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Abstract Radiotherapy is the biggest force acting behind cancer
treatment, yet the vast majority of patients get only modest ben-
efit. The successive failure of targeted therapies in radiotherapy
lies in the non-discriminative killing of both normal and cancer
cells. However, there is still a reason for optimism due to recent
advancement made in cancer biology which unrevealed many
new deregulated pathways in cancer and their response towards
drug and radiation. In this review, we comprehensively discussed
novel and promising druggable target which can be exploited for
tumor radiosensitization in addition to normal tissue radioprotec-
tion in radiotherapy, for better tumor controllability and patient
quality of life. In the last part, we also discussed the radiation
countermeasure agents in brief.
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Introduction

The three Nobel fundamental discoveries made by Roentgen
(x-rays in December 1895), Becquerel (natural radioactivity in
March 1896), and Curie (radium 1898) in a short time span
astonishes the world scientific community, making everyone
into a scientific frenzy. But the era of doom was started soon,
when Edison, Tesla, and Gubbe reported radiation-induced
(RI) injury in their eyes and skin on March 1896 [1].
Despite the threat, technology was rapidly spreading from
bench to bedside and barely 6 months after Roentgen’s dis-
covery, radiation was used for the first time in the treatment of
gastric cancer and basal-cell carcinoma patients in France,
America, and Sweden [2]. In 1902, the first case of RI cancer
was reported in the hand of a radiologist [3]. Later, arm of a
lab assistant named Clarence Dally was amputated due to RI
blistering and subsequently, he died in 1904 [4]. Soon, Curie
also reported RI skin erythema and ulceration, and later, she
and her daughter Irene both died from RI leukemia.
Afterward, Roentgen’s wife also joined the list of persons
who died, believed to be a consequence of radiation [5]. The
fundamental problem in RI damage was due to many reasons,
i.e., 1. the lack of knowledge about radiation, 2. instrumenta-
tion to measure radiation dose, and 3. undefined unit in those
days.

The term Bradioprotection^ was first used by Dale in 1942
on his articles, arguing that x-ray-induced enzymes/protein
inactivity is responsible for RI cell death [6], though later in
the 1960s, the concept was superseded by BDNA damage.^
Subsequently, Patt et al. showed the effect of cysteine in pro-
tection against x-rays [7]. Indeed, the first breakthrough report
came from Gray et al. while working at Hammersmith
Hospital, London, showed that the RI damage could be min-
imized by 2–3 times in anoxic condition [8]. In the 1960s,
many phosphorothioates compounds under the WR series
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was synthesized by Akerfeldt at the Walter Reed Army
Institute of Research; it was another revolutionary mark in
radioprotection [9]. Then from the 1970s onwards, plenty of
reports came from multiple investigators dealing with
radioprotectors, but due to multiple reasons, only amifostine
got a nod from the FDA in 1995 to use as a co-therapy agent in
RT for lowering normal tissue damage (fda.gov).

