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Abstract The assessment of differentially expressed
microRNAs in patients and healthy controls is important
to identify potential tumor biomarkers. Recently, it has
been shown that the microRNA levels in exosomes are
more correlated with the clinical-pathological variables
than vesicle-free microRNAs (miRNAs) in biofluids;
therefore, there is an increasing interest in these specific
evaluations. However, these measurements can be af-
fected by experimental problems that not always are
evaluated and/or by inadequate procedural choices. In
particular, exosome isolation and miRNA extraction pro-
cedures are crucial to avoid contaminations, and even
the choice of the most suitable purity controls is impor-
tant. Moreover, a stable endogenous RNA should be
used for normalization of miRNA expression obtained
by reverse transcription quantitative real-time polymer-
ase chain reaction (RT-qPCR) in order to make these
measures comparable among different samples. A
rushed choice of the endogenous control can bias study
conclus ions without reveal ing inconsis tencies .
Unfortunately, a few studies systematically identified
the best normalizer for their specific experimental con-
text. Instead, sometimes, the normalization procedures
were performed in a disputable way or the normalizer
choices simply based on the previous literature. Here,
we reviewed the studies where the exosomal miRNA

profiling was assessed in human biofluids to point out
the adopted procedures and the specific endogenous
controls chosen for normalization.
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Introduction

MicroRNAs are small noncoding RNAs of about 22 nucleo-
tides that are implicated in post-transcriptional gene regulatory
mechanisms. They bind the complementary 3′ untranslated or
open reading frame regions of target messenger RNAs
(mRNAs) causing their degradation or the downregulation
of protein expression [1], thus controlling various biological
processes. MicroRNAs (miRNAs) are present within the cells
but can be also secreted by them into the extracellular envi-
ronment in order to reach specific target cells and modify their
behavior. miRNAs that have been released in body fluids
maintain their functionality since they are protected from deg-
radation of endogenous RNases by the Ago2 multiprotein
complexes [2] or high-density lipoproteins [3] or enclosed in
microvesicles and exosomes [4, 5]. The latter mechanism is
important since it allows the RNA to be delivered to specific
target cells.

Exosomes are small vesicles of about 30–140 nm in diam-
eter that are secreted from cells by exocytosis after fusion of
multivesicular bodies with plasma membrane [6] and are in-
volved in communication among cells both in physiological
and in pathological conditions. Exosomes carry out horizontal
information transfer by delivering their cargo, constituted by
miRNAs, proteins, lipids, and other nucleic acids. It has been
demonstrated that only some miRNAs can be loaded into
exosomes; moreover, they are dynamically sorted depending
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on the necessity of the sender cell, so miRNA type and quan-
tity in exosomes provide useful information about the patho-
physiological state of a tissue [7]. The sorting seems to be
regulated by specific RNA sequence motifs [8, 9] that consti-
tute an export language, so this mechanism reminds of the
nucleo-cytoplasmic export of the RNAs [10].

Many studies in recent years highlighted that exosomes
secreted by tumor cells presented specific over-expressed
miRNAs, which are associated with the immunosuppression
of antitumor responses or tumor growth and metastasis pro-
gression or with the transmission of drug resistance to sensi-
tive cells [11, 12]. Moreover, it has been demonstrated that
miRNAs in exosomes are involved also in neuronal-signaling
pathways, so they could be employed for the prediction and
monitoring of neuronal diseases like Alzheimer [13].
Exosomal miRNAs extracted from urine could be informative
also for various kidney disorders [14, 15]. They are important
in the assisted reproductive field since it has been shown that
exosomal miRNAs in follicular fluid could be an indicator of
oocyte quality [16].

For these reasons, miRNAs contained in exosomes are
considered important biomarkers that could be easily detected
in a noninvasive way from all body fluids [17], so it is impor-
tant to be able to accurately quantify miRNA expression in
order to compare the miRNA profiling in patients and in
healthy controls. Usually, reverse transcription quantitative
real-time polymerase chain reaction (RT-qPCR) is the method
that, easily and with high accuracy, provides miRNA dosage
from biological fluids [18]. In order to make the measures
comparable among different samples, it seems natural to start
with the same volumes of biological fluid for each sample but
this does not solve the problem due to the different concentra-
tions of exosomes in different samples.

