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Abstract Given a social network, which of its nodes have

a stronger impact in determining its structure? More pre-

cisely, which node-removal order has the greatest impact

on the network structure? We approach this well-known

problem for the first time in a setting that combines both

web graphs and social networks. Our experiments are

performed on datasets that are of orders of magnitude

larger than those appearing in the previous literature: this is

possible, thanks to some recently developed algorithms and

software tools that approximate accurately the number of

reachable pairs and the distribution of distances in large

graphs. Our experiments highlight deep differences in the

structure of social networks and web graphs, show signif-

icant limitations of previous experimental results; at the

same time, they reveal clustering by label propagation as a

new and very effective way of locating nodes that are

important from a structural viewpoint.

Keywords Social networks � Graph mining � Clustering �
Graph centrality

1 Introduction

In the last years, there has been an ever-increasing research

activity in the study of real-world complex networks (the

world-wide web, the Internet autonomous-systems graph,

co-authorship graphs, phone-call graphs, email graphs and

biological networks, to cite but a few). These networks,

typically generated directly or indirectly by human activity

and interaction, appear in a large variety of contexts and

often exhibit a surprisingly similar structure. One of the

most important notions that researchers have been trying to

capture in these graphs is ‘‘node centrality’’: ideally, every

node (often representing an individual) has some degree of

influence or importance within the social domain under

consideration, and one expects such importance to be

reflected in the structure of the social network; centrality is

a quantitative measure that aims at revealing the impor-

tance of a node.

Among the types of centrality that have been considered

in the literature (Borgatti (2005) for a good survey), many

have to do with the shortest paths between nodes; for

example, the betweenness centrality of a node v is the sum,

over all pairs of nodes x and y, of the fraction of the

shortest paths from x to y passing through v. The role

played by the shortest paths is justified by one of the most

well-known features of complex networks: the so-called

small-world phenomenon.

A small-world network (Cohen and Havlin 2010) is a

graph where the average distance between nodes is loga-

rithmic in the size of the network, whereas the clustering

coefficient is larger (that is, neighbourhoods tend to be

denser) than in a random Erd}os-Rényi graph with the same

size and average distance.1 Here, and in the following, by

‘‘distance’’ we mean the length of the shortest path between

two nodes. The fact that the social networks (either elec-

tronically mediated or not) exhibit the small-world
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property is known at least since Milgram’s famous exper-

iment (Travers and Milgram 1969),2 and is arguably the

most popular of all features of complex networks.

Based on the above observation that the small-world

property is by far the most crucial of all the features that

the social networks exhibit, it is quite natural to consider

centrality measures that are based on node distance, like

betweenness. On the other hand, albeit interesting and

profound, such measures are often computationally very

expensive to be actually computed on real-world graphs.

For example, the best-known algorithm to compute

betweenness centrality (Brandes 2001) takes time O(nm)

and requires space for O(n ? m) integers (where n is the

number of nodes and m is the number of arcs): both bounds

are infeasible for large networks, where one can have n& 109

and m & 1011. For this reason, in most cases, other strictly

local measures of centrality are usually preferred (e.g., degree

centrality).

One of the ideas that have emerged in the literature is that

the node centrality can be evaluated based on how much the

removal of a node ‘‘disrupts’’ the graph structure (Albert et al.

2000). This idea provides also a notion of robustness of the

network: if removing few nodes has no noticeable impact,

then the network structure is clearly robust in a very strong

sense. On the other hand, a node-removal strategy that

quickly affects the distribution of distances probably reflects

an importance order of the nodes.

Previous literature has used mainly the diameter or some

analogous measure to establish whether the network

structure changed. Recently, though, there have been some

successful attempts to produce reliable estimates of the

neighbourhood function of very large graphs (Palmer et al.

2002; Boldi et al. 2011a), an immediate application of

these approximate algorithms is the computation of the

number of reachable pairs of the graph and its distance

distribution.3 The techniques used to compute distance

distributions can be actually adapted to compute quickly

and accurately a number of known measures (e.g., close-

ness centrality; Bavelas 1950) and of new ones. An

example of one such new measure is harmonic centrality

(Boldi and Vigna 2012b), defined on a node x by

hðxÞ ¼
X

y 6¼x

1

dðy; xÞ ;

that is, the sum of the reciprocals of all distances to the node;

this summation is extended to all y = x, with the proviso

that the infinite distances give a null contribution (i.e.,

11 ¼ 0). Harmonic centrality is actually proportional to the

reciprocal of the harmonic mean of the distances d(y, x), and

its definition was inspired by the notion of harmonic diam-

eter described by Marchiori and Latora (2000).

Harmonic centrality takes into account, in a natural way

at the same time, the average distance of x from the other

nodes and the number of nodes that can actually reach x.

Although an in-depth study of harmonic centrality is not an

immediate goal of this paper, we shall use it as a further

structural (global) information about a network.

The considerations above lead us to focus on the fol-

lowing kind of experiment. We consider a certain ordering

of the nodes of a graph (that is supposed to represent their

‘‘importance’’ or ‘‘centrality’’). We remove nodes (and of

course their incident arcs) following this order, until a

certain fraction 0 of the arcs have been deleted.4 At the

end, we compare the resulting graph with the original one,

to see how much they differ. The chosen ordering is con-

sidered to be a reliable measure of centrality if the mea-

sured difference increases rapidly with 0: it is sufficient to

delete a small fraction of important nodes to change the

structure of the graph. The comparison between the two

graphs (the original one and the one obtained after node

removal) is performed based on the number of reachable

pairs and on the distance distribution among them.

In this work, we applied the described approach to

various complex networks, considering different orderings,

and obtained the following results:

– In all complex networks we considered, the removal of

a limited fraction of randomly chosen nodes does not

change the distance distribution significantly, confirm-

ing previous results.

– In web graphs, URL depth (i.e., distance from the site

root) is a good measure of importance; removing

homepages largely disrupts the distance distribution.

– We tested strategies based on PageRank, clustering,

harmonic and betweenness centrality (see Sect. 4.1 for

more information about this), and showed that they (in

particular, the last three) disrupt quickly the structure of

a web graph.

– Maybe surprisingly, none of the above strategies seem

to have an impact when applied to social networks

2 It should be remarked that the Milgram’s experiment tried to prove

two properties at the same time. First, the average distance between

individuals is much smaller than expected; second, the individuals are

able to exploit such a feature to route messages along short paths,

albeit they only possess local information about the network they live

in. This second property is, in a sense, not only more interesting than

the former, but also more difficult to describe and study, because it

has to do with some information that the nodes possess about the

environment they inhabit.
3 A reachable pair is a pair of nodes hx; yi such that there is a directed

path from x to y; the distance distribution of a graph is a discrete

distribution that gives, for every t, the fraction of reachable pairs of

nodes that are at distance t.

