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Abstract This paper proposes an alternative way to

identify nodes with high betweenness centrality. It intro-

duces a new metric, j-path centrality, and a randomized

algorithm for estimating it, and shows empirically that

nodes with high j-path centrality have high node

betweenness centrality. The randomized algorithm runs in

time O(j3n2-2alog n) and outputs, for each vertex v, an

estimate of its j-path centrality up to additive error of

±n1/2?a with probability 1 - 1/n2. Experimental evalua-

tions on real and synthetic social networks show improved

accuracy in detecting high betweenness centrality nodes

and significantly reduced execution time when compared

with existing randomized algorithms.

Keywords Betweenness centrality � Social network

analysis � Algorithms � Experimental evaluation

1 Introduction

Social network analysis tools have been used in various

fields such as physics, biology, genomics, anthropology,

economics, organizational studies, psychology, and IT. The

recent phenomenal growth of online social networks

exacerbates the need for such tools that are scalable for

applications in military, government, and for commercial

purposes, to name only a few. Some of the relevant net-

work metrics are local, such as degree centrality, while

others capture global structural properties of the graph,

such as the betweenness centrality. This important global

graph metric is a centrality index that quantifies the

importance of a node or an edge as a function of the

number of shortest paths that traverse it.

Node betweenness centrality is relevant to problems

such as identifying important nodes that control flows of

information between separate parts of the network and

identifying causal nodes to influence other entities behav-

ior, such as genes in genomics or customers in marketing

studies. Betweenness centrality has been used to: analyze

social networks (Kahng et al. 2003, Liljeros et al. 2001,

Ortiz et al. 2004, Said et al. 2008) and protein networks

(Jeong et al. 2001); identify significant nodes in wireless ad

hoc networks (Maglaras and Katsaros 2011); study the

importance and activity of nodes in mobile phone call

networks (Catanese et al. 2012) and interaction patterns of

players on massively multiplayer online games (Ang

2011); study online expertise sharing communities such as

physicians (Hua and Haughton 2012); identify and analyze

linking behavior of key bloggers in dynamic networks of

blog posts (Macskassy 2011); and measure network traffic

in communication networks (Singh and Gupte 2005).

Node betweenness centrality, however, is computation-

ally expensive. The best known algorithm for computing

N. Kourtellis (&) � A. Iamnitchi � R. Tripathi

Department of Computer Science and Engineering,

University of South Florida, Tampa, FL, USA

e-mail: nkourtel@mail.usf.edu

A. Iamnitchi

e-mail: anda@cse.usf.edu

R. Tripathi

e-mail: tripathi@cse.usf.edu

T. Alahakoon

2056 Pinnacle Pointe Drive, Norcross,

GA 30071, USA

e-mail: alahakoo@mail.usf.edu

R. Simha

Department of Electrical and Computer Engineering,

University of Delaware, Newark, DE, USA

e-mail: rsimha@mail.usf.edu

123

Soc. Netw. Anal. Min. (2013) 3:899–914

DOI 10.1007/s13278-012-0076-6



exact betweenness centrality of all vertices is Brandes’

algorithm (Brandes 2001), which takes time O(nm) on

unweighted graphs and O(nm ? n2log n) on weighted

graphs. Some randomized algorithms for estimating

betweenness centrality have been proposed in the literature

(Bader et al. 2007, Brandes and Pich 2007, Jacob et al.

2005), but the accuracy of these randomized algorithms

decreases and the execution time increases considerably

with the increase in the network size. Variants of

betweenness centrality, such as flow betweenness (Free-

man et al. 1991) and random-walk betweenness (Newman

2005), take computation time at least of the order nm.

Thus, existing approaches for exactly computing or even

estimating node betweenness centrality are infeasible for

networks with millions of nodes and edges.

We introduce a new approach for identifying highly

influential nodes based on their betweenness centrality

score, according to the following observations. First, we

observe that the exact value of the betweenness centrality is

irrelevant for many applications: it is the relative ‘‘impor-

tance’’ of nodes (as measured by betweenness centrality)

that matters. Second, we observe that for the vast majority

of applications, it is sufficient to identify categories of

nodes of similar importance: thus, identifying the top 1 %

most important nodes is significantly more relevant than

precisely ordering the nodes based on their relative

betweenness centrality. Third, we observe that distant

nodes in (social) networks are unlikely to influence each

other (Borgatti and Everett 2006, Friedkin 1983). Finally,

we use the observation that influence may not be restricted

to shortest paths (Stephenson and Zelen 1989). Capturing

these observations, we introduce a new distance-based

centrality index called j-path centrality, present a ran-

domized algorithm for estimating it, provide a complexity

and accuracy analysis of this algorithm, and show empir-

ically that nodes with high j-path centrality have high

betweenness centrality.

The contributions of this paper are as follows. First, we

introduce a new node centrality measure, j-path centrality,

which is intuitively more appropriate for very large social

networks because it limits graph exploration to a useful

neighborhood of j social hops around each node. The

supporting intuition is twofold: first, in social networks,

distant nodes are unlikely to influence each other, and thus

the (long) shortest path that connects them is irrelevant in

practice. Second, shortest paths are not always the choice

for information transmission, as information may travel on

less optimal paths.

Second, we introduce and evaluate a randomized algo-

rithm that estimates the j-path centrality index for all

nodes in a network of size n, up to an additive error of at

most n1/2?a with probability at least 1 - 1/n2 in time O(j3

n2-2a log n), where a 2 ½�1=2; 1=2� controls the trade-off

between accuracy and computation time.

