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Abstract Long non-coding RNAs (lncRNAs) are emerging
as crucial regulators of cancer. To identify novel targets for
further study in esophageal squamous cell carcinoma (ESCC),
we performed a genome-wide analysis of lncRNA expression
in 12 ESCC tumor and normal tissues. Publicly available
RNA-seq data were downloaded from the NCBI, GEO, and
Co-LncRNA databases, and lncRNA and messenger RNA
(mRNA) expression profiles were analyzed. In total, 127
lncRNAs were found to be differentially expressed, with a
greater than fourfold change in ESCC tumor tissues compared
with normal tissues. Among these lncRNAs, 98 were upreg-
ulated and 29 downregulated. Moreover, 1469 network nodes
and 1720 connection edges between 119 lncRNAs and 1350
coding genes were integrated into the lncRNA and mRNA co-
expression network. Bioinformatic analysis using GO terms
revealed that these dysregulated lncRNAs are associated with
developmental processes, proteinaceous extracellular matrix,
and protein binding activity, with ECM-receptor interaction
and the PI3K-Akt signaling pathway enrichment. Lastly,
qRT-PCR results verified two significantly upregulated
lncRNAs and three significantly downregulated lncRNAs in

50 pairs of ESCC tissues and adjacent normal tissues. These
results reveal the landscape of ESCC-associated lncRNAs and
co-expression networks, providing important insight regard-
ing the lncRNAs involved in ESCC.

Keywords Long non-coding RNA . lncRNA . Esophageal
squamous cell carcinoma . ESCC . Co-expression network

Introduction

Esophageal carcinoma (EC) is the eighth most common and
the sixth most lethal cancer worldwide [1]. Despite advances
in multidisciplinary treatment of esophageal squamous cell
carcinoma (ESCC), the disease generally has a very poor
prognosis, with a 5-year survival rate ranging from 10 to
25 % [1, 2]. Esophageal adenocarcinoma (EAC) and ESCC
[1] are the two main clinical subtypes of EC. Approximately
70 % of the worldwide cases of ESCC occur in China [1].
Although the application of targeted therapy is primarily lim-
ited to EAC, ESCC remains the dominant histological type of
esophageal cancer both in China and worldwide [3]. Thus,
there is an urgent need for novel strategies aimed at improving
our understanding of ESCC biology and for providing targets
for therapy or early detection of the disease.

Multiple important signaling pathways in tumorigenesis
have been uncovered via expression profiling of coding genes.
More recently, actively transcribed long non-coding RNAs
(lncRNAs), endogenous cellular RNA transcripts longer than
200 nucleotides in length and without protein-coding capacity
[4], identified by high-throughput platforms have been shown
to be involved in even more complex genome regulatory net-
works in cancer. lncRNAs are emerging as crucial regulators
of cancer biology; these molecules are generally expressed at

Electronic supplementary material The online version of this article
(doi:10.1007/s13277-016-5227-3) contains supplementary material,
which is available to authorized users.

* Zhaoli Chen
chenzhaoli@126.com

* Jie He
prof.hejie@263.net

1 Department of Thoracic Surgery, National Cancer Center/Cancer
Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, No. 17 Panjiayuannanli, Beijing 100021, China

2 Department of Oncology, the First Hospital of Shanxi Medical
University, Taiyuan, Shanxi, People’s Republic of China

Tumor Biol. (2016) 37:13091–13100
DOI 10.1007/s13277-016-5227-3

http://dx.doi.org/10.1007/s13277-016-5227-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s13277-016-5227-3&domain=pdf


lower levels than coding genes but display higher tissue spec-
ificity [4–6].

When located at or near the same genomic locus, lncRNAs
are involved in the cis regulation of gene expression [7].
lncRNAs can also regulate distal gene expression through a
trans-acting mechanism by associating with multiple protein
partners, such as chromatin modifiers, transcription factors
and splicing factors, or by serving as decoys, guides, or scaf-
folds [4, 8]. As lncRNAs appear to be involved in nearly all
aspects of gene regulation, analysis of the co-expression of
lncRNAs, and messenger RNA (mRNAs) can help predict
their roles in the development of various diseases including
cancer and lay a foundation for uncovering their mechanisms
of activity.

