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Abstract Syndecans (SDC, SYND) comprise a group of four
structurally related type 1 transmembrane heparan sulfate proteo-
glycans (HSPGs) that play important roles in tumorigenic process-
es. SDCs exert signaling via their protein cores and their con-
served transmembrane and cytoplasmic domains or by forming
complexes with growth factors (GFs). In classical Hodgkin’s lym-
phoma (cHL), a lymphoid neoplasm of predominantly B cell
origin, SDC1 and SDC4 are the active SDCs, and a number of
GF (vascular endothelial growth factor, fibroblast growth factor,
etc.) signaling pathways have been studied. However, despite
extensive pre-clinical and clinical research on SDC-mediated GF
signaling in many cancer types, there is very limited data for this
interaction in cHL. Thus, this review highlights the relevant liter-
ature focusing on the potential interactions of SDCs and GFs in
cHL pathogenesis. Also discussed are the pre-clinical and clinical
studies targeting signaling through these pathways.
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Introduction

The syndecans (SDC, SYND) comprise a family of highly con-
served type I transmembrane proteins that are present on the
surface of adherent cells and cells of the hematological system.

In humans, there are four members, designated SDC1, SDC2,
SDC3, which are tissue-specific, and SDC4, which is cell type-
specific [1]. Each of these heparan sulfate proteoglycans
(HSPGs) consists of an extracellular domain (ectodomain) car-
rying glycosaminoglycan (GAG) side chains, a transmembrane
domain and a short cytoplasmic domain [2]. SDCs have been
implicated in a wide range of cellular processes including dif-
ferentiation, cell adhesion [3, 4], cytoskeletal organization, cell
spreading and migration [5–7], infiltration, and angiogenesis [8,
9]. These processes are partly facilitated by the interaction of the
heparan sulfate (HS) chains of SDCs, with other factors, includ-
ing heparin-binding growth factors (GFs) such as fibroblast
growth factors (FGFs), vascular endothelial growth factors
(VEGFs), transforming growth factor-β (TGF-β), platelet-
derived growth factors (PDGFs), and cytokines. These interac-
tions play important roles in cancer development and progres-
sion [10]. In the tumor microenvironment (TM) of classical
Hodgkin’s lymphoma (cHL), a lymphoid malignancy of pre-
dominantly B cell origin, a number of these GFs and cytokines
are produced by the mosaic of different cell types including the
neoplastic giant multinuclear Reed-Sternberg and mononuclear
Hodgkin’s (HRS) cells. In addition, high levels of SDC1 expres-
sion have been detected inHRS cells [11]. Also, increased levels
SDC1 in the sera of HL patients suggest shedding of its
ectodomain [12]. This review highlights the relevant literature
that provides insights into the role(s) of SDC-GF interactions in
the pathogenesis and clinical course of cHL.

Expression of SDCs in different cellular subtypes

Expression of SDCs by normal B cells

In the hematopoietic system, SDC1 and SDC4 appear to be the
most active syndecans in B cell lineage. SDC1 is expressed at
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distinct stages of differentiation of normal lymphoid cells (pre-
B) and post-germinal center B cells, including mature plasma B
cells and immunoblasts [13–19] (Fig. 1). In solid lymphatic
tissue, SDC1 virtually controls the binding of B lymphocytes
to the interstitial matrix. SDC4 is expressed in all stages of B cell
development, except in the stem cell stage [20] (Fig. 1).

SDCs in Hodgkin’s lymphoma

Although increasing evidence implicates SDCs in tumor de-
velopment and progression, only SDC1 and SDC4 showed
any association with HL. Elevated serum levels of SDC1
(sSDC1) has been reported for HL but without a prognostic
significance, perhaps due to the small number of patients in
the study [12]. Variable levels of SDC1 expression have been
detected in subsets of primary HRS cells in some patients’
biopsies [16, 21, 22]. A more recent immunohistochemical
study showed that SDC1 is overexpressed by primary HRS
cells of poor outcome and good outcome patients [11]. SDC1
is also transcriptionally upregulated by most of the cHL cell
lines [11]. Stromal expression of SDC1 has been observed in
11/16 cHL cases [16]. SDC4 is expressed by most HL cell
lines and by primary HRS cells [23, 24].

SDCs and plasma B Cell ancestry of HRS cells

SDC1 plays an important role in B cell differentiation and, by
extension, the development of some B cell malignancies. As
mentioned, SDC1 is expressed during the pre-B cell stages
and by post-germinal center B cells. The HRS cells of HL
typically lack B cell program due to epigenetic silencing.
However, evidence suggests that these tumor cells are pre-
dominantly descendants of plasma B cells. Buettner et al.
showed that several proteins that are important for the

differentiation of B cells are also expressed by HRS cells of
different subsets of HL patients, and in the samples examined,
the tumor cells were SDC1-negative (SDC1−) [25]. Pax-5
[25], a transcription factor that limits the lymphoid progenitor
cells to the B-lineage development by activating B-lineage-
specific genes and suppressing non-B-lineage-specific genes,
and IRF4 [25], which regulates germinal center B cell forma-
tion [26] and plasma cell differentiation [27], were consistent-
ly expressed by HRS cells [25]. Buettner and colleagues also
showed that Bcl-6 [25], a transcription factor expressed by
germinal center B cells, was detected in HRS cells of approx-
imately 25 % of cHL cases [25]. Moreover, B lymphocyte-
induced maturation protein-1 (Blimp-1), a key regulator of
plasma cell differentiation, was expressed by a small propor-
tion of HRS cells in 23 % of cHL cases [25]. The authors
concluded that plasma cell differentiation might be initiated
in a small subset of HRS cells but remains abortive.

