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Abstract Social networking has become a part of daily

life for many individuals across the world. Widespread

adoption of various strategies in such networks can be

utilized by business corporations as a powerful means for

advertising. In this study, we investigated viral marketing

strategies in which buyers are influenced by other buyers

who already own an item. Since finding an optimal mar-

keting strategy is NP-hard, a simple strategy has been

proposed in which giving the item for free to a subset of

influential buyers in a network increases the valuation of

the other potential buyers for the item. In this study, we

considered the more general problem by offering discounts

instead of giving the item for free to an initial set of buyers.

We introduced three approaches for finding an appropriate

discount sequence based on the following iterative idea: In

each step, we offer the item to the potential buyers with a

discounted price in a way that they all accept the offers and

buy the product. Selling the item to the most influential

buyers as the opinion leaders increases the willingness of

other buyers to pay a higher price. Thus, in the following

steps, we can offer the item with a lower discount while

still guaranteeing the acceptance of the offers. Further-

more, we investigated two marketing strategies based on

local search and hill climbing algorithms. Extensive com-

putational experiments on artificially constructed model

networks as well as on a number of real-world networks

revealed the effectiveness of the proposed discount-based

strategies.

Keywords Pricing � Monetizing social networks � Viral

marketing � Revenue maximization � Influence models �
Discounting

1 Introduction

Rapid growth of social networks—individuals as nodes and

their various forms of acquaintances as connections—has

provided a valuable basis for ideas or information to spread

quickly among members of a community. The process of

network diffusion has been widely studied in previous

works (Valente 1996; Kempe et al. 2003; Jackson and

Yariv 2006). Adopting new behavior in social networks is a

strong motivation for monetizing social networks (Oswald;

Seeyle 1992; Domingos and Richardson 2001; Richardson

and Domingos 2002; Kempe et al. 2005). While adver-

tising can affect the individuals’ decisions by encouraging

them to buy a particular product (Walker 2009; Weber

2007), sellers can further increase their profit using

intelligent selling strategies. Potential buyers are likely to

be affected by decisions of their friends or ‘‘world-of-

mouth’’ in a network. For a high-quality product these

effects will be positive and can be used as a valuable

means for viral advertising and marketing. Thus, a far

sighted seller can take advantage of these positive effects

or ‘‘positive externalities’’ to make people more likely to

buy or even pay a higher price for that product (Hartline

et al. 2008).

The idea of marketing a new product using the structural

properties of social networks was first proposed by Domingos

and Richardson (2001). They suggested that giving the

product for free to the most influential nodes in a network

would be continued by a cascade of influences in which many

other individuals become eager to try the product. In another
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study, Kempe et al. (2003) discussed the problem of identi-

fying this set of influential nodes in such a network. This set

maximizes the subsequent adoption of the good. Recently,

Hartline et al. (2008) considered the problem of revenue

maximization instead of influence maximization. They stud-

ied optimal marketing strategies in which samples of the item

are given for free to carefully chosen set of buyers. Then, the

item is offered in some sequence to the remaining buyers in a

price proportional to the exerted influence on them.

Hartline et al. showed that finding the optimal marketing

strategy is NP-Hard. Motivated by its hardness, they iden-

tified a simple marketing strategy, called influence-and-

exploit strategy, as follows. There is a seller and set V of

potential buyers. In the influence step, the product is given

away for free to a specifically chosen set of influential buyers

S � V . In the exploit step, the product is offered in a random

sequence to remaining buyers (V/S). In order to maximize the

total revenue, (myopic) optimal price is offered to each buyer

in the sequence. This problem is also not polynomial time

computable; however, it can be shown that picking up any

random set as the offer sequence in exploit step gives a 1/2

approximation for the second step.

If revenue functions of the buyers are submodular, the

optimal influence-and-exploit strategy can be solved in

polynomial time (Hartline et al. 2008). Having this

assumption and due to the fact that sum of submodular

functions is also submodular, the expected revenue as a

function of the set S is also submodular. Since the revenue

function is not monotone, Hartline et al. (2008) used two

algorithms—originally introduced in Feige et al. (2007)—

for maximizing non-monotone submodular functions:

deterministic local search 1/3-approximation algorithm and

a randomized local search 0.4-approximation algorithm.

In this study, we consider offering discount instead of

offering the item for free to an initial set of buyers, and

investigate to how much extent this strategy can boost the

profit. The goal is to determine appropriate discounts as well

as finding the appropriate sequence of buyers. On one hand,

the item should be purchased by the most influential nodes in

order to maximize the influence on remaining potential buy-

ers. On the other hand, the item should be purchased by the

individuals buying it at the highest price in order to maximize

the total revenue. The strategy should be able to make a trade-

off between these issues. We introduce three approaches for

determining applicable discounts in different model networks

as well as a number of real social networks and show that these

methods can extensively increase the revenue.

2 Related works

The problem of identifying the most influential nodes in a

network falls in the long line of literature on the spread of

social contagions in economy, social sciences, epidemiol-

ogy, and more recently, in computer science (Agarwal

et al. 2012; Domingos and Richardson 2001; Richardson

and Domingos 2002; Kempe et al. 2003, 2005; Kitsak et al.

2010; Cha et al. 2011). The main idea is to exploit social

network effects to find the target set of k individuals that

change in their behavior to be accompanied by a large

cascade of influence by which expected number of further

adopters of the behavior will become maximized. Typi-

cally, the most influential nodes are identified either using

network structural properties (Kourtellis et al. 2012;

Kempe et al. 2003; Chen et al. 2011), or as a problem in

discrete optimization (Goyal et al. 2012; Kempe et al.