4 Observe that we delete nodes but count the percentage of arcs

(rather than nodes) that have been removed: this choice is justified by

the fact that otherwise node orderings that put large-degree nodes first

would certainly be considered (unfairly) more disruptive.
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other than web graphs. This is yet another example of a

profound structural difference between web graphs and

social networks,5 on the same line as those discussed in

Boldi et al. (2011a) and Chierichetti et al. (2009). This

observation, in particular, suggests that the social

networks tend to be more robust and cohesive than

the web graphs, at least as far as distances are

concerned; moreover, they show that ‘‘scale-free’’

models, which are currently proposed for both type of

networks, do not to capture this important difference.

2 Related works

The idea of grasping information about the structure of a

network by repeatedly removing nodes out of it is not new:

Albert et al. (2000) study experimentally the variation of

the diameter on two different models of undirected random

graphs when nodes are removed either randomly or in

‘‘connectedness order’’ and report different behaviors.

They also perform tests on some small real dataset, and we

will compare their results with ours in Sect. 6.

More recently, node-centrality measures that look at

how some graph invariants change when some vertices or

edges are deleted (sometimes called ‘‘vitality’’ (Brandes

and Erlebach 2005b) or ‘‘induced’’ measures) have been

studied; for example; in Borgatti (2006) (identifying nodes

that maximally disconnect the network) or in Borgatti et al.

(2006) (related to the uncertainty of data).

Donato et al. (2008) study how the size of the giant

component changes when nodes of high indegree or out-

degree are removed from the graph. While this is an

interesting measure, it does not provide information about

what happens outside the component.

Finally, Fogaras (2003) considers how the harmonic

diameter6 (the harmonic mean of the distances) changes as

nodes are deleted from a small (\1 million node) snapshot

of the .ie domain, reporting a large increase (100 %) when

as little as 1,000 nodes with high PageRank are removed.

The harmonic diameter is estimated by a small number of

visits, however, which gives no statistical guarantee on the

accuracy of the results.

Our study is very different. First of all, we use graphs

that are of two orders of magnitude larger than those

considered in (Albert et al. 2000) or (Fogaras 2003);

moreover, we study the impact of node removal on the

whole spectrum of distances. Second, we apply the

removal procedures to large social networks (previous lit-

erature used only web or Internet graphs), and the striking

difference in behavior shows that ‘‘scale-free’’ models fail

to capture essential differences between these kind of

networks and web graphs. Third, we document in a

reproducible way all our experiments, which have provable

statistical accuracy.

3 Computing the distance distribution

Given a directed graph G, its neighbourhood function NG

(t) gives for each t 2 N the number of pairs of nodes hx; yi
such that the y is reachable from x in no more than t steps.

From the neighbourhood function, several interesting fea-

tures of a graph can be estimated; in this paper, we are

especially interested in the distance distribution of the

graph G, represented by the cumulative distribution func-

tion HG (t): this distribution gives the fraction of reachable

pairs at distance at most t, that is, HG(t) = NG(t)/maxt

NG(t). The corresponding probability-density function will

be denoted by hG(-). Clearly, the distance distribution

contains a big deal of global information about the graph:

graph density, average shortest-path length, diameter and

effective diameter, and so on can all be obtained from the

distance distribution.

Palmer et al. (2002) proposed an algorithm to approxi-

mate the neighbourhood function, named ANF; the authors

distribute an associated tool, snap, which can approximate

the neighbourhood function of medium-sized graphs.

Before ANF, essentially no data-mining tool was able to

approximate the neighbourhood function of large graphs

reliably. A remarkable exception is Cohen’s work (Cohen

1997), which provides strong theoretical guarantees but

experimentally turns out to be not as scalable as the ANF

approach; it is worth noting, though, that one of the pro-

posed applications (On-line estimation of weights of

growing sets) of (Cohen 1997) is structurally identical to

ANF.

Recently, HyperANF (Boldi et al. 2011a) emerged as an

evolution of ANF. HyperANF can compute for the first

time in a few hours the neighbourhood function of graphs

with billions of nodes with a small error and good confi-

dence using a standard workstation. HyperANF keeps track

of the number of nodes reachable from each node using

HyperLogLog counters (Flajolet et al. 2007), a kind of

5 We remark that several proposals have been made to find features

that highlight such structural differences in a computationwise-

feasible way (e.g., assortative mixing (Newman and Park 2003)), but

all instances we are aware of have been questioned by the subsequent

literature, so no clear-cut results are known so far. An exception is the

idea of considering the spid [shortest-path index of dispersion (Boldi

et al. 2011a)], which is experimentally larger than the one for web

graphs and smaller than the one for social networks. For instance, the

spid of the entire Facebook graph is 0.09 (Backstrom et al. 2012).
6 Actually, the notion had been introduced before by Marchiori and

Latora (2000) and named connectivity length, but we find the name

‘‘harmonic diameter’’ much more insightful.
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sketch that makes it possible to compute the number of

distinct elements of a stream in very little space; such

counters can be thought as dictionaries that can answer just

questions about size: the answer is probabilistic and

depends on a random seed that is chosen independently for

each run. Each counter is made of a number of small

registers, and the precision of the answer depends on the

number of registers.

The free availability of HyperANF opens new and

interesting ways to study large graphs, of which this paper

is an example. HyperANF was also successfully employed

in the first world-scale social-network graph-distance

computations, using the entire Facebook network of active

users (&721 million users, &69 billion friendship links),

determining an average distance of 4.74 (Backstrom et al.

2012).

4 Removal strategies and their analysis

In the previous section, we discussed how we can effec-

tively approximate the distance distribution of a given

graph G; we shall use such a distribution as the graph

structural property of interest.