A study was conducted to determine epigenetic similarities
between cells of cHL and plasma cell myeloma since both share
lossofgeneexpressionprogramofmatureBcells [28].However,
only a limited number of genes (e.g., IRF4/MUM1 and RYBP)
were found to be jointly hyperacetylated and expressed in cHL
and plasma cell myeloma cell lines [28]. Both the study by
Buetner et al. [25] andSeitz et al. [28] suggest that the tumor cells
of cHL are characterized by an abortive plasma cell phenotype
with downregulation of B cell lineage-specific proteins.

Although the plasma cell phenotype is eradicated in HRS
cells for most part, a subset of these cells do express SDC1 as
well as other post-germinal center markers. In an immunohisto-
chemical analysis of 101 cases of cHL, Bai et al. recognized
three bcl6/CD10/MUM1/SDC1 immunophenotypes [29]. The
late germinal center (GC)/early post-GC B cell-like
immunophenotype were bcl6−/CD10−/MUM1+/SDC1− and
occurred in 59/101 cases (59 %) [29]. Post-GC B cell-like
immunophenotype showed a bcl6−/CD10−/MUM1+/SDC1+
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Fig. 1 Schematics showing the formation of SDC1+ HRS cells. In this
interpretation, upon leaving the GC, post-GC B cells differentiate into
plasma B cells which express SDC1 and BCR. The lineage that gives
rise to HRS cells suffered crippling mutation of their IgG, lost most of

their B cell programming (not represented), and escaped immune
detection, but some of them retain the SDC1 signature. Except in the B
stem cells, SDC4 is expressed by all stages of B cell differentiation and
also by the HRS cells
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immunophenotype in 24/101 cases (24 %) [29]. Indeterminate
immunophenotype, which consisted of bcl6+/CD10−/MUM1+/
SDC1+ in 14 cases and bcl6+/CD10−/MUM1+/SDC1+ in four
cases, occurred in 18/101 cases (18 %) [29].

Studies in mice revealed that SDC1 expression by plasma B
cells correlates with the onset of immunoglobulin release by B
cells [30]. In HL, HRS cells do not produce functional immuno-
globulin (IgG), a consequenceofcripplingmutations in immuno-
globulin genes and a phenotype detectedmostly in EBV-positive
tumor cells [31]. Therefore, it is likely that some HRS cells con-
tinue to express SDC1 although they do not express IgG, unlike
themyelomaneoplastic plasma cells that express bothSDC1and
functional IgG.

In contrast to SDC1, SDC4 is expressed in all stages of B-
lineage [20] and continues to be expressed by HRS cells [24].
Figure 1 summarizes the putative relationship between plasma
B cell and SDC1/SDC4 HRS cells.

Shedding of SDC in Hodgkins’ lymphoma

Shedding of SDC ectodomain in HL

The detection of soluble SDC1 in the sera of cancer patients sug-
gests shedding of its ectodomain. Soluble SDC1was detected in
the sera of HL patients [12]. Shedding of SDC1 ectodomain is
largely a consequence of the proteolytic activities of heparanase
[32] and sheddases including metalloproteinases (MMPs),
membrane-bound metalloproteinases (MT-MMP1) [33], and a
disintegrin and metalloproteases (ADAM10, ADAM17)
[34–36]. Shedding of SDC1may further be accelerated by Rab-
5 [37] and GFs [38]. Deregulated expression of these molecules
bydifferentcell typesintheTMhasbeenreportedforHL[39–41].
Inmultiplemyeloma (MM), the shedding ispartly aconsequence
ofheparanase-mediatedactivationofERKsignaling,which leads
to the increasedexpressionofmatrixmetalloproteinase-9 (MMP-
9) [42]. InHL, ERK signaling is aberrantly active and it is shared
withmultiplesignalingpathways(CD30,CD40,andRANK)that
regulate cell proliferation and survival [43], but its role in SDC1
shedding remains unclear, in this neoplasm. The proteoglycan
(PG) and glycosamineglycans (GAGS) of SDC1 are known to
bind GFs and shuttle these cargoes to the nucleus [44, 45] al-
though this has not been demonstrated in HL. However, given a
molecular milieu that includes sheddases, SDC1, and GFs in the
TMofHL, it is likelythat thesemoleculesconstituteparacrineand
autocrine networks that contribute to proteolytic cleavage of
SDC1.

Shedding of SDC1 may be accelerated by inflammatory
cytokines

Several inflammatory mediators, including inflammatory cy-
tokines, enhance SDC1 shedding in vitro [38, 46–49], thereby

mediating the potent pathophysiologic role(s) of SDC1 in
cancer. HL is notorious for number of inflammatory cytokines
(IL-1, 2, 5, 6, 7, 8, 13, 17, TGF-β, RANTES, TNF-a, CCL28,
TARC), which are produced by either the HRS cells or by
reactive cells in the TM. An in vitro study showed that
RANTES (CCL5) accelerated shedding of SDC1 ectodomain
in CCR5 (receptor for RANTES)-expressing Hela cells, an
interaction that involves activation of MAP kinase signaling
[49]. The same study showed that RANTES forms GAG-
dependent complexes with the sSDC1 as well as with those
of CD44. Intriguingly, SDC1 expression is also regulated by
inflammatory cytokines [50]. Additionally, lymphoma (in-
cluding HL) patients with progressive disease showed elevat-
ed levels of serum CD44 before and after treatment [51] and
the expression of CD44 splice variant v10 by HRS cells in HL
is associated with aggressive behavior and high risk of relapse
(within 2–3 years) [52]. In HL, inflammatory cytokines may
accelerate shedding of SDC1 and potentiate its putative tu-
morigenic roles in this malignancy (Fig. 2a).