2003, 2005). The first approach uses centrality measures

such as degree, betweenness or closeness for determining

the importance of a node in the adoption process. While the

latter tries to iteratively choose an element that provides

the largest marginal increase in the function value.

Based on the above discussion, substantial effort has

been devoted to find optimal marketing strategies that

utilize social influences to maximize adoption of a product

in a society (Goyal et al. 2012; Domingos and Richardson

2001; Richardson and Domingos 2002; Kempe et al. 2003;

Hartline et al. 2008). The effectiveness of these strategies

are often studied using the social contagion models such as

linear threshold and independent cascade models or based

on the agents’ payoff in the context of game theory (Anari

et al. 2010; Kempe et al. 2003, 2005). However, these

approaches do not consider economic incentives that affect

people’s decision in buying a product. Economists have

shown the importance of customers’ behavior on the

effectiveness of marketing strategies. For instance, Engel

et al. (1968) and Olshavsky and Granbois (1979) showed

that customers behave differently when they are involved

in buying high-value and low-value products. Other studies

relate network externalities to the price that individuals are

eager to pay for the product. Saaskilahti (2007) studied the

effect of network topology on the monopoly pricing of

selling a networked good when market is characterized by

buyer’s social relations. The importance of network

structure has been also shown for the evolution of coop-

eration, which is the primary driving force behind social

welfare (Perc and Szolnoki 2010; Perc et al. 2008; Szoln-

oki et al. 2008; Perc 2009). The valuation function depends

on the type of the product that is to be sold as well as the

buying power of the society. If the society is poor, buyers

have little valuation for the product and the seller cannot

gain considerable benefit from marketing the product. On

the other hand, in rich societies, people have higher valu-

ation for the product and marketing strategies are far more

effective. Salop (1979) observed that customers’ decision

for buying a product depends not only on the individual

preferences but also on the product price. Finally, Cabral
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et al. (1999) proposed models for pricing a durable good by

increasing discounted price over time in order to attract

low-value buyers. Despite these efforts, there has been

relatively little systematic investigation into understanding

how individual’s decision depends on the type of product

or how social influences affect people’s willingness for

buying a good. Recently, Hartline et al. (2008) proposed a

model which defines the dependence of adoption on

influence and price. In this work, we extend this model for

different types of product that are to be sold and investigate

marketing strategies that utilize network externalities to

find a sequence of decreasing discounted prices that should

be offered to the potential buyers in order to maximize the

revenue.

3 Preliminaries

In this section, we review influence models and marketing

strategies which are applicable for revenue maximization.

Consider a network in which an unlimited supply of a good

is to be sold to the potential buyers. Let us suppose that

producing each unit of the good has no cost for the seller.

In this context, potential buyers can be assumed as a set

V of all nodes in this network. The valuation of buyer i for

the good depends on the other nodes who have already own

the good, vi: 2 V ? R?, i.e., vi(S) is the value of the good

for buyer i if set S of buyers already own the item. In this

setting, each buyer can decide whether or not to buy the

product. If the price offered to buyer i is less than or equal

to vi, she buys the good. In general, smaller prices increase

the probability of sale.

3.1 Influence model

Influence models might vary in different situations. While

influence models are commonly assumed to be monotoni-

cally ascending, there are some issues in which the impact

of influences is not monotone. In our situation, the buyers

who already own the item ðS � VÞ can lead the opinion of

other potential buyers. In the presence of positive exter-

nalities, the more is the number of buyers in set S, the

higher the willingness of the buyers in set V/S will be to

buy the item. However, a question arises that whether or

not this increasing theme always continues. We claim that

it does not continue and there are some issues (for our

purpose in the context of marketing) for which the influ-

ence function is not monotone. In the following sections,

we discuss two types of influence models: the monotone

and non-monotone concave graph models. In both models,

the buyer’s valuation is a function of the individuals who

have already bought the item, i.e., vi: 2v ? R?. In a social

network, where each node sees only its neighbors, vi(.) is a

function of each node’s neighbors in the network, i.e.,

vi ¼ fið
P

j2S wijÞ. fi is the distribution of the valuation of

buyer i, S is the set of individuals who have already bought

the item and wij is the influence of node j on node i, i.e., the

weight of link eij. Recall that the seller knows only the

distribution of valuation buyer i and not its exact value.

3.1.1 Monotone concave graph model

In this model, the valuation of buyer i is a non-negative

monotone concave function fi: R??R? (Hartline et al.

2008). In other words, vi increases as more people buy the

item. However, as more individuals buy the item, the

members of set S increase and the growth of the valuation

function decreases. For all i 2 V ,S � V=fig, we have

viðSÞ ¼ fið
P

j2S[fig wij=
P

k2V wikÞ, and the link weights are

derived independently from distribution function Fij. Note

that
P

k2V wik in the denominator is just a scaling factor for

normalizing the influences and does not change the validity

of the model. We further discuss this model by an example.

Consider a new technology such as fax machine. As more

people use this technology, its value for those who have not

yet bought a fax increases. As the number of individuals

who are using fax increases, they can send and receive

documents using this technology to higher number of

individuals. Knowing that you can contact with higher

number of individuals increases your willingness and even

the price you will to pay for buying a fax machine.

