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Abstract Local methods for detecting community

structure are necessary when a graph’s size or node-

expansion cost make global community detection methods

infeasible. Various algorithms for local community

detection have been proposed, but there has been little

analysis of the circumstances under which one approach

is preferable to another. This paper describes an evalua-

tion comparing the accuracy of five alternative vertex

selection policies in detecting two distinct types of

community structures—vertex partitions that maximize

modularity, and link partitions that maximize partition

density—in a variety of graphs. In this evaluation, the

vertex selection policy that most accurately identified

vertex-partition community structure in a given graph

depended on how closely the graph’s degree distribution

approximated a power-law distribution. When the target

community structure was partition-density maximization,

however, an algorithm based on spreading activation

generally performed best, regardless of degree distribu-

tion. These results indicate that local community detection

should be context-sensitive in the sense of basing vertex

selection on the graph’s degree distribution and the target

community structure.

1 Introduction

Many complex systems—such as power grids, nervous

systems, sports leagues, collaborating researchers and

musicians, and the World Wide Web—are amenable to

representation as a graph consisting of vertices (repre-

senting entities) and edges (representing relationships or

events). Communities within such graphs, consisting of

subgraphs whose vertices are more highly connected to

each other than to vertices outside the subgraph, often

correspond to meaningful components of the systems rep-

resented by the graphs. Detection of such communities can

therefore be a powerful tool for understanding complex

systems.

Numerous algorithms of varying complexity have been

developed to identify communities in graphs. One popular

approach is to search for a partition of the vertices of a

graph that optimizes a global utility function, such as

modularity (Newman 2004) or minimum description length

(Chakrabarti 2004; Rosvall and Bergstrom 2007). A related

approach searches for an edge partition that maximizes

global partition density (Ahn and Bagrow 2010). The

partition-density maximizing edge partition typically

induces overlapping vertex communities.

In many cases it is not feasible to determine the globally

optimal community structure, either because the entire

graph is too large to fit in memory or because the cost in

time or other resources of accessing the entire graph is

prohibitive. Under these circumstances, the search for

community structure must be limited to the neighborhood

of the graph local to a given query vertex.

The process of local community search typically con-

sists of incrementally adding individual vertices to a

community initialized with a query vertex, sometimes

followed by, or interleaved with, a winnowing step that
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removes vertices that detract from the community structure

(Clauset 2005; Luo et al. 2008; Bagrow 2008; Chen et al.

2009; Branting 2010a). Any implementation of this process

requires policies for (1) selection (how to choose the next

vertex to add to the community), (2) termination (when to

stop adding vertices), and (3) filtering (which vertices, if

any, to remove from the community).

The focus of this work is on improving vertex selec-

tion, independent of choice of termination or filtering

policies. There are two justifications for this focus. First,

it is typically easier to optimize individual design ele-

ments separately than to try to optimize all simulta-

neously. Second, termination and filtering policies are

necessarily dependent on the characteristics of the selec-

tion policy. The more accurate the selection policy, the

fewer the vertices that must be selected to obtain all

vertices in a given community and the fewer the vertices

that must be filtered to remove all nodes not in that

community.

The selection policies of alternative local community

detection algorithms differ in their policies regarding links

from a candidate for selection to vertices outside of the

current community. Some algorithms are xenophobic in

that they penalize candidates as a function of the number of

their edges to non-community vertices. Non-xenophobic

algorithms ignore or reward such edges.

Section 2 sets forth a schema common to many local

algorithms and shows that these algorithms can be dis-

tinguished in terms of this schema based on whether

their candidate selection criteria are xenophobic. A new

evaluation criterion for local community detection algo-

rithms that takes account of the relative centrality of

vertices within the target community is proposed in

Sect. 3. Section 4 describes an experimental data set,

comprising 12 standard natural and artificial graphs, and

analyzes the vertex-degree distributions of each. A

comparative evaluation set forth in Sect. 5 and discussed

in Sect. 6, shows that the relative performance of

xenophobic and non-xenophobic algorithms depends on

(1) the degree distribution of the graph to which they are

applied, (2) the target community structure, and (3) the

centrality criterion for vertices within the target

community.

2 Algorithms for local community detection

Many local community detection algorithms can be viewed

as implementing a common schema that assigns each

vertex in the graph to one of three sets at each processing

step:

• C, the community under construction, which is typi-

cally initialized with the query vertex.

• N, neighboring vertices not in C but sharing an edge

with at least one element of C.