Quantification of exosomes from biofluids

Measuring the concentration of exosomes in a sample is not
banal, since it is not possible to accurately count these vesicles
due to their small size which prevents the flow cytofluorimeter
from directly seeing them. Exosomes can be coarsely quanti-
fied by the Bradford assay that measures their whole protein
content [19], but it has the disadvantage of not distinguishing
the protein content deriving from cellular contamination
which is always present, to some extent, in an extraction.
Purified exosomes can be quantified using nanoparticle track-
ing analysis (NTA) that measures size distribution and esti-
mates the concentration of cellular vesicles, by analyzing a
captured video of the light scattering produced by the particles
moving under Brownian motion in liquid suspension [20].
This method does not execute a count of single exosomes
and does not distinguish if a particle in the size range of 30–
140 nm is an exosome or a small debris. Enzyme-linked im-
munosorbent assay (ELISA) is a quantitative technique,

highly specific thanks to antibodies, and highly sensitive
thanks to signal amplification methods that can be used to
measure the concentration of exosomes in a sample. It can
be used also with dirty matrices since there is a phase of
exosome immunocapture in which ubiquitous and specific
exosomal proteins are exploited. Unfortunately, among the
disadvantages of the ELISA, it should be taken into account
that accurate measures can be affected by antibody quality and
coating, blocking, and incubation procedures.

However, none of these methods is able to measure the
exosome concentration with high accuracy. A molecule which
is ubiquitous and specific of the exosomes and could be mea-
sured with highly sensitive and accurate techniques such as
RT-qPCR would be ideal.

Extraction yields

Despite the same starting volumes of biological fluid for each
sample, the upstream RT-qPCR procedures, like sample prep-
aration, exosome isolation, and miRNA extraction, provide
different yields that do not make the miRNA levels compara-
ble among samples.

To limit these problems, the use of a standardized method
of sample collection and storage is very important. It is essen-
tial that the taking of the samples is performed in all individ-
uals of the study at the same time of the day, since even fasting
or postprandial status can influence the extracellular vesicle
production by cells [21]. Also, the extraction of plasma or
serum from blood should be done after the same short period
of time from blood withdrawal and using the identical rotor
angle of the centrifuge. This is because blood cells release
exosomes during blood storage, thus altering the populations
of exosomes that will be collected by plasma/serum.

An ideal molecule should also overcome the problem of the
different extraction yields as it could be used to normalize the
levels of miRNAs assessed in the samples.

Cellular and extracellular contamination

During the procedures of exosomal miRNA extraction from
biofluids, it is possible that cellular RNAs contaminate the
preparations causing an alteration of the miRNA profiles. In
order to measure only exosomal miRNAs, the presence of
cellular RNAs should be evaluated or prevented.

Tokuhisa et al. [22], by using Agilent 2100 Bioanalyzer,
assessed cellular RNA contamination in their samples bymea-
suring the 18S and 28S ribosomal RNA peaks from the
exosomal fraction of malignant ascites and peritoneal lavage
fluid indicating that it was not contaminated with intracellular
RNA. In a work aimed to establish a standard procedure for
exosome purification and their miRNA extraction from urine
samples comparing six different methods, Agilent
Bioanalyzer showed that in all the obtained exosomal RNA
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preparations, there was the absence of ribosomal RNAs and
that miRNAs were the most abundant RNA species [23]. So
the high quality of these preparations has allowed to perform
the following quantitative measures in order to compare them
and to propose the best RNA isolation method [23].