With the demise of cold war hostility in the 1990s,
burgeoning incidents of cancer projected to increase by
75 % by 2030 from 2008 figure or reach to 22.2 million [10]
in absolute terms as the baby boomer generation of 1970s
(record population growth due to improved medical condi-
tion) become older. Indeed, the rapid increase in cancer inci-
dence is mainly due to higher life expectancy [11] since the
aged are more prone to cancer. Though in reality, the cancer
incidents are declining (declined by 3.1 % year−1 in men while
stable in female between 2009 and 2012 [12]) due to better
hygiene, immunization, etc. [11]. The only bad side of the
ongoing success in reduction of cancers may be hampered
by factors like obesity, stress, and diabetes, etc. or so-called
the diseases of civilization. Today, radiation is the centerpiece
in cancer treatment; as of 2014, 1.1 million out of 1.67 million
total cancer patients received radiotherapy (RT) in the USA
alone [13]. Despite extensive uses of RT, the majority of pa-
tients only get modest benefits due to collateral damage to
normal tissues. In fact, just increasing the cumulative dose
by 10–20 % makes the difference between the incomplete
and complete eradication of some tumors [14]. Further vari-
ables like hypoxia, radio-resistance, faulty repair system, etc.
consistently escalate the radiation dose. The dictum primum
non nocere or Bfirst, do no harm^ is the centerpiece in medical
profession andmeans that physicians are duty-bound to access
the benefits over the likely harm and try to overcome them
later. Hence, aiming for better patient quality of life, radiopro-
tection had evolved from obstacle kilovoltage (1900–1940) to
megavoltage (1946–1996) for eliminating severe skin dam-
age, especially when targeting deeper tumor and further
adopted much safer computer-assisted (1996–ongoing) 3D
conformal RT [15]. In fact, there are a couple of new promis-
ing technologies such as stereotaxic ablative body radiothera-
py, fine intensity-modulated RT, volumetric modulated arc
therapy, dynamic conformal arc therapy, multimodal image-
guided RT, concentrating the radiation in tumor via proton
particles or carbon ion therapy (Bragg’s peak), and recently
introduced four-dimensional RT (where respiration is also
considered) are rapidly diffusing though expensive over stan-
dard or conventional therapy [16]. But due to the ill-defined
boundary and complex anatomical location, normal tissue still
faced the similar fate as tumor under RT, forcing oncologists
to limit the exposure dose; to achieve it, there is a need to
either selectively increase the tolerance of normal tissues or
radiosensitivity of tumor or both (Fig. 1). Last but not least,
need of radioprotectors is also becoming apparent as a

radiation countermeasure agent in space science, nuclear en-
ergy generation, medical diagnosis/imaging, nuclear fallout,
and nuclear terrorism.

Radiosensitization and radioprotection

Here, we are describing promising druggable targets, which
can be selectively targeted for normal tissue radioprotection or
enhancing the tumor radiosensitivity or both.

Free radical scavengers

Pioneer studies of Biaglow and Bump demonstrated that the
irradiation results in depletion of antioxidant pool predomi-
nantly glutathione (GSH) and increase in antioxidant enzymes
including superoxide dismutase (SOD) following irradiation
[17]. SOD2 or Mn-SOD is localized into mitochondrial mem-
brane due to the presence of mitochondrial targeted peptide
while SOD1 and SOD3 are localized in the cytoplasm and
extracellular spaces, respectively. Delivery of SOD1 construct
with mitochondrial targeting peptide or Mn-SOD (not SOD1,
SOD3, or even SOD2 without mitochondrial peptide) has
shown protection against the RI damage with tumor
radiosensitization [17, 18]. Delivering vector construct ex-
pressing Mn-SOD is superior over protein form due to the
bigger size (222 amino acids) of the latter, making it difficult
to internalize by cells. Moreover, protein form is also suscep-
tible to ONOO− mediated nitration at tyrosine-34, which
makes it nonfunctional [19]. Cancer cells under extreme oxi-
dative stress as it diminished the expression of antioxidant
enzymes including glutathione peroxidase (GPx) and catalase
by epigenetic modification andmutation in promoter region as
a mechanism for initiation, progression, and metastasis of
cancer (Fig. 2a) [20, 24]. GPx degrades H2O2; a product of
SOD generated from RI superoxide anion radical (Fig. 2a).
Thus, delivering Mn-SOD to tumor-bearing organism causes
accumulation of cytotoxic H2O2 in the cancer cells following
irradiation, while normal cells remain unaffected due to intact
GPx (Fig. 2a) [17]. Moreover, cancer cells are more sensitive
to Mn-SOD therapy since they are under extreme oxidative
stress due to progressive upregulation of Mn-SOD as a mech-
anism to acquire more aggressive and invasive phenotype/
enhanced malignancy (Fig. 2a) [20]. However, it does not
mean that inducing ROS (by Mn-SOD) make cancer cells
more malignant, as momentary ROS induction is harmful
and have killing effects while under persistent ROS, cancer
cells survive due to adaptive resistant by upregulating antiox-
idant system [25]. Delivering Mn-SOD under chemo-
radiotherapeutic regime via plasmid-liposome in non-small-
cell lung cancer (NSCLC) patients has been shown to reduce
RI esophageal toxicity in a phase-I clinical trial [26] and now
the phase-II trial is under progress (NCT00618917, clinicaltrials.
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gov). Therefore expression of SOD, GPx, and catalase are
probably useful markers for selecting the patients eligible for
co-therapy (Mn-SOD with RT).

