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Abstract Finding the minimum Positive Influence

Dominating Set (PIDS) is a problem arisen from the social

network applications. The problem has been studied on

general random graphs. However, the social networks is

presented more precisely by power-law graphs. One of the

most important properties of social networks is the power-

law degree distribution. In this paper, we focus on the PIDS

problem in power-law graphs and prove that the greedy

algorithm has a constant approximation ratio. Simulation

results also demonstrate that greedy algorithm can effec-

tively select a small scale PIDS set.

Keywords Social networks � Positive influence

dominating set problem � Greedy algorithm �
Power-law distribution

1 Introduction

An online social network is a network composed of indi-

viduals who share the same interest and purpose which

provides a powerful medium of communicating, sharing

and disseminating information, and spreading influence

beyond the traditional social interactions within a tradi-

tional social network setting. Online social networks have

developed significantly in recent years. For example,

online social network sites like Facebook, MySpace are

among the most popular sites on the Internet. In fact,

Facebook has surpassed Google to be the most popular

website in the world in March 2010 (Dougherty 2010);

online social networks have also raised special interest

among commercial businesses, medical and pharmaceuti-

cal companies as a channel to influence the opinion of their

customers (Bhattacharyya et al. 2011; Kayaalp et al. 2011;

Rosen et al. 2011; Saravanan et al. 2011).

Most recent research has been focused on the under-

standing of the structure, traffic and properties of online

social networks (Alan et al. 2007; Nazir et al. 2008; Aris

et al. 2008; Schneider et al. 2009). Another major research

focus is on the security and privacy in online social net-

works (Gross and Acquisti 2005; Baden et al. 2009). There

are also studies about effectively utilizing online social

networks to spread ideas and information within a group

(David et al. 2003; Shishir Bharathi and Kempe 2007; Cha

et al. 2009). In Wang et al. (2009), Positive Influence

Dominating Set (PIDS) problem is introduced as follows:

given a graph G = (V, E), a PIDS is a subset D of V such

that any node v in V is dominated by at least ddðvÞ
2
e nodes

(that is, v has at least ddðvÞ
2
e neighbors) in D where d(v) is

the degree of node v. There are two requirements for PIDS:

Firstly, every node not in D has at least half of its neighbors
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in D, secondly every node in D also has at least half of its

neighbors in D. Finding PIDS has important applications in

social networks. For example, for college drinking prob-

lem, an intervention program needs to be launched to

convert the drinker to abstainer. Due to the limitation of

education resources, instead of choosing every binge stu-

dent to participate in the intervention program, choose a

PIDS of all the binge student to participate. Since each

binge student will have more abstainer friends than binge

friends, the binge student has a better chance to convert to

abstainer. Another example can be the spread an opinion

throughout a social network considering the bidirectional

influence between two person and the possibility of either

positive or negative impact a person can give to others. If a

PIDS of all the people is convinced about the information,

it is highly possible that the information is spread over the

whole network since every person has more friends

agreeing with the opinion. Wang et al. (2009) proposed a

dominating set augment based algorithm to construct PIDS

from a given network. Wang et al. (2011) proved the dif-

ficulty of PIDS problem in random graph and proposed a

greedy algorithm with an approximation ratio of H(d)

where H is the harmonic function and d is the maximum

vertex degree of the graph representing a social network.

Many properties of the social networks have been

revealed so far. One of the most important among them is

the power-law distribution of the nodes degrees (Clauset

et al. 2009), which means that for a positive integer i, let ni

be the number of nodes with degree i, then ni is propor-

tional to i-b, where b[ 0 varies for different application

domain. To better describe this property of the social net-

works, Aiello et al. (2001) proposed a random graph model

with given degree sequence which satisfies power-law

distribution. Consider a graph G with two parameters a and

b. Still we set ni to be the number of nodes of degree i, then

let ni = b ea/ibc for i ¼ 1; 2. . .D: Here D represents the

maximum degree in the graph. The two parameters a and b
roughly delineate the size and density of the graph

respectively. We apply this model in our research of the

PIDS problem. According to (Clauset et al. 2009), b varies

from 2 to 3 in most of the real-life networks, so here we

assume b 2 ð2; 3Þ: Cause that ni = ea/ib C 1, we get

D B ea/b, here we set D = ea/b.

