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Abstract Squamous cell carcinoma of the lung (SCCL) is the
most common and aggressive lung tumor with poor clinical
outcome. Identification and development of potential genes in
prognostic process could be beneficial for clinical management.
Sequencing data of 300 SCCL samples at level 3 were
downloaded from The Cancer Genome Atlas (TCGA) data
portal. Single-factor survival analysis was performed by the
Kaplan-Meier method. Functional annotation was conducted
on the high-frequency genes filtered out by 1000 times of the
least absolute shrinkage and selectionator operator regression
analysis. Meanwhile, multi-factor survival analysis was con-
ducted and ROC curve were produced. Risk coefficient and
expression level of each gene were used in the division of
high-risk and low-risk genes. The number of high-risk genes
of each sample was obtained, and the survival condition of
different samples was analyzed. Finally, the number of optimal
high-risk genes was obtained. Seven thousand nine hundred
ninety-eight differential expressed mRNAs were obtained,
and 2041 potential prognostic genes were screened out.
Twenty one of the 22 high-frequency genes were showed to
have significant impact on prognostic process. Single-factor
analysis was performed on the 22 models, and eight efficient
models were obtained, and seven among them were proven to
be significant. By random testing, ≥5 genes and ≥6 genes were
proven to be most stable and ≥6 genes were finally recognized
as the beneficial indicator to distinguish lung squamous cell
carcinoma. Twenty-two potential genes differentially expressed
in lung squamous cell carcinoma were identified as potential

prognostic indicator in clinical outcome, and the novel model in
this study could be applied in other cancer types.
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Introduction

Lung cancer remains the leading cause of cancer-related death
in many countries despite extensive preclinical and clinical
research [1]. Lung cancer is one the major causes that influ-
ence the trends of overall cancer incidence [2]. It is character-
ized by late stage of presentation coupled with intrinsic resis-
tance to cytotoxic chemotherapy [3]. Non-small cell lung can-
cer (NSCLC, accounting for 85 % of all lung cancers) and
small cell lung cancer (SCLC, accounting for 15 %) are the
two major forms of lung cancer [4]. NSCLC can be divided
into three major histological subtypes: squamous cell carcino-
ma (SCC), adenocarcinoma (AC), and large cell lung cancer
(LCC). Smoking causes all types of lung cancer but is most
strongly linked with SCLC and squamous cell carcinoma,
while adenocarcinoma is the most frequent type in patients
who have never smoked [5–8].

The incidence of SCC in males is higher than females.
Treatment of patients with SCC remains a vexing problem,
and long-term survival beyond 5 years is extremely rare [9].
Despite various treatments for SCC patients, including sur-
gery, radiotherapy, chemotherapy, or a comprehensive therapy
approach, the survival rates for patients with SCC had not
increased much [10]. Therefore, we aim to improve treatment
and prevention of the disease by greater knowledge of the
molecular origins and progression of lung cancer.

The Cancer Genome Atlas (TCGA) pilot is a feasible and
powerful tool. The project can expand knowledge of the
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molecular basis of various cancers, and it aims to assess the
value of large-scale multi-dimensional analysis of many mo-
lecular characteristics in human cancer, providing data rapidly
to the research community [11]. Besides, the interim integra-
tive analysis of DNA copy number, gene expression, and
DNA methylation aberrations, along with network view
of the pathways altered in the development of cancer, can
be much helpful in clinical management. In this study,
TCGA Research Network was established to generate the
comprehensive catalog of genomic abnormalities driving
tumorigenesis.

In the clinical setting, the evaluation of messenger RNA
(mRNA) expression levels of selected potential genes may
enable clinicians to tailor chemotherapy according to each
individual’s gene profile and to produce a substantial improve-
ment in the therapeutic outcome in terms of overall survival,
time to progression, and response to therapy. But currently,
not an effective model has been constructed to distinguish
prognostic conditions of SCCL patients. The exploration of
new markers in clinical management will hopefully improve
survival and quality of life for patients with advanced SCCL.

The main purpose of this study is to identify potential prog-
nostic gene sets that are closely associatedwith tumor progres-
sion and survivals for SCCL patients in decreasing the dimen-
sions by the least absolute shrinkage and selectionator opera-
tor (LASSO) regression model. Another goal is to construct a
model that can distinguish the prognostic conditions of SCCL
patients effectively. Here, we report that 22 potential genes
could function as prognostic and predictive markers for sur-
vival of SCCL patients, and ≥6 gene model was constructed
for the first time as indicator for SCC patients and can form the
basis for multi-institutional randomized adjuvant trials for
Bhigh-risk^ patients.