Third, we demonstrate empirically on a set of real and

synthetic social networks that nodes with high j-path

centrality have high betweenness centrality. Moreover, we

show that the running time of our randomized algorithm for

estimating j-path centrality is orders of magnitude lower

than the runtime of the best known algorithms for com-

puting exact or approximate betweenness centrality, while

maintaining higher accuracy, especially in very large net-

works. This paper extends our previous work presented in

Alahakoon et al. (2011) by comparing the j-path measure

with other betweenness variants found in the literature, by

providing a complexity analysis of the proposed random-

ized algorithm and by including a more thorough empirical

evaluation of the algorithm on eight new real networks.

In the remaining part of the paper, we briefly overview

the main results in computing betweenness centrality in

Sect. 2. We introduce the j-path centrality index and

present and analyze the complexity of the randomized

algorithm for computing it in Sect. 3. Section 4 presents

our experimental results, comparison with Brandes’ algo-

rithm, and two randomized algorithms for estimating

betweenness centrality. We conclude in Sect. 5.

2 Node betweenness centrality

Node betweenness centrality is a global centrality index

that quantifies how much a vertex controls the information

flow between all pairs of vertices in a graph. In this section,

we review the formal definition of node betweenness

centrality and briefly overview algorithms used in the

experimental evaluation that compute exact and approxi-

mate betweenness of all vertices in a graph.

2.1 Definition and notations

Let G = (V, E) be any (directed or undirected) graph,

described by the set of vertices V and set of edges E. The

number of vertices (edges) in G is denoted by n (respec-

tively, m). Let W be a non-negative weight function on the

edges of G, where we assume without loss of generality

that each edge e of G has W(e) = 1 if G is unweighted. We

define the length of any path q in G as the sum of weights

of edges in q. A shortest path from s to t in G is a path of

minimum length, and we denote this length by dG(s, t). Let

Ps(t) denote the set of predecessors of a vertex t on shortest

paths from s to t in G. Let rst denote the number of shortest

paths from s to t in G and, for any v 2 V; let rst(v) denote

the number of shortest paths from s to t in G that go

through v. Note that dG(s, s) = 0, rss = 1, and rst(v) = 0
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if v 2 fs; tg or if v does not lie on any shortest path from s

to t.

The betweenness centrality index of a vertex v is the

summation over all pairs of end vertices of the fractional

count of shortest paths going through v.

Definition 1 (Betweenness centrality (Anthonisse 1971,

Freeman 1977)) For every vertex v 2 V of a weighted

graph G(V, E), the betweenness centrality CBðvÞ of v is

defined by

CBðvÞ ¼
X

s 6¼v

X

t 6¼v;s

rstðvÞ
rst

: ð1Þ

2.2 Brandes’ algorithm

Brandes’ algorithm (Brande 2001) for computing

betweenness centrality defines the notion of the depen-

dency score of any source vertex s on another vertex v as

dsHðvÞ ¼
P

t 6¼s;v
rstðvÞ
rst

: Notice that the betweenness cen-

trality CBðvÞ of any vertex v can be expressed in terms of

dependency scores as CBðvÞ ¼
P

s 6¼v dsHðvÞ: The following

recurrence relation on dsHðvÞ is significant to Brandes’

algorithm:

dsHðvÞ ¼
X

u:v2PsðuÞ

rsv

rsu

ð1þ dsHðuÞÞ: ð2Þ

The algorithm takes as input a graph G = (V, E) and an

array W of edge weights and outputs the betweenness

centrality CB½v� of every v 2 V : The running time of

Brandes’ algorithm on weighted graphs is Oðnmþ
n2 log nÞ if the min-priority queue Q is implemented by a

Fibonacci heap. Using BFS instead of Dijkstra’s algorithm

when the input graph is unweighted, the running time of

Brandes’ algorithm reduces to OðnmÞ: The space

complexity of Brandes’ algorithm on both weighted and

unweighted graphs is O(m ? n).

2.3 RA-Brandes algorithm

Adapting the technique of Eppstein and Wang (2004) for

estimating the closeness centrality, Jacob et al. (2005) and,

independently, Brandes and Pich (2007) proposed a ran-

domized approximation algorithm for estimating the

betweenness centrality of all vertices in any given graph.

This algorithm, which we refer to as Randomized-

Approximate Brandes or in short RA-Brandes, is different

from Brandes’ algorithm in only one main respect: Bran-

des’ algorithm considers dependency scores dsHð�Þ of all n

start vertices (also called pivots) s, whereas RA-Brandes

considers dependency scores of only a multiset S of

Hððlog nÞ=�2Þ pivots. The multiset S of pivots is

selected by choosing vertices uniformly at random with

replacement. The estimated betweenness centrality bCB½v� of

any vertex v is then defined as the scaled average of these

scores:

bCB½v� ¼
n

jSj
X

s2S
dsHðvÞ: ð3Þ

The running time of RA-Brandes on unweighted graphs

is Oðlog n
�2 ðmþ nÞÞ; and on weighted graphs is Oðlog n

�2 ðmþ
n log nÞÞ if the min-priority queue Q is implemented by a

Fibonacci heap. Its space usage on both weighted and

unweighted graphs is O(m ? n). The algorithm guarantees

computing, for each vertex v, an approximation bCB½v� that

is within CB½v� � �nðn� 1Þ with high probability

1� 1=nXð1Þ:

2.4 AS-Brandes algorithm

Bader et al. (2007) proposed a randomized algorithm for

estimating the betweenness centrality of all vertices in any

given graph. Their algorithm is based on the adaptive

sampling technique of Lipton and Naughton (1989) used in

an algorithm for estimating the size of the transitive closure

of a directed graph. The adaptive sampling technique

requires selecting a multiset of start vertices by sampling

vertices adaptively in the sense that the number of vertices

chosen varies with the information gained from each

sample. To precisely bound the running time, this algo-

rithm terminates when the number of samples reaches a

predetermined cutoff T supplied to the algorithm. Because

of its similarity to Brandes’ algorithm and application of

adaptive sampling technique, we refer to this algorithm as

Adaptive-Sampling Brandes or in short AS-Brandes.