Altered lncRNA profiles have been identified in breast
cancer [9, 10], lung cancer [11, 12], colorectal cancer [13],
renal cell carcinoma [14], and hepatocellular carcinoma
[15–17], indicating that aberrant expression of certain
lncRNAs contributes to carcinogenesis. Over the past 3 years,
studies on lncRNAs have become common in esophageal
cancer biology research. For example, Wu et al. found that
the long non-coding RNA transcript AFAP1-AS1 is highly
expressed in esophageal adenocarcinoma, and functional ex-
periments showed that AFAP1-AS1 promotes invasion and
metastasis in esophageal cancer cells [18]. More recently,
HOTAIR [19, 20], ANRIL [21], UCA1 [22], PCAT1 [23],
and MALAT1 [24] were reported to be upregulated in ESCC
and were significantly associated with disease prognosis.
Despite the considerable progress in understanding lncRNAs
that has accompanied over a decade of research, only a few
have been identified. Indeed, most lncRNAs remain largely
unstudied, particularly with regard to ESCC.

Therefore, to investigate the potential role of lncRNAs in
ESCC, we performed a comprehensive analysis of lncRNA
and mRNA profiles in ESCC tissue. In particular, we evalu-
ated the lncRNA and mRNA co-expression network during
the genesis of ESCC.

Materials and methods

Data curation and processing

Transcriptomic sequencing data under the accession number
GSE32424 [25] were downloaded from publicly available
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/). Normalized reads were downloaded from the Co-
LncRNA database (http://www.bio-bigdata.com/Co-
LncRNA/) [26]. In brief, raw RNA-seq reads were aligned
and mapped using TopHat v2.0.9, and transcriptome assem-
blies were generated using Cufflinks v2.1.1 with the default
parameters. Only expressed genes were considered, and the
threshold of the expression value for inclusion in the analysis

was set to 0.001 [26]. In this study, human lncRNA and
protein-coding gene annotations were directly download from
GENECODE v22. All of the categories in the Blong non-
coding RNA gene annotation^ GTF file were considered to
be lncRNAs. To obtain genome-wide lncRNA and protein-
coding gene expression profiles, normalized expression data
were subsequently analyzed for differently expressed
lncRNAs and protein-coding genes using the Bioconductor
package (limma, version 3.26.1) [27] in R (version 3.2.2) with
default parameters. Differentially expressed lncRNAs and
mRNAs were identified through fold change filtering.

Construction of the lncRNA and mRNA co-expression
network

Spearman’s correlation test was used to estimate co-
expression relationships between lncRNAs and protein-
coding genes. Moreover, the P value of the correlation coef-
ficient was estimated. Finally, a set of co-expressed genes for
each lncRNAwas identified by applying a coefficient thresh-
old of 0.95 and a significance threshold of 0.001. The filtered
co-expressed genes were defined as potential targets of the
lncRNAs in this study. Using Cytoscape (version 3.2.1), the
resulting network was defined as an lncRNA-mRNA regula-
tory network. A direct connection between an lncRNA and an
mRNA is represented as a solid line.

Bioinformatic analysis

Gene Ontology (GO) analysis is a functional analysis associ-
ating differentially expressed mRNAs with GO categories.
The predicted target genes were uploaded into the Database
for Annotation, Visualization and, Integrated Discovery
(DAVID; http://david.abcc.ncifcrf.gov/), which utilizes GO
to identify the molecular function(s) represented in the gene
profile. Furthermore, we also used the KEGG (Kyoto
Encyclopedia of Genes and Genomes) database (http://www.
genome.ad.jp/kegg/) to analyze the potential functions of
these target genes in pathways. The lower the P value, the
more significant the correlation, and we used the
recommended P value cutoff of 0.05.

Patient samples

We retrospectively collected paired tumor and adjacent nor-
mal tissues from 50 patients with ESCC and examined the
expression of selected lncRNAs with validating RNA se-
quencing data. All patients had surgically proven primary
ESCC and underwent surgery at National Cancer Center/
Cancer Hospital, Chinese Academy of Medical Sciences and
Peking Union Medical College between June 2008 and
June 2009. The clinical and pathological information for the
patients is listed in Table 1. Samples were obtained with
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informed consent, and the study was approved by the medical
ethics committee of the National Cancer Center/Cancer
Hospital.