Consider some total order �; on the nodes of G; we

think of � as a removal strategy in the following sense:

when we want to remove 0m arcs, we start removing the

�-largest node (and its incident arcs), go on removing the

second-�-largest node, etc., and stop as soon as C 0m arcs

have been removed. The resulting graph will be denoted by

Gð�; #Þ: Of course, Gð�; 0Þ ¼ G whereas Gð�; 1Þ is the

empty graph. We are interested in measuring how different

Gð�; #Þ is from G: looking at how this measure of dif-

ference changes when 0 varies, we can judge the ability of

� to identify nodes that will disrupt the network. The

measures of difference we shall consider are all based on

global properties. In particular, we will consider the fol-

lowing differences: (a) the change in the fraction of

reachable pairs; (b) the divergence7 between the distribu-

tion HG and the distribution HGð�;#Þ:

4.1 Some removal strategies

We considered several different strategies for removing

nodes from a graph. Some of them embody actually sig-

nificant knowledge about the structure of the graph,

whereas others are very simple (or even independent of the

graph) and will be used as baseline. Some of them have

been proposed in the previous literature, and will be useful

to compare our results.

As a first observation, some strategies requires a sym-

metric (a.k.a. undirected) graph: in this case, we symmet-

rise the graph by adding the missing arcs8 The second

obvious observation is that some strategies might depend

on available metadata (e.g., URLs for web graphs) and do

not make sense for all graphs.

Random No strategy: we pick random nodes and remove

them from the graph. It is important to test against this

‘‘nonstrategy’’ as we can show that the phenomena we

observe are due to the peculiar choice of nodes involved,

and not to some generic property of the graph.

Largest-degree first We remove nodes in decreasing

(out- or in-)degree order. This strategy is an obvious

baseline, as degree centrality is the first shot at centrality in

a network.

Near-root In web graphs, we can assume that nodes that

are roots of websites and their (quasi-)immediate succes-

sors (e.g., pages linked by the root) are most important in

establishing the distance distribution, as people tend to link

higher levels of websites. This strategy removes essentially

root nodes first, then the nodes that are children of a root

on, and so on.

PageRank PageRank (Page et al. 1998) is a well-known

algorithm that assigns ranks to nodes using a Markov chain

obtained from the graph. It has been designed as an

improvement over degree centrality, because nodes with

high degree which, however, are connected to nodes of low

rank will have a rather low rank (the definition is indeed

recursive). There is a vast body of literature on the subject

see Boldi et al. (2009) and Langville and Meyer (2004),

and the references therein.

Label propagation Label propagation (Raghavan et al.

2007) is a powerful technique for clustering symmetric

graphs.9 Each node has a label (initially, the node number

itself) and through a number of rounds, each node changes

its label by taking the label of the majority of its neigh-

bours. At the end, node labels are used as cluster identifiers.

Our removal strategy picks first, for each cluster in

decreasing size order, the node with the highest number of

neighbours in other clusters: intuitively, it is a representa-

tive of a set of tightly connected nodes (the cluster) which,

however, has a very significant connection with the outside

world (the other clusters) and, thus, we expect that its

removal should seriously disrupt the distance distribution.

7 We purposely use the word ‘‘divergence’’ between distributions,

instead of ‘‘distance’’, to avoid confusion with the notion of distance

in a graph.

8 It is mostly a matter of taste whether to use directed symmetric

graphs or simple undirected graphs. In our case, since we have to cope

with both directed and undirected graph, we prefer to speak of

directed graphs that are symmetric, that is, for every arc x? y, there is

a symmetric arc y? x.
9 Label propagation has been independently proposed under the name

of peer pressure clustering by Gilbert et al. (2007).
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Once we have removed all such nodes, we proceed again,

cluster by cluster, using the same criterion (thus, picking

the second node of each cluster that has more connection

toward other clusters), and so on.

Betweenness centrality The betweenness centrality

(Anthonisse 1971; Freeman 1977) of a node v is the sum, over

all pairs of nodes x and y, of the fraction of shortest paths from

x to y passing through v. Betweenness centrality is difficult to

compute, as it requires [using the algorithm described by

Brandes (2001)] n breadth-first visits. We used a highly

parallel implementation of Brandes’ algorithm which

enabled us to compute betweenness centrality on our two

smallest examples (a social network and a web graph).10

Harmonic centrality Finally, we can employ harmonic

centrality (Boldi and Vigna 2012b) as a removal strategy,

removing the nodes with the largest centrality first. We recall

that the harmonic centrality of a node x is the sum of the

reciprocals of the distances between every other node y and x.

4.2 Measures of divergence

Once we changed the structure of a graph by deleting some

of its nodes (and arcs), there are several ways to measure

whether the structure of the graph has significantly chan-

ged. The first, basic raw datum we consider is the change in

the number of pairs of nodes that are still reachable.

Then, we observe the change in the shape of the distance

distribution (comparing the distribution in the modified

graph with one of the original graph). In the top row of

Figs. 1 and 2, we show how the distribution changes for

four different graphs (described in Sect. 5) using the label-

propagation strategy; the figure presents the probability

mass function of the distance distribution for different

values of 0. The reader can see that, for web graphs, the

distribution changes shape and its mode moves to the right

(witnessing the fact that shortest paths tend to get longer as

we keep removing arcs), and at some point (when 0 C 0.2),

the change in shape is radical and the distribution has

virtually no relation with the original one. The phenome-

non is much less evident on social networks.

To compare quantitatively two distributions, we consid-

ered various measure of divergence; in particular, we con-

sidered the following possibilities (here, P denotes the

original distance distribution, and Q the distribution after

node removal):

Relative average-distance change This is somehow the

simplest and most natural measure: how much has the

average distance between reachable pairs changed? We use

the measure

dðP;QÞ ¼
lQ

lP

� 1

where l denotes the average; in other words, we measure

how much the average value changed. This measure is non-

symmetric, but it is of course easy to obtain d(P, Q) from

d(Q, P).

Relative harmonic-diameter change This measure is

analogous to the relative average-distance change, but the

average on distances is harmonic and computed on all

pairs, that is:

nðn� 1ÞP
x 6¼y

1
dðx;yÞ

¼ nðn� 1Þ
�X

t [ 0

1

t
ðNGðtÞ � NGðt � 1ÞÞ;

where n is the number of nodes of the graph. This measure,

proposed by Marchiori and Latora (2000) and used by

Fogaras (2003), includes reachability information, as

unreachable pairs contribute zero to the sum. It is easily

computable from the neighbourhood function, as shown

above.

‘ norms. A further alternative is given by viewing dis-

tance distributions as functions N! ½0. . .1� and measure

their distance using some ‘-norm, most notably ‘1 or ‘2.

Such distances are of course symmetric.

We tested these divergences with various graphs and

removal strategies, to understand how the choice of dis-

tribution divergence influences the interpretation of the

results obtained. In the bottom rows of Figs. 1 and 2, we

plot the outcomes, but the results are consistent in all the

cases we tested. Note that the figures for divergences in

web graph had to be split into two, because the range of the

change in harmonic diameter is much wider than any other

measure.