• U, unexplored vertices, i.e., those not adjacent to any

element of C.

Optionally, C can be further partitioned into a boundary,

Cboundary, consisting of every node in C that has at least one

edge to a node in N, and Ccore, which consists of the

vertices in C that have no edges to N, i.e., Ccore = C -

Cboundary. The local community detection algorithm schema

is as follows:

Local community detection algorithms differ in their

criterion for selecting the ‘best’ vertex n 2 N. Note that in

this schema, all neighbors of each vertex n 2 N are known,

whereas neighbors of vertices in U are in general not

known. Edges are assumed to be undirected.

2.1 Xenophobic vertex selection

The vertices in a community typically have more edges to

vertices in the same community (internal edges) than to

vertices outside the community (external edges). Con-

versely, vertices outside the community typically have

more external than internal edges. Most local community

detection algorithms use heuristics to try to estimate the

relative number of internal and external edges for the

actual community based on the current partial community

under construction by the algorithm. Unfortunately, such

estimates are necessarily approximate if the partial com-

munity is incomplete.

Clauset (2005) proposed a vertex selection criterion

under which the vertex is selected that makes the largest

increase (or smallest decrease) in local modularity, R ¼ I
T;

where T represents the number of edges incident to

Cboundary (i.e., including both edges between pairs of
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nodes in C and those connecting a node in C to a node in

N), and I represents the number of edges incident to

Cboundary that are internal to C (i.e., that connect pairs of

nodes in C). The intuition behind maximizing R is that R

‘‘is directly proportional to sharpness of the boundary

given by Cboundary.’’ The procedure ‘‘avoids crossing a

community boundary until absolutely necessary’’ (Clauset

2005).

A second selection criterion, termed outwardness, was

proposed in Bagrow (2008). The outwardness of a vertex

v;Xv; is:

Xv ¼
ðkout

v � kin
v Þ

kv

ð1Þ

where kv is the degree of vertex v, kv
out is the number of

edges from v to vertices outside of the community C, (i.e.,

to N or U), and kv
in is the number of edges from v to vertices

in C. At each stage, the vertex v 2 N with the lowest

outwardness is selected to be moved to C, breaking ties at

random.

A third selection criterion, based on Luo et al. (2008) is

to choose the vertex that maximizes M ¼ indðCÞ
outdðCÞ; the ratio

of ind(C), the number of edges connecting pairs of nodes in

C, to outd(C), the number of edges connecting nodes in C

to nodes outside of C.1

These three selection policies—(l) maximizing local

modularity (L), (2) minimizing outwardness ðXvÞ; and (3)

maximizing M—share a common implicit assumption that,

for any node n 2 N; both edges from n to nodes in U and

edges from n to other nodes in N make n less likely to be in

the target community. This xenophobic assumption can

sometimes lead a node that is very likely to be of low

centrality to be selected before a node that might be of

higher centrality.

Consider, for example, vertices v1, v2, and v3 shown in

Fig. 1. Vertex v2 may have higher centrality in the actual

community than v1 or v3 because there are multiple paths

from v2 into C through edges to vi and vj, whereas no such

alternative paths to C are possible for v1, and no equally

short alternative paths exist for v3. However, v2’s

outwardness ð2�2
4
¼ 0Þ is higher than the outwardness of

v1ð0�2
2
¼ �1Þ and is the same as the outwardness of

v3ð2�2
4
¼ 0Þ. Moreover, local modularity would be higher

after adding v1ð Iþ2
Tþ0
Þ than after adding v2 or v3 ð Iþ2

Tþ2
Þ.

Finally, adding v1 would make M ¼ indðCÞþ2

outdðCÞ�2
; which is

higher than M after adding v2 or v3;
indðCÞþ2

outdðCÞþ0
. Thus, under

all three selection policies, v1 would be selected before v2,

and v2 and v3 would be treated identically even though v2 is

more strongly connected to C than is v3.

2.2 Non-xenophobic vertex selection

The observation that there are scenarios in which maxi-

mizing local modularity, minimizing outwardness, and

maximizing M all can lead low-centrality vertices to

be selected before potentially higher-centrality vertices

suggests that better performance might sometimes be

obtained by selection criteria that distinguish edges

internal to N from those between vertices in N and ver-

tices in U, rewarding the former and ignoring the latter.

Two such approaches to such selection criteria are

described below.