Quantitative RT-PCR

PCR analysis was performed on 50 pairs of ESCC and
matched adjacent normal tissues. As an independent valida-
tion, the three top-ranked upregulated lncRNAs (RP11-
334E6.12, DNM3OS, and RP11-150O12.6) and downregu-
lated lncRNAs (AC103563.9, RP11-7 K24.3, and RP11-
351 J23.1) with only one transcript were chosen as candidates.

Total cellular RNAwas isolated from ESCC tissues using the
Oligotex mRNA mini kit (QIAgen) and then reversely tran-
scribed using TransScript II One-Step gDNA removal and
cDNA Synthesis SuperMix (Transgen) in accordance with
the manufacturer’s instructions. The expression of selected
lncRNAswas assayed by SYBRGreen-based qRT-PCR using
a 7900HT fast real time PCR system (Applied Biosystems/
Life Technologies). Glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) mRNA was used as an internal control; the
primers used are listed in Table 2.

Statistical analyses

The expression levels of lncRNAs and mRNAs that were
differentially expressed between ESCC and normal tissues
were compared using the Bioconductor package limma (ver-
sion 3.26.1) and R (version 3.2.2) software. Co-expression
relationships between the lncRNAs and the protein-coding
genes were estimated by Spearman’s correlation test. The false
discovery rate (FDR) was also calculated to correct the P
value for multiple testing, and unless otherwise stated, statis-
tical significance was considered at P < 0.05.

Results

Differentially expressed lncRNAs and mRNAs in ESCC
tissues

Fragments per kilobase of exon per million mapped frag-
ments (FPKMs) were calculated for normalization of the
expression level of each lncRNA and mRNA. We iden-
tified 127 lncRNAs that were differentially expressed
(fold change ≥ 4, P < 0.01) between ESCC and normal
tissues (Fig. 1a, b, Table S1). Among them, 98 lncRNAs
were upregulated, and 29 lncRNAs were downregulated

Table 1 Clinical and
pathologic
characteristics of the
ESCC patients in this
study

Cohort (n = 50)

Age (median, range) 58(41–75)

Gender, male 41(82 %)

Tobacco use, yes 35(70 %)

Alcohol use, yes 35(70 %)

Tumor grade

Well 14(28 %)

Moderately 24(48 %)

Poorly 12(24 %)

T stage

T1 2(4 %)

T2 3(6 %)

T3 35(70 %)

T4 10(20 %)

N stage

N0 18(36 %)

N1 32(64 %)

TNM stage

I 6(12 %)

II 11(22 %)

III 33(66 %)

Table 2 Primers used for qRT-
PCR analysis of lncRNA
expression

Symbol Forward and reverse primer Product length (bp)

RP11-334E6.12 F: 5′ TTTGGGCAAATGTGTCTCGTTAGG 3′ 105
R: 5′ CCCTGACTTCTCCCCAACCACTTA 3′

DNM3OS F: 5′ GCCACGTCAAGACTGGAAATCACA 3′ 105
R: 5′ AAGCCTCCCTTCCTGCACCA 3′

RP11-150O12.6 F: 5′ GGAAAGATCCGCTTTAAATGCCTGG 3′ 102
R: 5′ GCCGCAGAGTTCAAGCTGTCAT 3′

AC103563.9 F: 5′ AAGGTGTGACTTTACATCGAACGCC 3′ 111
R: 5′ CGCAGACAGGAGCGTTAGAATTGAG 3’

RP11-7 K24.3 F: 5′ GGGCTCCGGGGCTCTGAAATGTTA 3′ 128
R: 5′ CCGTGCCCGGCTGAGATTTATT 3’

RP11-351 J23.1 F: 5′ GCAGTTTCACTGTCTTCTCTCCACG 3′ 104
R: 5′ GGGGCTCAAGGAATATGACGCTCT 3’

GAPDH F: 5′ CCTGGTATGACAACGAATTTG 3’ 131
R: 5′ CAGTGAGGGTCTCTCTCTTCC 3’
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(Fig. 1a, b, Tables 3 and S1). RP11-334E6.12, VCAN-
AS1, DNM3OS, AC093850.2, and RP11-150O12.6 were
the five most significantly upregulated lncRNAs in
ESCC; CYP4F35P, HCG22, LINC00675, C5orf66-AS1,

and AC103563.9 were the five most significantly down-
regulated lncRNAs (Table 3).