3.1.2 Non-Monotone concave graph model

As mentioned, there are some issues for which the valua-

tion function is not monotonically increasing. Consider the

case that you want to buy a new cell phone. If a number of

your friends have already bought the same cell phone and

you have received positive feedbacks from them, your

valuation function for buying that particular cell phone

increases. However, as more people buy the same cell

phone, your tendency to be different will evenly decrease

your willingness to buy the same item. This issue may be

even clearer in the case of luxury instruments like cloths. In

these examples, although growing number of individuals

that have bought the same product increases the valuation

of the following buyers, the valuation function starts

decreasing after a while. Thus, we introduce a new model

which captures the properties of these products. In this

model, for all i 2 V , S � V= if g , we have, viðSÞ ¼
fið
P

j2S[fig wij=
P

k2V wikÞ, where fi is a non-negative and

non-monotone concave function, fi: R??R?. As before,

the link weights are derived independently from distribu-

tion function Fij.
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3.1.3 More on influence models

In general, monotone concave model can be applied for

products in which their applications are the most important

factors for people buying them. For example, wireless

modems enhance the communications in a population or a

powerful antivirus protects your system against damaging

malware. For such products, the positive feedbacks that

people receive from their trustworthy friends increase the

willingness of people for buying the same item.

On the other side of the spectrum, non-monotone concave

graph model is best for modeling the human behavior for

buying products that their appearance affects people’s deci-

sion for buying them. For example, for buying a car or a bag,

receiving positive feedbacks may raise your willingness for

buying the product for a while. However, as more people buy

the same item, your willingness to buy the same product

decreases, because you may want to express your personality

through buying that product and be different from other peo-

ple. Such non-monotonicity has also been validated by

empirical studies. Shokat-Fadaee (2010) studied the effect of

influence on retweeting a post in Twitter. It shows that the

probability of retweeting a post, given that n of your friends

have already retweeted it, increases almost logarithmically

and then decreases after a while. Such non-monotonicity has

another implication: once sufficient large number of buyers

has bought the item, additional sales decrease the willingness

of buyers for buying the product. Goyal et al. (2010) used the

link structure of online social networks to estimate wij.

Moreover, it is possible to determine the precise form of the

functions fi using similar approach to Backstrom et al. (2006).

3.2 Marketing strategies

In order to increase the total revenue, sellers can take

advantage of the influences of buyers on each other. Any

marketing strategy has two aspects of pricing and finding

the right sequence of offers. Intelligent decisions can be

made in both aspects. Through the process of marketing, an

item is offered once to each potential buyer in set V. The

buyer can accept and pay the offered price or just reject and

does not pay the seller. The payment is added to the total

revenue for the accepted offers. We assume that each buyer

is considered exactly once, thus, the seller can limit the set

of potential buyers through the process to those that have

not yet bought the item (V/S). We further assume that

buyers are only influenced from those that have already

bought the item ðS � VÞ and the buyers in the set S have no

influence on each other. In order to maximize the revenue,

it is assumed that myopic prices are offered to the buyers

i.e., the offered price to each buyer is equal to the exerted

influences on her which is the maximum value she is

willing to pay.

4 Revenue maximization strategies

In the previous section, we mentioned Influence and

Exploit (IE) strategy and two approaches (deterministic

and randomized local search algorithms) which have been

used in Hartline et al. (2008) to find a good approximation

for optimal IE strategy. In this section, we show that one

can adopt these algorithms to approximate the general

revenue maximization problem, in which discounts are

offered on the item instead of giving it for free to specifi-

cally chosen set S � V . In addition, we show that the

greedy hill climbing strategy can be adapted to yield

acceptable solution in the same setting.

4.1 Local search

This algorithm was introduced by Feige et al. (2007) for

maximizing non-monotone submodular functions. Hartline

et al. (2008) used this algorithm to find a set S maximizing

the expected revenue of the optimal IE strategy, g(S).

Provided that revenue function is non-monotone, they

proved that if the buyers’ valuation function is submodular,

this algorithm finds set S in polynomial time such that the

revenue of IE strategy is at least 1/3 approximation of the

optimal revenue.

We introduce a deterministic algorithm which is modi-

fied in order to find set S which gives an approximation for

the revenue maximization problem. It should be noted that,

unlike IE strategy, we do not give the item for free to

everyone who are added to the set S; instead, we offer

discount. If the buyer accepts the offer, the offered price

(instead of myopic price) is added to the revenue. Thus, we

try to maximize the revenue while we are trying to maxi-

mize the influences. The deterministic algorithm based on a

local search approach is as follows:

1. Initialize set S = {v}, where v = argmaxi g(i).

2. If neither of the following two steps apply (there is no

local improvement), output S.

3. For any buyer i 2 V=S that accepts the offered price,

gðS [ figÞ[ ð1þ e
n2ÞgðSÞ then let S ¼ S [ fig:

4. For any buyer i 2 S, if gðS=figÞ[ ð1þ e
n2ÞgðSÞ then

let S ¼ S=fig and go to step 2.

4.2 Greedy hill climbing strategy

Greedy hill climbing algorithm suggested by Nemhauser

et al. (1978) is a mathematical optimization technique for

finding a local optimum. Kemp et al. used this algorithm in

the optimization problem of selecting the most influential

nodes in a network. Motivated by the design of viral

marketing, a subset of individuals are tried to be convinced

to adopt the new product or innovation in order to
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maximize the cascade of further adoptions. In the revenue

maximization problem, the goal is to maximize the valu-

ation of the buyers or their willingness to pay a higher price

in order to increase the revenue. Since the revenue maxi-

mization problem is non-monotone, one cannot provide an

approximation guarantee for the expected revenue of this

algorithm g(S). However, as we discussed previously,

buyers’ value for the good is a function of the influences

from the set of buyers who already own the item. One can

use this fact in order to find acceptable solution for revenue

maximization. The algorithm based on a hill climbing

approach is as follows:

1. Initialize set S ¼ ;:
2. Among buyers who accept the offered price choose

buyer i so that i ¼ arg maxi gðS [ figÞ � gðSÞ:
3. If gðS [ figÞ� g Sð Þ, output S.