The first is spreading activation, in which excitation is

propagated along links from the query vertex to each

node that has been expanded. The node n 2 N having the

highest activation is selected to be added to C. This

procedure rests on an implicit assumption that activation

represents the strength of the connections through the

graph from the query vertex to n. A second approach is

density-based selection, in which the node n 2 N that

contributes to the most highly interconnected community

is selected at each step, regardless of the number of links

from n to U. These two approaches ignore links from a

Fig. 1 Vertices v1, v2, and v3 are candidates for addition to C

1 The algorithm of Luo et al. (2008) considers each n 2 N in

ascending order of degree, adding to the community each n whose

addition to C would increase M. Each element of C whose removal

would increase M without disconnecting C is then removed. These

two steps are repeated until no new vertices are added. The procedure

described here differs from the algorithm of Luo et al. (2008) in that it

selects the node that maximizes M, rather than the lowest degree node

for which DM [ O; and in that it is purely a node-selection policy,

with no node filtering.
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candidate node n 2 N to U, and both reward edges from n

to other nodes in N.

2.2.1 Spreading activation

Numerous approaches to spreading activation have been

explored in the history of computer science (e.g., Collins

and Loftus 1975; Crestani 1997). MaxActivation is a par-

ticularly simple form of spreading activation appropriate

for local community detection (Branting 2010a).

In MaxActivation, activation is propagated outward

from the query vertex. Each node’s activation is the sum of

activations received along each edge from a node of equal

or lesser distance to the query vertex. The activation

received along an edge is the sender’s activation multiplied

by a global edge-attenuation factor. To avoid ordering

effects, updates of all vertices at a given distance from the

query vertex are performed concurrently.

In the MaxActivation algorithm for selecting the high-

est-activation vertex, set forth below in Algorithm 2, the

symbol d represents the attenuation factor, 0.0 \ d B 1.0.

Activation of vertices can be calculated incrementally after

each update to C, but for simplicity of presentation, the

algorithm is shown below as applied in batch mode to all

the vertices in C [ N.

If d\ 1
arg maxv2GðdegðvÞÞ; then the activation of each vertex

v is guaranteed to be a monotonically decreasing function

of the path length from v to the query vertex. MaxActi-

vation does not permit any activation to flow from vertices

farther from the query vertex to vertices closer to the query

vertex and permits activation between vertices at the same

distance from the query vertex to propagate only one step.

MaxActivation is thus non-xenophobic, since edges from v

to vertices in U are ignored (having no effect on v’s acti-

vation) and edges from v to vertices in N increase v’s

activation (since activation flows to v from each such

vertex).2

2.2.2 Density-based selection

An alternative non-xenophobic selection criterion is to

select the n 2 N that makes the community as intercon-

nected as possible. MaxDensity (Branting 2010a), shown

below in Algorithm 3, is an approach to density-based

selection that uses a simple criterion for this selection:

choosing the n 2 N that has the most edges to vertices in C.

Ties are broken by choosing the n 2 N with the most edges

to other vertices in N, and any remaining ties are broken by

selecting the n 2 N with the shortest path to the query

vertex.

Like MaxActivation, MaxDensity ignores edges from

v to vertices in U and rewards edges from v to vertices in

N, since ties are broken by selecting the vertex with the

largest number of such edges.

2 An alternative approach to spreading activation based on the Katz

(1953) index assigns activation to node n 2 N equal to ¼
P1

l¼1 dl �
jfwlðq; nÞgj; where {wl(q, n)} is the set of all walks of length l from

query vertex q to vertex n and d is an attenuation factor. This

approach exhibited behavior very similar to that of MaxActivation in

the evaluation set forth below but for brevity is omitted.
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3 Evaluation criteria for local community detection

Ideally, a local community detection algorithm would be

evaluated by comparing its return set, i.e., the community

that it finds, to the optimal community under some global

criterion. In practice, this approach to evaluation is possible

only on graphs whose size and accessibility make global

optimization tractable. However, comparative evaluations

on tractable graphs may generalize to graphs for which

global optimization is intractable. Accordingly, the evalu-

ation set forth below is based on graphs small enough to be

amenable to global optimization.

Evaluation relative to a global criterion depends on the

choice of both the community-structure criterion to be

optimized (e.g., modularity or partition density) and the

utility function for vertices in the optimal community, e.g.,

weighing vertices by degree centrality within the target

community.

The evaluation described below compares alternative

local community-structure algorithms relative to two dis-

tinct global criterion: the vertex partition that maximizes

modularity (Newman 2004), and the edge partition that

maximizes partition density (Ahn and Bagrow 2010).

