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Abstract Colorectal cancer (CRC) is one of the most com-
mon solid tumors worldwide. Recent evidence suggests that a
population of cancer cells, called cancer stem cells (CSCs), is
responsible for tumor heterogeneity, invasion, metastasis,
therapeutic resistance, and recurrence of CRC. The isolation
and characterization of CSCs using cell surface markers have
been reported previously with varying results. In this study,
we investigated a panel of four putative CSC markers, CD44,
CD24, CD166, and EpCAM, to define CRC-CSC. Paraffin
embedded tissue samples from different grades of primary,
untreated CRC were analyzed for the expression of four
CSC markers CD44, CD326, CD24, and CD166, using im-
munohistochemistry. Flow cytometric analysis of CRC-CSC
from HT29 (low grade) and HCT116 (high grade) human
colorectal cancer cell lines was done. Marker-based isolation
of CSC and non-CSC-bulk-tumor cells from HT29 was done
using FACS, and tumor sphere assay was performed. There
was a statistically significant difference (p < 0.05) in the ex-
pression of CD44, CD326, and CD166 between cases and

controls. A novel cutoff distribution of CD44 and CD166
was suggested to help for better immunohistochemical analy-
sis of CRC. Higher prevalence of CSC was seen in high-grade
CRC as compared to low-grade CRC. Sorted and cultured
CD44 + CD166+ cells formed tumor spheres, suggesting that
these cells, having properties of self renewal and anchorage
independent proliferation, were in fact CSC. Hence, CD44
and CD166 may serve as good CRC-CSCmarkers when used
together with novel cutoff immunohistochemistry (IHC) ex-
pression levels.
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Introduction

Colorectal cancer (CRC) is one of the most common gastroin-
testinal malignancies and a major contributor to cancer-related
mortality [1]. It is the third and second most common type of
cancer in males and females, respectively, worldwide [2].
Changes in lifestyle, high-fat diet [3, 4], physical inactivity [5],
and smoking [6] have all been implicated in CRC pathogenesis.

The primary treatment for localized CRC is surgical resec-
tion. However, approximately 25 % cases of CRC present
with metastases at initial diagnosis and almost 50 % of pa-
tients with CRC will develop metastasis during their lifetime
[7, 8]. The treatment outcomes for these patients are generally
poor as conventional chemotherapy and radiotherapy are
based on assumptions that the tumor mass is homogeneous.
Emerging evidence suggests that epithelial tumors, especially
solid tumors, have cellular heterogeneity within the tumor [9,
10]. This functional heterogeneity is maintained by a special
subset of the tumor cells referred to as cancer stem cells
(CSCs) which have an inherent capacity of ‘stemness’ and
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‘oncogenic transformation.’ CSCs self-renew and undergo
asymmetric cell division to form differentiated tumor cells
[11]. A direct correlation between the number of undifferenti-
ated cells and high chances of relapse and recurrence has
previously been reported in CRC. This loss of epithelial cell
homeostasis contributes to tumor growth and metastasis [12,
13]. Hence, CSC may play a central role in metastasis and
resistance to therapy [14–18].

There are numerous cell lines available to study human
colorectal cancer. In this study, HT29 and HCT116 human
CRC cell lines were used. HT29 gives rise to human well-
differentiated colorectal adenocarcinoma (low grade) when
xenografted into nude mice [19] and has been used to isolate
CSC and study low-grade CRC previously [20]. HCT116 cor-
responds to poorly differentiated CRC (high grade), and nu-
merous studies have shown its relatively undifferentiated state
and association with resistance to chemotherapy [21–23].

In order to understand cancer stem cell biology in colorec-
tal cancers, we used these cell lines as well as patient samples.
However, specific markers unique for CRC-CSC are not well
defined, and hence, using a panel of CSC markers rather than
one seems more appropriate to study CRC-CSC. After exten-
sive literature review, a panel of four cell surface markers
including CD44, CD24, CD166, and EpCAM (CD326) were
selected [24–29].

CD44 is a multifunctional transmembrane glycoprotein
expressed on cancer cell surface which assists in cell adhesion,
proliferation, growth, survival, migration, angiogenesis, and
differentiation [30]. It has been seen to promote hematoge-
nous spread [31] of cancer. Injection of only 100–1000
CD44+ tumor cells from colon and pancreatic cancers have
been shown to promote tumorigenesis in an immunocompro-
mised mouse model [30, 32]. CD44 is expressed on CRC-
CSC and can be utilized as a marker for its isolation [25, 33].

