to select two nodes and how many nodes are selected for

merger are explained in the following sub-steps.

5.3.1 Step 3.1: Calculation of number of mergers

As a first step, we need to calculate for each node, how

many merges will it perform with other nodes. This cal-

culation is based on the attribute sfDeg. The idea is pretty

simple, the more a node is merged with others, the more

Fig. 3 Step 1: A graph G containing only cliques of different sizes.

Parameters used for this example are minSize = 1, maxSize = 5 and

k = 11
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higher its degree will be in the final network. This phe-

nomenon is shown in Fig. 5 where the two merged nodes

result in a single high degree node. The number of merges

for each node n 2 G is calculated using sf Deg as follows:

Node MergesðnÞ ¼ sfDegðnÞ
Avg Node DegreeðGÞ

� �
: ð1Þ

We use the following equation to calculate the total

number of merges for a clique Cj 2 C:

Clique MergesðCjÞ ¼
X
8n2Cj

Node MergesðnÞ: ð2Þ

5.3.2 Step 3.2: Generation of cluster tree

As the main objective is to have distinct clusters in the

graph, we generate a random tree T with the number of

leaves exactly equal to the number of cliques generated in

step 1. Each clique Cj 2 C is assigned to a leaf of the

cluster tree T as shown in Fig. 6. The tree can have

varying depths to generate a hierarchical clustering where

one such tree is shown in Fig. 6.

5.3.3 Step 3.3: Merging nodes of cliques to form clusters

For every clique Cj 2 C in the cluster tree T ;, we calculate

a vector of probabilities Pji , where j represents the clique

for which this vector is being calculated and i represents

the clique with which the probability of connecting j is

calculated. This probability is inversely proportional to the

distance between two cliques in T and is spread equally

over the branches of T as shown in Fig. 7. The vector Pji

thus obtained represents the probability of two cliques

having their nodes merged.

For example, to calculate the probability of connection

of the encircled node with other nodes in T ; the probability

is uniformly divided among the three branches (1/3 in this

example) for each branch leading outward from the

encircled node. One of these branches leads to the root of

the tree which is again uniformly divided among two of its

children as shown in Fig. 7.

Using probability vector Pji and Clique_Merges(Cj)

from Eq. 2, we calculate the exact number of pairwise

merges using the equation below:

Pairwise MergesðCj;CiÞ ¼ Clique MergesðCjÞ � Pji

� �
8 j; i 2 C

ð3Þ

Pairwise_Merges(Cj, Ci) is a directed vector representing

the exact number (as integer) of merges between each pair of

clique (Cj, Ci). Based on these integer values, nodes from

different cliques are merged to form connections between

cliques which result in a fully connected network with the

desired properties. This calculation is depicted in Fig. 8

where we show the probability vector for C0;P0i
and its

corresponding Pairwise_Merges(C0,Cb) 8b 2 C:
Figure 8 also shows the probability of C0 divided uni-

formly among C1, C2 and the rest of the cliques in the

cluster tree. The close neighbors of C0 in the tree C1, C2

have a very high probability of 0.33 each of merging with

C0. The merger of nodes with close neighbors results in lots

of connections being built between the cliques nearer to

each other in the tree and thus represents clusters in the

Fig. 6 Step 3: A cluster tree T
is generated and cliques are

assigned to its leaves to decide

how the nodes (in the cliques)

will be connected to each other

forming clusters

Fig. 5 Merging two nodes from two different cliques. Two nodes

from different cliques are removed and a new node is added which

takes all the connections of the two removed nodes

Fig. 4 Step 2: A scale-free

degree distribution is imposed

as attribute of nodes in graph

G containing cliques
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final graph. Algorithm 2 contains the pseudo code for the

merger of two nodes.

Algorithm 2 uses a procedure merge where two functions

are used to select nodes from a clique named Select_O-

ne_Noderand (Ca) and Select_One_Nodeprob (Cb). The

implementation of these functions is very simple. The

function Select_One_Noderand (Ca) chooses a node n

randomly such that n 2 Ca and Ca 2 C and Node_

Merges(n) [ 0. Note that the equality in Eq. (2) is always

preserved during the execution of algorithm. The function

Select_One_Nodeprob (Cb) uses the sfDeg(n) to calculate a

probability which is proportional to the node degree of the

node. Thus, nodes having high connectivity have a high

probability of being selected as compared to nodes with

low connectivity.

5.4 Further explanations and possible variants

to the proposed model

In this section, we provide explanations of the different

steps of the proposed model and relate these explanations

to real-world social networks. This helps understand how

characteristics of real-world networks are incorporated in

the proposed model. We also discuss possible variations in

the different steps that can change the behavior of the

network generated. These variations demonstrate the

robustness and flexibility of the proposed model as it can

be used to generate networks with varying properties.