Materials and methods

Data source

The SCC microRNA (miRNA) expression profiles were
downloaded fromTCGA dataset. Three hundred samples with
squamous lung carcinoma were included. The level 3
RNAseq data were extracted. The data platform was
UNC__IlluminaHiSeq_RNASeqV2. mRNAs with no signal
or whose signal was 0 were eliminated.

Data preprocessing

The standard miRNA expression profiles were extracted from
the original downloaded data; mRNAs with no signal or
whose signal was 0 were eliminated. To eliminate the batch
effect, the generalized linear model (GLM) in Limma package
of R project was used for standardization between samples.

Survival analysis

miRNA expression profiles related to squamous lung carcino-
ma survival were identified by the Kaplan-Meier survival
analysis. Survival and prognostic conditions in each clinical
stage were painted. The Cox proportional hazard regression
risk ratios were used to determine influences of miRNA ex-
pressions as well as clinicopathological factors (age, gender,
and recurrence) on patient survival by multiplying the ratios
for all factors present [12]. SPSS (version 17.0; SPSS Inc.)
was used to perform the survival analysis while the GraphPad
Prism (version 5.04; GraphPad Software, Inc.) was used to
generate the survival curve.

Differentially expressed gene screening

Geneswhose expression value in each sample were 20% higher
than the 1.5-folds of median or lower than 1/1.5-folds of all the
samples and whose variance was significantly larger than the
median of all the genes in each sample (p < 0.05) were filtered
out as the differentially expressed genes among cancer samples.

Potential prognostic gene screening

Single-factor survival analysis was performed on the differen-
tially expressed genes to all the cancer samples by survival
package [13] in R language. Two conditions were satisfied:
p < 0.5 and s (variance) > 0.2. Genes meeting the above con-
ditions were figured out as the prognostic genes to squamous
cell cancer of the lung.

LASSO regression model

LASSO [14] was proposed by Tibshirani. It is an algorithm to
obtain a refined model by constructing a penalty function and
then define coefficient of some index as zero, thus simplifying
index sets. AIC and BIC principles can help to achieve the
reduction of dimensions by simplifying the variance sets of
statistical model. LASSO model of penalized package [15] in
R language was performed on the potential prognostic genes,
and after 1000 times LASSO regression, the left genes were
counted. Finally, the frequency of each gene was obtained,
and genes with frequency higher than 100 were recognized
as prognostic genes with high frequency.

Functional enrichment analysis

Functional enrichment analysis was performed on these high-
frequency genes by Database for Annotation, Visualization,
and Integrated Discovery (DAVID) [16]. Single-factor surviv-
al analysis and multi-factor survival analysis were conducted
on these genes in order to obtain the roles they played on the
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prognostic process. Besides, ROC curve was generated (sur-
vival ROC package of R software [17]).

Construction of prognostic model

High-risk and low-risk genes were divided by the following
rules [18]: (1) HR of single-factor survival analysis of genes
was higher than 1 and gene expression level was on the top
20 % of all the samples. (2) HR of single-factor survival anal-
ysis of genes was lower than 1 and gene expression level was
on the low 20 % of all the samples. (3) Genes which do not
meet the above conditions were marked as low-risk expres-
sion genes. The model was constructed by counting the num-
ber of genes with high-risk expression, and the model that had
the great impact on prognosis was screened. Samples were
divided by the number of their corresponding genes with
high-risk expression: ≥1 gene, ≥2 genes, ≥3 genes, etc. The
samples in each category and the survival time to obtain the
survival model of each category were counted. Survival anal-
ysis was performed on each model to get the prognostic con-
dition, and then the model that significantly affected prognosis
was to be found.

Model stability testing

The samples were selected randomly in the original sample
sets, and the above steps were repeated in order to testify the
stability of the model. The significance in survival analysis of
each model was observed, and 1000 repeats were carried out
in the attempt to find the most stable model.