CD24 is identified as an alternate ligand for P-selectin, an
adhesion receptor on platelets and endothelial cells [34],
through which it facilitates the passage of tumor cells in the
blood stream during metastasis. It increases proliferation and
adhesion of tumor cells to fibronectin, collagen, and laminin
[35]. High expression of CD24 has been reported in tumor
progression and metastasis [26].

CD166 is a multidomain transmembrane type 1 glycopro-
tein of the immunoglobulin superfamily. Its expression is
pathologically correlated with aggressive diseases in a variety
of cancers including melanoma, prostate, breast, ovarian,
esophageal, and bladder cancers [36–41]. In human CRC,
aberrant cell surface CD166 expression is strongly correlated
with a shortened survival [42]. Furthermore, CD166+ cells
from human CRC have been shown to induce tumorigenesis
when xenografted in low numbers into immunodeficient mice
[27], which is considered a hallmark of a CSC population.

EpCAM (CD326) is a type I membrane protein involved in
the proliferation, differentiation, and migration of cancer cells

[43, 44]. Many reports have suggested EpCAM as a CSC
marker in CRC [28, 45–47].

The aim of this study was to identify valid CRC-CSC
markers from a panel of four putative markers, CD44,
CD24, CD166, and CD326, and to check their usefulness in
distinguishing between CRC and normal tissue using immu-
nohistochemistry and flow cytometry.

Results

Clinicopathological characteristics of patients

About 70 % of our study population (n = 54) was in the age
group of 30–60 years, and majority of the cancers observed
were located in the right colon (32 %) comprising of carcino-
ma of cecum, ascending colon, or hepatic flexure. The diag-
nosis of all patients was primary untreated colorectal adeno-
carcinoma. Out of the 54 patients, there were 15 (27.7 %)
well-differentiated, 21 (40.7 %) moderately differentiated,
and 18 (31.4 %) poorly differentiated CRC adenocarcinoma.
About 60 % of the patients were tumor node metastasis
(TNM) stage I and II while, 40 % were stage III and IV.
Lymph node metastasis was present in 30 % of the patients
and absent in 70 % of the patients (Table 1).

Expression of CD44, CD24, CD166, and EpCAM
in normal tissue and CRC

Immunohistochemistry was done to check the expression, lo-
calization, and distribution of CSC markers CD44, CD24,
CD166, and EpCAM in colorectal cancer and adjacent normal
tissue (n = 54). Another group of normal colorectal samples
(n = 16) was taken as control, from patients who were operat-
ed for non-neoplastic colorectal etiologies, to check for the
presence of field cancerization.

It was observed that the distribution and localization of
each CSC marker was different in different histopathological
grades of CRC (Fig. 1). The CSC marker expression is ma-
jorly confined to the luminal side of crypt in well-
differentiated CRC. As the loss of normal crypt architecture
increases in moderately differentiated and poorly differentiat-
ed CRC, the CSC marker distribution and localization be-
comes more diffuse and the staining intensity also increases.
Interestingly, the normal colorectal tissue obtained from pa-
tients operated for non-neoplastic conditions also showed
CSCmarker expression. However, in normal colorectal tissue,
CD44 and CD166 were observed to be localized to the bases
of intestinal crypts (Fig. 2), in contrast to their localization on
the luminal side of crypt in CRC.

Statistically significant difference (p < 0.05) was observed
in expression of CD44, CD166, and EpCAM between cases
and controls (Supp Table 1a–c) in different histopathological
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grades of CRC. Mean H-score in cases and controls for CD44
was found to be 9.2 ± 4.8 and 4.9 ± 2.3; for EpCAM, it was
9.2 ± 4.7 and 14.0 ± 2.3; for CD24, it was 9.0 ± 4.7 and 11.3 ±
4.5; and for CD166, it was 6.0 ± 4.8 and 2.3 ± 2.4, respective-
ly, indicating that CD44, CD166, and EpCAM are good CSC
markers for CRC (Table 2).