The first possible variation to the model is in the very

first step explained in Sect. 5.1 where we add cliques of

different sizes. The size of the cliques can be forced to be

exactly 3, in which case we would have forced the presence

of only triads just as the other network generation models

presented in Sect. 2. Due to the presence of cliques (or

triads), the average clustering coefficient of the entire

graph increases as compared to a random graph which is a

fundamental property to identify a small-world network.

The assignment of values in Sect. 5.2 is easy to com-

prehend once considered in the context of real world. This

assignment represents that, in certain social groups, there

are people who have relatively high connectivity with

others. Continuing with our two example social networks, a

famous actor who plays in many films will have a high

number of connections with other actors and similarly, a

senior professor will have a high number of connections

with other researchers. This value is used in step 3 of the

model to determine how different cliques of step 2 are

merged together to form a single connected network.

A variation to this step can be the assignment of a

normal degree distribution or a uniform degree distribution.

The choice results in what the final degree distribution

would be for the generated network. This flexibility is quite

useful as the model can be used to generate networks with

any kind of degree distribution.

Fig. 7 Calculation of probabilities of merger of the left most leaf

containing a clique (encircled) with other leaf nodes based on

distances in the cluster tree T where the probabilities represent the

likeliness of a node in the encircled leaf (containing a clique) to be

merged with other nodes in the cliques

Fig. 8 Calculation of

Pairwise_Merges(C0,Cb) using

distances in T and probability

vector of C0 to determine the

number of merges between C0

and Cb where Cb 2 C and

C0 = Cb
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In Sect. 5.3.2, we discuss how a cluster tree is used to

generate a network with hierarchical clusters. A possible

variation is the generation of a flat or partitional clustering.

We can generate only a tree with depth 2 where we have all

the cliques at the bottom level, merging with other cliques

at level 1 to form clusters and the root represents the

regrouping of all the clusters as shown in Fig. 9, which

contains 4 clusters and 12 cliques.

6 Real-world social networks

For the analytical study of the network generation models,

we compare the networks generated by existing models

with real-world networks using a number of metrics (see

Sect. 7). We consider three social networks, two of which

are author networks and the third one is an actor network.

The author network is a network where nodes represent

scientists and an edge between them represents a collabo-

ration in terms of co-authoring a scientific artifact like a

book or an article. The two datasets are the Network Sci-

ence dataset and the Geometry dataset. The Network Sci-

ence data was compiled by Newman (2006) from the

bibliographies of two review articles on networks, Newman

(2003) and Boccaletti et al. (2006), with a few additional

references added by hand. The network contains a single

connected component with 379 nodes and 914 edges.

The other author network is the authors collaboration

network in computational geometry. It was produced from

the BibTeX bibliography obtained from the Computational

Geometry Database geombib,1 version February 2002.

Problems with different names referring to the same person

are manually fixed and the data base is made available by

Vladimir Batagelj and Andrej Mrvar from the Pajek data-

sets website.2 Only the biggest connected component was

considered for experimentation where the reduced simple

network contains 3,621 vertices and 9,461 edges.

The Actor network is a network where nodes represent

actors and two actors are connected to each other if they

have acted in a movie together. The dataset we use here is a

subset taken from the IMDB3 database of movies made

until the year 1999 and used by other researchers such as

Auber et al. [3] and Archambault et al. [2]. This network

contains 7,640 nodes and 277,029 edges.

The choice of selecting these models is based on two

criteria. First, we wanted to use graphs that are publicly

available and have been studied by other researchers.

Moreover, networks having varying density and size so as

to see the behavior of the different models in terms of

scalability and flexibility could be evaluated.

7 Results and discussion

We calculate a number of statistics using various network

generation models and compare them with the real-world

networks of equal sizes. The results are shown in Tables 2, 3

and 4. In some cases, the models are not parameterized and

thus the node–edge density could not be controlled. We tried

to generate models of similar size in terms of number of nodes,

and where possible, similar number of edges. An important

observation about these networks is that since all of them use

the preferential attachment to produce the scale-free property,

the degree distribution for all the models follows a power law.

To the best of our knowledge, there is no metric which tries to

identify the presence of communities in a network by ana-

lyzing the graph on the whole in a global perspective; thus, the

presence of community structure in the proposed model is

only justified by construction. Using the cluster tree, the way

the nodes connect to each other can be controlled and thus any

network that is produced has densely connected nodes which

are sparsely connected to other nodes.