The algorithm AS-Brandes considers dependency scores

of only a multiset S of at most T pivots. It estimates

betweenness centrality of any vertex v by noting how fast

the sum of dependency scores for v reach a threshold

cn, where c C 2 is supplied to the algorithm. To this end,

for each vertex v, the algorithm maintains a running sum

RS[v] of dependency scores dsHðvÞ for pivots s and it

records in a variable k[v], the number of pivots used for v

until RS[v] becomes greater than cn; k[v] is set to T if RS[v]

never exceeds cn. The estimated betweenness centrality

bCB½v� of any vertex v is then defined as the scaled average

of these scores over k[v] samples:

bCB½v� ¼ n
RS½v�
k½v� : ð4Þ

Since AS-Brandes considers only T pivots while Brandes’

algorithm considers all n pivots, AS-Brandes should be

roughly Xðn=TÞ times faster than Brandes’ algorithm. The

space usage of AS-Brandes on both weighted and

unweighted graphs is O(m ? n). The algorithm guarantees
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that, for 0\�\0:5; if the betweenness centrality CB½v� of a

vertex v is at least n2/t for some constant t C 1, then with

probability at least 1� 2�; its estimated betweenness

centrality bCB½v� is within ð1� 1=�Þ � CB½v� using �t pivots.

3 j-path centrality

As introduced in Newman (2005), the random-walk

betweenness centrality is based on the traversal of the

network with absorbing random walks. Assume the tra-

versal of a message (e.g., news or rumor) originating

from some source s over a network and intending to

finally reach some destination t in the network along a

path, and assume that each node in the network has only

its own local view (i.e., has information only of its

outgoing neighbors). Thus, when the message is at a

current node v, the node v forwards the message based on

its local view to one of its outgoing neighbors chosen

uniformly at random. The message continues to travel in

this manner until it reaches the destination node t, and

then stops.

The notion of j-path centrality is based on a similar

assumption regarding the random traversal of a message

from a source s. However, we make two further assump-

tions in order to reduce the computation time without

deviating much from the above random walk model. First,

we consider message traversals along simple paths only,

i.e., paths in which vertices do not repeat. As non-simple

paths do not correspond to the intuitive notion of ideal

message traversals in a social network, their consideration

in the computation of centrality indices is a noisy factor. To

discount non-simple paths, we assume that each interme-

diate node v on a partially traversed path forwards the

message to a neighbor chosen randomly, with probability

inversely proportional to edge weights, from the current set

of unvisited neighbors; the message traversal is assumed to

stop if all the outgoing neighbors of the current node

v already appear in the path up to v. Although choosing a

random neighbor in this manner at each step requires the

premise that the message carries the history of the path

traversed so far, this premise is needed to express the

average contribution of any simple path in the overall

information flow and to efficiently simulate such random

simple paths. Second, we assume that the message tra-

versals are only along paths of at most j edges, where j is

a parameter dependent on the network. It has been found in

many studies on social networks that message traversals

typically take paths containing few edges (Friedkin 1983),

and so this seems to be a reasonable assumption in the

context of social networks. Based on these assumptions, we

define j-path centrality:

Definition 2 (j-path centrality) For every vertex v of a

graph G = (V, E), the j-path centrality CkðvÞ of v is

defined as the sum, over all possible source nodes s, of the

probability that a message originating from s goes through

v, assuming that the message traversals are only along

random simple paths of at most j edges.

3.1 Formal analysis of j-path centrality

Consider an arbitrary simple path qs,‘ with start vertex s

and having ‘ B j edges, where j is the value of param-

eter j in j-path centrality. Let s; u1; u2; . . .; u‘�1; u‘ denote

the vertices in the order they appear in qs,‘ and s = u0 for

convenience. For every 0 B i B ‘, let ðs; u1; . . .; ui�1; uiÞ
denote qs,i, the subpath from s to ui, and let Pr[qs,i]

denote the probability that a message originating from s

traversed through the path qs,i. The probability Pr[qs,‘], as

shown below, is equal to the product of individual

probabilities associated with the random transitions of the

message between successive nodes of qs,‘. The exact

expression of Pr[qs,‘] depends on whether the graph is

weighted or unweighted; so, we consider these two cases

separately.

Consider the case of an unweighted, directed graph in

which qs,‘ is a simple path from s to u‘. For every

0 B i B ‘, let N(ui) denote the set of outgoing neighbors of

ui. The expression for Pr[qs,‘] is given by the following

recurrence relation:

Pr½qs;i�

¼
Pr½qs;i�1� � Pr½edgeðui�1; uiÞ

is chosen given qs;i�1� if i� 2
1
jNðsÞj if i ¼ 1

8
><

>:
ð5Þ

Here, Pr[edge (ui-1, ui) is chosen given qs,i-1] denotes

the conditional probability that the message is forwarded

from ui-1 to ui, given that the path traversed up to ui-1 is

qs,i-1. This probability is equal to 1=jNðui�1Þ �
fs; u1; u2; . . .; ui�2gj; since, by our assumption, each node

ui forwards the message to a node chosen uniformly at

random from the unvisited neighbors of ui. The above

recurrence relation easily leads to the following solution:

Pr½qs;‘� ¼
Y‘

i¼1

1

jNðui�1Þ � fs; u1; u2; . . .; ui�2gj
: ð6Þ

Notice from the above expression that the larger the

outdegree of a node, the smaller is the probability of the

message being forwarded through a specific edge. This

observation corresponds to the intuition that if the

intermediate nodes of a path have a high outdegree, then

it is less likely for a message from the source to take that

path in its entirety.
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Next, consider the case of a weighted, directed graph in

which qs,‘ is a simple path from s to u‘. In this case, each

edge (ui-1, ui) in qs,‘ has a weight W(ui-1, ui). Intuitively,

the weight of the edge (ui-1, ui) quantifies how easily any

information from ui-1 can pass to ui: the smaller the

weight of an edge, the more accessible is the endpoint of

the edge. Thus, it is more likely for a message to be

forwarded on to a lower weight edge than to be forwarded

on to a higher weight edge from any node. This intuition

suggests the following analog of Eq. (6) for the case of

weighted graphs:

Pr½qs;‘� ¼
Y‘

i¼1

1=Wðui�1; uiÞP
v2Nðui�1Þ�fs;u1;u2;...;ui�2g 1=Wðui�1; vÞ

: ð7Þ

Here, the conditional probability that the message is

forwarded from ui-1 to ui, given that the path traversed up

to ui-1 is qs,i-1, is given by the expression within the

product symbol. In this expression, the numerator 1/

W(ui-1, ui) corresponds to the intuition that the probability

of the message traversing the edge (ui-1, ui) is inversely

proportional to the weight of this edge and the denominator

is only a normalization factor so that the probabilities sum

to one.

With the above expression for Pr[qs,‘], we now for-

malize the notion of j-path centrality. For any simple path

qs,‘ originating from s and any v = s, let

v½v 2 qs� ¼
1 if v lies on qs; and

0 otherwise

�
ð8Þ

Then, the probability that the message originating from s

goes through any vertex v as per our assumptions is given

by
X

1� ‘� j

X

qs;‘:jqs;‘j¼‘
v½v 2 qs;‘� � Pr½qs;‘�: ð9Þ

The first summation is over the edge counts ‘ of any

simple path and the second summation is over all simple

paths qs,‘ whose edge count is exactly ‘. In these

summations, the contribution Pr[qs,‘] of any simple path

qs,‘ is included if and only if v lies on qs,‘, as indicated by

the expression v½v 2 qs;‘� � Pr½qs;‘�: Thus, we get an

alternative formulation of j-path centrality.

Proposition 1 (j-path centrality) For every vertex v of

graph G = (V, E), the j-path centrality CkðvÞ of v is given

by

CkðvÞ ¼
X

s6¼v

X

1� ‘� k

X

qs;‘:jqs;‘j¼‘
v½v 2 qs;‘� � Pr½qs;‘�; ð10Þ

where Pr[qs,‘] is described by Eq. (6) if G is unweighted

and by Eq. (7) if G is weighted.

3.2 Comparison with variants of betweenness

The notion of j-path centrality contrasts with other variants

of betweenness (e.g., j-betweenness, random-walk

betweenness and flow betweenness) in definitions,

assumptions, as well as algorithmic complexity.

3.2.1 j-betweenness or bounded-distance betweenness

Betweenness centrality considers contributions from all

shortest paths irrespective of their length. Borgatti and

Everett (2006) suggested the idea of limiting the length of

shortest paths in the definition of betweenness centrality, as

they argued that long paths were seldom used for propa-

gation of influence in some networks. They defined j-

betweenness centrality as an index in which, for each

vertex v, its centrality (similar to the case of betweenness)

is the sum of dependency scores dsHðvÞ of all start vertices

s on v, but the dependency scores account for only those

shortest paths that are of length at most k (as opposed to the

case of betweenness in which contributions from all

shortest paths are considered). Later, Brandes (2008)

redefined this measure as bounded-distance betweenness

centrality. For every vertex v 2 V of a graph G =

(V, E), the k-betweenness centrality (Borgatti 2006)

CBðkÞðvÞ of v is defined as CBðkÞðvÞ ¼
P

s;t2V :dGðs;tÞ� k
rstðvÞ
rst

:

The j-betweenness centrality of all vertices of a graph can

be computed using Brandes’ algorithm where we stop the

underlying single-source shortest path search when a vertex

of distance k from the source is reached. In traversing the

graph from every (source) vertex to all other vertices, the

single-source shortest path search breaks on reaching the

first vertex that is at distance at least k from the source. In

the worst case, if the shortest path distances from every

vertex to all other vertices are no more than k, then the

algorithmic complexity will be identical to Brandes’

algorithm.

3.2.2 Random-walk betweenness

Introduced by Newman (2005), it assumes that message

transmission between any two individuals s and t in a social

network follows a random path. It models the path the

message takes as an absorbing random walk from s to

t. The net flow of this random walk on an edge {x, y} is

defined as the absolute difference between the probability

that the walk goes from x to y and the probability that it

goes from y to x. The net flow of the random walk through

vertex x is defined as one-half of the sum of the net flows

on the edges incident to x. The net flow (along an edge or a

vertex) is defined in this way so as to discount the
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possibility that a random walk repeats a vertex or an edge

multiple times. The random-walk betweenness of a vertex

v is the expected net flow of a random walk from source

s to destination t through v, where the expectation is over

all possible pairs (s, t). The best known algorithm for

exactly computing random-walk betweenness of all verti-

ces takes time O(I(n - 1) ? mn log n), where

I(n) = O(n3) is the time for computing the inverse of an

n 9 n-matrix (Brandes 2005).

3.2.3 Flow betweenness

Introduced by Freeman et al. (1991), it models any directed

network as a flow network where edges represent pipes that

can carry up to unit amount of flow. The model assumes a

flow to be generated at a source node s, transmitted across

edges, and absorbed at a sink node t. The value of the flow

is defined as the total amount of flow generated at s, and the

amount of flow through any vertex x is the total amount of

flow leaving x. This notion requires determining the

quantity of the flow through a particular vertex v assuming

that the flow transmitting from s to t has the maximum

possible value. (In case this quantity is not unique because

more than one solutions exist for the st-maximum flow

problem, then we seek for the maximum flow through

v over all possible solutions.) The flow betweenness of a

vertex v is defined as the average of this quantity over all

possible source–sink pairs (s, t). The flow betweenness of

all vertices can be exactly computed in time O(m2n) as

reported in (Newman 2005).