Inhibition of SDC1 shedding by sphingosine-1-phosphate
(S1P)

Sphingosine-1-phosphate (S1P) is a plasma-borne lipid, gen-
erated from the phosphorylation of sphingosine by isoen-
zymes sphingosine phosphate kinases 1 and 2 (Sphk1 and
Sphk2). In the immune system, S1P is recognized as a major
regulator of trafficking of T and B cells. S1P receptor,
sphingosine-1-phosphate receptor (S1PR1), and Sphk1 are
overexpressed by primary HRS cells and HL cell lines [11,
53, 54], which also express SDC1 [11]. S1P inhibits shedding
of SDC1 from the surface of endothelial cells [55], a process
that may reduce cell migration and metastasis in cancers
where loss of SDC1 ectodomain is associated with increase
metastatic potential [56], at least in an in vivo setting. In pros-
tate cancer where SDC1 is overexpressed [57, 58], lower
levels of circulating S1P, a consequence of downregulation
of erythrocyte SphK1, strongly correlate with lymph node
metastasis [59]. However, in vitro experiments showed that
S1P potently stimulate migration HL cell lines SUPHD1 and
KM-H2 [53] although the study did not indicate the level of
SDC1 expression by these cell lines. In DLBCL, a B lympho-
ma in which SDC1 overexpression by primary tumor cells is a
poor prognostic factor [60], sphingosine (Sph) (not S1P) in-
duced cell death and blocked cell growth presumably inde-
pendent of S1P receptors in different cell lines [61].

SDCs interact with APRIL to promote growth
and proliferation of HRS cells

Studies showed thatAPRIL (aproliferation-inducing ligand) sig-
naling via TACI (cyclophylin ligand interactor) and BCMA (B
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cell maturation antigen) receptors is reinforced by HSPGs an-
chored on the cell membrane or associated with the extracellular
matrix [62–64]. GAG side chains of cell-anchored and extracel-
lular HSPGs bind a basic QKQKKQ amino acid sequence prox-
imal to theaminoterminusofAPRIL,aninteractionthatpromotes
tumorgrowthofTcell origin [63, 64]. The resulting oligomeriza-
tion ofAPRIL enhances TACI andBCMAsignaling by promot-
ing the formation of a highly efficient signaling network. HRS
cells express APRIL and BAFF, TACI, and BCMA, but not
BAFF-R. In the presence of BAFF or APRIL, TACI and
BCMA provide cell-survival and growth-inducing signals to
HRS cells. Chiu and colleagues showed that treatment of HRS
cell lines that expressed SDC1 and SDC4, with heparinitase and
heparinase, reducedbindingofAPRIL to theHRScells [23].The
binding of APRIL to HRS cells was abrogated by heparin, a
compound known to mimic extracellular HSPGs [23]. The au-
thorsalsoshowedthatAPRIL-inducedHRScellproliferationcan
be increased in the presence of heparin but attenuated by
heparinitaseandheparinase [23].This studyhighlights the impor-
tance of membrane-anchored and matrix-associated HSPGs on
the proliferation of HRS cells via interaction with APRIL.

Angiogenesis

Evidence suggests that SDC1 may also mediate angiogenic
signaling. In myeloma, shedding of SDC1 from the surface of
the neoplastic plasma B cells is facilitated by heparanase,
resulting in endothelial invasion and angiogenesis [8].
Studies also showed that levels of sSDC1 correlate positively
with levels of hepatocyte growth factor (HGF) expression and
regulate its signaling in myeloma [65, 66], a mechanism im-
plicated in angiogensis. Also in myeloma, heparanase facili-
tates the upregulation of HGF and VEGF and SDC1
ectodomains bound to VEGF and presented VEGF to endo-
thelial cells, initiating angiogenesis [8, 42, 67]. The pro-
angiogenic role of SDC1 also appears to be dependent on its
ectodomain that binds to αvβ3 and αvβ5 integrins. In vitro
studies identify a short peptide that mimics the SDC1
ectodomain core protein (synstatin) that inhibit SDC1 interac-
tions with both integrins, resulting in reduced endothelial cell
invasion and slowing of tumor growth [8, 9].

Although evidence that support angiogenesis in HL is slowly
emerging, elevated levels of pro-angiogenic molecules (namely
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Fig. 2 Model of putative SDC1-mediated signaling of growth factor
networks in HL. a The ectodomain of SDC1 can be shed by the activities
of sheddases (such as MMPs), inflammatory cytokines, or heparanase. b
WT1 upregulates endothelial expression of SDC1 and VEGF and pro-
mote angiogenesis. Also, sSDC1 (from either the epithelium or shed from
HRS cells) may bind VEGF and stimulate angiogenesis. c Shed SDC1
mediate binding of FGF2 to FGFR3, resulting in phosphorylation of
ERK5 which inhibit BMI1, resulting in HOXB9 upregulation. d Shed
SDC1 mediated binding of HGF to c-MET, resulting in phosphorylation