mRNA expression profiles in ESCC tissues were also com-
pared with those in non-cancerous tissues. A total of 3077
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Fig. 1 Differentially expressed lncRNAs and mRNAs in ESCC. a
Heatmap of expression profiles for the 127 lncRNAs that showed
significant expression changes (29 downregulated and 98 upregulated).
The red to green color gradient indicates a high to low level of
expression. b Volcano plot of P values as a function of the weighted
fold change for lncRNAs in five normal and seven tumor tissues. Black
dots represent lncRNAs that are not significantly differentially expressed
(fold change < 4, P > 0.01), and red dots represent lncRNAs that are
significantly differentially expressed (fold change ≥ 4, P < 0.01). c

Heatmap of expression profiles for the 3077 mRNAs that showed
significant expression changes (219 downregulated and 2858
upregulated). The red to green color gradient indicates a high to low
level of expression. d Volcano plot of P values as a function of the
weighted fold change for mRNAs in five normal and seven tumor
tissues. Black dots represent mRNAs that were not significantly
differentially expressed (fold change < 4, P > 0.001), and red dots
represent lncRNAs that were significantly differentially expressed (fold
change ≥ 4, P < 0.001)
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mRNAs were found to be differentially expressed (fold
change ≥ 4, P < 0.001) between ESCC and non-cancerous
tissues: 219 were downregulated, and 2858 were upregulated
(Fig. 1c, d, Table S2).

Next, we investigated whether the 127 non-coding and
3077 coding RNAs could distinguish ESCC from normal tis-
sues. The heatmaps showed that the seven ESCC samples
clustered together in one group, clearly separated from the
normal tissue samples (Fig. 1a, c). The overall changes from
normal to cancer state were also observed to be separated by a
difference in the expression profile of either lncRNAs or
mRNAs (Fig. 1). These observations suggest that a potential
dynamic interaction between lncRNAs and coding RNAsmay
be reshaping the landscape of the entire transcriptome during
ESCC development.

Significantly co-expressed mRNAs in ESCC tissues

Genome-wide gene expression profiling of both lncRNAs and
coding genes from ESCC and normal tissues was conducted
to detect possible associations of lncRNAs with ESCC. We
predicted the potential target mRNAs of 127 differentially
expressed lncRNAs using Spearman’s correlation test, reveal-
ing 1720 mRNAs (Coef > 0.95, P < 0.001) targeted by 119
lncRNAs (8 had no targets). Among them, 165 mRNAs were
negatively correlated with lncRNAs, and 1555 mRNAs were
positively correlated (Table 3, Table S3).

Construction of the co-expression network

We constructed a co-expression network of the dysregulated
lncRNAs and their target mRNAs; differently expressed
lncRNAs and their significantly correlated mRNAs were used
to draw the network with Cytoscape (version 3.2.1). The co-
expression network was composed of 1469 network nodes
and 1720 connection edges between 119 lncRNAs and 1350
coding genes (Fig. 2). Within this co-expression network,
1555 pairs were positively correlated and 165 pairs negatively

correlated (Table S3). Interestingly, by sharing of the same
mRNAs, approximately two thirds (76 of 119) of the
lncRNAs and their correlated mRNAs were integrated into
one complex network. This co-expression network indicates
that one lncRNA could target up to 122 coding genes and that
one coding gene could correlate with up to 5 lncRNAs
(Fig. 2).

GO and KEGG pathway analyses

AGO enrichment analysis was conducted to explore the func-
tion of the co-expressed mRNAs identified in this study.
Genes were organized into hierarchical categories to uncover
gene regulatory networks on the basis of biological process,
cellular component, and molecular function. Specifically, a
two-sided Fisher’s exact test was used to determine the GO
category and GO annotation list, which was greater than ex-
pected by chance (using the recommended P value cutoff of
<0.05). Through GO analysis, we found that these dysregu-
lated lncRNA transcripts are associated with developmental
process and multicellular organismal development (ontology:
biological process), proteinaceous extracellular matrix and ex-
tracellular matrix (ontology: cellular component), and protein
binding and binding activity (ontology: molecular function).
Among the genes corresponding to the identified mRNAs,
1040 are involved in biological processes, 1164 in cellular
components, and 1098 in molecular functions (Fig. 3,
Table S4).