We strive for a measure that increases monotonically as

more and more nodes are removed from the network. This

is a somehow basic requirement—a measure that fluctuates

when we try to increasingly disconnect a network is not

measuring what we are interested in. Moreover, we expect

the range of the measure to be related to the strength of the

change.

Most of the times, all measures agree (apart for obvious

scale factors), at least for 0\ 0.2. Note that in some cases

(e.g., the Hollywood graph), the range of variation is within

the precision of our approximate computation: in this case,

observing fluctuations is normal. Nonetheless, there are a

number of obvious pathological behaviors suggesting that a

number of measures do not satisfy our criteria.

Change of the fraction of reachable pairs In the case of

the social network orkut-2007, then the number of

reachable pairs is essentially unchanged even when

0 = 0.3; nonetheless, the structure of the network has

changed, as the increase in average distance shows.

10 There are sampled variants of Brandes’s algorithm (Brandes and

Erlebach 2005a), but the Hoeffding bound providing precision guar-

antees requires Hðn4 log n=e2Þ visits to obtain absolute precision e:
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Relative average-distance change In the case of the web

graph in-2004, when 0 gets large we observe that the the d
average distance decreases; this apparently strange phe-

nomenon has a rather simple explanation: the shortest paths

get longer at the beginning due to the removal of arcs, but

when the percentage of removed arcs becomes very large,

the graph becomes more disconnected, and existing

shortest paths start getting shorter. This fact (see also Boldi

and Vigna 2012a) suggest that this measure is not useful

when networks get significantly disconnected.

‘ norms The ‘2 norm has a very small variation on the

web graph uk-2007-05, in spite of a significant variation of

the average distance and of a large variation of the number

of reachable pairs; finally, the ‘1 norm has essentially the

same range of variation for uk-2007-05 and orkut-2007,

even if the changes in the first network are much more

significant.

All in all, we conclude that the change in harmonic

diameter is the most reliable measure of connectness of a

network, confirming the intuition of Marchiori and Latora

(2000). While analyzing single aspect (fraction of reach-

able pairs, etc.) is obviously useful to understand changes

at a finer level of detail, the harmonic diameter provides a

compact representation of the changes in the structure of

the network that keeps track both of disconnection and of

changes in the distance distribution.

5 Experiments

For our experiments, we considered a number of networks

with various sizes and characteristics; most of them are

either web graphs or (directed or undirected) social graphs

of some kind (note that for web graphs, we can rely on the
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Fig. 1 Testing various

divergence measures on two

web graphs under the label-

propagation strategy: in the left

column, a small 2004 snapshot

of the .in domain, and in the

right column a larger 2007

snapshot of the .uk domain.

At the top, we show how the

distance distribution changes for

different values of 0; then, we

show the behavior of all

divergence measures, except for

the change in harmonic

diameter; finally, at the bottom,

we show all divergences

measures
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URLs as external source of information). In this paper, we

are going to present the results about the following

datasets:11

– Hollywood (1,985,306 nodes, 114,492,816 undirected

edges): One of the most popular undirected social

graphs, the graph of movie actors: vertices are actors,

and two actors are joined by an edge whenever they

appeared in a movie together.

– LiveJournal (5,363,260 nodes, 79,023,142 directed

arcs): LiveJournal is a virtual community social site

started in 1999: nodes are users and there is an arc from

x to y if x registered y among his friends (it is not

necessary to ask y permission, so the graph is directed).

We considered the same 2008 snapshot of LiveJournal

used by Chierichetti et al. (2009) for their experiments.

– Orkut (3,072,626 nodes, 117,185,083 undirected

edges): Orkut was a social networking and discussion

site operated by Google. This snapshot is a part of the

IMC 2007 Data Sets (Mislove et al. 2007).

– For comparison, we considered two web graphs of

different size: a small 2004 snapshot of the .in domain

(&1.3 million nodes), and a snapshot taken in May

2007 of the .uk domain (&100-million nodes).

We remark that all our graphs are available at the LAW

website.12 HyperANF is available as free software at the

WebGraph website,13 and the class RemoveHubs that has

been used to perform the experiments we describe is part of

the LAW software.

We applied our removal strategies with different impact

levels 0 (i.e., percentage of removed arcs), namely 0.05,

0.1, 0.15, 0.2 and 0.3. For each level, we ran HyperANF at

least ten times using 1,024 registers per counter for all

networks (except .uk, for which we used 512-register

counters due to its large size); this setting guarantees that

the HyperANF estimates the number of nodes at any given

distance with a relative standard deviation that never

exceeds 1.45 %.

Tables 1, 2 and 3 show how the harmonic diameter,

average distance and percentage of reachable pairs change

for the different datasets and strategies considered. In the

tables, we are reporting the jackknife (Efron and Gong

1983) estimate of derived values (such as average distances

or harmonic diameter) and the associated estimation of the
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Fig. 2 Testing various

divergence measures on two

social networks under the label-

propagation strategy: in the left

column, a 2007 snapshot of the

Orkut social network, and in the

right column a 2011 snapshot of

the Hollywood co-starring

network. At the top, we show

how the distance distribution

changes for different values of

0; then, we show the behavior

of all divergence measures

11 In Boldi et al. (2011b), we also presented the outcomes of similar

experiments performed on other networks (Amazon, Enron and .it)

that agree with the ones shown here. Our tables and graphs slightly

differ from those previously published in (Boldi et al. 2011b),

because we had time to generate more runs, and thus, increase the

precision of our results.

12 http://law.di.unimi.it/. In particular, the graphs we used are the

datasets named hollywood-2011, ljournal-2008, orkut-2007, in-2004

and uk-2007-05. Note that isolated nodes have been removed from

hollywood-2011.
13 http://webgraph.di.unimi.it/.
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standard error. Observe that the latter (that we may

consider as a measurement error) is essentially negligible,

and will, therefore, be ignored when data are being

compared.

The relative change in the harmonic diameter is shown

in Table 4; the same values for two of the datasets are

plotted in Fig. 3, along with the relative average-distance

change and the percentage of reachable pairs.

6 Discussion

Let us start our discussion by looking at Table 2 showing

the average distance: as we anticipated in Sect. 4.2, we

observe almost always that this quantity increases with

0 (because deleting arcs tends to make the shortest paths

longer); sometimes, though, (especially when 0 is large and

‘‘good’’ strategies like LP are used) there is a drop, due to

the fact that some pairs become disconnected, hence, par-

adoxically reducing the average distance. This fact is better

understood if one compares Table 2 with Table 3, which

shows the percentage of reachable pairs.