Specificity analysis of subtype disease

All samples were divided into subtype according to the clini-
cal experience so as to testify the sample specificity of patient

Fig. 1 Survival status and
prognostic conditions of SLLC
patients. Shown are different
survival status and prognostic
conditions of SLLC patients in
different clinical stages by
different classification methods

Table 1 Top 20 potential genes that have impact on prognostic process

Gene p value Vars

SCD5 0.000124133 0.673034082

APLN 0.000729436 0.653693497

COBL 0.000826808 0.253611567

PCDHGB4 0.000877501 0.346879346

TGM2 0.000890756 0.455080295

CLEC18A 0.000950037 0.219171688

PLIN2 0.001387405 0.552825393

TREM1 0.001673649 0.337018024

STC2 0.001737615 0.490801948

BCAR3 0.001766485 0.870811804

S1PR5 0.001871228 0.411613064

MLPH 0.002249639 0.223876522

STAR 0.002592674 0.211948777

RNF175 0.002687487 0.522456877

GALNT14 0.002819656 0.228751928

ALPK3 0.004606366 0.684658883

TEC 0.004763696 0.906463349

CD163L1 0.005077948 0.422938564

SDK2 0.005207949 0.273740414

CTF1 0.005509832 0.874893426
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samples. The subtype with more than 100 samples was select-
ed out and was verified by the obtained model.

Results

Data processing

Gene expressions (20,254) from 300 samples were obtained
after data processing from TCGA dataset. Data with undetect-
ed mRNA or no signal were eliminated. Meanwhile, the cor-
responding survival information of the 300 samples was
obtained.

Survival analysis of different clinical stages

miRNA expression profiles related to survival were identified
using the Kaplan-Meier survival analysis, and statistical sig-
nificances of overall survival (OS) and progression-free sur-
vival (PFS) were determined using the log-rank test. Survival
analysis was performed on SPSS (version 17.0; SPSS Inc.),
and the survival curve was generated by GraphPad Prism
(version 5.04; GraphPad Software, Inc.) (Fig. 1). As can be
seen from the figure, various methods used to classify the
disease in clinical cannot differentiate the risk degree of the
disease, indicating the model is necessary to estimate the risk
after prognosis accurately.

Table 2 High-frequency genes
Gene Number of LASSO uniCox p value Var uniCox HR

BCAR3 322 0.001766 0.870812 1.3967874

PCDHGB4 322 0.000878 0.346879 1.7388274

PLIN2 322 0.001387 0.552825 1.5393059

SCD5 322 0.000124 0.673034 0.6174407

STC2 322 0.001738 0.490802 1.6288172

TGM2 322 0.000891 0.45508 1.6723593

APLN 319 0.000729 0.653693 1.5931104

GNB3 319 0.00553 0.571839 0.7069511

ZNF813 290 0.006037 0.534998 1.5778928

COBL 274 0.000827 0.253612 2.0692532

SDK2 255 0.005208 0.27374 0.5775625

NGFR 242 0.005909 0.206517 0.5104561

FKBP10 221 0.049726 0.546552 0.7907332

NR1I3 221 0.184938 0.31937 1.4873641

TNFSF11 221 0.018107 0.338797 0.6451773

BSPRY 213 0.008382 0.537723 1.4152515

C12orf53 194 0.005637 0.290386 0.5664294

GALNT14 168 0.00282 0.228752 0.5184943

NHLRC1 152 0.006147 0.528002 1.6897576

KLF12 151 0.010048 0.925297 0.7578157

TREM1 120 0.001674 0.337018 1.8277238

C21orf63 119 0.007166 0.766679 0.6972213

Table 3 Functional enrichment
analysis on high-frequency genes Term Count Percent p value Genes

GO:0005509—calcium ion
binding

5 1.953125 0.022856 BSPRY, TGM2, FKBP10, PCDHGB4,
GALNT14

GO:0046872—metal ion
binding

10 3.90625 0.037844 BSPRY, NR1I3, KLF12, TGM2, ZNF813,
NHLRC1, SCD5, FKBP10, PCDHGB4,
GALNT14

GO:0043169∼ cation
binding

10 3.90625 0.040141 BSPRY, NR1I3, KLF12, TGM2, ZNF813,
NHLRC1, SCD5, FKBP10, PCDHGB4,
GALNT14

GO:0043167—ion binding 10 3.90625 0.044003 BSPRY, NR1I3, KLF12, TGM2, ZNF813,
NHLRC1, SCD5, FKBP10, PCDHGB4,
GALNT14
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Differentially expressed gene screening

Seven thousand nine hundred ninety-eight differentially
expressed genes were identified out by the forth step of the
method, and all the selected genes fulfilled the two conditions
mentioned above. Two thousand forty-one genes that had the
potential roles on prognostic process were filtered out by
single-factor analysis (Table 1).