ofMET (p-MET) and its downstream targets Akt (p-AKT) and Erk1/2 (p-
ERK). e Shed SDC1 mediate the binding of IGF1 to its receptor IGF1R,
also resulting in phosphorylation of Akt and Erk1/2. f Shed SDC1
mediated-of PDGF to PDGFR, resulting in phosphorylation at tyrosine
residues 680 and 681 (Y680 and Y681, respectively). g Shed SDC1 also
mediates the binding of VEGF to VEGFR. Activation of these signaling
pathways lead to cell growth and proliferation, cell invasion, metastasis,
angiogenesis, and cell survival. These pathways are also active in HL and
may play a role in the behavior of HRS cells
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HGF, VEGF, TNF-alpha, and angiogenin) (including those that
depend on SDC1 for enhanced binding and signaling) were de-
tected in the sera of patients, before standard therapy, and subse-
quently decreased post treatment [68]. In the same study, HGF
andVEGFcorrelatedwith IL-6 levels [68], another cytokine that
can interactwithSDC1andalso itself anegativeprognostic factor
in HL [69–71]. As mentioned, separate studies detected either
sSDC1 or FGF2 in the sera of HL patients [12, 72]. In addition,
the injection ofHL cell linesKMH2, L428, andHDLM2 in con-
junction with bone marrow mast cells into NOD/SCID mouse
resulted in increase tumor vascularity [73]. However, the expres-
sion of a very few of the pro-angiogenic cytokines correlate with
increase microvascular density (MVD). Immunohistochemical
study showed strong expression of VEGF-D by HRS cells, and
this correlated with a high number of tumor microvessels, sug-
gesting a role for this GF in HL angiogenesis [74]. Vascular en-
dothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2,
two important but highly related tyrosine kinase receptors, bind
VEGF-A and promote survival of endothelial cells through the
Raf-MEK-MAP kinase pathway [75, 76]. A retrospective study
was conducted to evaluate the expression patterns of VEGF-A,
VEGFR-1, and VEGFR-2 in cHL and NLPHL in a total of 194
cases [77]. The authors showed thatHRS cells expressedVEGF-
A, VEGFR-1, andVEGFR-2 in 90.3, 97.2, and 94.1% of cases,
respectively [77]. Importantly, there was a significant correlation
between these markers and vessel branching [77]. Interestingly,
morphometric data showed that increased angiogenesis, as evi-
dentbyincreasedmicrovascularization, isanegative independent
prognostic factor in HL [78]. Because sSDC1 can bind multiple
pro-angiogenic cytokines, several ofwhich are implicated inHL,
andenhance their signaling, it is likely that thesoluble formof this
HSPGmay have a pro-angiogenic role in HL (Fig. 2b).

SDC1-mediated angiogenesis in HL may further be poten-
tiated by Wilm’s tumor protein—WT1 (Fig. 2b). SDC1 is
transcriptionally upregulated byWT1 [79], and it is expressed
predominantly by epithelial cells [16] where it modulates
neovasculization and cellular differentiation. In malignant
lymph nodes of HL, WT1 is overexpressed by endothelial
cells [80] where SDC1 is also likely to be expressed [81,
82]. As indicated, sSDC1 is known to bind to pro-
angiogenic molecules such as FGF and VEGF (both of which
are overexpressed in TM of HL) and activate them, thereby
promoting endothelial cell invasion and angiogenesis. In ad-
dition, WT1 directly upregulates VEGF, resulting in increase
angiogenesis [83, 84].

Exosome biogenesis

SDC1 is important in the biogenesis of exosomes, small 30–
120-nm microvesicles released by cells into body fluids. The
cargo of these microvessicles may consist of nucleic acids
(RNAs, miRNAs) and proteins, which can be shuttled

between tumor cells and host cells. Also, exosomes have been
implicated in disease metastasis and relapse. HL cell lines
have been shown to release exosomes containing CD30,
which stimulates granulocytes to secrete IL-8, a pro-
angiogenic cytokine [85]. Of interest, soluble CD30
(sCD30) is an independent poor prognostic marker in HL
[86], and SDC1 binds to IL-8 and prolongs its biological
functions [87]. Elevated levels of IL-8 in the sera of HL pa-
tients is associated with B symptoms [88]. Formation of
exosomes is a consequence of the interaction of the SDC1
cytoplasmic domain with both syntenin and ALIX to form a
complex that facilitates the budding of intraluminal vesicles
within endosomal membranes [89]. In addition, SDC1 has
been found in exosomes derived from cells of colorectal can-
cer [90], bladder cancer [91], and prostate cancer [92]. A
search conducted for the expression of follicular dendritic cell
markers by HRS cells turned up molecules associated with
exosome physiologies. Syntenin was expressed by subsets
of HRS cells [93]. And although no evidence of ALIX activ-
ities in HL has been reported to date, exosomes derived from
aggressive B cell lymphoma were ALIX-positive [94]. These
observations suggest that SDC1 may contribute to the synthe-
sis of exosomes involved in the release of CD30 and perhaps
contribute to the poor prognosis associated with sCD30. A
possible mechanismmay involve SDC1mediating the synthe-
sis and release of CD30+ exosomes, which then stimulate
reactive cells to release IL-8, and proteolytically cleaved (ei-
ther by heparanase or MMPs) SDC1 may bind to IL-8 thereby
potentiating angiogenesis. The Epstein-Barr virus latent mem-
brane protein 1 (LMP1), which has been localized to HRS
cells [95, 96], may play a role in the exosomal release of
FGF2 [97] into the biofluids of HL patients where significant-
ly higher concentrations of it (FGF2) are associated with sys-
temic symptoms and an erythrocyte sedimentation rate [72].