Modularity is the best-known global community-structure

criterion and is widely used despite its known limitations,

such as a resolution limit and a bias toward equal-sized

communities (Fortunato and Barthelemy 2007). The par-

tition-density criterion for link clustering is not subject to a

resolution limit and permits overlapping communities, but

produces communities somewhat different from those

produced by maximizing modularity.

For a given seed vertex, s, and global community cri-

terion, a target community is a community containing s that

would be optimal under the criterion. For example, if the

criterion were maximal modularity, then the target com-

munity for s would be the community containing s in

highest-modularity level of the dendrogram created by the

algorithm of Newman (2004).

Given a target community T, the quality of a local

community detection algorithm can be calculated by means

of a utility function, utilT, defined over the vertices of T.

For example, the quality of a k-element return set C can be

measured as the sum of the utilities of C’s vertices,P
v2C utilTðvÞ. This sum can be normalized onto the [0.0 ..

1.0] interval by dividing it by the sum of the k highest

utility vertices of the community. The resulting measure of

solution quality is termed normalized utility-weighted

recall (NUWR). The NUWR of community C with respect

to target community T, NUWR, is shown in (2):

NUWRT ¼
P

v2C utilTðvÞ
arg maxS�T ;jSj¼minðjCj;jT jÞ

P
v2S utilTðvÞ

ð2Þ

NUWR formalizes the intuition that if two return sets differ

only in a single pair of vertices with different utilities, the

return set with the higher utility vertex is preferable to the

return set with the lower utility vertex. Similarly, if every

vertex in the target community has identical utility, then all

return sets consisting of k community vertices will have

identical NUWR, consistent with the intuition that all such

return sets are equally good. Local community extraction

algorithms can be ranked by comparing the NUWRs of the

return sets of each algorithm when search is terminated,

e.g., when k vertices have been expanded.

The evaluation below used two different vertex utility

functions:

1. Degree centrality, the proportion of edges in T that are

incident to a given vertex n.

2. Membership, assigning the same value, 1.0, for every

n 2 T and 0.0 for all other vertices.

For both vertex utility functions, util(n) = 0 for n 62 T .

Note that if k = |T| and the vertex utility function is

‘membership,’ then NUWRT is equivalent to R-precision

(Baeza-Yates and Ribeiro-Neto 1999), since under these

circumstances

NUWRT ¼ jtruePositivesj
jT j ¼ jtruePositivesj

jtruePositivesjþjfalsePositivesj.

4 Experimental data

The behaviors of the local community detection algorithms

described in Sect. 2 were compared on standard benchmark

graphs described in previous community detection

research. Each of the graphs was small enough to permit

calculation of the globally optimal community structure.

4.1 Natural graphs

A number of standard social, cultural, and biological

graphs have been described in the community detection
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literature. The experiments used following data sets,

drawn from corpus of network data collected by Newman

(2009):

• The Western US Power Grid (power) [4,941 vertices,

6,594 edges] (Watts and Strogatz 1998).

• Network Science (netsci). A co-authorship network of

scientists working on network theory and experiments

[1,589 vertices, 2,742 edges] (Newman 2006).

• Word Adjacencies (adjnoun). Adjacency network of

common adjectives and nouns in the novel David

Copperfield by Charles Dickens [112 vertices, 425

edges] (Newman 2006).

• Les Miserables. Co-appearance network of characters

in the Victor Hugo novel Les Miserables (lesmis) [77

vertices, 254 edges] (Knuth 1993).

• The neural network of the nematode C. elegans

(c.elegans) [297 vertices, 2,359 edges] (Watts and

Strogatz 1998).

• Zachary’s karate club (zachary) [34 vertices, 78 edges]

(Zachary 1977).

• Dolphin social network (dolphin). A social network of

frequent associations among 62 dolphins in a commu-

nity living off Doubtful Sound, New Zealand [62

vertices, 159 edges] (Lusseau et al. 2003).

• Jazz. A network of jazz musicians who have performed

together (jazz) [198 vertices, 2,742 edges] (Gleiser and

Danon 2003).

• American college football (football). A network of

America football games between Division IA colleges

during the regular Fall 2000 season [115 vertices, 616

edges] (Girvan and Newman 2002).