EpCAM expression was observed in all controls and de-
creased in cases suggesting that EpCAM may be a negative
predictor of CSC in CRC. Statistical analysis (Table 2) as well
as ROC curve analysis (Fig. 3) showed that CD24 expression
did not differentiate well between cases and controls. From
this study, we concluded that CD24 is not an appropriate
CRC-CSC marker. We hypothesize that CD44 and CD166
are suitable CSC markers in CRC, especially when used to-
gether (Table 3) for the identification and characterization of
CRC-CSC.

ROC curve analysis (Fig. 3) revealed that at a cutoff ex-
pression level of ≥25 %, distribution of CD44 had 80 % sen-
sitivity and 82 % specificity as a CSC marker. Therefore, we
considered ≥25 % distribution of CD44 as a positive expres-
sion of CD44. Likewise, distribution of CD166, at a cutoff
expression level of ≥15 %, had a sensitivity of 69 % and

specificity of 69 % as a CSC marker and was considered as
a positive expression for CD166 for further discussion.

Correlation between CD44 and CD166 expression
in human CRC

In this study, CD44 and CD166 expressions were found to be
independent of the patient characteristics of age, sex, histo-
pathological grade, TNM stage, or location of tumor
(Supplementary Table 2).

Double positivity of CD44 and CD166 was identified in 33
cases, while a double-negative expression was identified in 4
cases. In addition, 12 patients were identified as CD44 posi-
tive but CD166 negative. In contrast, five patients were iden-
tified as CD44 negative and CD166 positive. Spearman’s rank
correlation analysis showed that CD44 expression and CD166
expression in CRC are positively correlated significantly (r =
0.252; P = 0.03; Table 4), whereas there is no correlation be-
tween the CD44 and CD166 expressions in normal colorectal
tissues (Supplementary Table 3)

Characterization of HT29 and HCT116 human CRC cell
lines by flow cytometry

The CSC marker-based characterization profile of HT29 (low
grade) was different from HCT116 (high grade) cell line
(Fig. 4a, b). Based on the IHC study, CD44 and CD166 were
the most reliable CRC-CSC markers. Therefore, the CD44 +
CD166+ subset most probably represented the CSC popula-
tion, whereas the CD44-CD166− subset was the non-CSC-
bulk-tumor cell population. The less differentiated or high-
grade HCT116 cell line had a higher number of CSC
(CD44 + CD166+) than the more differentiated or low-grade
HT29 cell line (Table 5).

We sorted the CD44 + CD166+ and CD44-CD166− sub-
sets from the HT29 cell line using fluorescence-activated cell
sorting (FACS). Tumor sphere assay was performed on the
sorted subsets to ascertain the subsets showing self-renewal
and anchorage-independent proliferation, which are consid-
ered distinctive characteristics of CSC [28, 48, 49]. Both the
subsets were plated in low-adherence 96-well plates with
serum-free stem cell media (SCM) in dilutions from
100 cells/well to 10,000 cells/well. The wells with >5000 cells
showed only clumping on the second day itself and were
discarded. Optimal growth, division, and sphere formation
was observed in wells plated with <500 cells. For all further
assay experiments, 400 cells/well were plated on low-
adherence six-well plates with serum-free SCM and micro-
scopically observed for 3 weeks.

The CD44-CD166− subset failed to form spheres, whereas
the CD44 + CD166+ subset formed spheres after 2 weeks of
culture (Fig. 5).

Table 1 Clinicopathological characteristics of patients enrolled for
IHC study

Clinical data (n = 54) n (%)

Gender

Males 30 (55.55)

Females 24 (44.45)

Age (years)

0–30 8 (14.81)

31–60 38 (70.38)

≥60 8 (14.81)

Histopathological grade

WD 15 (27.77)

MD 22 (40.75)

PD 17 (31.48)

TNM (n = 43)

I and II 26 (60.46)

III and IV 17 (39.54)

Lymph node metastasis (n = 43)

Positive 13 (30.23)

Negative 30 (69.77)

Location

Right colon 32 (59.26)

Left colon 7 (12.96)

Transverse colon 3 (5.56)

Rectum 10 (18.52)

Disseminated 2 (3.70)

WD well differentiated, MD moderately differentiated, PD poorly
differentiated CRC
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Discussion

CRC is one of the most common solid organ cancers prevalent
worldwide. A vast majority of research on CRC has revealed
that metastasis is the major cause of mortality. The cancer
stem cell (CSC) model of tumor growth assumes that a special
subset of cells within the tumor, known as CSCs, have the
capacity to initiate and sustain tumor growth. CSCs are also
implicated in aggressiveness, metastasis, recurrence, and re-
lapse of CRC. Thus, deciphering the biology behind CRC,
especially CSCs, will give valuable insights regarding diag-
nosis, prognosis, and newer therapeutic targets in CRC.