Putative SDC1-mediating signaling mechanisms

FGF2-FGFR3

FGF2-FGFR3 signaling has been demonstrated in hematolog-
ical malignancies, including MM, lymphoma, and leukemia.
Studies indicated that binding of FGFs to HSPG is required
for signaling transmission through FGF high-affinity receptor
[98, 99]. SDC1 forms ternary complexes with FGF2 ligand
and its receptor (HSGAG:FGF:FGFR), a complex that stabi-
lizes the receptor dimerization and promotes FGFR trans-
phosphorylation. In MM, SDC1 [100], FGF2 [101], and
FGFR3 [102] are overexpressed by the neoplastic plasma
cells, signatures associated with a poor outcome [101–103].
This setting provides an autocrine mechanism for FGFR3 sig-
naling. This mechanism may also be enhanced by a paracrine
mode since SDC1 and FGF2 are elevated in serum of MM
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patients [104]. The binding of FGF2 appears to be facilitated
by heparanase. In melanoma cells, heparanase stimulates
FGF2 signaling by degrading the cell surface heparan sulfate
chains [105], a modification that enhances the binding of
FGF2 to cell surfaces and leads to stimulation of ERK and
focal adhesion kinase phosphorylation (FAK) [105].
Signaling pathways that involve the activation of ERK are
also important regulators of cell growth and invasion and are
altered during melanoma progression to metastatic phenotype
[106, 107]. In MM, ERK is activated by insulin receptor sig-
naling which is enhanced by heparanase [108]. And in HL,
ERK signaling is activated by CD30, CD40, RANK [43], and
FGF2 [109].

In HL, SDC1 [16, 21, 22, 110], FGF2 [111], and FGFR3
[111, 112] are overexpressed by HRS cells and other cell types
in the TM, suggesting autocrine and paracrine mechanisms
(Fig. 3). The oncogenic role(s) of FGFR3 is due to either its
translocation or by activated mutation in different cancer
types. In HL cell lines, multiple copies of FGFR3 have been
reported [112], and it is constitutively active in primary HRS
cells [111]. SDC1 [12] and FGF2 [72] are elevated in the sera
of HL patients. These observations suggest an active role of
SDC1-FGF2-FGRF3 signaling in HL pathogenesis. In HL,
signaling arising from FGF2 occurred via ERK-5 pathway
[109]. Treatment of the HL cell line KM-H2 with either an
inhibitory antibody against the FGF2 protein or with genistein
(an inhibitor of tyrosine kinase known to inhibit growth factor
receptor signaling) resulted in significant decreases of nuclear
phospho-ERK5 (p-ERK5) and HOXB9 mRNA expression
[109] (Table 1, Figs. 2 and 4). Overexpression of HOXB9
promotes metastasis, tumor cell growth, and angiogenesis in
cancers with a very poor clinical outcome [113, 114]. In addi-
tion, the expression and release of FGF2 by HL cell lines may
be dependent on LMP1 expression [115].

VEGF-VEGFR

As indicated, SDC1-VEGF interaction appears important for
angiogenesis and cellular invasion. In MM, this process is
dependent on heparanse. Purushothaman et al. demonstrated
that heparanase upregulated SDC1 shedding, via heparanase
stimulation of ERK phosphorylation, with resulting upregula-
tion of MMP-9, which then acted as a sheddase of SDC1 [42].
Interestingly, heparanase also mediates the upregulation of
VEGF. VEGF likely binds to sSDC1 to stimulate endothelial
cell invasion and angiogenesis. These roles may be mediated
by the VEGFR signaling. Lamorte showed that SDC1 is in-
volved in angiogenic phenotype of MM epithelial cells
(MMECs) by promoting EC proliferation, survival, and mod-
ulating VEGF-VEGFR-2 signaling [116]. Rapraeger et al.
showed that insulin-like growth factor 1 (IGF1R) coupling
to SDC1 and αVβ3 integrin comprises a core activation
mechanism activated by VE-cadherin that is necessary for
VEGFR2 and integrin activation in the initial stages of endo-
thelial cell dissemination during angiogenesis [117]. The TM of
HL is populated with these molecular players. VEGF is
expressed by HRS cells and by activated macrophages [118],
and variants of VEGF proteins and their cognate receptors are
upregulated in the sera of newly diagnosed cHLpatients [119]. In
addition, HRS cells expressed VEGF-A, VEGFR-1, and
VEGFR-2 in 90.3, 97.2, and 94.1 % of cases, respectively,
and this pattern correlated statistically with ramifications of
blood vessels [77]. Since IGF1R is expressed by large subsets
of HRS cells [120], it may be involved in enhancing the role of
SDC1 in activation of VEGRF signaling [117], although de-
tails of αVβ3 integrin involvement is not known, in HL.

Several studies targeted the angiogenic roles of VEGF sig-
naling in HL (Table 1). Evaluation of thalidomide, an inhibitor
of VEGF [121] in combination with cyclophosphamide and
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dexamethasone [122] and vinblastine [123] in relapsed HL,
showed clinical activities to this drug (thalidomide—Fig. 4).
However, thalidomide was not further evaluated.
Lenalidomide, a potent analog of thalidomide, has been inves-
tigated in HL (Fig. 4, Table 1). Treatment of a cohort of 38
heavily pretreated relapsed or refractory cHL patients with
lenalidomide alone resulted in objective and cytostatic re-
sponses with modest toxicity [124]. In another study of
lenalidomide as a single agent in heavily pretreated HL pa-
tients, Boll et al. reported 50 % overall response rate and low
toxicity in the 12 subjects enrolled [125]. In addition, a recent

study by Rueda et al. reported that lenalidomide combined
with cyclophosphamide resulted in 38 % overall response rate
(one complete remission and five partial responses), and clin-
ical benefits to 62 %, in refractory and relapsing cHL patients
who received autologous stem cell transplant [126]. Upon
median follow-up of 19 months, 3-year progression-free and
overall survival were 6 and 31 %, respectively [126].