4. S ¼ S [ fig and go to step 2.

5 Applying discount for revenue maximization

Consider we are interested in finding a set of people

S maximizing the revenue function g(S). The items are to

be sold to almost all the influential buyers. Furthermore, it

is desired to get them buying the item early in the sequence

in order to maximize the influence on other potential

buyers. Giving the item for free to such influential nodes

guarantees the acceptance of the offer. However, can we

offer such buyers the item with a discounted price in a way

that most of them accept the offer and buy the item? If

some buyers who are chosen by a revenue maximization

algorithm do not accept the offer, the algorithm should

choose a less influential buyer instead. Therefore, the total

revenue might decrease with an inappropriate offer

sequence. In general, it seems reasonable to offer such

influential buyers smaller price to encourage them to buy

the item. Later in the sequence, as the buyers’ value

increases, the item can be offered with smaller discount,

and thus, the offered sequence should have an ascending

tone. The purpose is to increase the revenue during the

process of cascading adoptions in order to find an

approximate optimal solution for revenue maximization

problem. In the sequel, we introduce three strategies to

determine an appropriate discount sequence.

5.1 Discount based on average degree

As discussed above, giving the item for free to influential

buyers guarantees the acceptance of offers. It would be

interesting to see whether or not one can find an offer

sequence which includes positive non-zero elements while

still guaranteeing the acceptance of offers by all influential

nodes. We introduce a strategy that uses only the average

degree of a network (l) to determine an appropriate dis-

count sequence. We then show that this approach increases

the revenue.

In the first step, we offer the item for free to the buyers

until the expected influence on any buyer i 2 V=S becomes

at least di/l (where di is degree of node i and l is average

degree of the network). Suppose that selling the item to k1

buyers in set S, the expected influence on any potential

buyer i 2 V=S becomes at least di/l. From this point on, we

can offer the item with the price of f(1/l) to any buyer in

set V/S and guarantee the acceptance of the offers. In the

second step, we sell the item with the price of f(1/l) to all

buyers in set V/S until the expected influence on other

potential buyers becomes at least 2di/l. Suppose that sell-

ing the item to k2 buyers in the second step has the satis-

factory effect. At this point, it is possible to offer the item

with the price of f(2/l) while guaranteeing the acceptance.

Continuing the process, in step j, where j = 1…n,

n ¼ lb c þ 1, we offer the item with the price of f(j - 1/l)

to all potential buyers. Buying the product by kj buyers in

step j guarantees the acceptance of the offers in step j ? 1

with the price of f(j/l). The process continues to the point

that selling the product to kn-1 buyers in step n - 1 guar-

antees that everyone in the network accepts the offer with

the price of f(l/l). We claim that in any network

k1 ¼ k2 ¼ � � � ¼ kn�1 ¼ N=lb c. We next prove our claim

and show that this strategy provides at least 1/4 approxi-

mation of the optimal revenue. Note that this method does

not use any information about the structural properties of

the network or the revenue maximization algorithm.

Lemma 1 In a network of size N, for any set S, Sj j � k N
l

and all i 2 V=S, the expected value of vi is at least f ðklÞ.

Proof Consider real-valued random variable XðjÞ; j 2 S

as follows:

XðjÞ ¼ 1 if wij [ 0

0 if wij ¼ 0

�

;

where i is an arbitrary node. Expected influence on node i

is

E
X

j2S[fig
½XðjÞ�

0

@

1

A ¼
X

j2S[fig
Eð½XðjÞ�Þ �

X

j2S[fig

di:�Fij

N:�Fij

¼ k
di

l
:

where �Fij is the expected value of the distribution from

which the link weights are derived.

Thus, the value of buyer j is fið
P

j2S[fig wij=
P

k2V wikÞ � f
i
ðk:di:�Fij

l:di:�Fij
Þ ¼ fiðklÞ.
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Lemma 2 Applying discount based on l on any algo-

rithm, which is applicable to revenue maximization prob-

lem, increases the revenue in networks with any structure.

Proof Consider any greedy algorithm applicable to rev-

enue maximization problem. Considering Lemma 1, we

guarantee that any node chosen by the algorithm can buy

the item with the offered price. As we do not give the item

for free to all nodes in set S, the revenue from the greedy

algorithm is at least equal to the revenue of the greedy

algorithm from the IE strategy.

Hartline et al. showed that the expected revenue from

the optimal IE strategy is at least 1/4 of the optimal revenue

considering any set of submodular revenue functions Ri.

From Lemma 2 we can conclude that discount based on l
gives at least 1/4 approximation of the optimum revenue in

any network using local search algorithm.