In order to detect RNA of strictly exosomal origin, RNase
A treatment was used after exosome isolation from saliva to
degrade residual cellular RNAs [24]. In fact, the RNase A
treatment (100 ng/ml at 37 °C for 10 or 20 min) did not
degrade RNA within exosomes in plasma and urine samples
[14, 25] that therefore represent transport vehicles resistant to
RNase A treatment. However, it was demonstrated that
exosomal miRNAs isolated from HT-29 cell medium heavily
treated with RNase (5 μg/ml at 37 °C for 30 min) were only
partially protected by exosomes [26]. Therefore, the side ef-
fects of the prolonged exposition and high concentration of
RNAse A should be taken into account by researchers.

Another, recently discovered, source of contamination is
constituted by lipoprotein-bound miRNAs [27]. Operators
have to consider that high-density (HDL) and low-density
lipoproteins (LDL) are always present in exosomal extracts,
except when performed by immune-precipitation techniques.
Since it has not yet been demonstrated if miRNAs are
enclosed or externally associated with lipoproteins [28],
RNase A treatment could not completely remove this source
of contamination.

Hemolysis interference

In plasma or serum samples, the quantification of exosomal
miRNAs can be impaired also by hemolysis that causes con-
tamination with erythrocyte-derived miRNAs. In fact, it was
demonstrated that miR-486-5p, miR-451, miR-92a, and miR-
16 are enriched in red blood cells and their expression signif-
icantly increases in hemolyzed samples [29, 30]. It was also
observed that exosomal RNA extracted from plasma samples
using an exosome isolation kit was enriched in tRNA, a cel-
lular contamination index [25].

Surprisingly, hemolysis provides an effective protection of
free circulating miRNAs from plasma RNases since blood
cells release RNase inhibitors [31]. Therefore, it is suggested
to treat the plasma samples with RNase A and, in case of
hemolysis, reinforce this treatment to exceed the effect of en-
dogenous inhibitor.

A method of identifying the presence of hemolysis in total
plasma is to measure the absorbance of the oxy-hemoglobin at
λ = 414 nm, but it is not a reliable method because the lipid
content in plasma could determine a false positive [32].
However, some authors resolved the problem normalizing
with the absorbance measurements at 375 [33] or 385 nm
[32] which are indicators of lipemia.

If a sample is contaminated by hemolysis, it should not
necessarily be rejected but assessed to see if this hitch causes

differences in the miRNA concentration between a hemolyzed
and non-hemolyzed aliquots from the same sample [32].

RT-qPCR normalization

In Table 1, we show that few works have performed a
systematical search for exosomal miRNAs as the ideal mole-
cules for RT-qPCR normalization and there are no endoge-
nous ones which can be used in all situations. Other studies,
instead, chose the normalizer based on previous literature, and
sometimes, this normalizer was validated again on the specific
samples under investigation (Table 2). It can be noted that
small nuclear RNA (snRNA) U6 and miR-16 were frequently
used in studies of exosomal miRNA profiling from different
body fluids often without any validation of their expression
stability. In particular, Table 2 shows that sometimes snRNA
U6 is used to normalize the expression level of circulating
exosomal miRNAs in blood and urine samples [34–36].
However, in serum exosomal fraction of patients with hepati-
tis B, hepatocellular carcinoma, and healthy volunteers,
snRNA U6 had a high interindividual variability [37], as well
as in whole serum samples from healthy people, liver fibrosis,
and intensive care unit patients [38]. Moreover, it should be
noted that although some papers showed that snRNA U6 is
present also in exosomes [39, 40], it still remains controversial
if this could be due to cellular contamination. In fact, snRNA
U6 is exclusively localized within the nucleus and not in the
cytoplasm from where RNAs are loaded into exosomes
[41–43].