Table 1, reporting the harmonic diameter, is our main

source of information: here, the two effects (disconnection

and change of distribution) are combined, and we observe a

constant increase in the harmonic diameters for all strate-

gies and all 0; note how dramatic this increase appears to

be in some cases. The changes are better read in Table 4

that reports the d between the harmonic diameter in the

modified graph and the original one.

Table 1 For each graph and fractions of removed arcs, we show the harmonic diameter along with the estimation of the standard error in the

measurement obtained by the jackknife. PR stands for PageRank, HC for harmonic centrality and LP for label propagation

Graph Strategy 0.05 0.1 0.15 0.2 0.3

Hollywood 4.05 (±0.04) Random 4.08 (±0.03) 4.11 (±0.04) 4.12 (±0.04) 4.05 (±0.03) 4.23 (±0.04)

Degree 4.08 (±0.03) 4.12 (±0.04) 4.20 (±0.04) 4.24 (±0.04) 4.40 (±0.04)

PR 4.14 (±0.05) 4.17 (±0.04) 4.22 (±0.04) 4.25 (±0.04) 4.47 (±0.03)

HC 4.08 (±0.04) 4.20 (±0.03) 4.23 (±0.04) 4.32 (±0.05) 4.60 (±0.05)

LP 3.73 (±0.05) 3.58 (±0.03) 3.63 (±0.03) 3.75 (±0.03) 3.76 (±0.03)

Betweeness 4.10 (±0.04) 4.20 (±0.03) 4.30 (±0.03) 4.42 (±0.03) 4.58 (±0.05)

LiveJourna 7.36 (±0.07) Random 7.54 (±0.06) 7.76 (±0.07) 7.92 (±0.07) 8.14 (±0.07) 8.29 (±0.05)

Indegree 7.53 (±0.10) 7.74 (±0.07) 7.90 (±0.06) 7.97 (±0.09) 8.67 (±0.06)

Outdegree 7.50 (±0.04) 7.76 (±0.11) 7.92 (±0.06) 8.27 (±0.06) 8.57 (±0.08)

PR 7.61 (±0.05) 7.95 (±0.07) 8.22 (±0.06) 8.61 (±0.05) 9.32 (±0.13)

HC 7.69 (±0.08) 8.00 (±0.05) 8.33 (±0.09) 8.72 (±0.11) 9.63 (±0.11)

LP 7.49 (±0.05) 7.39 (±0.06) 7.27 (±0.08) 7.23 (±0.06) 7.68 (±0.06)

Orkut 4.06 (±0.01) Random 4.07 (±0.04) 4.09 (±0.03) 4.10 (±0.04) 4.13 (±0.02) 4.24 (±0.04)

Degree 4.21 (±0.04) 4.33 (±0.04) 4.36 (±0.02) 4.39 (±0.05) 4.61 (±0.04)

PR 4.24 (±0.05) 4.36 (±0.06) 4.51 (±0.04) 4.64 (±0.05) 4.80 (±0.04)

HC 4.28 (±0.05) 4.36 (±0.04) 4.40 (±0.04) 4.51 (±0.03) 4.68 (±0.03)

LP 4.29 (±0.03) 4.39 (±0.03) 4.57 (±0.04) 4.76 (±0.03) 4.98 (±0.06)

.in 32.26 (±0.24) Random 36.53 (±0.33) 39.59 (±0.38) 45.57 (±0.43) 54.62 (±0.35) 75.22 (±0.76)

Indegree 38.44 (±0.51) 47.03 (±0.40) 57.74 (±0.30) 68.21 (±0.54) 87.68 (±0.78)

Outdegree 36.85 (±0.29) 37.82 (±0.16) 37.99 (±0.42) 38.38 (±0.37) 50.91 (±0.38)

Near-Root 181.18 (±1.77) 239.18 (±2.02) 284.04 (±2.26) 352.80 (±2.78) 1,021.47 (±3.91)

PR 44.61 (±0.22) 58.16 (±0.45) 82.81 (±0.90) 130.36 (±1.47) 330.23 (±2.61)

HC 73.40 (±0.69) 143.56 (±0.70) 357.12 (±2.26) 941.41 (±6.21) 1,475.91 (±5.02)

LP 93.03 (±0.62) 469.13 (±4.68) 1,012.98 (±5.88) 1,844.96 (±3.85) 2,124.97 (±5.25)

Betweeness 263.90 (±2.18) 3,125.36 (±6.75) 6,222.17 (±13.35) 8,966.32 (±18.09) 15,073.35 (±18.78)

.uk 22.78 (±0.24) Random 24.43 (±0.20) 26.37 (±0.37) 28.24 (±0.32) 31.01 (±0.47) 36.13 (±0.46)

Indegree 25.40 (±0.57) 27.89 (±0.30) 30.76 (±0.40) 33.27 (±0.37) 45.65 (±0.49)

Outdegree 23.28 (±0.33) 23.91 (±0.36) 24.30 (±0.37) 25.07 (±0.39) 28.13 (±0.41)

Near-Root 55.22 (±0.59) 55.73 (±0.95) 59.68 (±1.21) 64.67 (±0.89) 80.44 (±1.06)

PR 30.29 (±0.35) 36.39 (±0.43) 44.22 (±0.46) 50.92 (±0.55) 73.04 (±0.94)

HC 30.27 (±0.40) 41.00 (±0.54) 57.89 (±0.46) 90.89 (±1.10) 240.90 (±1.84)

LP 66.71 (±0.97) 106.75 (±1.27) 148.26 (±2.40) 214.12 (±2.00) 503.89 (±7.97)
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A first, clear remark that all these data consistently show

is that the social networks suffer spectacularly less dis-

connection than the web graphs when their nodes are

removed using our strategies (see Fig. 4). Our two most

efficient removal strategies, label propagation and

betweenness, can disconnect almost all pairs of a web

graph by removing less than 20 % of the arcs, whereas they

does not affect much the percentage of reachable pairs on

social networks. This entirely different behavior shows that

the web graphs have a path structure that passes through

fundamental hubs, something that does not seem to take

place in social networks.

Moreover, the harmonic diameter of web graphs we

consider can almost be doubled by removing only 5 % of

the arcs, and increases by as much as 60 times upon the

removal of 30 % of the arcs. In most social networks, there

is just an increase of a few percents (in any case, always

less than 6 %).14 This is also very clear looking at Fig. 3.