In this paper, we focus on PIDS problem in power-law

graphs and show that the greedy algorithm has constant

approximation ratio in power-law graphs. The constant

approximation ratio is achieved by considering the node

degree distribution in power-law graphs. When b * 2.8,

the size of the PIDS constructed with the greedy algorithm

is guaranteed to be at most 1.73 times the size of the

optimal solution. We also carry out simulations over six

social network topologies collected from a game applica-

tion hosted by Facebook. We found that greedy algorithm

can effectively choose around 30% of all nodes into PIDS

while the average ratio of positive neighbors over all

neighbors is above 78%, which is significantly higher than

the targeted 50%. This means the strategically chosen PIDS

can effectively influence the whole network.

The rest of this paper is organized as follows. Section 2

describes the related work. Section 3 gives the greedy

algorithm for PIDS problem. In Sect. 4, constant approxi-

mation ratio is achieved for the greedy algorithm in power-

law graphs. Section 5 shows the simulation result of the

greedy algorithm on facebook data. Section 6 concludes

this paper and discusses our future plans.

2 Related work

Most of the current research in online social networks fall

in three categories: one is to understand the properties and

characteristics of online social networks, such as the work

in Alan et al. 2007, Nazir et al. 2008, Aris et al. 2008,

Schneider et al. 2009. Another major research focus is on

the security and privacy in online social networks (Gross

and Acquisti 2005; Baden et al. 2009). There are also

studies about effectively utilizing online social networks to

spread ideas and information within a group (David et al.

2003; Shishir Bharathi and Kempe 2007; Cha et al. 2009).

Our work focuses on exploring how to utilize online social

networks to help alleviate social problems in the physical

world. The social problem is different from spreading ideas

and information. The spread of ideas and information is

uni-direction in that once a person in influence to adopt an

idea or learn some information, he cannot revert to his

original state by means of future influence. The positive or

negative influence in social problems can flow in two

directions, that is a positive individual can convert to a

negative individual then can move back and forth between

these two states multiple times. Another difference

between our work and that of David et al. (2003), Shishir

Bharathi and Kempe (2007) is that we find a set of indi-

viduals that guarantees the positive effect of education will

be injected into the entire group. They focus on finding a

subset of a pre-established size that maximize the spread of

information, but not the subset regardless of size that

infuses information to the whole group. Wang et al. (2009,

2011) are the two papers most closely to this paper. Wang

et al. (2009) is the first one proposing the positive influence

dominating set problem under the context of college

drinking problem. The main idea of the proposed algorithm

is to iteratively find 1-dominating set to augment PIDS set

until all nodes have more positive neighbors than negative

ones. Wang et al. (2011) proved the hardness of positive

influence dominating set problem in random graph as APX-

hard by providing an L-reduction to the vertex cover
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problem in cubic graph and proposed a greedy algorithm

with approximation ratio of H(d) where H is the harmonic

function and d is the maximum vertex degree of the graph

representing a social network. In this paper, we evaluate

the performance of the greedy algorithm with simulations

and prove its approximation ratio for power-law graphs.

3 Greedy algorithm

This algorithm has been proposed in Wang et al. (2011).

We put it here to keep the completeness of the paper.

Consider a graph G = (V, E), for any vertex subset A �
V ; let nA(v) denote the number of neighbors of v in A. For a

vertex v with degree deg(v) in G, we denote hðvÞ ¼
ddegðvÞ=2e: Now, define

f ðAÞ ¼
X

v2V

minðhðvÞ; nAðvÞÞ:

4 Theoretical analysis

In this section, we analyze the performance of the greedy

algorithm for the PIDS problem in power-law graphs.