4.2 The Girvan–Newman benchmarks

The Girvan–Newman (GN) benchmarks, introduced in

Girvan and Newman (2002), consist of random networks

of 128 vertices divided into 4 equal-sized communities

with an average vertex degree of 16 (Newman and Girvan

2004; Rosvall and Bergstrom 2007; Bagrow 2008).3 In

experiment 2, the average proportion of edges connected

to other vertices in the same community (internal edge

proportion) was 0.67 (weak community structure), 0.83

(moderate community structure), and 0.9 (strong commu-

nity structure). All communities were of size 32; thus,

k was equal to 32 in each trial. The three GN graphs are

referred to as r.67, r.83, and r.90, respectively, in the

discussion below.

4.3 Network degree distributions

The degree distributions of the nine natural and three GN

graphs described above differ widely. For example, Fig. 2

shows vertex frequency as a function of vertex degree for

the Western US Power Grid network. This distribution has

a heavy tail, suggesting a power-law or exponential dis-

tribution. The degree distributions of the Network Science,

Les Miserables, and Word Adjacencies networks display a

similar heavy tail.

In contrast, the degree distribution of the random graphs

is more symmetric, suggestive of the normal distribution to

be expected of a random graph. The degree distributions of

the remaining graphs, typified by the Jazz network shown

in Fig. 3, are harder to characterize, with little resemblance

either to normal or heavy-tailed distributions.

One way to characterize the differences among these

graphs is suggested by the convention of plotting degree

distributions on log–log graphs. Graphs whose degree

distributions are heavy tailed, i.e., that are well-approxi-

mated by power-law or exponential functions, typically

appear to be linear when displayed in this fashion. If linear

regression is performed on the log of the distribution val-

ues, a good fit will be obtained if the distribution is

exponential or power-law, but the fit will be poor for other

distributions, such as linear or normal. For example, the

log–log plot of the degree distribution for the Western US

Power Grid network, shown in Fig. 4, is nearly linear, with

R2 = 0.881.

Figure 5 and Table 1 show the least-squares linear fit of

the log–log degree distributions of the nine natural and

three GN graphs. R2 ranges from 0.881 to 0.646 for the four

5 10 15

0
50

0
10

00
15

00

degree

fr
eq

ue
nc

y

Fig. 2 Degree distribution for the Western US Power Grid network

3 For a discussion of alternatives to the GN benchmarks, see

Lancichinetti et al. (2008).
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heavy-tailed networks, but is \0.04 for two of the random

graphs, and is in between for the remaining networks.4

5 Experimental procedure

To facilitate comparison of the behaviors of the local

community detection algorithms under alternative criteria,

two distinct global community structures were calculated

for each of the graphs: the vertex-partition structure,

determined for the natural graphs by the agglomerative

clustering algorithm of Newman (2004)5 and for the GN

graphs consisting simply of the original vertex partition

used to generate each graph; and the edge-partition struc-

ture, consisting of the community structure induced by the

partition-density maximizing edge partition (Ahn and

Bagrow 2010).

In vertex-partition structures, a single vertex can belong

to only a single community, whereas in partition-density

structures, by contrast, vertices may to belong to multiple

communities.

For each community in the graphs, the degree centrality

of each vertex in that community was precomputed. Each

vertex that belonged to two or more partition-density

communities was assigned its highest degree centrality

value in any of the containing communities.

The evaluation consisted of a series of trials, each of

which started with the random selection of a query vertex,

s, from the graph. For each target community structure

(vertex partition or link partition) in turn, the target com-

munity T under that criterion structure was retrieved, and

each algorithm was then invoked on the graph with s as the

query vertex and maximum return set size |T| = k as a

termination condition.6 The NUWR was calculated for the

k-element set of vertices returned by the algorithm using

each of the two utility functions: degree centrality and

membership. For each of the two utility functions, an

NUWR of 1.0 would mean that every community vertex,

and no non-community vertex, was returned by the

Fig. 5 R2 statistic for linear regression of log–log degree distribution
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Fig. 3 Degree distribution for a network of jazz musicians
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Fig. 4 Degree distribution of the Western US Power Grid plotted

with log–log axes. The fit of this curve to a linear regression line has

R2 = 0.881

4 Clauset et al. (2009) describe a procedure for fitting degree

distributions to a power-law function and provide code for this

procedure at http://www.santafe.edu/*aaronc/powerlaws. Under this

procedure, none of the 12 graphs has a statistically significant fit to a

power-law distribution.