To further specify and identify target mRNAs among the
1350 identified genes, significant pathways of co-expressed
mRNAs were compared using the KEGG database. Without
FDR correction, this analysis revealed 12 significantly
enriched pathways among the transcripts (Table S5). Among
these pathways, extracellular matrix (ECM)-receptor interac-
tion (hsa04512) and chondroitin sulfate biosynthesis
(hsa00532) were the only significantly enriched networks re-
maining after FDR correction. Some of the identified path-
ways, such as the classical gene category BPI3K-Akt^ and

Table 3 The five most
significantly downregulated and
upregulated lncRNAs

Ensemble ID Symbol Regulation Log2FC P value Target

ENSG00000263873 RP11-334E6.12 Up 4.91 3.82E-07 64

ENSG00000249835 VCAN-AS1 Up 4.34 1.85E-06 18

ENSG00000230630 DNM3OS Up 3.46 1.24E-05 14

ENSG00000230838 AC093850.2 Up 3.87 1.35E-05 72

ENSG00000253414 RP11-150O12.6 Up 2.99 1.35E-05 5

ENSG00000265787 CYP4F35P Down 4.14 1.34E-06 21

ENSG00000228789 HCG22 Down 5.56 1.85E-05 2

ENSG00000263429 LINC00675 Down 3.30 4.65E-05 23

ENSG00000249082 C5orf66-AS1 Down 4.02 1.49E-03 5

ENSG00000231062 AC103563.9 Down 3.02 1.85E-03 1
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BTGF-beta^ signaling, have been reported to be involved in
the induction of neoplasms in ESCC, but the enrichments
were not significant after FDR correction (Table S5).

qRT-PCR validation of lncRNA expression

Based on the fold change, significance, and number of tran-
scripts, three upregulated lncRNAs (RP11-334E6.12,
DNM3OS, and RP11-150O12.6) and three downregulated
lncRNAs (AC103563.9, RP11-7 K24.3, and RP11-
351 J23.1) with only one transcript were chosen as candidates
for further validation. We verified the expression of these
lncRNAs by qRT-PCR using GAPDH as the reference gene
with the 2-ΔΔCT method. Log2-transformed fold changes and
dot plots of expression in tumor tissues vs. adjacent normal
tissues are shown in Fig. 4. The results of qRT-PCR were
consistent with the RNA sequencing data (Fig. 4). RP11-
334E6.12 and RP11-150O12.6 were significantly upregulated
in ESCC tissues (P < 0.05, Fig. 4a, c), though DNM3OS was
not (P > 0.05, Fig. 4b), and AC103563.9, RP11-7 K24.3, and
RP11-351 J23.1 were significantly downregulated in ESCC
tissues compared to adjacent normal tissues (P < 0.05,
Fig. 4d–f).

Discussion

During the past two decades of molecular biological
studies of human cancer, a number of coding genes have
been determined to be genetically or epigenetically re-
sponsible for ESCC development. However, the patho-
genesis of the disease remains poorly understood, and
much of the alterations in gene expression and regulation
involved in ESCC remain to be clarified. Moreover, the
majority of lncRNAs described to date are thought to be

functional, though few lncRNAs have been experimen-
tally confirmed to be biologically relevant. For example,
lncRNAs have been demonstrated to be involved in basal
transcription machinery, RNA splicing and translation,
and epigenetic regulation in cells [9, 14]. Overall, the
cellular functions of lncRNAs remain largely unstudied.
Thus, we conducted the current study to better under-
stand the role of lncRNAs and co-expressed mRNAs in
the development of ESCC. Recently, increasing evidence
has confirmed that lncRNAs are important regulatory
factors of gene expression either in a cis (neighboring
genes) or trans (distant genes) manner, which is not eas-
ily predicted based on the lncRNA sequence [28, 29].
Therefore, predicting potential cancer-related lncRNAs
by integrating various types of biological data represents
an extremely important topic in such research and is
attracting much attention.