5.2 Greedy discount approach

Lemma 2 shows that discount base on l can increase the

revenue in networks with any structure. One might use

other structural properties to increase the revenue further. It

has been shown that many real networks have scale-free

degree distribution (Kempe et al. 2003; Newman 2005;

Hartline et al. 2008). Scale-free networks have a number of

hob nodes with high degrees, while many of the nodes have

small degrees. Their degree distribution is power law

meaning that the probability of a node with degree d has a

power-law relation with d. Any algorithm for revenue

maximization should try to get the influential buyers to buy

the item early in the sequence in order to increase the value

of the following buyers. To do so, the revenue maximiza-

tion algorithm chooses the nodes of a network in

decreasing order of their degree while trying to maximize

the influences. Based on this, we introduce a greedy

algorithm that extensively improves the revenue maximi-

zation algorithms in scale-free networks.

Consider a concave function f as the value function of

the buyers. As discussed in previous sections, the valuation

of buyer i is a function of buyers who already own the item,

viðSÞ ¼ fið
P

j2S[fig wij=
P

k2V wikÞ. We divide the area

under vi(.) into k regions, and in each step, maximize the

number of nodes in some specific interval. The goal is to

maximize the number of the nodes, especially influential

ones, in some interval and offer them an appropriate dis-

count for the item. This way we guarantee the acceptance

of the offers by almost all the candidate buyers chosen by a

revenue maximization algorithm. However, the question is

how one can determine the appropriate number of regions,

k. To this end, one should make a trade-off. The influence

regions should not be very small due to the fact that only

few number of high-degree nodes can slightly increase the

exerted influence on many potential buyers with small

degree and shift them to the next interval. Indeed, many

influential buyers still remain in the previous interval.

Therefore, each time we are maximizing the number of

buyers in one interval, we are indeed interested in includ-

ing large number of such influential buyers. Recall that

influential buyers are those who are highly connected and it

is desired such individuals to buy the item early in the

sequence. Small number of nodes is not enough to increase

the normalized influence on high-degree nodes in V/S, and

it can only shift the nodes with smaller degree to the next

interval. In addition, the influence regions should not be

very large, because a large number of high-degree nodes

are needed to shift the buyers into the next interval. Since it

is desired to offer a higher price at each step, choosing a

large number of nodes reduces the number of steps as well

as the revenue. We chose k = 6 for our simulations.

The normalized influences on an arbitrary buyer i can be

in the interval [0, 1], i.e., 0� viðSÞ ¼
P

j2S[fig wij=
P

k2V wik� 1: Therefore, we divide the area under concave

value function vi(S) into k = 6 influence region each with

width 1/6 as shown in the Fig. 1.

Assume that the revenue maximization algorithm

chooses the nodes of the network in decreasing order of

their degree. Our proposed greedy algorithm for deter-

mining the discount sequence is as follows:

1. Sort the nodes of a network in decreasing order of their

degrees in array D.

2. Find k1 ¼ arg maxkð
P

S¼Dð1:kÞ;i2V=Sjdi [l=2 XðiÞÞ where

XðiÞ ¼
1

2

6
�
X

j2S[fig wij=
X

k2V
wik\

4

6

0 otherwise

8
<

:
for all

i 2 V=S

3. Find k2 ¼ arg maxkð
P

S¼Dð1:kÞ;i2V=Sjdi [l=2 XðiÞÞ where

XðiÞ ¼ 1
3

6
�
X

j2S[fig wij=
X

k2V
wik\

5

6

0 otherwise

8
<

:
for all

i 2 V=S:

4. Give the item for free to the first k1 buyers. Next, offer

the item with the price of f(1/6) to the following buyers

until k2 - k1 buyers in set i 2 V=S accept the offer.

Then, offer the item with the price of f(2/6) to the

remaining potential buyers. The buyers are chosen by

revenue maximization algorithm.

As discussed in this approach, we add the most influ-

ential buyers who have not already bought the item to the

set S up to the number in the blue interval shown in Fig. 1

becomes maximized. Since the nodes with very small

degree hardly exert influence on other nodes in V/S, they

are not likely to be chosen by revenue maximization
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algorithm. We consider the nodes with degree smaller than

l/2 as such nodes. Therefore, we ignore all nodes i with

di \ l/2 in our greedy algorithm for determining discount

sequence. As we give the item for free to k1 nodes with

highest degrees, the number of nodes in the interval [2/6,

4/6) becomes maximized. However, a considerable number

of nodes still remain in the influence regions [1/6, 2/6).

Indeed, we offer the item with the price of f(1/6) to the

following buyers until the number of buyers in set V/S, that

exerted influence on them lies in the interval [3/6, 5/6),

becomes maximized. At this point, there are still a con-

siderable number of nodes in the influence regions [2/6,

3/6). Therefore, we offer the item with the price of f(2/6) to

the following buyers until the end of the marketing process.

In most cases, we can significantly increase the revenue by

maximizing the number of buyers in the blue interval (Fig. 1)

and try to minimize the number of buyers in the gray interval

(Fig. 1). In the monotone model, as the value of buyers in the

gray interval can be considerably greater than the offered

price, high number of buyers in this interval might decrease

the revenue. In the non-monotone model, as the value of

buyers in the gray interval may be lower than the offered

price, these buyers might never buy the item. If this interval

contains a significant number of influential buyers, the total

revenue will extensively decrease. The simplest way to have

a high number of buyers in the blue interval, while there are

few nodes in the gray interval, is to maximize the difference

between the number of buyers in the blue and gray intervals.

To do so, the second and third step in the above greedy

algorithm should be modified as follows:

2. Find k1 ¼ arg maxkð
P

i2V=S;S¼Dð1:kÞ XðiÞ � YðiÞÞwhere

XðiÞ ¼
1

2

6
�
X

j2S[fig wij=
X

k2V
wik\

4

6

0 otherwise

8
<

:
and

YðiÞ ¼ 1
4

6
�
X

j2S[fig wij=
X

k2V
wik\

6

6

0 otherwise

8
<

:
for all

i 2 V=S.