Cerium oxide (CeO2) nanoparticles have shown to protect
against the RI lung and gastrointestinal epithelium damage by
scavenging free radicals (O2−, •OH) and upregulation of SOD
[27]. The CeO2 nanoparticles have shown to mimetic catalase
and SOD, interestingly the catalase activity lost at acidic pH,
resulting in accumulation of H2O2 in the presence of superox-
ide radicals [28]. Cancer thrives in an acidic environment via
lactic acid production; hence, using CeO2 nanoparticles could
radiosensitize the tumor via accumulation of H2O2 while nor-
mal cells remain unaffected due to intact catalase activity.
Additionally, modifying the charge of CeO2 nanoparticles to
negative have shown to be preferentially internalized by can-
cer cells over normal cells [29], which may further potentiate
the radiosensitization effect provided that charge modification
does not influence the mimetic property.

Nitroxides and its derivatives are recycling free radical
scavengers and were shown to reduce the RI damage in dif-
ferent model system by ROS scavenging [30]. Selective
targeting of GS-nitroxide (JP4-039) to mitochondria has
shown to protect oral mucosa from RI damage in Fancd2−/−

mice without affecting tumor radiosensitivity [31]. Tempol is
another molecule that has been shown to protect mammalian
system against RI cytotoxicity in in vitro and in vivo (without
tumor protection) [32]. Lack of tumor protection by Tempol is
due to conversion of Tempol from radioprotective form to
non-radioprotective form Tempol-H by bioreduction in hyp-
oxic area. Topical application of Tempol in the scalp has
shown to reduce the RT-induced alopecia in brain metastatic
cancer patients in a phase I trial [32]. Erker et al. had demon-
strated the chemopreventive activity of Tempol in tumor-
bearing mice; however, from the study, more questions
emerged than answers, like was the effect was due to
Tempol or Tempol-H, what was the role of hypoxia, etc.
[33]. But still, nitroxide derivatives including Tempol are
promising in RT as radiosensitizers, besides radioprotectors,
due to its SOD mimetic property which further amplified at
acidic pH [20].

Melatonin, a hormone secreted by the pineal gland has
shown to protect against RI damage in different biological
systems by free radical scavenging and enhancing SOD and
GPx activity [34, 35]. However, its efficacy in RT remains
disputable. Administration of melatonin (20 mg day−1) in
glioblastomas patients undergoing RT has shown a survival
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Fig. 2 Reactive oxygen species (ROS) in biological system. a
Detoxification of ROS in normal cells; enforcement of tumorigenesis
by deregulating superoxide dismutase (SOD), catalase and glutathione
peroxidase (GPx) in cells (adapted and modified with permission from
Elsevier B.V.©2011 [20]). b Role of antioxidant in genomic instability/
cancer, a proportional relation between antioxidant supplements and
cancer incidents or DNA damage is mostly observed in smokers [21]

while an inverse relation was observed in non or passive smokers [22,
23] so on the basis of endogenous ROS level [passive (low-level ROS) vs.
non-passive smokers (high-level ROS)] we are proposing that at low level
of ROS, antioxidant act as anti-cancer agents while after certain
thresholds it behaves as procancer agents, however role of antioxidants
at excessive level of ROS such as in radiotherapy is yet to clear
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enhancement by 1 year in 6 (14) patients in comparison to only 1
(14) in RT arm [36]. However, in a subsequent phase II clinical
trial involving brain metastases patients, melatonin (20 mg
day−1) failed to increase the patient survival [37]. Indeed, the
clinical trials are ongoing to test the efficacy of melatonin on
protection against RT-induced oral mucositis/xerostomia and fa-
tigue in cancer patients (NCT02332928, NCT02430298).