3.3 Estimating j-path centrality with a randomized

approximation algorithm

We present a randomized approximation algorithm for

estimating the j-path centrality of all vertices in any graph.

The algorithm takes as input a graph G = (V, E), a non-

negative weight function W on the edges of G, and

parameters a 2 ½�1=2; 1=2� and integer j = f(m, n), and

runs in time Oðj3n2�2a ln nÞ: For each vertex v, it outputs

an estimate of CjðvÞ up to an additive error of ±n1/2?a with

probability at least 1 - 1/n2. We refer to this algorithm as

Randomized approximate jpath or in short RA-jpath.

The algorithm, shown in Algorithm 1, performs T ¼
2j2n1�2a ln n iterations (the expression for T comes from

the analysis of the algorithm, shown next). In each itera-

tion, a start vertex s 2 V and a walk length ‘ 2 ½1; j� are

chosen uniformly at random. In every iteration, a random

walk consisting of ‘ edges from s is performed, which

essentially simulates a message traversal from s in G using

the assumption made in Definition 2. The number of times

any vertex v is visited over all the random walks is

recorded in a variable count[v]. The estimated j-path

centrality bCj½v� of any vertex v is then defined as the scaled

average of the times v is visited over T walks:

bCj½v� ¼ jn � count½v�
T

:

Theorem 1 The algorithm RA-jpath runs in time

O(j3n2-2alog n) and outputs, for each vertex v, an estimate

bCj½v� of Cj½v� up to an additive error of ±n1/2?a with

probability 1 - 1/n2.

Proof Fix an arbitrary vertex v 2 V ; real a 2 ½�1=2; 1=2�;
and integer j C 1. We define random variables Xi, for

1 B i B T, corresponding to the T iterations as follows

Xi ¼
1 if the ith random simple path goes through v;
0 otherwise

�

It is easy to see that when the algorithm terminates,

count[v] =
P

i=1
T Xi. Let us now evaluate the expected value

E[Xi] of Xi, for any 1 B i B T. Since Xi is an indicator

random variable, we have E[Xi] = Pr[Xi = 1], and, by the

definition of Xi, Pr[Xi = 1] equals the probability that the

i’th random simple path goes through v. The algorithm

chooses a random start vertex s and a random edge count

‘ 2 ½1; j�; where both are distributed uniformly over their

respective sample sets. Thus, for any vertex s and edge

count ‘ 2 ½1; j�; s is chosen as a start vertex and ‘ is chosen

as a edge count with probability 1/jn. Once s and ‘ are

fixed, then a path qs,‘ of ‘ edge counts originating from s

is traversed with probability Pr[qs,‘], described by Eq. (6) if

G is unweighted and by Eq. (7) if G is weighted. It follows

that

E½Xi� ¼
1

jn

X

s 6¼v

X

1� ‘�j

X

qs;‘:jqs;‘j¼‘
v½v 2 qs;‘� � Pr½qs;‘�;

¼ 1

jn
Cj½v� (by Proposition 1):

ð11Þ

Let us define random variables Yi, for 1 B i B T, as

Yi = j nXi. Note that Yis are independent random variables

and each Yi takes value of either 0 or j n. Also, note that

the estimate of Cj½v� returned by RA-jpath algorithm is

bCj½v� ¼ jn
count½v�

T
¼
PT

i¼1
Yi

T
: Thus, by linearity of

expectation,

E

PT
i¼1 Yi

T

" #
¼ jn

T
E
XT

i¼1

Xi

" #

¼ jn � E½Xi�
¼ CjðvÞ (by Eq. 11).
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Algorithm 1 Randomized approximation algorithm for estimating

the j-path centrality

Application of Hoeffding bound1 gives

Pr

PT
i¼1 Yi

T
� CjðvÞ

�����

������ n

" #
� 2e�2T2n2=ðTj2n2Þ

¼ 2e�2Tn2=ðj2n2Þ:

Keeping the error margin n to n1/2?a results in

Pr½jbCj½v� � CjðvÞj� n� � 2e�2T=ðj2n1�2aÞ: ð12Þ

This probability can be made at most 1/n3 if

T � 2j2n1�2a ln n: Thus, setting T to 2j2n1�2a ln n yields,

for every vertex v, an estimate bCj½v� of Cj½v� up to an

additive error of ±n1/2?a with probability at least 1 - 1/n2.

In each of the T iterations, the time spent is O(jn).

Therefore, the running time of the algorithm is

OðTjnÞ ¼ Oðj3n2�2a ln nÞ: h

4 Experimental evaluation

In order to assess the performance of the algorithm RA-

jpath, we compare in Sect. 4.2 its accuracy and running

time with that of Brandes’ algorithm and in Sect. 4.3 with

that of the two betweenness centrality approximation

algorithms (RA-Brandes and AS-Brandes). We performed

experiments on both real and synthetic social networks. The

real networks selected cover a wide range of application

domains and scales (file sharing, citation, co-authorship,

collaboration, email communication and social), and are

presented in Table 1. In order to test the performance of

RA-jpath on social graphs that maintain consistent social

properties with increase in their size, we created ten inde-

pendent sets of networks with varying sizes (1, 10, 50 and

100K nodes) using a synthetic social network generator

based on the model in (Sala et al. 2010). All experiments

were done on a cluster of identical machines with dual core

AMD Opteron processors at 2.2 GHz and 4GB RAM.