The anti-tumor effects of bevacizumab, an anti-VEGF
monoclonal antibody, were investigated in human HL xeno-
grafts in SCID mouse and in five patients with refractory/
relapsed HL. In the animal model, bevacizumab treatment

Table 1 Pre-clinical and clinical strategies for targeting growth factor signaling in Hodgkin’s lymphoma

Pathway Drug Anti-tumor/clinical effects Study

FGF2-FGFR Genistein Inhibit cell growth [109]

VEGF-VEGFR Bevacizumab (anti-VEGF monoclonal antibody) Delay tumor growth in animal model; PR
or CR in 3/5 cHP patients

[127]

Lenalidomide Objective and cytostatic responses [124]

Lenalidomide 2.7 % CR (n = 1), 16 % PR (n = 6),
13.8 % SD (n = 5)

[125]

Lenalidomide (combined with cyclophosphamide) 38 % ORR (1 CR, 5 PR)
62 % clinical benefit (n = 10)

[126]

Thalidomide (combined with vinblastine) 36 % RR (4 PR), 18 % SD (n = 2) [123]

Thalidomide (combined with cyclophosphamide and dexamethasone) 100 % CR (n = 2) [122]

HGF-c-MET SU11274 (a specific c-MET kinase inhibitor) Cell cycle arrest [136]

IGFR1 Cyclolignan picropodophyllin (a highly selective IGF1R inhibitor) Cell cycle arrest and a decrease on cell viability [120]

PDGF-PDGFR Imatinib Decrease cell survival and proliferation [148]

Sorafenib and lestaurtinib Inhibit cell proliferation [153]

Genistein

A

Cyclolignan
Picropodophyllin

C

SU11274 

B

Lestaurtinib

D

Imatinib Sorafenib

Lenalidomide Thalidomide 

E 

Fig. 4 Structures of receptor
tyrosine kinase inhibitors used in
Hodgkin’s lymphoma. a Inhibitor
of FGF2 signaling. b c-Met
inhibitor used in blocking HGF-
mediated signaling. c Inhibitor to
IGF1-R signaling. d RTK
inhibitors for PDGFR pathway. e
Anti-VEGF and anti-
angiogenesis molecules
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resulted in significant delay in tumor growth, whereas three of
the five human subjects treated with bevacizumab and
gemcitabine showed complete response [127].

HGF-c-MET

In MM, overexpression of SDC1 is an independent negative
prognostic factor [100] and elevatedHGF levels predict a poor
prognosis, short-term responses to therapies, and early re-
lapses [66, 128, 129]. Also in MM, SDC1 promotes HGF-
induced signaling through its receptor MET and downstream
activation of Ras/MAPK and PI3/Akt signaling pathways,
resulting in enhanced cell proliferation and survival [130]. In
addition, high levels of nuclear heparanase resulted in upreg-
ulation of HGF and SDC1 shedding, enhancing the HGF sig-
naling [67]. Nuclear heparanase also regulates the expression
of SDC1 in MM [131]. These observations suggest a
heparanase-SDC1-HGF regulatory loop in MM. In diffuse
large B cell lymphoma (DLBCL), SDC1 overexpression by
the tumor cells is associated with poor prognosis [60] and
HGF induces MEK-dependent activation of ERK and PI3K-
dependent phosphorylation of PKB, GSK3, and FOXO3a in
MET+ tumor cells [132], suggesting a possible role of SDC1
in HGF signaling in B lymphomas. Also in DLBCL, HGF
induces PI3K-dependent α4β1 integrin-mediated adhesion
to VCAM-1 and fibronectin [132]. In HL, c-MET is expressed
only by EBV+ cases [133]. However, only five out of six HL
cell lines were c-MET+ although all six were HGF+ [134].
Teofili et al. reported the frequent expression of c-MET by
HRS cells, surrounded by CD21+ follicular dendritic cells that
express HGF [135] (Fig. 3), suggesting a paracrine mecha-
nism. In addition, elevated serum levels of HGFwere detected
in HL patients and this was associated with B symptoms
[135]. The c-MET+ HRS cells express α4β1 and α5β1
integrins [135], indicating the possible existence of HGF sig-
naling pathway between HRS cells and the reactive cellular
background. In vitro studies showed that although treatment
of the c-MET+ HL cell line L428 with HGF resulted in in-
creased phosphorylation of MET (p-MET), and upregulation
of p-AKT and p-ERK1/2, there was no effect on cell prolifer-
ation [136], suggesting that SDC1-mediated binding of HGF
to its receptor may be important for stimulating cell growth
[65]. However, the c-MET inhibitor SU11274 (Fig. 4) sup-
pressed cell growth by inducing G2/M cell cycle arrest
[136]. Additionally, changes in plasma heparanase levels cor-
related with the response to treatment in HL pediatric patients
[137]. Although P3-kinase/protein kinase B and RAS/
mitogen-activated protein kinase networks are active in HL
[138, 139], to date, there is no data to support their activation
by HGF in this neoplasm, as occurred in MM [65]. However,
the activities of heparanase, SDC1, HGF, and MET in the TM
of HL suggest that these molecules constitute an active net-
work that contribute to HL pathogenesis.