3. Find k2 ¼ arg maxkð
P

i2V=S;S¼Dð1:kÞ XðiÞ � YðiÞÞ where

XðiÞ ¼ 1 3
6
�
P

j2S[fig wij=
P

k2V wik\ 5
6

0 otherwise

�

and

YðiÞ ¼ 1 5
6
�
P

j2S[fig wij=
P

k2V wik\ 6
6

0 otherwise

�

for all

i 2 V=S.

5.2.1 Discount based on standard deviation of the degree

distribution

The greedy algorithm for determining discount sequence

should have information about the existence of the links in

the network. But, what if we do not have this information?

Can we still use the power-law property to get better result

than discounting based on l? It is advantageous to get

influential buyers early in the sequence in order to increase

the value of the following buyers. Thus, it makes sense to

offer the item to the most influential buyers for free to

guarantee that they accept the offer and buy it. The most

influential nodes can be identified considering their degree,

since the buyers with high degree can trigger many other

buyers to buy the item. If we just know the degree distri-

bution of a network, we can extract some information

about the variability of its degrees. Standard deviation (r)

is a widely used measure for this purpose. In scale-free

networks with power-law exponent of 2 B c B 3, which is

the case for many real networks, we can consider all nodes

with degree larger than l ? r as high-degree nodes, i.e.,

the most influential nodes. Suppose there are k1 nodes

satisfying this condition. Giving the item for free to the k1

Fig. 1 vi(.) as a function of

normalized influence for non-

monotone concave (top row)

and monotone concave (bottom

row) influence models. The area

under vi(.) is divided into k = 6

influence regions. In each step,

the blue interval should be

maximized. a and c show the

interval that should be

maximized in the first step;

b and d show the interval that

should be maximized in the

second step (color figure online)
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most influential buyers in a network, many other buyers

will pay us for the item. Among them, we want the

remaining influential buyers to buy the item to further

increase the value of the following buyers. In general, all

nodes i for which l ? r[ di [l can be simply identified

as highly connected, and thus, influential nodes in a net-

work. Assuming the number of such nodes as k2, one can

offer the item with the price of f(1/6) to the following

buyers in set V/S until k2 buyers accept the offer. This will

further increases the value of the remaining buyers, and

thus, from this point on, we offer the item with the price of

f(2/6) to all remaining buyers in set V/S. Simulation results

showed that this approach considerably outperforms those

based on average degree in scale-free networks.

6 Experiments

In this section, we investigate the revenue maximization in

artificially constructed model networks as well as several

real networks.

6.1 Network data

6.1.1 Model networks

While available models for construction of scale-free net-

works can capture many structural properties of real net-

works, including heavy tail in-degree and out-degree

distributions, communities and small world phenomenon

(Barabási and Albert 1999), they cannot model the evolu-

tion of real networks over time. Forest-fire model sug-

gested by Leskovec et al. (2007) generates networks with

densification power law and shrinking diameter properties.

These networks become denser through time while having

an increasing average degree. Moreover, as network grows,

its diameter decreases. These properties have been

observed in a number of real networks including the

Internet, citation, affiliation and patents networks (Lesko-

vec et al. 2007). A network based on forest-fire model is

constructed through a recursive process as follows. Each

node joining the network chooses a random ambassador

w. Then, it selects outlinks of w with probability p and its

inlinks with probability pb and forms outlinks to the other

end of these links.

It has been shown that many social and biological net-

works have modular structure (Girvan and Newman 2002;

Newman 2006; Zaidi 2012). These networks are composed

of several groups in which nodes are highly connected

within the groups, while there are only a small number of

links between the groups. As our second network model,

we considered modular forest-fire networks constructed

through an algorithm as follows. First n isolated modules

each with forest-fire structure are built. Then, with proba-

bility p each, intra-modular link is disconnected and a

connection is created between two random nodes from two

randomly chosen modules (Babaei et al. 2011).

6.1.2 Real networks

Although model networks can capture many structural

properties of real networks, in many cases, real networks

have a more complex structure. As online social networks

provide a convenient setting for applying the revenue

maximization algorithms, we also considered a number of

real social networks and compared the performance of

applying discount in these networks.

Facebook-like social network This is an undirected and

unweighted network representing an online community of

students at the university of California, Irvine. In con-

struction of this network, students are considered as nodes

and two students considered to be connected by a link

when there is at least a sent or received message between

them. The network has 1,899 nodes and 20,296 edges

(Opsahl and Panzarasa 2009).

Newman’s scientific collaboration network This is the

co-authorship network based on preprints posted to Con-

dense Matter section of arXiv E-Print collected between

1995 and 1999 (Newman 2001). The set of nodes are

defined by the set of papers and edges represent citation.

This network contains 16,726 nodes and 47,594 edges.

Wikipedia vote network This network is defined by votes

for Wikipedia admin candidates. A small fraction of

Wikipedia users are administrators. Users in Wikipedia

issue a request for adminship and Wikipedia community

decides whom to promote to adminship with votes. Wikipedia

users are considered as nodes in the network and a link present

between two nodes represents that one of them votes another.

The network consists of 7,115 nodes and 103,689 edges

(Leskovec et al. 2010a, b).