Prognostic gene screening

LASSO was used to identify gene-gene interaction in
genome-wide association studies. In this study, 22 prognostic
genes, that is, BCAR3, PCDHGB4, PLIN2, SCD5, STC2,
TGM2, APLN, GNB3, ZNF813, COBL, SDK2, NGFR,
FKBP10, NR1I3, TNFSF11, BSPRY, C12orf53, GALNT14,
NHLRC1, KLF12, and TREM1, were with high frequency
after 1000 times regression by LASSO method (Table 2).
And, the frequency of each gene was obtained. Twenty-one
genes among them had frequency more than 100, and they
were shown to have significant prognostic roles by single-
factor analysis.

Survival analysis

The DAVID classification system, a powerful bioinformatic
tool for classifying genes according to their function, was used
to identify gene families that may play significant roles in
specific pathways, biological processes, and molecular func-
tions. In this study, we used it to classify the differentially
expressed sequences (obtained after Bonferroni test applica-
tion) in the comparisons between conditions. DAVID analysis
was performed on the 22 high-frequency genes, and the result
was shown in Table 3. Ten genes were highly enriched on four

molecular functions: GO:0005509—calcium ion binding,
GO:0046872—metal ion binding, GO:0043169—cation
binding, and GO:0043167—ion binding (Table 3).

Multi-factor survival analysis of high-frequency genes

Multi-factor survival analysis results showed that Wald test
p = 8.902e-11, revealing that the overall multi-factor survival
analysis on the 22 genes was significant. The ROC curve was
generated (Fig. 2). The average AUC were all above 0.05,
indicating their effective roles on differentiating the disease
from the normal samples on prognostic process.

Construction of efficient models

Genes with high-risk expression and corresponding with each
sample were listed in Table 4. Eight efficient models were ob-
tained, and seven among them had great impact on prognostic
process. Single-factor survival analysis of the eight models was
shown in Fig. 3. As can be seen, the fifth and the sixth had the
largest number of samples, and the survival curve can differen-
tiate the high-risk samples from the low-risk ones.

Fig. 2 AUC curve of 22 high-
frequency genes by multi-factor
survival analysis. Shown was the
result of the Kaplan-Meier
survival analysis of the 22 high-
frequency genes from 1 to 6 years

Table 4 Single-factor
survival analysis of eight
models

Model uniCox p value

≥1 genes 0.178699594

≥2 genes 0.014531778

≥3 genes 0.00241319

≥4 genes 2.04E-05

≥5 genes 1.72E-07

≥6 genes 7.97E-07

≥7 genes 1.72E-15

≥8 genes 6.39E-15
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Stability testing of high-risk models

Random sample selecting was used to screen out the most
stable prognostic model. Eventually, 1000 random signifi-
cance distributions by survival analysis of each model were
revealed in the box plot (Fig. 4). It showed that 5 genes and 6
genes were the most stable in the random selection.

Specificity testing of the subtype of SLLC

Different division was done by the different subtype of the
samples so as to verify the specificity of the subtype of the
disease (Table 5). There were fewer samples in most division,
and subtype with sample number more than 100 was selected
to be performed on the nine to ten steps. Single-factor survival
analysis of the model corresponding with each subtype was
obtained (Table 6). Five genes and 6 genes were shown to

Fig. 3 Survival curve of eight
models. Eight constructed
models’ single-factor survival
curve by the Kaplan-Meier
survival analysis

Fig. 4 Box plot of significance distribution of eight models after 1000
times LASSO regression single-factor survival analysis randomly
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have the most favorable division effect in different subtype of
the disease.

Discussion

SCC is one major subtype of lung cancer, but there were few
biomarkers to aid patient management. Currently, despite ad-
vances in treatment modalities, the prognosis of SCC patients
is very poor. Recent studies suggested that microRNA