Firstly, we investigate the performance ratio of the greedy

algorithm for a class of problems known as submodular-

cover problems in power-law graphs. Then we present the

approximation ratio of the greedy algorithm for the PIDS

problem in power-law graphs.

4.1 Submodular-cover problems in power-law graphs

Many combinatorial problems can be formulated as the

submodular-cover problem, such as the dominating set

problem, the set-cover problem, and the hitting set prob-

lem. We will show later that the PIDS problem is also a

submodular-cover problem. Firstly we give the formulation

of the submodular-cover problem. Given a finite set I and a

real function gð�Þ defined on the power set 2I, a function

gð�Þ is submodular if for any A;B � I;

gðAÞ þ gðBÞ� gðA [ BÞ þ gðA \ BÞ:

A submodular-cover problem is a minimization problem of

the following formulation:

min jAj
s:t: gðAÞ ¼ gðIÞ;

here g is normalized, monotone increasing and submodular.

By normalized we mean gð; ¼ 0: It is not hard to prove that

the function f ð�Þ we defined in Sect. 3 is normalized,

monotone increasing and submodular. So the PIDS problem

is also a submodular-cover problem.

Next we show that the degree distribution of the power-

law graphs can improve the performance of the greedy

algorithm while applied to submodular-cover problems.

First, we introduce some notations that are needed in the

rest of this paper.

Given G = (V, E), a graph with maximum vertex

degree D. Let Vi: 1 B i B D be the set of vertices with

degree i and ni = |Vi|. For any integer k 2 ½1;D�; let L(k)

denote the set of vertices with degrees greater than or equal

to k, that is L(k) = {v|deg(v) C k} = [k B i B DVi. Sup-

pose OPT is the optimal solution of the submodular-cover

problem in power-law graph and |OPT| = opt, t is the

largest integer that satisfies |L(t - 1)| C opt, clearly

D C t C 2. Let M(k) denote the set of k nodes with the

highest degrees in the graph.

Previous researches have shown the property of greedy

algorithms for submodular-cover problems in random

graph as stated in the following lemma (Du et al. 2010).

Lemma 1 For a submodular-cover problem, let S* be the

optimal solution and S be the solution produced by greedy

algorithm, then

jSj �
X

x2S�

Xf ðxÞ

i¼1

1

i
�
X

x2S�
ð1þ lnðf ðxÞÞÞ:

Here we assume that

f ðxÞ ¼ degðxÞ:

Remark Actually, in most submodular-cover examples

such as the dominating set problem, the set-cover problem

and the hitting set problem, the value of f(x) equals to

deg(x). Hence, it is reasonable for us to assume that

f(x) = deg(x).

Then we have

jSj �
X

x2S�
ð1þ lnðdegðxÞÞÞ:

Here, we define a function g on V, for any subset A of V,

gðAÞ ¼
X

x2A

ð1þ lnðdegðxÞÞÞ=jAj:

g(A) actually presents the mean value of 1þ lnðdegðxÞÞ for

all the nodes in A. Then Lemma 1 can be rewritten as

jSj � gðS�Þ � jS�j; which means that when applied to the

submodular-cover problems, greedy algorithm has an

approximation ratio of g(S*). In random graphs, the

following inequality holds,
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gðS�Þ� 1þ lnðDÞ:

However in power-law graphs, most of the vertices have

small degrees while only a few vertices have very large

degrees. This phenomenon will make the performance ratio

of greedy algorithm in power-law graphs quite different

from that in random graphs. The following theorem shows

the approximation ratio of greedy algorithms for submod-

ular-cover problem in power-law graphs.