High-energy physics theory citation network We ana-

lyzed the citation network containing the 27,770 papers. A

link between two papers indicates that one of them cites

another. The network used in this work is from the e-print

arXiv and cover all the citations within 27,770 papers. The

network is composed of 27,770 nodes and 352,807 edges

(Gehrke et al. 2003; Leskovec et al. 2007).

6.2 Influence models

We discussed two types of influence models, monotone and

non-monotone concave models. In the case of non-mono-

tone concave model, there are some examples (such as

buying cloths) for which the valuation function of the

buyers starts decreasing while just a few of their friends

buy the same item. In some other examples (such as buying
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a laptop), the buyers’ valuation increases as they receive

more positive feedbacks from their friends who already

own the item. Indeed, valuation function remains increas-

ing for a long time and then becomes decreasing. Aver-

aging over all possibilities, we choose a concave function

which reaches its peak value at 1/2 as our non-monotone

valuation function.

Following the above discussion, we chose a Rayleigh

probability density function við:Þ ¼ f ðyjbÞ ¼ y
b2 e
ð�y2

2b2 Þ,

b = 1, y = 2x as our non-monotone concave influence

model. We considered y = 2x to maximize the value of a

buyer when the normalized influence on her is 1/2, i.e.,
P

j2S[fig wij=
P

k2V wik ¼ 1=2: Note that Rayleigh function

with parameter b = 1 is concave in the interval [0, 2]. For

the second model, we made vi(.) constant after y = 1 in

order to have a monotone concave value function.

Choosing this monotone concave function makes the result

of applying the revenue maximization algorithms on these

two models comparable (Fig. 2).

Certainly, assuming a function which takes values

greater than y = 0.6 as valuation function of the buyers

considerably improves the revenue of the discount-based

marketing strategies. It is obvious that considering func-

tions with higher concavity as monotone concave valuation

function further boosts the revenue from applying discount

methods on marketing strategies. For non-monotone con-

cave influence model, the longer it takes to reach the peak

value, the higher will be the revenue of the discount-based

marketing strategies.

6.3 Algorithms and implementation

We investigated the effects of applying the discount

methods introduced in the previous sections on local search

and greedy hill climbing algorithms. We also considered,

as a baseline, the IE strategy which gives the item for free

to all buyers is set S � V . In all of these cases, it has been

assumed that the seller does not know the exact value of

each buyer, but instead, she knows the distribution from

which its values are drawn. When we do not offer the item

for free to all buyers who are going to be added to the set

S � V ; some of the buyers chosen by the algorithms may

not accept our offers and the algorithm should choose a less

influential node instead. To have satisfactory approxima-

tion of the performance of our algorithms, we also com-

pared them with the case in which the seller has exact

information about the value function of the buyers. With

this information, in any iteration, local search and greedy

hill climbing algorithms can choose the best buyer who

pays her myopic price and maximizes the revenue. It

should be noted that in this case the revenue maximization

problem becomes monotone and greedy hill climbing

algorithm provides a (1 - 1/e) approximation.

We discussed that the link weights are derived inde-

pendently from distribution function Fij. Since we do not

have information about the exact link weights in the net-

work (in both implementation of deterministic local search

and greedy hill climbing algorithms as well as in the greedy

algorithm for determining the appropriate discount

sequence), we should estimate the link weights wij by

repeated sampling from distribution Fij. In our implemen-

tation we considered Fij as a uniform distribution on the

interval [0, 2].

6.4 Results

Figures 3 and 4 show the revenue as the number of buyers

in set S increases based on deterministic local search and

greedy hill climbing algorithms for forest-fire and modular

forest-fire models, respectively. The networks are with

1,000 nodes, p = 0.37, pb = 0.32 (Fig. 3) and modular

networks with three modules with 200, 300 and 500 nodes

(Fig. 4). Each module was constructed with p = 0.37 and

pb = 0.32 and with inter-modular rewiring probability of

p = 0.01. For each algorithm, the results are plotted for

monotone and non-monotone influence models. On aver-

age, in these networks, the greedy discount approach out-

performed the hill climbing-based IE strategy by over

21 % in the monotone and over 12 % in the non-monotone

influence model. For local search algorithm, this

improvement was about 22 % in the monotone and over

15 % in the non-monotone influence model. For the

l-discount approach, the result of both greedy hill climbing

Fig. 2 vi(.) as a function of

y = 2x normalized influence for

a non-monotone concave and

b monotone concave influence

models
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Fig. 3 Revenue from the

monotone concave influence

model (top row) and the non-

monotone concave influence

model (bottom row) as a

function of the maximum

number of buyers allowed in set

S, for the forest-fire network

with 1,000 nodes, p = 0.37 and

pb = 0.32. a and c show the

results of greedy hill climbing

algorithm; b and d show the

results of deterministic local

search algorithm. The blue,

green, red and cyan lines

correspond to the revenue from

IE strategy, discounting strategy

based on l, greedy discount

strategy, and the case in which

the seller has exact information

about the value of the buyers,

respectively. The results are

averaged over 10 realizations

(color figure online)

Fig. 4 Revenue from the

monotone concave influence

model (top row) and the non-

monotone concave influence

model (bottom row) as a

function of the maximum

number of buyers allowed in set

S, for the modular forest-fire

network that has three modules

with 200, 300 and 500 nodes.