5 The highest modularity partition of a graph does not necessarily

correspond to the actual community structure (Fortunato and

Barthelemy 2007), and alternative metrics sometimes lead to better

community structure (Rosvall and Bergstrom 2007; Branting 2010b;

Koutsourelakis and Eliassi-Rad 2008). However, modularity is the

best-known community-structure criterion, so for reproducibility of

the results described here, the partition that globally optimizes

modularity was chosen as the first target community structure.
6 For link-partition communities, k was the size of the largest

community containing s.
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algorithm, whereas an NUWR of 0.0 would mean that no

community vertices were found. The two utility functions

differ in that degree centrality assigns a higher weight to

vertices that play a more central role in T, whereas mem-

bership treats all elements of T identically.

One thousand trials were performed on each graph, with

all five algorithms tested on the same random seed, s, in

each trial. In MaxActivation, the attenuation factor, d, was

set to 0.05.

MaxM, MaxR, and MinOmega are instantiations of the

local community structure schema (shown in Algorithm 1,

above) that maximize M, maximize R, and minimize X
(outwardness), respectively, with no filtering. MaxR and

MinOmega are equivalent to the algorithms of Clauset

(2005) and Bagrow (2008), respectively, whereas MaxM

differs from the algorithm (Luo et al. 2008) in that (1)

MaxM selects the node that maximizes M, breaking ties in

favor of the lowest degree node, rather than selecting the

lowest degree node for which DM [ O and (2) MaxM

performs no node filtering.

The first experiment evaluated the ability of each algo-

rithm to find the same community as would be found

through globally maximizing modularity. Tables 2 and 3

show the NUWR of each algorithm on each graph, where

utility within each target community was measured by

degree centrality and membership, respectively (the highest

value in each column in Tables 2–5 is shown in bold). In

both tables, MaxDensity had the highest NUWR for the

GN graphs, MaxActivation had the highest NUWR for the

graphs whose degree distribution most closely matched a

power-law distribution, and MaxM had the highest NUWR

for the remaining graphs. The choice of vertex utility

functions affected the relative performance of MaxM and

MaxActivation only on the Word Adjacencies graph

(MaxActivation had higher NUWR on the adjnoun graph

when the utility function was degree centrality, and MaxM

had higher NUWR on the Word Adjacencies graph when

the utility function was membership), but in both cases

every graph in which MaxActivation performed better than

MaxM had a higher R2 (i.e., closer match to a power-law

distribution) than any graph for which MaxM performed

better.

The second experiment followed the same procedure as

the first but used partition-density structure as the target

community structure for evaluation of the algorithms.

Thus, the second experiment evaluated the extent to which

each algorithm found the same community structure as

would have been found by the link-clustering algorithm of

Ahn and Bagrow (2010) (i.e., the partition-density com-

munity). Tables 4 and 5 show the NUMW of each

Table 1 Fit of the degree distribution of each network to a linear regression line

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90

R2 0.881 0.821 0.669 0.646 0.5154 0.478 0.291 0.153 0.116 0.030 0.184 0.018

Table 2 Mean NUWR in 1,000 trials where the target community structure was a vertex partition found by maximizing modularity (natural

graphs) or the ‘true’ structure (GN graphs) and the vertex utility function was degree centrality

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90

MaxM 0.612 0.858 0.456 0.739 0.773 0.892 0.865 0.829 0.766 0.818 0.908 0.927

MaxR 0.338 0.809 0.366 0.659 0.635 0.471 0.714 0.749 0.327 0.388 0.358 0.398

MinOmega 0.478 0.822 0.328 0.434 0.381 0.525 0.480 0.378 0.308 0.295 0.297 0.323

MaxDensity 0.660 0.867 0.434 0.611 0.564 0.766 0.771 0.820 0.816 0.929 0.989 1.000

MaxActivation 0.710 0.894 0.549 0.716 0.659 0.811 0.837 0.800 0.731 0.771 0.914 0.942

Table 3 Mean NUWR in 1,000 trials where the target community structure was found a vertex partition found by maximizing modularity
(natural graphs) or the ‘true’ structure (GN graphs) and the vertex utility function was community membership

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90

MaxM 0.604 0.930 0.426 0.724 0.717 0.865 0.819 0.798 0.755 0.811 0.906 0.926

MaxR 0.332 0.876 0.340 0.663 0.588 0.476 0.680 0.719 0.329 0.378 0.349 0.392

MinOmega 0.432 0.881 0.257 0.371 0.351 0.459 0.442 0.352 0.308 0.288 0.293 0.324

MaxDensity 0.565 0.907 0.271 0.418 0.402 0.596 0.584 0.636 0.804 0.902 0.989 1.000

MaxActivation 0.650 0.947 0.391 0.522 0.506 0.700 0.715 0.616 0.716 0.717 0.886 0.922
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algorithm on the same 12 graphs as above, where once

again the utility within each target community is degree

centrality and membership, respectively.