Genistein [38] and fullerenes (hydroxylated) [39] have
been shown to reduce the RI lethality in irradiated mice.
Pretreatment of mice with genistein (200 mg kg body weight)
has been shown to reduce the RI GI damage in mice along
with enhancing the radiosensitivity of implanted tumor [38].
Silibinin, a mixture of flavonolignans present in milk thistle
(Silybum marianum) seed is another promising candidate and
can be used as a co-therapy agent. Silibinin has mitigated the
RI lung injury and improved the survival of tumor-bearing
mice without interfering with tumor radiosensitivity [40].
However, despite enough preclinical evidence, using antioxi-
dants in RT always had a concern over the possibility of
protecting tumor from cytotoxic therapeutic-free radicals,
and further, may promote the mutagenesis by protecting the
extensively damaged cells from apoptosis directly or indirect-
ly by apoptosis inhibition since ROS also act as secondary
messengers in apoptosis signaling. The suspicion was not un-
founded as in a large (29133 subject) epidemiological study,
the incidence of lung cancer was reported to increase dramat-
ically in heavy smokers after vitamin E and β-carotene con-
sumption [21]. In two separate investigations using transgenic
mice prone to spontaneous brain cancer and mammary tumor,
the fast clearing of the tumor by apoptosis when kept under
antioxidant-free diets were shown [41, 42]. In another study
supplementing N-acetylcysteine and vitamin E was shown to
markedly increase tumor progression and consequently re-
duce survival in B-RAF and K-RAS-induced lung cancer
mouse model [43]. Therefore, it seems that antioxidants may
be useful in the reduction of cancer initiation at lower levels of
oxidative stress and once the threshold is crossed, they may
start behaving as procancer agents (Fig. 2b) [22]. The supple-
mentation of β-carotene was shown to increase DNA damage
in smokers while decreased in nonsmokers [23]; therefore,
patient lifestyle could be taken into consideration before
recommending any antioxidant supplementation, and it is also
true for the general public who are taking plenty of antioxi-
dants. In scrutiny of antioxidants one must differentiate be-
tween high and low dose of antioxidant supplementation (vital
for maintenance of basic function i.e., essential vitamins and
antioxidant present in food since numerous epidemiological
studies have demonstrated the anti-cancer effects of diet rich
in antioxidant substance). In preclinical studies, moderate/
intermediate dose of antioxidants were shown to reduce the
efficacy of radiation and induce the proliferation of cancer cell
[44, 45]. In a clinical trial combining high dose of nutrients
i.e., β-carotene, vitamin C, niacin, selenium, coenzyme Q10,

and/or zinc with standard therapies (e.g., surgery, chemother-
apy, radiation therapy, and hormonal therapy) in nonmetastatic
breast cancer patients had been shown to shorten disease-free
survival and breast cancer-specific survival in the nutrient-
supplemented group than non-supplemented group [46]. In con-
trast to that, investigation from two separate groups in random-
ized trial using pentoxifylline and α-tocopherol in patients with
NSCLC and melatonin in patients with brain glioblastomas has
shown an improvement in survival following RT [36, 46–48]. In
a subsequent study, the observed radiosensitization (brain metas-
tasis) or enhanced patient survival with melatonin was not ob-
served in a randomized phase II trial [37]. Moreover interpreta-
tion of the clinical results is also quite difficult since doses which
limit or induce the cancer growth vary among species and tumor
type [44]. Hence, clinical trials are still ongoing to evaluate the
efficacy of low and high antioxidant diets in the prevention of RI
toxicity (NCT02195960 and NCT00486304). Importantly, β-
carotene and α-tocopherol may be given a special consideration
in RT with modulating the partial pressures of oxygen (pO2)
sinceβ-carotene changes its behavior from antioxidant to proox-
idant with increasing pO2 while α-tocopherol works as a strong
antioxidant at higher pO2; hence, oxygen pressure-dependent
behavior may be exploited in enhancing the radiotherapeutic
index [49]. Nevertheless, the post-RT administration of antioxi-
dant such as EGCG, vitamins E and C, β-carotene, etc. has been
shown to help in the reduction of RI toxicity in multiple normal
organs in different clinical trials [50–52].