Regarding miR-16, it was used as a normalizer in works
that studied exosomal miRNAs of saliva [44] and serum [45]
but without testing its stability. Performing this assessment
would have been very important, because someworks showed
contradictory results regarding miR-16 expression stability. In
particular, miR-16 in exosomes from malignant ascites and
peritoneal lavage fluids was consistently expressed and thus
used as potentially endogenous control [22]. Also in
exosomes from serum of healthy individuals and breast cancer
patients, both miR-16 and miR-484 have been shown to be
good reference miRNAs [46]. On the contrary, miR-16 was
highly unstable in exosomal serum from patients with hepati-
tis B, hepatocellular carcinoma, and healthy subjects [37].
Other authors showed that miR-16 and miR-451 had constant
levels in non-hemolyzed total plasma samples but when they
were released by red blood cells, due to hemolysis, their levels
were variable [30]. Exosomal miR-451 was the most stable
miRNA also in non-hemolyzed serum samples of healthy
controls and mild cognitive impairment and Alzheimer’s dis-
ease patients [13].

In a study where the exosomal level of miR-21 was com-
pared among cerebrospinal fluid samples and serum samples
from glioma patients and non-tumor controls, glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used for the
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normalization of miR-21 data [47]. Also for GAPDH mRNA,
even though it was detected in exosomes [48–50], a doubt
remains that its detection could be due to cellular contamina-
tion, which is always potentially present when ultracentrifu-
gation and precipitation reagents are used for exosome isola-
tion. However, the usage of GAPDH is unadvisable since it is
better to normalize miRNAvalues with a molecule of the same
kind. For example, in another work, exosomal GAPDH was
correctly used to normalize exosomal mRNAs [50].

MiR-642a-3p was chosen as endogenous control using the
microarray analysis, and further validation was carried out in
serum exosomes of patients with mild and extremely severe
hand, foot, and mouth disease and healthy groups [51]. Also
miR-451 resulted a valid endogenous control by using the
previous methods in serum exosomes of colorectal cancer
patients and healthy controls [52].

Identification of endogenous controls

The works focusing on the identification of reliable endoge-
nous controls adopted two or more algorithms such as
geNorm, NormFinder, BestKeeper, and DataAssist that calcu-
late the most stable miRNAs among a set of candidates (Tab
1). The geNorm algorithm reveals the most stable reference
genes using the geometric mean of the selected genes as a
normalization factor [53]. This tool calculates the pairwise
variation (V) for each miRNA with all other miRNAs, and
for each miRNAs gives back an index (M) which is the aver-
age of its Vs. The most stable miRNAs have the minor M
values [54]. GeNorm was used to identify the best endoge-
nous miRNA on deep sequencing data obtained from a com-
plementary DNA (cDNA) library of exosomal RNA extracted
from serum of healthy controls, mild cognitive impairment

participants, and patients with Alzheimer’s disease [13].
miR-451 resulted as the most stable endogenous control iden-
tified by this tool, and it was used together with the exogenous
control (Cel-miR-39) to calculate the ΔCt using the
DataAssist software [13].

DataAssist is a tool developed to analyze a large collection
of gene expression values from TaqMan assays [55]. It allows
to calculate relative quantification through the comparative
ΔCt method and to measure gene stability using the
geNorm algorithm in order to select the controls for data
normalization.

NormFinder tool identifies the optimal normalization genes
considering that they are usually grouped in sample groups
(e.g., normal and pathological); therefore, it assesses both the
intergroup and intragroup variations of gene expression [56].

GeNorm and NormFinder were used to find the best en-
dogenous miRNAs in a study on serum exosomal samples
between hepatitis B or hepatocellular carcinoma patients ver-
sus healthy individuals. miR-221, miR-103, let-7a, miR-181c,
miR-181a, and miR-26a resulted as the most stable endoge-
nous controls while miR-16, miR-22, and U6were not reliable
as internal controls [37].

BestKeeper tool calculates the expression stability of
miRNA candidates processing the standard deviation and co-
efficient of variance, the geometric means, and the pairwise
correlations of the Ct values [57].

NormFinder and BestKeeper were applied to assess the
best endogenous controls in samples of extracellular vesicles
isolated from sera and urine of healthy controls and hemato-
poietic stem cell transplantation patients, highlighting HY3,
snRNA U6, and snRNA U48 [58].