biomarkers could be useful for stratifying lung cancer sub-
types [19], but microRNA signatures varied between different
populations [20]. In this study, we identified 22 differentially
expressed genes from the most significantly altered genes by
using data from TCGA dataset. And we found that the 22
genes had the potential to serve as prognostic genes in clinical
management.What is more, the result of single-factor survival
analysis showed that 21 genes among them had significant
impact on prognostic process. For example, breast cancer
anti-estrogen resistance protein 3 (BCAR3) was once reported
to be a candidate marker in classifying epithelial-like and
mesenchymal-like phenotypes observed in NSCLCs [21]
and homologous to the cell division cycle protein CDC48
[22], thus increasing the reliability of its potential role in clas-
sifying prognostic conditions of SCCL patients. Another se-
lected gene, PCDHGB4, was also reported to be associated
with lung cancer since PCDH hypermethylation was proven
to be a frequent event found in all Wilms’ tumor subtypes
[23]. The expression of PCDHGB4 may be involved in meth-
ylation process since hypermethylation was found to be con-
cordant with reduced PCDH expression in tumors [24]. Other
genes, PLIN2, may be involved in the development and main-
tenance of adipose tissue while pathways related with SCD5
were fatty acid metabolism. And the promoter methylation of
transglutaminase 2 (TGM2) was identified as good responders
of cisplatin in NSCLC. Therefore, we suspected that the oc-
currence of SCCmay be in association with the metabolism of
adipose. Combined with the result of enrichment analysis, the
four most enriched GO terms were calcium ion binding
(GO:0005509), metal ion binding (GO:0046872), cation bind-
ing (GO:0043169), and ion binding (GO:0043167), and we
proposed that there may be close association between DNA
methylation and ion binding ability, thus resulting in the oc-
currence of SCC, which needs further research to support our
idea.

Since different clinical classification methods cannot make
an accurate distinction between high-risk and low-risk ones,
the necessity to make a prognostic model became more ur-
gent. Walter’s study confirmed that NSCLC can be divided
into two phenotypically distinct subtypes of tumor [21]. As for
the squamous cell carcinoma of the lung, in this study, ≥6 gene
model was constructed to distinguish prognostic condition of
patient cases, providing reference for clinical therapy. The
model we constructed in this study can help to predict recur-
rence and death in a large population of patients with SCC.
The current model of 300 cancer samples from patients can be
used to stratify high-risk future populations for adjuvant ther-
apy. Nowadays, due to the development of molecular and
gene profiles, molecular stratification for patients’ outcome
is increasingly emphasized [25, 26], which leads to the exten-
sive investigation and exploration of molecular markers.
Therefore, the construction of the model can be used to predict
recurrence of individual patients with SCC significantly, and it

Table 5 Sample numbers of each subtype of the disease

Level Status Number
of
sample

Residual
tumor

R0 228

R1 7

R2 2

RX 13

Pathologic_
T

T1 23

T2 76

T3 49

T4 9

T1a 22

T2a 70

T1b 25

T2b 26

Pathologic_
N

N0 189

N1 80

N2 25

NX 6

Pathologic_
M

M0 230

M1 1

M1a 1

M1b 1

MX 65

Pathologic_
stage

Stage I 4

Stage IA 54

Stage IB 84

Stage II 1

Stage IIA 47

Stage IIB 56

Stage III 2

Stage IIIA 39

Stage IIIB 7

Tobacco_
smoking_
history

Current.reformed.smoker.for…or…15.years 143

Current.reformed.smoker..duration.not.specified 5

Current.reformed.smoker.for…15.years 45

Current.smoker 92

Tobacco_smoking_history 9
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was consistent across all early stages of NSCLC. In this study,
samples were selected randomly to ensure the reliability, and
through 1000 times random LASSO regression analysis, the
most stable prognostic model was found out. Herein, the mod-
el we constructed in this article was more convincing and
feasible for further potential application in clinical practice.
The model can also be used to identify a subgroup of patients
who were at high risk for recurrence; thus, we can determine
who might be best treated by adjuvant chemotherapy. In ad-
dition, the functional enrichment analysis on the 22 high-
frequency genes showed that four molecular functions, name-
ly GO:0005509—calcium ion binding, GO:0046872—metal
ion binding , GO:0043169—ca t ion binding , and
GO:0043167—ion binding, were highly enriched. We specu-
lated that the ion binding may be associated with the methyl-
ation of DNA since there were early reports about the cyto-
toxic effect of metal ions and their complexes on DNA inter-
actions [27, 28], which still need further research.

Conclusion

In conclusion, we identified 22 potential genes, BCAR3,
PCDHGB4, PLIN2, SCD5, STC2, TGM2, APLN, GNB3,
ZNF813, COBL, SDK2, NGFR, FKBP10, NR1I3, TNFSF11,
BSPRY, C12orf53, GALNT14, NHLRC1, KLF12, and
TREM1, which may function as prognostic indicator of squa-
mous lung cell carcinoma, and the ≥6 gene model constructed
based on these high-risk genes can help in the early recurrences
and death in localized SCC. Thus, patients with high risk for
recurrence and death can receive timely adjuvant therapy. As
for the association between four highly enriched GO terms and
the prognostic process of SCCL, there still needs further re-
search to prove our hypothesis.
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