Lets have a look at some individual results for the various

models in comparison to the real-world networks. For exam-

ple, graphs generated using the model of Guillaume and

Latapy, the node–edge density in every case is very high and

could not be controlled. The model of Fu and Liao, in all the

three examples, have a very low clustering coefficient as

compared to the respective real-world network and thus could

not really be classified as generating similar networks to the

real-world networks used as examples in our study. Looking at

the clustering coefficient of the model by Wang and Rong in

Table 3, it is quite clear that the model fails to generate a high

clustering coefficient for a similar size network. In the model

of Holme and Kim (Table 4) where the node–edge density of

the network is comparatively high to other two networks but

the network has a large size, the clustering coefficient drops

considerably. The model of Klemm and Eguiluz scales well in

Fig. 9 A cluster tree T to generate flat or partitional clustering with

the leaf nodes containing the cliques at the bottom level, the clusters at

the second level and the root regrouping the clusters at the top level

1 http://www.math.utah.edu/*beebe/bibliographies.html.
2 http://vlado.fmf.uni-lj.si/pub/networks/data/. 3 http://www.imdb.com/.
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terms of clustering coefficient, but in case of low node–edge

density (see Table 2), the average path length is considerably

high to be a small-world network. Also, from Table 4, the

average path length in case of a number of models is 1.99,

which is a direct implication of a node having a very high

degree. As a result, most of the nodes are connected to this

high degree node and thus have almost a distance which

reduces the average path length of the entire network.

From the above examples, one obvious problem that can be

inferred is that these models have problems with scalability, as

the node–edge density is varied for a network, the models are

not able to reproduce comparative values with real-world

networks for various statistics. On the other hand, the pro-

posed model in this paper has the ability to control the size of

cliques as the starting point, which helps us to gauge the

density and at the same time, and generate small-world and

scale-free networks. The values are quite close to the ones

expected and thus the proposed model is quite flexible.

8 Conclusion and future research directions

In this paper, we have studied the concepts of assortativity,

triads and preferential attachment as the building blocks for

Table 2 Comparing different

models with the collaboration

network of scientists from the

network science data

Model Nodes Edges Average path

length

Clustering

coefficient

Maximum node

degree

Network science 379 914 6.04 0.74 34

Zaidi et al. 364 935 4.7 0.65 34

Holme and Kim 379 757 4.86 0.77 42

Fu and Liao 379 744 4.03 0.01 31

Klemm and Eguiluz 379 755 9.08 0.5 33

Catanzaro et al. 379 898 2.42 0.58 197

Guillaume and Latapy 379 5,315 2.30 0.54 109

Bu et al. 379 755 3.05 0.37 80

Wang and Rong 379 943 4.32 0.37 14

Table 3 Comparing different

models with the collaboration

network of scientists from the

computational geometry data

* Could not be calculated due to

large size of networks

Model Nodes Edges Average path

length

Clustering

coefficient

Maximum node

degree

Geometry 3,621 9,461 5.31 0.53 102

Zaidi et al. 3,567 9,433 5.4 0.66 127

Holme and Kim 3,621 7,241 7.3 0.79 90

Fu and Liao 3,621 10,662 4.22 0.005 101

Klemm and Eguiluz 3,621 10,857 2.27 0.72 197

Catanzaro et al. 3,621 8,896 2.47 0.48 1,720

Guillaume and Latapy 3,621 528,499 * * 1,275

Bu et al. 3,621 10,856 3.13 0.24 607

Wang and Rong 3,621 10,828 4.6 0.10 30

Table 4 Comparing different

models with the Actor network

from the IMDB dataset

* Could not be calculated due to

large size of networks

Model Nodes Edges Average path

length

Clustering

coefficient

Maximum node

degree

Actor 7,640 277,029 2.94 0.87 1,271

Zaidi et al. 7,413 244,905 3.1 0.98 352

Holme and Kim 7,640 274,865 2.35 0.09 2,303

Fu and Liao 7,640 29,972 4.00 0.004 163

Klemm and Eguiluz 7,640 274,374 1.99 0.97 7,627

Catanzaro et al. 7,640 28,127 1.99 0.78 7,639

Guillaume and Latapy 7,640 2,378,281 * * 2,614

Bu et al. 7,640 274,935 1.99 0.83 12,151

Wang and Rong 7,640 273,355 3.28 0.94 83
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the structure of social networks. We use these concepts to

present a model to generate artificial social networks. We

evaluated a number of network generation models that

successfully generated small-world and scale-free networks

but fail to capture another important characteristic of real-

world network, i.e., the presence of community structures.

We compared the existing and the proposed network model

with real-world social networks using a number of statis-

tics. Results show that the proposed model indeed gener-

ates networks that have community structures and are

topologically similar to real-world networks as compared

to the other existing models that generate small-world and

scale-free networks. Moreover, we identified another

problem for the existing models, the scalability in terms of

node–edge density, where it is difficult to maintain the high

clustering coefficient and low average path length as net-

works of varying sizes are produced.

In this paper, we have focused on social networks and

effectively presented a model to generate networks having

small-world and scale-free behavior with communities. We

intend to extend our study to other types of networks such

as biological and technological networks to propose net-

work generation models for these types of networks as

well, incorporating several real-world networks.
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