Note that random removal can separate a good number

of reachable pairs (Table 3), but the increase in average

distance is very marginal (Table 2). This shows again that

considering both measures is important in evaluating

removal strategies.

Of course, we cannot state that there is no strategy able

to disrupt social networks as much as a web graph (simply

Table 2 For each graph and fractions of removed arcs, we show the average distance along with the standard error in the measurement obtained

by the jackknife. PR, HC and LP have the same meaning as in Table 1

Graph Strategy 0.05 0.1 0.15 0.2 0.3

Hollywood 3.92 (±0.00) Random 3.92 (±0.01) 3.94 (±0.00) 3.95 (±0.01) 3.96 (±0.01) 3.97 (±0.01)

Degree 3.97 (±0.01) 4.02 (±0.01) 4.06 (±0.00) 4.12 (±0.00) 4.23 (±0.00)

PR 3.99 (±0.01) 4.03 (±0.01) 4.10 (±0.00) 4.15 (±0.01) 4.26 (±0.00)

HC 3.99 (±0.00) 4.04 (±0.01) 4.09 (±0.01) 4.16 (±0.00) 4.31 (±0.01)

LP 3.76 (±0.00) 3.72 (±0.00) 3.75 (±0.01) 3.81 (±0.01) 3.80 (±0.01)

Betweenness 4.02 (±0.00) 4.11 (±0.01) 4.18 (±0.00) 4.24 (±0.01) 4.44 (±0.01)

LiveJournal 5.99 (±0.01) Random 6.02 (±0.01) 6.01 (±0.01) 6.04 (±0.01) 6.06 (±0.01) 6.12 (±0.01)

Indegree 6.05 (±0.01) 6.15 (±0.01) 6.23 (±0.01) 6.32 (±0.01) 6.55 (±0.01)

Outdegree 6.10 (±0.01) 6.17 (±0.01) 6.27 (±0.01) 6.36 (±0.01) 6.60 (±0.01)

PR 6.10 (±0.01) 6.23 (±0.01) 6.36 (±0.01) 6.50 (±0.01) 6.87 (±0.01)

HC 6.19 (±0.01) 6.35 (±0.01) 6.49 (±0.01) 6.66 (±0.01) 7.05 (±0.01)

LP 5.86 (±0.00) 5.82 (±0.00) 5.82 (±0.00) 5.85 (±0.01) 6.03 (±0.01)

Orkut 4.21 (±0.00) Random 4.22 (±0.00) 4.24 (±0.00) 4.25 (±0.00) 4.27 (±0.00) 4.31 (±0.01)

Degree 4.38 (±0.01) 4.43 (±0.00) 4.47 (±0.00) 4.53 (±0.01) 4.67 (±0.01)

PR 4.40 (±0.00) 4.51 (±0.01) 4.57 (±0.00) 4.62 (±0.00) 4.75 (±0.01)

HC 4.39 (±0.00) 4.47 (±0.01) 4.53 (±0.01) 4.59 (±0.01) 4.74 (±0.01)

LP 4.44 (±0.00) 4.60 (±0.00) 4.74 (±0.01) 4.87 (±0.01) 5.16 (±0.01)

.in 15.34 (±0.04) Random 15.20 (±0.03) 15.57 (±0.04) 15.64 (±0.03) 15.46 (±0.04) 15.96 (±0.03)

Indegree 15.78 (±0.02) 16.11 (±0.03) 16.92 (±0.04) 16.99 (±0.04) 18.98 (±0.27)

Outdegree 17.69 (±0.06) 18.48 (±0.15) 18.62 (±0.34) 18.32 (±0.22) 19.33 (±0.20)

Near-Root 22.99 (±0.07) 22.82 (±0.04) 23.01 (±0.05) 23.44 (±0.05) 15.94 (±0.05)

PR 16.17 (±0.04) 16.50 (±0.06) 17.93 (±0.04) 20.98 (±0.26) 32.45 (±0.76)

HC 21.95 (±0.05) 26.22 (±0.10) 27.44 (±0.08) 38.55 (±0.32) 13.66 (±0.04)

LP 19.10 (±0.36) 22.39 (±0.06) 19.53 (±0.07) 13.95 (±0.13) 7.86 (±0.02)

Betweeness 28.04 (±0.09) 26.40 (±0.08) 29.94 (±0.25) 42.02 (±0.38) 71.37 (±0.64)

.uk 15.42 (±0.04) Random 15.66 (±0.03) 15.80 (±0.04) 16.05 (±0.03) 16.21 (±0.06) 16.62 (±0.04)

Indegree 16.15 (±0.07) 16.41 (±0.03) 16.76 (±0.12) 17.11 (±0.05) 18.06 (±0.05)

Outdegree 15.59 (±0.08) 15.54 (±0.04) 15.94 (±0.17) 15.95 (±0.05) 16.98 (±0.07)

Near-Root 18.93 (±0.04) 19.03 (±0.09) 19.16 (±0.05) 20.87 (±1.08) 18.74 (±0.15)

PR 16.49 (±0.05) 17.05 (±0.03) 17.66 (±0.11) 18.14 (±0.06) 19.40 (±0.05)

HC 18.38 (±0.04) 20.86 (±0.05) 23.63 (±0.09) 27.11 (±0.09) 36.09 (±0.48)

LP 18.73 (±0.03) 20.55 (±0.09) 21.22 (±0.04) 22.13 (±0.03) 25.74 (±0.07)

14 We remark that in some cases, the measure is negative or does not

decrease monotonically. This is sometimes an artifact of the

probabilistic technique used to estimate our measures—small relative

errors are unavoidable.
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because, this strategy may be different from the ones that

we considered), but the fact that all strategies work very

similarly in both cases (e.g., label propagation is by far the

most disruptive strategy) suggests that the phenomenon is

intrinsic.

There is a candidate easy explanation: the shortest paths

in web graphs pass frequently through home pages, which

are linked more than other pages. But this explanation does

not take into account the fact that clustering by label

propagation and betweenness centrality are significantly

more effective than the Near-root removal strategy. Rather,

it appears that there are fundamental hubs (not necessarily

home pages) which act as shortcuts and through which a

large number of the shortest paths pass. Label propagation

and betweenness centrality are able to identify such hubs,

and their removal results in an almost disconnected graph

and in a very significant increase in average distance.

These hubs are not necessarily of high in- or out-degree:

quite the opposite, rather, is true. The behavior of web

graphs under the largest-degree strategy is illuminating: we

obtain a small reduction in reachable pairs, an almost

unnoticeable change of the average distance and a very

marginal one for the harmonic diameter: all these facts

together suggest that nodes of high degree are not actually

so relevant for the global structure of the network.