In the second experiment, MaxActivation had the

highest NUWR, regardless of vertex utility function, for all

but 1 graph (MaxM was best on Zachary’s Karate Club

when the utility function was membership). The results of

both experiments are summarized in Table 6, which shows

the vertex selection criterion leading to the highest mean

NUWR for each of six combinations of community struc-

ture type and degree of fit to a power-law degree

distribution.

6 Discussion

The relative accuracy of the alternative vertex selection

criteria in identifying a globally optimal community,

starting from a random member of that community,

depended on the character of the graph, the nature of the

target community, and to a less extent the vertex utility

function. When the target community structure was vertex

partition found by globally maximizing modularity (natural

graphs)or from the structure used to generate the graphs

(GN graphs), MaxActivation performed best in heavy-

tailed graphs (which have high R2), and MaxDensity was

most accurate (with one tie from MaxM) in random graphs

(which had very low R2). In the remaining graphs, MaxM

was the most accurate. The choice of vertex utility func-

tions (between centrality, degree centrality, or member-

ship) merely shifted the R2 value where the relative ranking

of MaxActivation and MaxM switch.

When the target community structure was produced by

partition-density maximizing link-clustering, MaxActiva-

tion had higher NUWR values for all but one case,

regardless of vertex utility function. This suggests that

local spreading activation is a good proxy for the link

distance metric of Ahn and Bagrow (2010).

It may seem counterintuitive that non-xenophobic

algorithms—such as MaxActivation and MaxDensity—

could ever have higher NUWR than xenophobic algo-

rithms—such as MaxM—that use information (edges to

vertices in U) ignored by non-xenophobic algorithms.

However, the empirical evaluation suggests that the

Table 4 Mean NUWR in 1,000 trials where the target community structure was found by maximizing partition density and the vertex utility

function was degree centrality

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90

MaxM 0.805 0.469 0.854 0.862 0.627 0.790 0.873 0.782 0.667 0.693 0.823 0.864

MaxR 0.763 0.463 0.813 0.834 0.592 0.683 0.708 0.778 0.408 0.504 0.472 0.443

MinOmega 0.726 0.381 0.646 0.622 0.342 0.569 0.512 0.400 0.363 0.395 0.355 0.373

MaxDensity 0.903 0.474 0.797 0.873 0.563 0.756 0.796 0.790 0.786 0.740 0.867 0.916

MaxActivation 0.976 0.483 0.957 0.947 0.894 0.962 0.894 0.899 0.994 0.912 0.967 0.982

Table 5 Mean NUWR in 1,000 trials where the target community structure was found by maximizing partition density and the vertex utility

function was community membership

Graph power netsci adjnoun lesmis c.elegans dolphin zachary jazz football r.67 r.83 r.90

MaxM 0.814 0.484 0.742 0.786 0.600 0.762 0.855 0.683 0.649 0.711 0.838 0.854

MaxR 0.742 0.476 0.695 0.772 0.523 0.650 0.683 0.682 0.367 0.454 0.429 0.434

MinOmega 0.706 0.389 0.606 0.588 0.280 0.543 0.490 0.363 0.339 0.360 0.330 0.367

MaxDensity 0.893 0.489 0.728 0.849 0.453 0.761 0.692 0.785 0.775 0.780 0.880 0.910

MaxActivation 0.964 0.493 0.870 0.910 0.753 0.937 0.821 0.844 0.981 0.846 0.934 0.956

Table 6 Vertex selection

criterion leading to the highest

mean NUWR under alternative

target community structures and

degrees of fit to a power-law

degree distribution

Fit to power-law distribution Community structure

Vertex partition Link partition

High MaxActivation MaxActivation

Medium MaxM MaxActivation (MaxM for Zachary)

Low MaxDensity MaxActivation
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number of edges from a candidate vertex n 2 N to vertices

in U is simply not an informative indicator in heavy-tailed

networks of n’s centrality in the target community. In these

networks, n’s centrality seems best modeled by the number

and length of known paths from n to the community, as

expressed by activation, irrespective of links from n to U.