4.1 Performance metrics

For evaluating the accuracy of j-path centrality in estimating

the relative importance of a node as per the betweenness

centrality index, we chose two accuracy metrics. The first

metric, called RA-jpath correlation, is the correlation

between the approximate j-path centrality values computed

by RA-jpath and the exact betweenness centrality values

computed by Brandes’ algorithm, for all users in the graph.

We applied the same approach to measure the accuracy of the

other two approximation algorithms, RA-Brandes and AS-

Brandes. We refer to these metrics as RA-Brandes correla-

tion and AS-Brandes correlation, respectively.

The second accuracy metric captures the ability to

identify the top-N% high betweenness centrality nodes. For

this, we measured the percentage of the overlap between

the top-N% nodes as returned by a particular approxima-

tion algorithm (RA-jpath, RA-Brandes, and AS-Brandes)

and the top-N% nodes as identified by Brandes’ algorithm.

We refer to these metrics as top N% RA-jpath, top N%

RA-Brandes, and top N% AS-Brandes, respectively.

1 The Hoeffding bound (Hoeffding 1963), a classical result in

probability theory, states the following: Let X1;X2; . . .;XT be

independent random variables, such that each Xi ranges over the real

interval [ai, bi], and let l ¼ E½
PT

i¼1 Xi=T � denote the expected value

of the average of these variables. Then, for every n[ 0,

Pr½j
PT

i¼1
Xi

T
� lj � n� � 2e�2T2n2=

PT

i¼1
ðbi�aiÞ2 :
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For evaluating the runtime performance, we determined

the ratio of the execution time of each of the three

approximation algorithms over our implementation of

Brandes’ algorithm. We refer to this performance metric as

speedup, and thus we compare RA-jpath speedup, RA-

Brandes speedup, and AS-Brandes speedup.

4.2 Comparison with Brandes’ algorithm

We computed the correlation and speedup of RA-jpath

with respect to Brandes’ algorithm for the real and synthetic

social networks for j varying from 2 to 20 in increments of

2 and a varying from 0 to 0.5 in increments of 0.1. In Figs.

1, 2, 3, we present the correlation and speedup of the real

networks with (i) sizes below 10K nodes (Fig. 1a, b), (ii)

sizes between 10 and 50K nodes (Fig. 2a, b) and (iii) sizes

between 50 and 100K nodes (Fig. 3a, b). We present in

Fig. 4a, b the correlation and speedup of all synthetic net-

works used with sizes between 1 and 100K nodes. These

values are averages of ten executions on the ten indepen-

dently generated networks for each size (thus,

10 9 10 = 100 runs for each network size).

We found that, as a decreases, (1) the correlation of RA-

jpath with respect to Brandes’ algorithm increases, and (2)

the speedup of RA-jpath with respect to Brandes’ algo-

rithm decreases. The best correlation results are found for

a = 0 and j = 20. Nevertheless, for these values of a and

j, the runtime speedup of RA-jpath in comparison to

Brandes’ algorithm suffers the most. Furthermore, the

improvement of the correlation of RA-jpath across dif-

ferent values for j, given a constant value of a, shows that

the length of the path allowed to take in RA-jpath is

extremely important to achieve better results. The corre-

lation performance follows a similar pattern across all

network sizes and types.

In particular, we observed that for small real networks

such as the first six networks (\10K nodes), the maximum

correlation of RA-jpath with Brandes’ algorithm is *0.75

to *0.95 and the RA-jpath runtime is in the order of *30

to *50 times faster than Brandes’ algorithm. For larger

real networks, the maximum correlation is somewhat lower

(*0.70 to *0.90). However, the runtime of RA-jpath is

about *102 to *104 times faster than Brandes’ algorithm.

The speedup of the runtime of RA-jpath exhibits further

improvements on the synthetic social networks, and espe-

cially for the networks of larger size.

Overall, the maximum correlation achieved is in the

range of *0.70 to *0.95 and the maximum speedup

achieved is in the range of *102 to *106, depending on

the values of a, j, and the size of the network (real or

synthetic). A general observation from these results is that

we can achieve a near optimal performance of RA-jpath in

both correlation and speedup performance metrics when,

for a network of n vertices and m edges, a is set to 0.2 and

j is set to lnðnþ mÞ: We used these values of a and j in the

following experiments that compare the performance of

RA-jpath with RA-Brandes and AS-Brandes.

4.3 Comparison of RA-jpath with RA-Brandes

and AS-Brandes

Figures 5 and 6 show the correlation and speedup results of

the three algorithms (RA-jpath, RA-Brandes, and AS-

Brandes) with respect to Brandes’ algorithm on real

Table 1 Summary information of the real networks used

Real networks Nodes Edges d/u, w/uw References Network type

Kazaa 2424 13354 u, w Iamnitchi et al. (2004) File sharing

Kazaa (U) 2424 13354 u, uw Iamnitchi et al. (2004) File sharing

SciMet 2729 10416 u, uw Batagelj (2006) Citation

Kohonen 3772 112731 u, uw Batagelj (2006) Citation

Geom 6158 11898 u, w Batagelj (2006) Co-authorship

Geom (U) 6158 11898 u, uw Batagelj (2006) Co-authorship

CA-AstroPh 18772 396160 u, uw Leskove (2011) Collaboration

CA-CondMat 23133 186936 u, uw Leskove (2011) Co-authorship

Cit-HepPh 34546 421578 d, uw Leskove (2011) Citation

Email-Enron 36692 367662 u, uw Leskove (2011) Email communication

Cond-Mat-2005 40421 175693 u, w Newma (2001) Co-authorship

Cond-Mat-2005 (U) 40421 175693 u, uw Newma (2001) Co-authorship

P2P-Gnutella31 62586 147892 d, uw Ripeanu et al. (2002) File sharing

Soc-Epinions1 75879 508837 d, uw Leskove (2011) Social

Soc-Slashdot0902 82168 948464 d, uw Leskove (2011) Social

d/u Directed/undirected, w/uw weighted/unweighted
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Fig. 1 RA-jpath correlation

(a) and speedup (b) for the real

networks with size below 10K

nodes
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Fig. 2 RA-jpath correlation

(a) and speedup (b) for the real

networks with size between 10

and 50K nodes
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networks. These results were obtained for � ¼ 0:5 for RA-

Brandes, and s = 20 and c = 5 for AS-Brandes. This

choice of parameters for AS-Brandes was also used in

Bader et al. (2007). The results demonstrate the superiority

of RA-jpath over the other two algorithms in both per-

formance metrics for most of the real networks examined.