Previous studies have shown that the long non-coding
RNA CCAT1 promotes gall bladder cancer development
via negative modulation of miRNA-218-5p [30], regu-
lates long-range chromatin interactions at the MYC locus
[31], and promotes hepatocellular carcinoma progression
by functioning as a let-7 sponge [32]. CCAT1 has been
reported to be a biomarker that is significantly associated
with prognosis in colorectal cancer [31], hepatocellular
carcinoma [33], and gastric cancer [34], as well as
smoking in ESCC [35]. In the present study, significant
CCAT1 upregulation was also observed in ESCC tissue
relative to normal tissue and was correlated with U2AF2,
HNRNPK, and SLC4A1AP, which according to GO
functional annotation analysis, are associated with RNA
binding and splicing. Additionally, lncRNA DNM3OS
(dynamin 3 opposite strand), which is located within an
intron of the Dnm3 gene, has been identified as possibly
regulated by the transcription factor Twist-1 during
mouse embryonic development [36]. In humans,
DNM3OS encodes a miR-199a and miR-214 cluster,
supporting the role of these miRNAs as novel intermedi-
ates in the pathways that control the development of
hepatic stellate cells [37] and specific neural cell popu-
lations [38]. DNM3OS is also associated with Se’zary
Syndrome [39]. In the present study, DNM3OS was up-
regulated in ESCC tissue compared with normal tissue

�Fig. 2 Predicted lncRNA and mRNA co-expression network in ESCC.
The co-expression network was established between 119 significantly
expressed lncRNAs and 1350 co-expressed mRNAs that had a
Spearman correlation coefficient equal to or greater than 0.95. Within
this co-expression network, 1555 pairs were positively correlated, and
165 pairs were negatively correlated. The diamonds represent lncRNAs,
and the circles represent mRNAs. The red to green color gradient
indicates a high to low level of expression
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and may play an important role in the development of
ESCC. Moreover, upregulation of the lncRNA PCAT-1,
which was also upregulated in ESCC compared with
normal tissue, has been reported to be correlated with
an advanced clinical stage and a poor prognosis in
ESCC [23]. Thus, aberrant expression of the above
lncRNAs has been linked to ESCC development.

To date, a few studies of differentially expressed lncRNAs
in ESCC tissues have been reported. However, these studies
were based on microarray technology, which tends to yield
false positives and/or false negatives [40, 41]. Our study is
the first to show by RNA sequencing a total of 127 differen-
tially expressed lncRNAs, with a fold change of at least four,
in ESCC tissues. A total of 119 differentially expressed
lncRNAs and 1350 potential mRNA targets were then inte-
grated into the lncRNA and mRNA co-expression network,
and bioinformatic analysis revealed that these dysregulated
lncRNAs are associated with cellular processes (ontology:
biological process), cell (ontology: cellular component), and
binding (ontology: molecular function). These lncRNAs are
also associated with 12 gene pathways corresponding to tran-
scripts involved in the cell cycle, ECM-receptor interaction,
and focal adhesion, which were also enriched in another
microRNA array study of ESCC [18] that was highly

consistent with our study. ECM-receptor interaction leads to
direct or indirect control of cellular activities, such as adhe-
sion, migration, differentiation, proliferation, and apoptosis
[42]. Our qRT-PCR results showed that the levels of RP11-
334E6.12, RP11-150O12.6, AC103563.9, RP11-7 K24.3,
and RP11-351 J23.1 expression were highly consistent with
the RNA sequencing data. In contrast to the RNA sequencing
data, DNM3OS was not significantly upregulated in ESCC
tissues based on qRT-PCR, which may be due to either a false
positive result or the relatively small number cohort in our
validation. Overall, our results demonstrate that lncRNAs
have a probable role in ESCC development and progression.

ESCC is a common malignant neoplasm worldwide,
with an especially high incidence in China. The etiology,
pathophysiology, and underlying molecular mechanisms
of ESCC are largely unknown, and additional functional
studies of candidate lncRNAs are needed to fully under-
stand the roles of these molecules in ESCC and to effec-
tively control this disease. This proof-of-principle with
regard to the potential link between lncRNAs and
ESCC presents a novel area for further investigation into
the target genes of such lncRNAs, which may lead to the
development of new therapeutic strategies for this
disease.
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Fig. 4 qRT-PCR validation of expression of selected lncRNAs. Both
log2-transformed fold changes and dot plots of lncRNA expression in
50 pairs of tumor tissues vs. normal tissues are presented for each
selected lncRNA. a, c RP11-334E6.12 and RP11-150O12.6 were
significantly upregulated in ESCC tissues compared to normal tissues

(P < 0.05). b Expression of DNM3OS showed no significant difference
between ESCC tissues and normal tissues. d–f AC103563.9, RP11-
7 K24.3, and RP11-351 J23.1 were significantly downregulated in
ESCC tissues compared to normal tissues (P < 0.05)
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