7 Related work

A wide variety of techniques have been developed for

global community detection. Many of these techniques

involve a utility function over graph partitions, such as

modularity (Newman and Girvan 2004), minimum

description length (Chakrabarti 2004; Rosvall and Berg-

strom 2007; Branting 2010b), or log-likelihood (Zhang

et al. 2007), together with a search strategy for finding

partitions that optimize the utility function, such as greedy

agglomerative (Newman 2004) or divisive (Newman and

Girvan 2004) clustering, simulated annealing (Rosvall and

Bergstrom 2007), genetic algorithms (Jin et al. 2010), or

spectral clustering (Newman 2009). The division between

the utility function and the search strategy is less clearly

defined in other approaches, such as ‘‘barycentric’’ clus-

tering (Cohen 2008), marker passing algorithms (Raghavan

et al. 2007), and information flow estimation (Rosvall and

Bergstrom 2008). A recent link-clustering algorithm takes

a non-partitional approach, permitting communities to

overlap (Ahn and Bagrow 2010). Comparative evaluations

of many approaches to community detection are set forth in

Danon et al. (2005) and Leskovec et al. (2010). All these

algorithms require access to the entire graph.

Recent work has addressed the problem of detecting

local community structure based on incremental search of

the neighborhood surrounding one or more query vertices.

These techniques are necessary when it is infeasible to

search the entire graph. An early contribution was formu-

lation of a criterion defined over local, as opposed to glo-

bal, community structure (Muff and Rao 2005).

Viewed from the perspective of the algorithm schema

set forth in Sect. 1, above, previous work in local com-

munity detection has typically attempted to identify a

single criterion useful both for (1) selecting the ’best’

vertex in N to add to C and (2) identifying the boundary of

C community under construction. In the procedure

described in Bagrow and Bollt (2005), community con-

struction stops when the ‘‘change in total emerging degree’’

exceeds a threshold a. In Clauset (2005), the stopping

criterion is a maximum community size, k, but the node-

selection criterion, R, is intended to identify nodes on the

boundary of the true community. Bagrow (2008) intro-

duced a vertex selection criterion, ‘‘outwardness,’’ that did

not perform as well as other criteria in the evaluation

described above, but the primary focus was on recognizing

community boundaries, i.e., termination criteria, an issue

which is beyond the scope of this paper.

Luo et al. (2008) propose a vertex selection criterion,

M, that performed very well in the evaluation described

above. The procedure of Luo et al. (2008) differs from that

described here, however, in that it interleaves adding to C

vertices in N for which DM [ O with filtering vertices in

C whose removal would increase M. Chen et al. (2009)

propose a criterion, L, representing the average internal

degree of nodes in C over the average external degree of

nodes in Cboundary, that is closely related to Clauset’s R. In

a manner parallel to Luo et al. (2008), Chen et al.’s algo-

rithm includes a phase that filters vertices whose removal

would increase the average internal degree of C.

The work described in this paper differs from previous

work in that it focuses specifically on vertex selection,

independent of filtering or termination. However, this work

is complementary to research on termination and filtering

techniques, since such techniques can be combined with

whatever vertex selection technique is most appropriate for

a given graph in light of the graph’s vertex degree distri-

bution and the target community structure.

8 Conclusion

This paper has shown that local community detection

algorithms can be distinguished based on whether their

vertex selection criterion is xenophobic. In an empirical

evaluation on 12 natural and GN graphs, the relative per-

formance of vertex selection criteria depended on three

factors: (1) the degree distribution of the graph, (2) the

target community structure, and (3) the centrality criterion

for vertices within the target community.

To evaluate the relative accuracy of alternative vertex

selection policies, a criterion was proposed, NUWR, that

measures, relative to a target community structure and

centrality measure, how closely a return set of k nodes

matches the k most central nodes of the community.

These results suggest that there is no one-size-fits-all

local community detection algorithm, but instead that local

community detection should be context-sensitive in the

sense of selecting vertices based on the characteristics of

the graph, the nature of the community to be detected, and

the centrality criterion within the community.

This work does not address the challenging problem of

devising a termination policy that maximizes the likelihood

of getting most or all of a community (i.e., maximizing

recall) while minimizing the proportion of non-community

nodes (i.e., maximizing precision). However, identifying

better policies that optimize vertex selection order will set

the stage for development of such techniques. As better
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vertex selection policies are devised, it may become easier

to improve termination policies as well, leading to much

more accurate local community detection techniques. The

work described here is intended to be a step on this road.
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