Different opinions exist regarding the robustness of
markers used in identifying CRC-CSC, and the functional
relevance of cell surface markers used to identify CRC-CSC
is important, especially when considering future therapies. A
panel of putative CSC markers, CD44, CD24, CD166, and
EpCAM (CD326), were analyzed by immunohistochemistry
in 54 colorectal cancer cases and 70 controls (Fig. 6).
Statistically significant difference was observed between
cases and controls for expression of CD44, CD166, and
EpCAM but not for CD24. CD44 and CD166 were able to
distinguish significantly between cases and controls at a cutoff

expression level of ≥25 % for CD44 and a cutoff expression
level of ≥15 % for CD166 (Fig. 3). A significant correlation
between the positive expressions of these markers was also
observed (Table 4).

EpCAM is widely distributed on the surface of normal
cells, and any decrease in surface expression is shown to be
associatedwith cancer [44]. Our study has also shown reduced
cell surface expression of EpCAM in CRC. Reduced surface
expression of EpCAM has been correlated with a correspond-
ing increase in its intracellular expression. The intracellular
domain of EpCAM has been shown to regulate the activity
of genes responsible for carcinogenesis [43].

Though many reports have shown convincing evidence of
CD24 as a CSC marker for breast cancer, there have been
conflicting reports about its usefulness as a CSC marker for
CRC. CD24 in CRC did not show any differential expression,
and we found no statistically significant difference between
cases and controls by immunohistochemistry (IHC) analysis
as suggested previously [50].

We also studied the expression of these markers in two
types of controls: one control group comprised of adjacent
normal, healthy tissue, more than 5 cm, from the tumormargin
in patients operated for CRC. The other control group was
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Fig. 1 IHC analysis of CSC markers shows differential distribution and localization in different histopathological grades of CRC (as indicated by
arrowheads in the images)
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normal colonic tissue from patients operated for non-
neoplastic colorectal conditions. EpCAM expression was de-
tected in nearly 100 % of controls. CD24 expression was
variable in all the controls.

Loss of normal crypt architecture was seen in all cases of
CRC. The distribution and localization of each CSC marker
varied across different histopathological grades in CRC
(Fig. 1). In well-differentiated CRC, most of the CSC marker
distribution was observed on the luminal side of the crypt. The
luminal side of the crypt consists of differentiated cells/
enterocytes [51]. However, in controls, it was interesting to
note that most of the CD44 and CD166 expressions were
localized to a few cells at the bases of normal colonic crypts
(Fig. 2). The presence of adult stem cells residing at the bases
of normal colonic crypts may be a possible explanation for the

presence of CRC-CSC markers in normal colorectal tissues.
The normal colonic stem cells maintain the proliferative dy-
namics of colonic epithelium, and this similarity in CSCmark-
er expression suggests that normal stem cells may be a target
of oncogenic transformation to give rise to CSC [29, 52, 53].

We found no significant difference in the expressions of
CD44, CD24, CD166, and EpCAM between the CRC con-
trols and the non-neoplastic controls, suggesting that there
was no confounding of results attributed to the concept of field
cancerization (Fig. 6). Field cancerization is a molecular con-
cept defined as the presence of epithelial cells that have
cancer-associated genetic or epigenetic alterations due to their
localization in the vicinity of a tumor [54].

There was no statistically significant difference in the ex-
pression of CD44 between different histopathological grades
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Fig. 2 Distribution and
localization of CSC markers in
normal colon by IHC

Table 2 Expression of CSC
markers in CRC and normal
tissue by IHC.