Social networks are much more resistant to node

removal. There is no strict clustering or definite hubs,

which can be used to eliminate or elongate the shortest

paths. This is perhaps explainable since networks emerging

from social interaction are much less engineered (there is

Table 3 For each graph and fractions of removed arcs, we show the percentage of reachable pairs along with the standard error in the

measurement obtained by the jackknife. PR, HC and LP have the same meaning as in Table 1

Graph Strategy 0.05 0.1 0.15 0.2 0.3

Hollywood 92.92 (±1.01) Random 92.44 (±0.67) 92.01 (±1.05) 92.13 (±1.00) 94.06 (±0.85) 90.11 (±0.96)

Degree 93.63 (±0.81) 93.84 (±0.90) 93.18 (±0.97) 93.54 (±0.99) 92.79 (±0.76)

PR 92.57 (±1.11) 93.09 (±1.00) 93.62 (±0.95) 94.01 (±1.07) 92.08 (±0.75)

HC 94.07 (±0.93) 92.71 (±0.65) 93.38 (±0.87) 93.01 (±1.16) 90.50 (±1.03)

LP 97.28 (±1.32) 100.26 (±0.90) 99.39 (±0.99) 97.22 (±0.80) 96.12 (±0.75)

Betweenness 94.51 (±0.93) 94.08 (±0.80) 93.39 (±0.71) 92.33 (±0.61) 93.17 (±1.18)

LiveJournal 78.62 (±0.78) Random 77.00 (±0.68) 74.77 (±0.67) 73.62 (±0.73) 71.90 (±0.69) 71.25 (±0.51)

Indegree 77.71 (±1.19) 76.76 (±0.74) 76.35 (±0.62) 76.74 (±0.92) 73.25 (±0.53)

Outdegree 78.57 (±0.50) 76.86 (±1.18) 76.58 (±0.65) 74.41 (±0.62) 74.53 (±0.70)

PR 77.55 (±0.57) 75.79 (±0.71) 74.88 (±0.65) 73.12 (±0.43) 71.48 (±1.06)

HC 77.85 (±0.85) 76.70 (±0.58) 75.49 (±0.89) 74.06 (±1.01) 70.94 (±0.84)

LP 75.74 (±0.57) 76.21 (±0.70) 77.56 (±0.92) 78.38 (±0.76) 75.88 (±0.71)

Orkut 100.00 (±0.29) Random 100.13 (±1.05) 100.12 (±0.71) 100.12 (±0.93) 99.74 (±0.59) 97.96 (±1.12)

Degree 100.84 (±1.05) 99.35 (±1.04) 99.53 (±0.59) 100.16 (±1.34) 98.31 (±0.99)

PR 100.52 (±1.27) 100.15 (±1.42) 98.09 (±0.91) 96.44 (±1.12) 95.78 (±0.83)

HC 99.28 (±1.15) 99.10 (±1.09) 99.72 (±1.01) 98.61 (±0.85) 97.84 (±0.82)

LP 99.87 (±0.79) 100.82 (±0.87) 99.43 (±0.96) 97.48 (±0.67) 97.80 (±1.31)

.in 43.30 (±0.39) Random 37.88 (±0.39) 35.43 (±0.37) 30.77 (±0.31) 25.55 (±0.18) 18.90 (±0.22)

Indegree 37.26 (±0.52) 30.96 (±0.31) 26.49 (±0.14) 22.60 (±0.21) 18.62 (±0.21)

Outdegree 38.53 (±0.33) 37.73 (±0.18) 37.57 (±0.42) 37.10 (±0.32) 28.98 (±0.26)

Near-Root 10.46 (±0.13) 7.75 (±0.08) 6.42 (±0.06) 5.01 (±0.05) 0.91 (±0.01)

PR 32.60 (±0.19) 25.62 (±0.23) 19.48 (±0.23) 13.46 (±0.17) 6.34 (±0.07)

HC 26.46 (±0.31) 15.53 (±0.09) 6.07 (±0.05) 2.00 (±0.02) 0.64 (±0.00)

LP 16.55 (±0.14) 3.50 (±0.05) 1.23 (±0.01) 0.39 (±0.00) 0.24 (±0.00)

Betweenness 8.79 (±0.10) 0.34 (±0.00) 0.10 (±0.00) 0.05 (±0.00) 0.03 (±0.00)

.uk 63.55 (±0.74) Random 60.09 (±0.54) 56.08 (±0.87) 53.08 (±0.68) 48.71 (±0.85) 42.78 (±0.60)

Indegree 59.54 (±1.52) 55.10 (±0.65) 50.67 (±0.65) 48.00 (±0.63) 36.67 (±0.42)

Outdegree 62.52 (±0.97) 60.92 (±0.94) 60.35 (±0.95) 59.17 (±0.97) 54.41 (±0.82)

Near-Root 31.28 (±0.38) 31.09 (±0.59) 28.74 (±0.63) 26.76 (±0.39) 21.16 (±0.32)

PR 50.83 (±0.65) 43.61 (±0.50) 36.85 (±0.43) 33.01 (±0.39) 24.56 (±0.36)

HC 57.28 (±0.86) 47.93 (±0.70) 38.19 (±0.41) 27.67 (±0.40) 13.15 (±0.13)

LP 25.79 (±0.39) 17.29 (±0.24) 12.85 (±0.23) 9.25 (±0.09) 4.45 (±0.08)
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no notion of ‘‘site’’ or ‘‘page hierarchy’’, for example) than

web graphs.

Comparing the strategies with one another, it seems

clear that the more powerful are label propagation and

betweenness (and, for web graphs, also Near-root), with

harmonic centrality as a close contender. For small values

of 0, Near-root, when applicable, is very effective, but it is

soon overtaken by harmonic centrality, label propagation

and betweenness, the latter being by far the most powerful

altogether. This shows that while the removal of root,

pages has an initial powerful effect, removing pages at

higher levels has no longer a significant impact.

How are the rankings provided by the best techniques

correlated? Surprisingly, very little. We computed

Kendall’s s (Kendall 1945) on the rankings given by Near-

root order, label propagation, harmonic centrality and

betweenness centrality on the .in snapshot and on the

Hollywood graph. The absolute value of s is always below

0.12 (almost complete uncorrelation), the only exception

being a value of 0.39, when comparing harmonic and

betweenness centrality on the Hollywood graph.