Theorem 1 For submodular-cover problems in power-

law graphs with 2 \b\ 3, greedy algorithm generates

a solution of size within a factor of g(L(t)) from the

optimal solution, where gðLðtÞÞ� 1þ lnðt � 1Þ þ 1
b�1

� �

1� 1
t

� �1�b
:

Proof As defined earlier, for a positive integer h, M(h) is

the set of h nodes with the highest degrees in the graph, so

gðS�Þ� gðMðoptÞÞ:

Notice that L(k) is the set of |L(k)| nodes with the

largest degrees and t is the largest integer that satisfies

|L(t - 1)| C opt, so |L(t)| \ opt and |M(opt)| = opt [
|L(t)|, hence

gðMðoptÞÞ\gðLðtÞÞ:

and

gðLðtÞÞ ¼
P

x2LðtÞð1þ lnðdegðxÞÞÞ
jLðtÞj

¼
PD

i¼tð1þ ln iÞ ea

ibPD
i¼t

ea

ib

¼1þ
PD

i¼t ln i ea

ibPD
i¼t

ea

ib

� 1þ
RD

t�1
ln x � x�bdx

RDþ1

t x�bdx

¼1þ
ln x � x1�bjDt�1 � 1

1�b x1�bjDt�1

x1�bjDþ1
t

:

Let P represent the second part of the above formula, then

P ¼
lnðt � 1Þ þ 1

b�1

� �
ðt � 1Þ1�b � ln Dþ 1

b�1

� �
D1�b

t1�b � ðDþ 1Þ1�b
:

To simplify this expression, we consider function

qðxÞ ¼ ln xþ 1

b� 1

� �
1� 1

xþ 1

� �1�b

:

q0ðxÞ ¼ ðx� ðb� 1Þ ln xÞ 1

x2
1þ 1

b

� �b�2

:

When 2 \ b\ 3 and x C 1, q0(x) [ 0. So q(x) is monotone

increasing and

lnðt � 1Þ þ 1
b�1

� �
ðt � 1Þ1�b

t1�b
�

ln Dþ 1
b�1

� �
ðDÞ1�b

ðDþ 1Þ1�b :

By the simple fact that if

a

b
� c

d
;

then

a� c

b� d
� a

b
;

thus

P�
lnðt � 1Þ þ 1

b�1

� �
ðt � 1Þ1�b

t1�b
:

So we have

gðS�Þ� gðLðtÞÞ� 1þ lnðt � 1Þ þ 1

b� 1

� �
1� 1

t

� �1�b

:

h

Here we should notice that 1� 1
t

� �1�b
is no bigger than 4

and tends to 1 quickly as t increases.

4.2 PIDS problem in power-law graphs

For the class of submodular-cover problems in power-law

graphs, Theorem 1 shows that the greedy algorithm has a

new performance ratio with a parameter t. In this section

we show that for the PIDS problem, which is also a sub-

modular-cover problem, the parameter t can be bounded.

This yields a constant performance ratio for the greedy

algorithm immediately.

For a given graph G = (V, E) with |V| = n, let C with

|C| = opt be the minimum PIDS set. We claim that set C

can not be too small. Because for all the nodes in a net-

work, everyone of them has to see a certain number of

PIDS nodes in the neighborhood. A relaxed constraint

requires that each of them has to be connected to at least

one node in PIDS. While on the other side, the whole PIDS

can connect with at most deg(C) such nodes where

degðCÞ ¼
X

v2C

degðvÞ:

Hence

degðCÞ� n:

Lemma 2 For power-law graph G with 2 \ b\ 3, t is

the largest integer that satisfies |L(t - 1)| C opt. Then
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t � 1�

ffiffiffiffiffiffiffiffiffiffiffi
b� 1

b� 2

b�2

s

:

Proof Based on the definition of function M, we have

degðCÞ� degðMðoptÞÞ�
ZD

t�1

ea

xb�1
dx:

In addition,

n�
XD

i¼1

jVij �
ZDþ1

1

ea

xb
dx:

Hence

ZD

t�1

ea

xb�1
�
ZDþ1

1

ea

xb
dx:

By simple integral operation we get

D2�b � ðt � 1Þ2�b� hðDþ 1Þ1�b � h:

In which h ¼ b�2
b�1

: After eliminating and simplification we

have

ðt � 1Þb�2� 1

h

and

t � 1�

ffiffiffiffiffiffiffiffiffiffiffi
b� 1

b� 2

b�2

s

h

This lemma together with Theorem 1 lead us directly to

the following conclusion:

Theorem 2 For the PIDS problem in power-law graphs,

the greedy algorithm has a constant approximation ratio of

1þ 1

b� 1
þ ln c

� �
1� 1

cþ 1

� �1�b

:

where c ¼
ffiffiffiffiffiffiffi
b�1
b�2

b�2

q
:

Proof Theorem 1 already shows that for submodular-

cover problem with the constraint f(x) B deg(x), the per-

formance ratio of the greedy algorithm is g(L(t)) and

gðLðtÞÞ� 1þ lnðt � 1Þ þ 1

b� 1

� �
1� 1

t

� �1�b

:

Recall that in the proof of Theorem 1, we proved that

qðxÞ ¼ ln xþ 1

b� 1

� �
1� 1

xþ 1

� �1�b

is monotone increasing. Combine with the result of Lemma

2 that

t � 1�

ffiffiffiffiffiffiffiffiffiffiffi
b� 1

b� 2

b�2

s

;

it is clear that

gðLðtÞÞ� 1þ 1

b� 1
þ ln c

� �
1� 1

cþ 1

� �1�b

:

where c ¼
ffiffiffiffiffiffiffi
b�1
b�2

b�2

q
: h

The value of this performance ratio function is illus-

trated in Fig. 1. For the social network of Portland city

introduced in (Eubank et al. 2004) with b * 2.8, the

guarantee value would be close to 1.73.

Remarks this constant performance ratio also holds for

the general dominating set problem in power-law graphs.

5 Simulation result

To evaluate the effect of the proposed greedy algorithm,

we also carry out simulation over social network topologies

retrieved from real online social networks. As identified in

Willinger et al. (2010), one challenge to online social

network research is the size of the network which is usually

billions of users. To do experiment, we can only grab a

subset of the online social network topology. In order to

generate representative social network topologies, we col-

lect the data from one of the popular gaming applications,

Fighter’s Club (FC) (Nazir et al. 2008) on Facebook social

networking site. The FC game has attracted over 3.4
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Fig. 1 The value of the constant guarantee of greedy algorithm for

PIDS problem on power-law graphs
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million Facebook users since it was initially launched on

June 2007. The gaming application records the players as

well as their IP addresses. We generate five different social

network topologies from facebook users who play FC

games together by choosing subsets of players from same

network, that is, the players having the same 24-bit net-

work address in their internet addresses. These five social

networks are of size 543, 697, 797, 1825, 2334 respectively

and all demonstrate power-law distribution. Figure 2

illustrates the distribution of the node degree in the online

community of size 2,334. It is clear that the node degree in

this Facebook application community follows a power-law

distribution, similar to the observations in prior studies

(Barabsi and Bonabeau 2003).

For each social network, we first apply greedy algorithm

on the topology to find PIDS. The simulation result is

illustrated in Table 1. Network size is the total number of

nodes in the social network, average degree is the average

degree over all the nodes in the social network. PIDS size

is the number of nodes chosen into PIDS. PIDS percentage

is the ratio of PIDS size over network size. Positive degree

of a node is the number of its PIDS neighbors. Average

positive degree percentage is the average of the ratio of

positive degree over node degree. PIDS percentage and

average positive degree percentage measure the perfor-

mance of the greedy algorithm. The lower the PIDS per-

centage, the higher the average positive degree percentage,

the better the algorithm performance. As can be seen, for a

social network including 2334 players and average degree

of 28.42, 29.26% is chosen into PIDS and in average, each

node has 79.05% of its neighbors in PIDS, which is much

better than the targeted 50% since each node has more

positive influence neighbors means the higher possibility

that it will convert to have positive impact to its neighbors.

This also motivate us to prune the constructed PIDS to

further reduce the size of PIDS in order to reduce the cost.

The prune is implemented as follows: for each node u in

PIDS, if removing node u from PIDS leaves every node in

the original topology positive influenced by the remaining

PIDS nodes, then remove node u from PIDS. Figure 3

illustrates the effect of pruning. With pruning, the PIDS

percentage of all five social networks drops by close to 1%.