CSC markers Colorectal cancer (n = 54) Normal control (n = 70) p value

Positivity (%) Mean H-score Positivity (%) Mean H-score

CD44 45.4 ± 31.0 9.2 ± 4.8 18.1 ± 9.9 4.9 ± 2.3 <0.001

EpCAM 79.0 ± 28.0 9.2 ± 4.7 97.8 ± 9.3 14.0 ± 2.3 <0.001

CD24 70.0 ± 28.0 9.0 ± 4.7 73.1 ± 29.1 11.3 ± 4.5 >0.05

CD166 30.0 ± 29.5 6.0 ± 4.8 7.3 ± 8.5 2.3 ± 2.4 <0.001
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of CRC, which is in contrast to previous studies [55]. No
relation between histopathological grade and CD166, CD24,
or EpCAM expression was found which was in agreement
with published reports [50, 56]. Further, the expression of
CD44 and CD166 did not correlate with any of the studied
clinicopathological parameters, eliminating any confounding
effect of these on the CRC-CSC expression. Simultaneous
expression of CD44 and CD166 (CD44 + CD166+) was seen
in CRC but not in normal controls. This double-positive ex-
pression is a good predictor of CRC-CSC.

Based on the CD44 + CD166+ expression, we further char-
acterized CSCs from the HCT116 human colorectal cell line,
which was originally derived from a poorly differentiated or
high-grade colon adenocarcinoma, and from the HT29 human
colorectal cancer cell line, which was derived from a well-
differentiated or low-grade colon adenocarcinoma. About

24 % of the total cancer cells were CSC (CD44 + CD166+)
and only about 3 % were non-CSC-bulk-tumor cells (CD44-
CD166−) in high-grade HCT116 cell line. This finding is in
agreement with existing literature [22] and signifies that high-
grade CRC has higher number of CSC, which further suggests
a definite link between CSC and poor prognostic indicators
such as differentiation grade in cancer.

Characterization of the low-grade HT29 cell line showed
that about 9 % were CSCs and about 11 % were non-CSC-
bulk-tumor cells out of the total cells. The increased number
of CD44 + CD166+ CSC in high-grade HT116 as compared
to low-grade HT29 is in agreement with previous studies [56,
57], implicating the importance of CSC in aggressive CRC.
Poorly differentiated CRC with higher number of CSCs has
been shown to have high metastatic potential [58, 59]. On

a

d

b

c

Fig. 3 ROC curve analysis for
CSC markers. Area under the
curve for a CD44 84.3 %, b
EpCAM 91.6 %, c CD24 41.5 %,
and d CD166 76.6 %

Table 4 Correlation b/w CD44 and CD166 expression in CRC (n = 54)

CD166

CD 44 Positive Negative r value p value

Positive 33 12 0.252 0.03

Negative 5 4

Table 3 Comparison of CD44 and CD166 positive expression between
colorectal cancer and normal colorectal tissues

Tissue Number CD44+ (%) X2 p value CD166+ (%) X2 p value

Cancer 54 43 (79.62) 45 <0.05 37 (68.51) 24 <0.05
Normal 70 13 (18.57) 17 (24.28)
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further analysis of these CD44 + CD166+ CSCs, the expres-
sions of CD24 and EpCAM were found to be variable.

Tumor sphere assay performed with CSC and non-CSC-
bulk-tumor cells isolated from the HT29 cell line showed

sphere formation in the CSC subset as suggested in previous
studies [60–63]. No sphere formation was observed with the
non-CSC-bulk-tumor cells. This gives proof of principle that
these CD44 + CD166+ cells within the tumor with their
unique properties of self-renewal and sphere formation form
the elusive CRC-CSC subset.

Conclusion

Our study suggests that CD44 and CD166 are robust CRC-
CSC markers. The novel use of the cutoff expression for
CD44 positivity, defined as ≥25 %, and CD166 positivity,
defined as ≥15 %, on immunohistochemical analysis can sig-
nificantly distinguish between cancer and normal tissue. This
cutoff can be applied for better immunohistochemical analysis
of CSC markers in the future.

Table 5 Distribution of CSC (CD44 +CD166+) and non-CSC-bulk-
tumor cells (CD44-CD166−) in human CRC cell lines using flow cytometry

Source CD44+CD166+
(%)

Average
(%)

CD44-CD166-
(%)

Average
(%)

HCT116

(Triplicates)

I.

II.

III.

24.3

20.1

25.4 23.2

I.

II.

III.

4.5

2.8

2.1 3.1

HT29

(Triplicates)

I.

II.

III.

8.5

9.2

9.5 9.1

I.

II.

III.