In samples of exosomal RNAs from plasma of 192 indi-
viduals (50 healthy individuals, 100 colorectal cancer patients,

Table 1 Assessment of best endogenous exosomal RNAs

Algorithms /methods Identified endogenous controls Disease status Biofluids References

NormFinder and BestKeeper snRNA U6 and HY3, snRNA
U48 and HY3

Hematopoietic stem cell
transplantation and healthy

Serum urine Crossland et al. [58]

GeNorm, NormFinder and
BestKeeper

miR-221, let-7a, miR-26a Hepatocellular carcinoma Serum Li et al. [60]

Global normalization method miR-320, snRNA U6 Uveal melanoma, cornea donors,
and healthy serum donors

Vitreal humor
and serum

Ragusa et al. [67]

GeNorm and NormFinder miR-221, miR-103, let-7a,
miR-181c, miR-181a,
miR-26a

Hepatitis B, hepatocellular
carcinoma, and healthy
subjects

Serum Li et al. [37]

GeNorm and DataAssist miR-451 Alzheimer’s disease, mild
cognitive impairment, and
healthy controls

Serum Cheng et al. [13]

GeNorm and DataAssist miR-126, miR-28-3p, miR-145 Healthy women Follicular fluid
and plasma

Santonocito et al. [16]

NormFinder and BestKeeper miR-30a-5p, miR-30e-5p Colorectal cancer, pancreatic
cancer, prostate cancer, and
healthy individuals

Plasma Huang et al. [59]

In particular, we showed the algorithms and methods used to process the raw expression data in order to give back the most stable RNAs
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6 pancreatic cancer patients, and 36 PCa patients),
NormFinder and BestKeeper processing and RT-qPCR vali-
dations give back miR-30a-5p and miR-30e-5p for their better
stability [59].

GeNorm, NormFinder, and BestKeeper analyses disclosed
that miR-221, let-7a, and miR-26a are the endogenous
miRNAs most suitable for the normalization of serum
exosomal miRNAs expression in liver carcinoma resection
studies [60].

These tools have been widely applied to identify reference
miRNAs also in whole plasma or serum samples. In serum
samples from gastric cancer patients and healthy control, miR-
16 and miR-93 resulted as the most stably expressed accord-
ing to geNorm, NormFinder, BestKeeper algorithms, and
comparative ΔCt method [61]. Moreover, they allowed to
reveal that miR-101-3p and miR-93-5p are suitable for the
normalization of miRNA expression in plasma of major de-
pressive disorder patients and healthy individuals [62]. miR-
93 was identified by geNorm and NormFinder software as
an endogenous control also in a study that examined
miRNA profiles in plasma samples from tuberculosis

patients [63]. NormFinder, geNorm and DataAssist tools
selected miR-92a-3p, miR-21-5p and miR-16-5p as inter-
nal normalizers for plasma miRNAs expression data in
hypertensive patients [64].

Other normalization methods

In addition to normalization by endogenous controls,
when the expression of many miRNAs is assessed, other
methods can be used such as the global median or the
quantile normalization or the cyclic loess that have been
widely discussed in other works [65, 66]. miRNA profil-
ing of serum, vitreous humor (VH), and exosomes of VH
samples from uveal melanoma patients and healthy con-
trols was performed by TaqMan low density array
(TLDA). The global median normalization method, in
which Ct values of each sample were normalized to the
median Ct of the arrays, was used. The Pearson correla-
tion between the Ct median and the Ct of each miRNA
allowed to identify miR-320 and snRNA U6 as reference

Table 2 Endogenous controls used to normalize expression data of circulating exosomal miRNAs

Endogenous control Condition Biofluid/tissue Authors

miR-191-5p, snRNA U6 Prostate cancer Urine Samsonov et al. [35]

snRNA U44, snRNA U6 Parkinson and Alzheimer Cerebrospinal fluid Gui et al. [78]

miR-16 Lichen planus Saliva Byun et al. [44]

miR-4739 Aging Saliva Machida et al. [79]