However, we believe that the choice of parameter values

� ¼ 0:5 and s = 20 is not suitable for the sizes of the

networks we examined: For example, in Bader et al. (2007)

where these values for parameters s and c are used in AS-

Brandes, the largest networks evaluated have less than 10K

nodes and less than 50K edges. For this reason, we decided

to match the speedups of the three algorithms in order to

infer less biased parameter values for AS-Brandes and RA-

Brandes. We thus performed several experiments with

various values of � (for RA-Brandes) and s (for AS-Bran-

des), and settled on the following heuristic that helped us to

closely match the speedups of the three algorithms with

respect to Brandes’ algorithm:

• � ¼ 2� ððRA-jpath speedupÞ � lnðnÞ=nÞ1=2
and

• s = 2 9 (RA-jpath speedup).

The intuition for this choice of � is as follows: RA-

Brandes considers dependency scores of Hððln nÞ=�2Þ
pivots, while Brandes’ algorithm considers these scores of

all n pivots, and so RA-Brandes speedup can be estimated

to Hðn�2= ln nÞ; setting this estimate to RA-jpath speedup

yields the above expression for �: The intuition for the

choice of s follows a similar reasoning. Figures 7 and 8

demonstrate this process for the real and synthetic net-

works, respectively. For the synthetic social graphs, the

values presented are averaged over ten executions on the

ten independently generated networks for each size (thus,

10 9 10 = 100 runs for each network size).

Figures 9 and 10 show that the correlations of RA-

jpath, RA-Brandes, and AS-Brandes vary widely when

their speedups are matched. If we compare the results in

Fig. 3 RA-jpath correlation

(a) and speedup (b) for the real

networks with size between 50

and 100K nodes
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Fig. 9 with the previous correlation performance results

shown in Fig. 6, we also notice that the correlations of RA-

Brandes and AS-Brandes are enhanced during the speedup-

matching process.

Overall, these real networks exhibit a wide range of

correlation performance because they acquire different

graph properties due to their diverse domains. In most

cases (except for the Kohonen and Soc-Epinions1 net-

works), RA-jpath outperforms the other two algorithms

by a correlation difference of 0.1–0.6, depending on the

network type and size. The synthetic networks, on the

other hand, are embedded with generic graph properties

of real social networks such as power-law degree distri-

bution and high average clustering coefficient. These

networks maintain the particular graph properties while

increasing the graph size and demonstrate that RA-jpath

is consistently better than the other two algorithms on

larger networks.

Fig. 4 RA-jpath correlation

(a) and speedup (b) for all the

synthetic networks (size

between 1 and 100K nodes)
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Fig. 9 Correlations of RA-jpath, RA-Brandes, and AS-Brandes with

respect to Brandes’ algorithm for the real networks. The speedups of

the three algorithms were first matched to set values of their

parameters and then the algorithms were run with these values to

compute their correlation scores

Fig. 10 Correlations of RA-jpath, RA-Brandes, and AS-Brandes

with respect to Brandes’ algorithm for the synthetic networks. The

speedups of the three algorithms were first matched to set values of

their parameters and then the algorithms were run with these values to

compute their correlation scores

Fig. 5 Speedups of RA-jpath, RA-Brandes, and AS-Brandes with

respect to Brandes’ algorithm for real networks. The parameters used

are a ¼ 0:2;j ¼ lnðnþ mÞ; � ¼ 0:5; s ¼ 20; and c = 5

Fig. 8 The speedups of the three algorithms on the synthetic

networks were matched to set values of their parameters for the

correlation experiments

Fig. 6 Correlations of RA-jpath, RA-Brandes, and AS-Brandes with

respect to Brandes’ algorithm for real networks. The parameters used

are a ¼ 0:2;j ¼ lnðnþ mÞ; � ¼ 0:5; s ¼ 20; and c = 5

Fig. 7 The speedups of the three algorithms on the real networks

were matched to set values of their parameters for the correlation

experiments
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The better performance of RA-jpath shown in these

results, even after we matched its speedup with the other

algorithms, demonstrates that our proposed algorithm can

be used to calculate more accurately relative ranks of

betweenness scores for the nodes in a network and could be

ideal for experiments on large networks where reliable

results are needed fast.

Table 2 shows top N% RA-jpath (RA-K), top N% RA-

Brandes (RA-B), and top N% AS-Brandes (AS-B), for the

real and synthetic social networks and for N = 1, 5, and

10. The results shown were obtained after the algorithms

were matched in speedup, as mentioned earlier. Overall,

RA-jpath outperforms the other two algorithms by a sig-

nificant difference of *10 to *40 %, in identifying the

top-1 % high betweenness centrality nodes, in all the sizes

and types of networks. This result stresses the effectiveness

of RA-jpath in identifying the nodes in a social network

which rank the highest in betweenness, and doing so in a

fast and efficient way.

When we examine the top-5 % and top-10 % of nodes,

we increase accordingly the subset of nodes considered for

the calculation of the high betweenness node overlap.