12.2

5.5

16.7 11.5

Day 0 40X Day 2 40X

Day 5 40X Day 7 40X

Day 10 40X Day 12 40X

Day 15 40X Day 15 100X

Fig. 5 Tumor sphere assay:
sorted CD44 + CD166+ CSCs
fromHT29 cell line formed tumor
spheres when grown in low-
adherence Petri plates with stem
cell media at the end of 2 weeks
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We observed CSC marker expression in normal colonic
crypts which is the site of normal intestinal stem cells.
Normal stem cells may be a possible target for accumulating
mutations that are necessary for stepwise malignant transfor-
mation in CRC. The number of CSC (CD44 + CD166+) is
higher in HCT116 as compared to HT29 which further vali-
dates that high-grade tumors have increased number of CSC
responsible for metastasis, relapse, and recurrence.

Our study has highlighted the advantage of using CD44
and CD166 together to isolate, characterize, and study CRC-

CSC instead of using a single CSC marker. However, a larger
study is required to further establish the relationship of tumor
grade with CD44 + CD166+ CSC.

Materials and methods

All protocols were reviewed and approved by the Ethics
Committee, All India Institute of Medical Sciences, New
Delhi, India. All tissue samples were collected after obtaining

Fig. 6 Expression of CSC
markers in different
histopathological grades of CRC
and normal controls by
immunohistochemistry
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written, informed consent from the patients. Differential
expressions of CD44, CD24, CD166, and CD326 were stud-
ied in 70 patients by immunohistochemistry. Characterization
of CSC from two different human colorectal cancer cell lines
was done using flow cytometry and tumor sphere assay.

Immunohistochemistry

Patients and tissue samples

Paraffin-embedded colorectal cancer tissues and controls from
primary, untreated, sporadic colorectal cancer patients were ob-
tained from the Department of Pathology, All India Institute of
Medical Sciences. All patients receiving preoperative radiother-
apy or chemotherapy, with secondary colorectal cancer, with
family history of colorectal cancer or hereditary and genetic
associations were excluded from the study. A total of 54 colo-
rectal tumors were studied out of which 15 were well differen-
tiated, 21 were moderately differentiated, and 18 were poorly
differentiated. Normal mucosal specimen, incised more than
5 cm away from the primary tumour margin, was taken as
adjoining control for each patient. Another set of 16 healthy
colorectal tissue specimens were obtained as controls from pa-
tients whose colon was removed for non-neoplastic indications.

Method

Formalin-fixed, paraffin-embedded human colorectal
tissue blocks were sectioned at 5-μm thickness on
aminopropyltriethoxysilane (APES, Sigma, St. Louis, Missouri,
USA) coated slides. Tissue sections were deparaffinized with
xylene and rehydrated with alcohol. Antigen retrieval was
achieved by microwaving in citrate buffer for 20 min. All sec-
tions were rinsed with Tris-buffered saline and blocked with
peroxide in methanol for 30 min at room temperature. Sections
were then blocked using Super block (CRF™ Scy Tek
Laboratories, Utah, USA) for 5 min at room temperature.
Primary antibodies anti-CD24 (1:200 dilution, cat. no. 31622
Abcam, Cambridge, UK), anti-CD44 (1:1000 dilution, cat. no.
MS668P Thermo Scientific, CA, USA), anti-CD166 (1:1000
dilution, cat. no. 109215 Abcam, Cambridge, UK), and anti-
EpCAM (1:800 dilution, cat. no. 32392 Abcam, Cambridge,
UK) were added to the individual sections and incubated at
4 °C in a humidity chamber overnight. Primary antibody was
detected using an anti-polyvalent HRP polymer kit (CRFTM Scy
Tek laboratories, Utah, USA) and diaminobenzidine as the chro-
mogen. Counterstaining was done by Mayer’s hematoxylin
followed by dehydration, permanent mounting using DPX
Mountant (Sigma, St. Louis,Missouri, USA), and the slideswere
allowed to dry overnight. Finally, the slides were examined by
light microscopy.

A section from a reactive lymph node, esophageal carcino-
ma, prostate cancer, and stomach cancer was used as a positive

control for CD24, CD44, CD166, and EpCAM, respectively,
in each batch of IHC.