GAPDH Glioma Blood and CSF and cell culture
medium

Shi et al. [47]

miR-16 Gastric cancer Malignant ascites and peritoneal
lavage fluid

Tokuhisa et al. [22]

miR-16a Human colorectal cancer Serum Matsumura et al. [45]

snRNA U6 Adenocarcinoma of esophagus Serum Warnecke-Eberz et al. [34]

miR-16, miR-484 Breast cancer Serum Eichelser et al. [46]

miR-642a-3p Hand, foot, and mouth disease (HFMD) Serum Jia et al. [51]

snRNA U6 Laryngeal squamous cell carcinoma Serum Wang J et al. [36]

snRNA U6 Hepatocellular carcinoma Serum Wang H et al. [80]

miR-451 Colon cancer Serum Ogata-Kawata et al. [52]

miR-16 Stability under various storage conditions Plasma Ge et al. [81]

snRNA U6 Diabetic nephropathy, focal segmental
glomerulosclerosis, IgA nephropathy

Urine Lv et al. [14]

snRNA U6 Diabetic nephropathy Urine Barutta et al. [82]

Small nucleolar RNAs Lung cancer before and after surgery Plasma Aushev et al. [83]

snRNA U6 Pancreatic cancer Serum Que et al. [84]

snRNA U6 Renal fibrosis/chronic kidney disease Urine Lv et al. [15]

snRNA U6 Novel miRNAs identification Breast milk Munch et al. [85]

miR-423 Schizophrenia and bipolar disorder Postmortem brain tissue Benigan et al. [86]

miR-16 Esophageal squamous cell carcinoma Serum Tanaka et al. [87]

snRNA U48 Sjögren’s syndrome Saliva Michael et al. [24]
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miRNAs (with the expression profile close to the median
of TLDAs) [67].

Spike-in (exogenous)

The addition of a known concentration of exogenous synthetic
miRNA, before the RNA extraction step, is known as spike-in
control. It allows to assess if observed variations in RNA
expression are also due to the sources of variability like qual-
ity and efficiency of RNA isolation, cDNA synthesis, and
PCR amplification. Synthetic RNA spike-ins should not be
used for normalization, which should always be carried out
with endogenousmiRNAs. To this end, synthetic various non-
human miRNAs are used, as for example, cel-miR-39 from
Caenorhabditis elegans [13, 45] or ath-miR-159a from
Arabidopsis thaliana [68].

However, the choice of using a spike-in, instead of real
endogenous miRNAs [69–72], to normalize miRNA ex-
pression data should be accurately assessed. Also, when
the mean and/or the median of the expression values of
three C. elegans spiked-in miRNAs is used [73–76], it
should be stated that a starting hypothesis is accepted
and that the total RNA content, before extraction proce-
dures, is the same in all samples.

Conclusions

In the last few years, increasing knowledge on exosome
functions, mainly due to their functional content, has
attracted great interest in the research of circulating
miRNAs as biomarkers, especially regarding tumor dis-
eases. Quantification of miRNA expression allows to ap-
preciate the differential expression between healthy and
patient groups. Although specific exosomal miRNA pro-
files are known for some diseases, there is not always
consensus among different studies regarding the same
kind of tumor. This could also be due to heterogeneous
experimental designs that can lead to different results
[70]. For example, both the extraction procedures and
the operator represent variables that can alter the mea-
sures. For this reason, standard operating procedures must
be applied at all levels (from sample collection to miRNA
quantification) to make the assessment of miRNA expres-
sion reliable [32]. In particular, it is very important to
perform the normalization of RT-qPCR data based on con-
trol miRNAs.

Unfortunately, there is no reference miRNA valid for
every experimental design; therefore, it should be
assessed in each experiment. Obviously, the best approach
is to perform an assessment of many candidate controls,
for example, by RNA array cards, including also the en-
dogenous controls validated in other setups. In the

absence of this possibility, controls validated in other
setups could represent the starting point for validation in
a specific experiment [54, 77].
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