Administration of amifostine before RTwas shown to pro-
tect against the RI mucositis, acute/late xerostomia and dys-
phagia, and other RI symptoms in normal tissues in NSCLC,
diffuse intrahepatic tumor, and bladder cancer patients without
compromising the patient’s survival [53–56]. Indeed, despite
the considerable body of evidence; it disappointed in a few
other clinical trials [57, 58]. In fact some serious adverse ef-
fects was also noted in some preclinical and clinical studies
involving RT [59, 60]. In fact, Amifostine treatment to tumor-
bearing mice had shown to reduce the tumor radiosensitivity
by inducing the antioxidant enzymes both in normal and tu-
mor tissues [61]. However, it constitutively induces the anti-
oxidant enzymes; therefore, it could be useful in minimizing
the effect of occupational and high background radiation ex-
posure [61]. The differential effects of amifostine stem from
its metabolism, which allow it to concentrate rapidly in normal
tissues instead in tumor, due to the requirement of being de-
phosphorylation (WR-1065) by alkaline phosphatase, an en-
zyme highly expressed in the normal cell before being incor-
porated. Despite being selective, it is not widely used in clin-
ical practice due to the report of adverse side effects such as
hypotension, fatigue, etc. [59, 60]; hence, investigations are
still ongoing to evaluate its safety/efficacy. Thomas et al. de-
signed a novel glutathione-based pro-drug PB-42 which
works on similar mechanism as amifostine shown to increase
GSH pool selectively in normal cells and abrogated cisplatin-
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induced nephrotoxicity, and the effect was remained unaffect-
ed by GSH synthesis inhibitor buthionine sulfoximine (BSO)
[62]. Data from previous studies demonstrated that GSH de-
pletion by BSO enhance the tumor radiosensitivity, but se-
verely affects the normal tissues [63]. Therefore, PB-42 may
have major clinical significance in RT.

One of the major challenges in RT is how to deplete gluta-
thione selectively from tumor to increase tumor vulnerability
without affecting the normal cell radiosensitivity. GSH is syn-
thesized from L-γ-glutamyl-L-cysteine and glycine by gluta-
thione synthetase [64]. L-γ-glutamyl-L-cysteine forms from
glutamine and cysteine by γ-glutamylcysteine synthetase (tar-
get of GSH synthesis inhibitor BSO), a rate-limiting enzyme
[64]. Cancer cells frequently overexpress the glycine decar-
boxylase (GLDC) as a mechanism to divert the glycine to-
wards DNA synthesis, while normal cells have plenty of gly-
cine [65–67]. Hence, we are hypothesizing that supplementing
L-γ-glutamyl-L-cysteine with BSO during RT could protect the
normal tissue by increasing GSH pool due to excess glycine
while at the same time BSO inhibits the endogenous GSH pro-
duction in both normal and cancer cells resulting in
radiosensitization of cancer.

Targeting hypoxic condition

Historically, hypoxia is the softest target recognized by clinicians
due to the physiological difference between hypoxic cancer and
normoxic normal cells. Systemic induction of hypoxia by cardio-
vascular alterations, hemoglobin function manipulating (RSR-
13), over-oxygen consumption, reducing the respiration rate or
by overexpression of the oxygen-labile subunit of hypoxia-
inducible factors (HIF) complex (HIF1/2/3α), result in the induc-
tion of pro-angiogenic cytokines, i.e., VEGF and bFGF, known
to help in radioprotection. HIF is known to promote neovascu-
larization regulated by prolyl hydroxylase domain (PHD), and it
has been observed that inhibition of PHD shown to help in re-
ducing the radiation-induced (RI) lethality by improving the ep-
ithelial integrity of the GI tract [68]. However, in RT, deoxygen-
ationmaywork only in exceptional circumstances where oxygen
does not modulate the radiosensitivity [69]. HIF modulation in
RT is zero sum game as HIF inhibition has shown to
radiosensitize the tumor [70, 71]; hence, the above-mentioned
approach is not feasible in RT.