Evaluation of IHC

For each of the four CSC markers, i.e., CD24, CD44, CD166,
and EpCAM, slides were evaluated using a scoring system for
both staining intensity and percentage positivity. Immuno-
positive staining was evaluated in randomly selected five areas
of the tissue section. Percentage positivity grading was done as
follows: 0–10 %= 1, 11–25 %= 2, 26–50 %= 3, 51–75 %=4,
and >76 %= 5. Semiquantitative grading for staining intensity
was done as follows: negative = 0, mild = 1, moderate = 2, and
intense = 3. Finally, anH-scorewas calculated bymultiplying the
intensity grade and percentage positivity grade for each slide. In
cases where both surface and cytoplasmic immunostaining was
observed, both were scored independently and a combined score
assigned. All slides were scored by three independent observers/
pathologists who were blinded to the diagnostic or prognostic
history and clinical details of the patient (slides were coded). The
scoring was discrepant in about 5 % cases where consensus was
reached by reevaluation and discussion.

Statistical analysis

All experimental data was analyzed using SPSS software ver-
sion 20.0 (SPSS Inc., Chicago, IL, USA). One-way ANOVA
test with Bonferroni correction andWilcoxon signed-rank test
was used for multiple comparisons. Paired t test was used for
comparisons between cases and controls. ROC curve analysis
was done to evaluate the sensitivity and specificity of the
CRC-CSC markers. p value of <0.05 was taken as statistically
significant.

The correlation between the immunohistochemical staining
of CD44 and CD166, and the clinicopathological parameters
was evaluated by the Chi-square test. The correlation between
the expression of CD44 and CD166 was assessed by
Spearman’s rank test.

Cell culture and flow cytometry

The HT29 (low grade) and HCT116 (high grade) human co-
lorectal cancer cell lines used in this study were obtained from
NCCS, Pune, India. The cell lines were grown in DMEMwith
10 % fetal calf serum (FCS) at 37 °C in 5 % CO2. All exper-
iments were repeated at least three times.

Immunophenotyping

Log-phase cells from HCT116 and HT29 cell lines were uti-
lized for all experiments. Antibodies were procured from BD
Biosciences, San Jose, CA, USA: Alexa Fluor 647mouse anti-
human CD24 (cat. no. 561644) with isotype control (cat. no.
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557715), V450 mouse anti-human CD44 (cat. no. 561292)
with isotype control (cat. no. 560374), PE mouse anti-human
CD166 (cat. no. 559263) with isotype control (cat. no.
555749), and monoclonal anti-EpCAM FITC (cat. no.
347197) with isotype control (cat. no. 349041). Flow cytome-
try was performed using BD FACSARIA III using appropriate
compensation and fluorescence minus one (FMO) controls.

FACS and tumor sphere assay

The differential distribution of the CSC markers, CD44,
CD24, CD166, and EpCAM, in HT29 and HCT116 was an-
alyzed using FlowJo V10 software.

Two subsets of tumor population, CD44 + CD166+
(CSCs) and CD44 − CD166− (non-CSC-bulk-tumor cells),
from the HT29 cell line were sorted into tubes containing
receiving media (high-glucose DMEM with 50 % FCS). For
FACS experiments, compensation controls were used and ap-
propriate gating was done using unstained, single stained, and
FMO controls. Post-acquisition analysis of the fluorescence-
activated cell sorting data was accomplished using the third-
party flow cytometry software, FlowJo V10.

Tumor sphere assay was performed for the sorted popula-
tion of CSCs from the HT29 cell line. The CD44 + CD166+
cells (CSCs) and CD44 −CD166− cells (non-CSC-bulk-tu-
mor cells) from HT29 were centrifuged and washed with
PBS after sorting. Cell viability and cell count was checked
using Trypan blue dye exclusion and hemocytometer.
Triplicates of different cell numbers, 100 cells, 200 cells,
400 cells, 600 cells up to 10,000 cells were plated on low-
adherence 96-well plate using serum-free, stem cell media
(SCM). All the wells were inspected under a microscope daily
for clumping and cell growth. The wells showing evidence of
clumping during the first few days of observation were ex-
cluded from further observation. About 100 μl of SCM was
added every alternate day, after day 3, in the wells being ob-
served for tumor sphere formation. SCM consists of high-
glucose DMEM (Thermo-Fisher Scientific, MA, USA) and
Ham’s F12 (Thermo-Fisher Scientific, MA, USA) 1:1,
Glutamax (Thermo-Fisher Scientific, MA, USA), non-
essential amino acids (NEAA) (Gibco, New York, USA),
B27 supplement (Gibco, New York, USA), growth factors
(Thermo-Fisher Scientific, MA, USA), and penicillin-
streptomycin (Sigma, St. Louis, Missouri, USA). The tumor
sphere formation and propagation was observed for 3 weeks.
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