It is interesting to compare our results with those in the

previous literature. With respect to (Albert et al. 2000), we

tested much larger networks. We can confirm that the

random removal is less effective than the rank-based

removal, but clearly the variation in diameter measured in

(Albert et al. 2000) has been made on a symmetrized ver-

sion of the web graph. Symmetrization destroys much of

the structure of the network, and it is difficult to justify

(you cannot navigate links backwards). We have evaluated

our experiment using the variation in the diameter instead

of the variation in average distance (not shown here), but

Table 4 For each graph and

fractions of removed arcs, we

show the relative harmonic

diameter change (the d measure

between the harmonic diameter

in the modified graph and the

original one). PR, HC and LP

have the same meaning as in

Table 1

Graph Strategy 0.05 0.1 0.15 0.2 0.3

Hollywood Random 0.005 0.014 0.015 -0.002 0.044

Degree 0.006 0.017 0.035 0.046 0.084

PR 0.022 0.029 0.040 0.049 0.102

HC 0.006 0.035 0.043 0.065 0.135

LP -0.080 -0.118 -0.105 -0.076 -0.072

Betweenness 0.010 0.035 0.061 0.091 0.129

LiveJournal Random 0.025 0.055 0.077 0.106 0.127

Indegree 0.023 0.052 0.073 0.083 0.178

Outdegree 0.020 0.055 0.076 0.124 0.165

PR 0.034 0.081 0.117 0.171 0.267

HC 0.045 0.088 0.132 0.186 0.309

LP 0.018 0.005 -0.012 -0.017 0.044

Orkut Random 0.003 0.008 0.010 0.019 0.046

Degree 0.038 0.066 0.074 0.082 0.137

PR 0.046 0.075 0.111 0.143 0.182

HC 0.055 0.076 0.084 0.111 0.154

LP 0.057 0.081 0.126 0.174 0.227

.in Random 0.132 0.227 0.413 0.693 1.331

Indegree 0.192 0.458 0.790 1.114 1.718

Outdegree 0.142 0.172 0.177 0.190 0.578

Near-Root 4.615 6.413 7.804 9.935 30.660

PR 0.383 0.803 1.567 3.040 9.235

HC 1.275 3.449 10.069 28.178 44.745

LP 1.883 13.540 30.396 56.183 64.862

Betweenness 7.179 95.868 191.851 276.903 466.185

.uk Random 0.072 0.158 0.240 0.361 0.586

Indegree 0.115 0.224 0.350 0.460 1.004

Outdegree 0.022 0.050 0.066 0.100 0.235

Near-Root 1.424 1.446 1.620 1.838 2.531

PR 0.330 0.597 0.941 1.235 2.206

HC 0.328 0.800 1.541 2.989 9.573

LP 1.928 3.685 5.507 8.398 21.116
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the results are definitely inconclusive. The behavior is

wildly different even between graphs of the same type, and

shows no clear trend. This was expected, as the diameter is

defined by a maximization property, so it is very unstable.

Evaluating the variation in harmonic diameter allows us

to compare our data with those of Fogaras (2003): as we

already remarked, the harmonic diameter is very interest-

ing, because it combines reachability and distance. The

data confirm what we already stated: web graphs react to

removal of 30 % of their arcs through label propagation by

increasing dramatically their harmonic diameter—some-

thing that does not happen with social networks.

Our criterion for node elimination is a threshold on the

number of arcs removed, rather than nodes, so a strictly

numerical comparison of our results with that of Fogaras

(2003) is not possible. However, for .uk PageRank at

0 = 0.01 removes 648 nodes, which produced in the .ie

graph a relative increment of 100 %, whereas we find

14 %. This is to be expected, due to the very small size of

the dataset used in (Fogaras 2003): experience shows that

connectedness phenomena in web graphs are very different

in the ‘‘below ten million nodes’’ region (e.g., see the

different behavior of our .in dataset). Nonetheless,

the growth trend is visible in both cases. However, the

experiments in Fogaras (2003) fail to detect both the dis-

ruptive behavior at 0 = 0.3 and the striking difference

between largest-degree and PageRank strategy.

7 Conclusions and future work

We have explored experimentally the alterations of the

distance distribution of some social networks and web

graphs under different node-removal strategies. We have
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Fig. 3 Typical behavior of

social networks (Orkut, left) and

web graphs (.in, right) when a

0 fraction of arcs is removed

using various strategies. We

purposely show the two plots

using the same range for the

y axis, to highlight how none of

the proposed strategies

completely disrupts the

structure of social networks;

conversely, the effect of some

strategies on web graphs

(especially, the label-

propagation removal strategy) is

very visible
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confirmed some of the experimental results that appeared

in the literature, but at the same time, shown some basic

limitations of previous approaches. In particular, we have

shown for the first time that there is a clear-cut structural

difference between social networks and web graphs,15 and

that it is important to test node-removal strategies until a

significant fraction of the arcs have been removed.

Probably the most important conclusion is that ‘‘scale-

free’’ models, which are currently proposed for both web

graphs and social networks, do not to capture this important

difference: for this reason, they can only make sense as

long as they are adopted as baselines.

It would be extremely interesting, though, to find ana-

lytical tools that allow one to approach the structure change

(i.e., to see what impact a given removal strategy has on a

given network) in a more analytical way: such tools would

be necessary to design new probabilistic network models

that behave like real-world social networks do according to

our experiments.

It might be argued that reachable pairs and distance

distributions are too coarse as a feature. Nonetheless, we

believe that they are the most immediate global features

that are approachable computationally. For instance,

checking whether node removal alters the clustering coef-

ficient would not be so interesting, because the clustering

coefficient of each node depends only on the structure of its

very neighbourhood. Thus, by removing first the nodes

with high coefficient, it would be trivial to make the

clustering coefficient of the graph decrease quickly. Such
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Fig. 4 Typical behavior of

social networks (LJournal, left)

and web graphs (.uk, right)

when a 0 fraction of arcs is

removed using various

strategies. The range is fixed,

and the same of Fig. 4. Note the

more regular behavior of the

.uk snapshot with respect to the

smaller .in snapshot in Fig. 4.

Note also that on the .uk
snapshot harmonic centrality

increases more the average

distance, but label propagation

makes more pairs unreachable

15 In this paper, like in all the other experimental research on the

same topic, conclusions about social networks should be taken with a

grain of salt, due to the heterogeneity of such networks and the lack of

a large repertoire of examples.
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trivial approaches cannot possibly work with reachable

pairs or with distance distributions, because they are

properties that depend on the graph as a whole.
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