IGG1-IGF1R

In vitro studies showed that overexpression of SDC1 leads to
the activation of IGF1R (and increased expression of Ets),
resulting in increased proliferation of HT-1080 cells [140].
Beauvis et al. (2010) showed that SDC1 couples IGF1R to
activate integrin signaling, promoting tumorigenic activities
[141]. Although these mechanisms are independent of IGF1,
they are enhanced by this ligand [141]. Interestingly, IGF1R
coupling to SDC1 and αVβ3 integrin appears to be a core a
mechanism activated by VE-cadherin that is necessary for
VEGFR2 and integrin activation in the initial stages of endo-
thelial cell dissemination during angiogenesis [117]. Of sig-
nificance to lymphomas, Huang et al. showed that EBV infec-
tion increases αv,β3, and β5 integrin subunit mRNAs as well
as upregulates the expression of the αv β3 integrin protein on
human B lymphocytes [142] and about 40–50 % of cHL are
EBV+. In HL, IGF1R is overexpressed by HRS cells in an
almost all-or-none-fashion in 55% of cHL patients, and this is
associated with a favorable 5-year progression-free survival
[120]. In this same study, the authors showed that addition
of IGF1 to cell cultures resulted in increased phosphorylation
of IGF1R and its downstream targets Akt (p-AKT) and Erk1/2
(p-ERK), producing an increase in cell proliferation [120]
(Fig. 2e). In addition, inhibition of IGF1R with cyclolignan
picropodophyllin (PPP, a highly selective IGF1R inhibitor)
resulted in decreased cell growth and induced a G2/M cell
cycle arrest, as indicated by decrease in pCcd2 and an increase
in CyclinB1 levels [120]. Although there is no report on in
vivo levels of IGF1 in HL, these observations suggest IGF1-
IGFR1 may be an autocrine signaling which may be mediated
or enhanced by SDC1. The cell lines used in this study express
SDC1 [120, 143].

PDGF-PDGFR

PDGF (as well as other growth factors including IGF) appears
to regulate the levels of HSPGs and variations in the expres-
sion of HSPGs correlate with the GF signaling activation by
an auto-regulatory loop mechanism [143]. PDGF-BB treat-
ment resulted in increased SDC1 mRNA expression [144].
Treatment of aggressive breast cancer cell lines exposed to
PDGF-BB with imatinib reduces the cell surface expression
of HSPGs (namely SDC2 and SDC4), thereby inhibiting cell
proliferation, invasion, and migration [145], suggesting that
HSPGs are involved in PDGF-mediated signaling. In HL,
signaling by PDGF and its cognate receptor, platelet-derived
growth factor receptor (PDGFR) may also be influenced by
HSPGs (namely SDC1 and SDC4 as these are the only ones
active in HL). Both PDGF [146, 147] and its receptor
PDGFRA [148, 149], as well as EphrinB1 (another ligand
for PDGFRA), are expressed by primary HRS cells in a pro-
portion of HL patients. Intriguingly, cytoplasmic and nuclear

11580 Tumor Biol. (2016) 37:11573–11588



PDGF expression by primary HRS cells increase with disease
progression in some cases [146] and shed SDC1 is known to
bind and translocate GFs to the nucleus [44]. Also of interest,
ephrins (namely EphrinB2) are known to upregulate the levels
of SDC1 [150].

Activation of PDGFRA resulted in phosphorylation of spe-
cific intracellular tyrosines (mainly 680 and 681) of TRKA
and of TRKB in HRS cells [148] (Fig. 2f). Of clinical rele-
vance, high levels of PDGF have been detected in the sera of
HL patients, but decreased after treatment [151]. Another
study revealed that serum levels of PDGF in cHL patients
remained elevated after treatment with ABVD and mediasti-
nal radiation in stage IIA patients [152], indicating a possible
role in resistance to radiation and chemotherapy. The expres-
sion of PDGF and PDGFR by the same HRS cells suggest an
autocrine stimulation of tumor cell growth (Fig. 3). Inhibition
of PDGFRA signaling with imatinib affected cell survival and
proliferation of HL cell lines [148]. Sorafenib and lestaurtinib
(Fig. 4), both already being used in clinical trials, inhibited
proliferation of HRS cell lines, via deactivation of PDGF sig-
naling, at concentrations achievable in patients [153]. In MM,
PDGF-AB stimulates tumor growth and angiogenesis as evi-
dent by increased microvascular density (MVD) [154], which
is also a negative independent prognostic factor in HL [78].
Given the affinity of HSPGs to bind to growth factors such as
PDGFA [155], it is likely that SDC1 plays a role in tumori-
genic signaling of PDGF-PDGFR in HL.

SDC4, expressed by HRS cells, may transduce signaling
via PDGF-PDGFR pathway, which may also be related to
changes in reactive oxygen species (ROS). SDC4 regulates
generation of ROS through interactions with Nox1 [156].
Nox1 and its related homologs are NADPH oxidase family
of enzymes responsible for the catalytic one-electron transfers
of oxygen to generate superoxide or hydrogen peroxide.
SDC4-mediated increases in ROS potentiate PDGF-
mediated MAP kinase activation [156]. In addition, a
syndecan(4)/PDGFR chimera resulted in increase MAPK ac-
tivities [157]. In HL, although SDC4 [23, 24], PDGF [146,
147], PDGFR [148, 149], andMAP kinase activities [43] have
been detected in the HRS cells, a SDC4-mediated increase in
ROS may not potentiate PDGF-mediated MAP kinase activa-
tion, because CYBB (NOX2/gp91phox), a homolog of Nox1,
is downregulated, a consequence of gene deletion in some
cases, thereby contributing to impairment of ROS synthesis
by HRS cells [158]. However, an SDC4-PDGF interaction my
produce other consequences in HL.