We also did experiment of pruning node with minimum

degree first but the result is very close to randomly choose

a prunable node to prune first. Figure 4 illustrates the
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Fig. 2 Node degree distribution of an gaming application of 2,334

users on facebook

Table 1 Positive influence dominating set size

Network

size

Avg.

degree

PIDS

size

PIDS

percentage

(%)

Avg. positive degree

percentage (%)

2,334 28.42 683 29.26 79.05

1,825 30.25 501 27.45 79.03

797 12.36 273 34.25 78.63

697 13.62 238 34.14 81.53

543 7.58 250 46.04 82.51
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Fig. 3 The impact of prune on PIDS size
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Fig. 4 The impact of prune on the degree of positive neighbors
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impact of prune process on the degree of positive neighbors

of a node. x-axis represents number of nodes in a social

network, y-axis represents the average ratio of positive

neighbor degree over node degree of the nodes. It is clear

that as less nodes (around 1%) are chosen into PIDS,

average positive neighbor degree of nodes drops corre-

spondingly (between 1 and 2.2%).

Figure 5 illustrates the impact of node degree on PIDS

size. x-axis is the average node degree of the five social

networks, y-axis is the ratio of PIDS nodes over all nodes.

It demonstrates that as the node degree which presents the

network density increases, the ratio of PIDS nodes

decreases.

6 Conclusion

In this paper, we study the performance of greedy algo-

rithm for general submodular-cover problem in power-law

graphs then prove that the greedy algorithm for PIDS

problem in power-law graphs has constant approximation

ratio. Simulation results show that the greedy algorithm can

effectively choose a small set of PIDS which can positively

influence the whole network. Future work includes further

improvement of the approximation ratio of the greedy

algorithm by considering the structure property in addition

to degree distribution in power-law graphs and study

variations of PIDS problem such as defining new mathe-

matical model to capture the impact between two nodes.

Acknowledgements This work is supported in part by National

Science Foundation under grants CNS1016320 and CCF0829993.

References

Aiello W, Chung F, Lu L (2001) A random graph model for power-

law graphs. Exp Math 10:53–66

Alan M, Massimiliano M, Peter G, Bobby B (2007) Measurement and

analysis of online social networks. ACM SIGCOMM IMC. doi:

10.1145/1298306.1298311

Aris A, Ravi K, Mohammad M (2008) Influence and correlation in

social networks. ACM SIGKDD. doi:10.1145/1401890.1401897

Baden R, Bender A, Spring N, Bhattacharjee B, Starin D (2009)

Persona: an online social network with user-defined privacy.

ACM SIGCOMM. doi:10.1145/1592568.1592585

Barabsi A, Bonabeau E (2003) Scale-free networks. Sci Am

288:60–69

Bhattacharyya P, Garg A, Wu S (2011) Analysis of user keyword

similarity in online social networks. SOCNET. doi:10.1007/

s13278-010-0006-4

Cha M, Mislove A, Gummadi K (2009) A measurement-driven

analysis of information propagation in the flickr social network.

WWW, pp 721–730

Clauset A, Shalizi C, Newman M (2009) Power-law distributions in

empirical data, SIAM Rev. doi:10.1137/070710111

David K, Jon K, Eva T (2003) Maximizing the spread of influence

through a social network. ACM SIGKDD, pp 137–146

Dougherty H (2010) Facebook Reaches Top Ranking in US. Hitwise

Intelligence. http://weblogs.hitwise.com/heather-dougherty/2010/

03/facebook_reaches_top_ranking_i.html (accessed 15 March

2010)

Du D, Ko K, Hu X (2010) Design and analysis of approximation

algorithms. Manuscripts

Eubank S, Kumar V, Marathe M, Srinivasan A, Wang N (2004)

Structural and algorithmic aspects of massive social networks.

ACM SIAM, pp 718–727

Gross R, Acquisti A (2005) Information revelation and privacy in

online social networks. ACM workshop on Privacy in the

electronic society, pp 71–80
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