Each module is constructed with

p = 0.37 and pb = 0.32 and

with inter-modular rewiring

probability p = 0.01. Other

descriptions are as in Fig. 3
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and local search algorithms was improved about 7 % in

monotone and over 2 % in non-monotone model. Note

that, knowing the exact information about the value func-

tion of the buyers, on average, improved the result about

4 % in all cases. As shown in these figures, in these net-

work types, the revenue from the greedy discounting

method was considerably higher than the case where the

seller knows the exact valuation of each buyer. This can be

explained considering the fact that some influential buyers

chosen by the algorithm might not accept the offered price

determined by the discount method, which in this case, the

algorithm should choose a less influential buyer who

accepts the offer. This buyer can exert positive influence on

some influential buyer who has rejected the offer in pre-

vious iterations. As the valuation of this buyer increases,

she accepts the offer and increases the influences on the

buyers in set V/S. Furthermore, she pays a higher price than

before and further increases the revenue. A similar pattern

was observed for the case of monotone influence models

using l-discounting approach. It should be noted that this

can only happen in the case of using an appropriate dis-

count sequence; otherwise, rejection of the offers by the

influential buyers can considerably decrease the revenue

compared to the IE strategy.

Figures 5, 6, 7 and 8 show the result of the same

experiments on the real networks including Facebook-like

social network, wiki-vote, Newman scientific collabora-

tion, and high-energy physics theory citation networks,

respectively. In all these networks, similar qualitative

behavior was observed from the discounting strategies. On

average, in these networks, the greedy discount approach

improved the revenue of the greedy hill climbing algorithm

by about 12 % in the monotone and over 8 % in the non-

monotone influence model. For the local search algorithm,

this approach improved the revenue by about 12 % in the

monotone and about 10 % in the non-monotone influence

model. On the other hand, knowing exact information

about the value function of the buyers, on average,

improved the result about 5 % in all cases. The fact that

having exact information about the buyers’ valuation

guarantees a (1 - 1/e) approximation for the optimal rev-

enue shows high performance of our greedy algorithm for

determining discount sequence.

7 Conclusion

We investigated the problem of revenue maximization in

social networks. An intelligent seller can take advantage of

network diffusion as a powerful means for advertisement to

further increase the revenue of marketing. For a high-

quality good, the positive feedback that individuals receive

Fig. 5 Revenue from the

monotone concave influence

model (top row) and the non-

monotone concave influence

model (bottom row) as a

function of the maximum

number of buyers allowed in set

S, for the Facebook-like social

network with 1,899 nodes and

20,296 edges. Other

descriptions are as in Fig. 3
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Fig. 6 Revenue from the

monotone concave influence

model (top row) and the non-

monotone concave influence

model (bottom row) as a

function of the maximum

number of buyers allowed in set

S, for the wiki-vote network

with 7,115 nodes and 103,689

edges. Other descriptions are as

in Fig. 3

Fig. 7 Revenue from the

monotone concave influence

model (top row) and the non-

monotone concave influence

model (bottom row) as a

function of the maximum

number of buyers allowed in set

S, for the Newman scientific

collaboration network with

16,726 nodes and 47,594 edges.

Other descriptions are as in

Fig. 3
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from their friends increases their willingness for buying

that product. Motivated by the NP-hardness of finding an

optimal marketing strategy, optimal influence-and-exploit

strategy has been introduced in this context. Assuming that

the seller has only distributional information about the

buyers’ valuation, this strategy tries to maximize the rev-

enue of marketing by giving the item for free to a specif-

ically chosen set of buyers in order to maximize the

influence on other potential buyers in the network. The

goal of this article was to generalize this idea by offering

discounts instead of giving the item for free. Finding an

appropriate discount sequence would enable us to find a

good approximation for the general problem of optimal

marketing strategy. It is advantageous to get the influential

buyers to buy the item in order to maximize the influence

on other buyers. Small offers increase the likelihood of a

sale by such buyers; however, offering high discount to all

the buyers decreases the revenue as well.

If we offer the item for free to the most influential

buyers early in the sequence, we increase the value other

buyers have for the item. Then, we can offer the item with

higher price to some other influential buyers to further

increase the value of the remaining buyers. As buyers’

value increases, we can offer the item with lower discount

and increase the revenue. Based on this idea, we introduced

three approaches for finding a convenient offer sequence:

(i) discounting base on average degree which improves the

result of the revenue maximization algorithms in networks

with any structure; (ii) greedy discount approach which

significantly increases the revenue in scale-free networks

but should have information about the existence of the

links; and (iii) discounting based on standard deviation of

the degree distribution which approximates the greedy

discount strategy using just the average and standard

deviation of the degree distribution. Moreover, we studied

two marketing strategies based on deterministic local

search and greedy hill climbing strategy. Influence models

are usually considered to be monotone. In addition to the

monotone concave influence model, we introduced a non-

monotone concave model for the influences and tested our

strategies on monotone and non-monotone concave influ-

ence models. Extensive simulations on model networks as

well as several real social networks showed outperfor-

mance of our strategy to the traditional algorithms. On

average, the greedy discount strategy improved the per-

formance of the local search algorithm by about 15 % in

monotone and over 11 % in non-monotone model. In the

case of the greedy hill climbing algorithm, the improve-

ment was about 15 % in monotone model and over 9 % in

non-monotone model. The proposed strategies are

Fig. 8 Revenue from the

monotone concave influence

model (top row) and the non-

monotone concave influence

model (bottom row) as a

function of the maximum

number of buyers allowed in set

S, for the high-energy physics

theory citation network with

27,770 nodes and 352,807

edges. Other descriptions are as

in Fig. 3
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convenient for use in real world as well as online social

networks. As future work, it would be interesting to

implement these algorithms in real social networks to

validate them and study how individuals respond to these

discounts.
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