Signaling via TGF-β binding

SDCs also bind TGF-β to cell surface, [159, 160] including the
surface of tumor cells.A studybyYang et al. showed that TGF-β
binds to SDCs expressed on the plasma membrane of cell lines
andprimary tumor cells of theBcell origin, a process thatmaybe

involved in the regulation of intratumoral Tcell differentiation in
B cell non-Hodgkin’s lymphoma [161]. It has been speculated
that HS-mediated TGF-β binding is to protect TGF-β against
proteolytic degradation [162]. The SDC-bound TGF-β in these
instances still retains its active form, indicating a potent SDC-
TGF-β interaction in tumorigenesis. In HL, various isoforms of
TGF-βmRNA and proteins were detected by different types of
cells including primaryHRS cells [163], reactive T lymphocytes
[164], and eosinophils [165], in the TM (Fig. 3). From a clinical
standpoint, the presence of cytotoxic (TIA-1+ andgranzymeB+)
and regulatory T cells (FOXP3+) correlates with poor overall
survival in HL [166–169]. In B cell non-Hodgkin’s lymphoma
(NHL), soluble TGF-β promote regulatory T (Treg) cells by en-
hancing expression of Foxp3 in CD4+ T cells and suppressed
effector helper T (TH) cells by inhibiting expression of IFN-c
and IL-17 [161]. In HL, TGF-β (and IL-10) produced by Treg
and HRS cells (Fig. 3) exerts inhibitory effects on Tcell effector
functions, especially on cytotoxic T lymphocytes (CTLs)
[170–173]. A study conducted on mostly stage IIA HL patients
showed no decrease in the serum concentration of TGF-β after
ABVD and mediastinal radiation, suggesting a possible role of
TGF-β in resistance to both radiotherapy and chemotherapy in
HL.The studies ofTGF-β inHLpaint an unfavorable role of this
GF in the pathology of this lymphoma. However, given high
expression of SDC1 in HL [11] and its binding of TGF-β to the
surfaceof lymphomacells [161], it is possible thatSDC1mediate
the pathological role(s) of TGF-β in this malignancy. One possi-
ble role is the suppression of Tcell functions. Additionally, sepa-
rate studies showed that SDC1 and TGF-βmaymediate expres-
sion levels of each other. RNA interference studies showed that
changes in SDC1 resulted in altered levels of TGF-β [174]. In
contrast, SDC1 expression is induced by TGF-β through the
PKA-dependent pathway [175].

An SDC1-TGF-β signaling may also play a role in the gen-
eration of fibrosis in HL. TGF-β is known to induce fibrosis
[176, 177] and it stimulates collagen synthesis [178], character-
istics of some proportions of nodular sclerosing cHL subtype
where there is strong expression of TGF-β [173]. Intriguingly,
SDC1 is also a marker for fibrosis [179], and sSDC1 increases
fibroblast proliferation and the release of TGF-β [180].

SDC1 and IL6

IL-6 is a pro-inflammatory cytokine produced by HRS cells
and its overexpression is associated with poor prognosis and
anemia [69, 70]. Studies indicated that IL-6 might have dif-
ferential roles on the expression of SDC1. In B lymphoid
cells, IL-6 regulates the expression of SDC1 at the post-
transcriptional level. Exogenous application of IL-6 in growth
medium of cultured murine B lymphoid cells resulted in de-
creased SDC1 expression, in a dose- and time-dependent
manner, an effect that is reversible after IL-6 withdrawal
[181]. In contrast, the overexpression of SDC1 resulted in a
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ten-fold increase of IL-6 expression in malignant mesothelio-
ma cells [182]. In breast cancer, SDC1 modulates the func-
tions of β-integrin-dependent and IL-6-dependent functions
in cell adhesion, migration, and resistance to irradiation
[183]. InMM, the neoplastic plasma cells are SDC1+ and they
also produce IL-6. In fact, large proportions of SDC1+/IL-6+
malignant cells detected in MM patients were associated with
resistant relapse or primary refractory disease [184] and high
blood levels of sSDC1 and IL-6 (and HGF) predict shorter
survival [185]. These observation suggest that SDC1 and
IL6 may involved a feedback loop, although no single study
has demonstrated such, to date. Interestingly, HRS cells in HL
tumor biopsies express either SDC1 [11] or IL-6 [186], and
either of these proteins are elevated in the sera of HL patients
[12, 187]; however, IL-6 levels correlate with poor prognosis
[187]. In addition, the expression of IL-6 and its receptor by
HRS cells suggest an autocrine role in the proliferation of
these cells [186]. It is quite possible that the pathophysiolog-
ical contributions of IL-6 in HL may be potentiated by SDC1.

Conclusion

Ampleevidencesuggests thatSDCsmediatecancerdevelopment
and progression by enhancing the binding of growth factors and
cytokines to their cognate receptors, activating signaling path-
ways that give rise to angiogensis, cell growth and proliferation,
and cellular invasion and metastasis. In HL, heparanase, inflam-
matory cytokines, and sheddases may cause shedding of SDC1
ectodomain. The shed SDC1 will then bind to and mediate the
signaling of GFs such as FGF2, HGF, IGF1, PDGF, and VEGF,
via autocrine and paracrinemechanisms. Pre-clinical and clinical
studies inHL showed that inhibition a number of these pathways
lead to decrease cell growth and proliferation (Table 1, Fig. 4).
Perhaps thesedrug-inhibitory effects canbe enhancedwithgreat-
er understanding of the contribution of HSPGs (namely
syndecans) to HL pathology. It is hopeful that the evidence
discussedherewill encourage future active research in themolec-
ular function(s) of SDCs in the pathology of HL.
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