Intuitively, this means that any of these algorithms should

perform better, as more nodes are included in the subset,

thus increasing the probability of finding more top central

nodes. This intuition is verified for the RA-Brandes and

AS-Brandes algorithms. However, this is not the case for

RA-jpath, for which we notice an overall decrease in the

performance. This performance deterioration could be due

to the arbitrary ordering of low j-path centrality nodes

arising from closeness in their values, allowing them to

enter the set of top central nodes. In the future, we plan to

further examine this ordering and find ways to improve the

relative ranking of nodes, thus enhancing the performance

of the RA-jpath algorithm.

5 Summary and discussions

In this paper, we introduced a new graph centrality index

called j-path centrality and presented a randomized algo-

rithm RA-jpath for estimating its value for all vertices.

Our experimental evaluation demonstrates that this cen-

trality metric can be used to estimate in a scalable way the

relative importance of nodes as per the betweenness cen-

trality index: the correlation between the exact and

approximate centrality indices is between 0.70 and 0.95 for

all network sizes for a speedup gain of up to six orders of

magnitude for networks with more than 10K nodes.

Our experiments also show that RA-jpath is very

effective and fast in identifying the top-1 % or the top-5 %

nodes in the exact betweenness score, outperforming pre-

viously known approximate betweenness centrality algo-

rithms AS-Brandes (Bader et al. 2007) and RA-Brandes

(Brandes 2007). The near optimal performance of RA-

jpath in both correlation and speedup performance metrics

can be achieved when its parameters are set to a = 0.2 and

Table 2 Percentage overlap of the top-N% nodes computed by the three algorithms with respect to the exact betweenness centrality values

Network Size (K) 1 % 5 % 10 %

RA-K RA-B AS-B RA-K RA-B AS-B RA-K RA-B AS-B

Kazaa 2.4 79.2 58.3 58.3 72.7 64.5 66.9 72.3 79.3 79.8

SciMet 2.7 85.2 48.1 44.4 77.9 66.2 64.0 76.5 70.2 69.1

Kohonen 3.7 75.7 45.9 64.9 64.4 67.6 69.1 60.2 76.7 74.0

Geom 6.1 68.9 55.7 59.0 71.0 84.0 83.4 72.0 90.4 89.9

CA-AstroPh 18.7 63.1 42.2 39.6 68.8 68.1 68.1 74.9 77.8 78.7

CA-CondMat 23.1 74.5 48.1 48.9 76.6 73.2 72.4 76.9 81.8 81.8

Cit-HepPh 34.5 71.3 53.9 47.8 66.1 61.2 61.4 66.3 68.9 69.7

Email-Enron 36.7 75.1 79.0 76.8 63.8 88.5 89.1 65.6 92.7 92.7

Cond-Mat-2005 40.4 66.1 68.6 61.4 68.2 86.5 85.7 70.4 89.4 89.5

P2P-Gnutella31 62.5 78.2 31.0 26.6 78.3 50.7 50.1 77.4 66.2 65.0

Soc-Epinions1 75.9 80.6 70.2 71.0 75.0 90.2 90.0 72.7 94.8 95.0

Soc-Slashdot0902 82.2 85.9 67.4 67.7 85.2 88.8 88.3 78.4 92.1 92.0

Synth-1 K 1 83.0 70.0 65.0 82.4 70.6 69.6 77.3 70.1 69.7

Synth-10 K 10 88.3 58.0 58.4 82.4 67.8 67.8 78.7 78.5 78.5

Synth-50 K 50 86.6 61.6 60.8 81.7 76.5 77.0 77.5 83.5 83.8

Synth-100 K 100 87.5 61.0 60.4 81.4 79.7 79.8 77.1 84.4 84.6

The speedups of the three algorithms were first matched to set their parameters and then executed to compute the top-N% overlap

Values in bold denote the highest in the respective (N-value) category
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j ¼ lnðnþ mÞ; for a network of n number of nodes and

m number of edges.

Through our experiments, we have shown that j-path

centrality can be used as an alternative to node between-

ness centrality, since (a) j-path centrality closely models

the spread of information in a network and allows to

quantify the influence of any node in the network and

(b) the speedup performance of RA-jpath for estimating j-

path centrality surpasses those achieved by existing meth-

ods of computing exact or approximate betweenness cen-

trality values.

In fact, a parallelized version of our proposed random-

ized RA-jpath algorithm has been successfully used in a

study of the Steam Community (Blackburn et al. 2012), a

large-scale gaming social network with over 12 million

players and 88.5 million social edges. Our randomized

algorithm was used to approximate the betweenness cen-

trality of players and help identify top central players in the

gaming social network.

There are various practical applications for identifying

the top betweenness centrality nodes in large networks. For

example, in unstructured peer-to-peer overlays, the high

betweenness peers have a significant impact since they

relay much of the traffic (Kourtellis 2011). If under-pro-

visioned, they can damage the overall system performance.

If malicious, they can snoop on or divert significant com-

munication. Alternatively, they are great monitoring loca-

tions for examining the network communication for traffic

characterization studies.

Therefore, identifying the top betweenness centrality

nodes can have impact on the network performance

(through resource provisioning), security (by restricting the

monitoring of potential malicious activity to a small group

of candidates), and traffic characterization. Deterministi-

cally identifying high betweenness nodes in such a network

is infeasible not only because of the large scale (typically

hundreds of thousands or millions of nodes), but also

because of their dynamic nature caused by high node

churn.

Another example of the applicability of our approach is

efficient data placement and diffusion. For example, data

can be placed on a few high betweenness centrality nodes

in a large communication network, such as the Web graph,

where informed data placement may lead to faster access to

event announcements, or a mobile phone network, where

data can be security patches that can be efficiently propa-

gated from a few targeted central individuals to the rest of

the population.
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