Hypoxia-activated prodrugs (HAPs) are cyclic non-toxic
prodrugs which are converted into free radical species by ad-
dition of electron (one or two electrons) by reductive enzymes
under hypoxic condition causing DNA damage and DNA
adducts formation, while under aerobic condition, it again
oxidized or converted back to parent molecule after reacting
with oxygen or by SOD (an enzyme highly expressed in nor-
mal cells). Misonidazole was the first tested drug in RT despite
being known to cause neuropathy and used in successive large
randomized clinical trial [72]. As anticipated, these trials

failed to demonstrate any major clinical outcome in RT but
provided proof of principle [73]. Another breakthrough work
was done by Zeman et al., using tirapazamine (SR-4233),
originally screened as an herbicide in 1972, has shown to
induce the selective RI cytotoxicity to hypoxic cells (near
×200), and the rest was history [74]. Tirapazamine acted as a
backbone in the development of many improved HAP. Five
different chemical moiety, i.e., quinones, aromatic and aliphat-
ic N-oxides, transition metal, and nitro(hetero)cyclic group
has shown to change under anaerobic condition [75]. HAPs
are classified on the basis of oxygen threshold required for
their activation. Class I HAPs (SN-30000, SR-4233,
benzotriazine) require a higher threshold for action than class
II HAPs (PR-104A, TH-302). Tirapazamine (SR-4233) has
shown promising results in preclinical and early clinical stud-
ies; however, it was disappointed in phase III clinical trial in
combination with RT; hence, currently, it is not in use [76].
Then, focus was shifted towards nimorazole, a less toxic ver-
sion of misonidazole shown to reduce the locoregional reoc-
currence rate without any toxicity to normal tissues following
RT in randomized DAHANCA 5 phase III clinical trial; how-
ever, it failed to improve survival [73]. The low clinical utility
of nimorazole was due to the absence of suitable biomarkers
to access the tumor hypoxic condition for screening patients
required for trial. In a recent retrospective study classifying
patients on the basis of expression of 15 hypoxic signature
genes, a statistically better locoregional tumor control and
disease-specific survival in patients classified as more hypox-
ic, than less hypoxic patients was shown [77]. TH-302
(Threshold Pharma) is a novel prodrug of alkylating agent
Bbromo-isophosphoramide mustard^ that showed promising
results in preclinical and clinical studies. In two separate in-
vestigations, combining TH-302 and radiation with either
VEGF-A, or mTOR inhibitor (to inhabit the pro-tumor HIF-
mediated angiogenic response under hypoxic condition) has
shown to reduce the growth of implanted human sarcomas
[78] and renal cell carcinoma (RCC) [79], respectively, in
mice model. In fact TH-302, with VEGF-A and radiation
combination, the tumor remained dormant for 3 months after
cessation of therapy [78]. In another co-treatment study, using
TH-302 with radiation showed hypoxic tumor radiosensitization
without causing cytotoxicity to normal tissue in rhabdomyosar-
coma R1 and H460 NSCLC tumor-bearing animals [80]. In a
phase II clinical trial combining TH-302 with doxorubicin, a
promising result was shown [81]. Hence, in the future, combina-
tion of TH-302 with RT is promising; however, the study must
consider utilizing hypoxic cell markers for restricting therapy to
only those who have significant numbers of hypoxic cells either
it would get similar fate as nimorazole.

Furthermore, reducing pO2 via limiting the blood supply
using vasoconstrictor (i.e., norepinephrine, phenylephrine,
epinephrine, etc.) [82] under co-therapy (RT and HAP) regi-
men certainly reduced the RI toxicity in normal tissues; while
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tumor therapeutic response could be enhanced or remains af-
fected, depending on tumor vascularization. Tumors under
severe hypoxia have very poor vascularization; hence, further
reducing oxygen in the body may not significantly alter the
tumor local hypoxic environment hence oxygen enhancement
ratio (OER) would remain unaffected while even if its re-
duced, the reduced OER in tumor further compensated by
enhanced HAPs cytotoxicity. However, use of vasoconstrictor
must be taken with care since association between tumor
blood supply and hypoxia is yet to clear and currently guided
by two conflating hypothesis steal and anti-steal effects [83].
Steal effects assumed the fully dilated tumor vessel so vaso-
dilator caused relocating of blood from the tumor to the rest of
the body while anti-steal suspected the fully constricted tumor
vessel so vasodilator cause relaxation of tumor vessel and
reverse the blood flow; so, the vasoconstrictor is only useful
under the anti-steal mechanism. Furthermore, currently, no
study has been done showing the sensitivity of normal and
tumor tissues blood vessels towards vasoconstrictor or vaso-
dilator. Further, we hypothesized that tumor vessels may lose
the sensitivity towards vasoconstrictor as an evolutionary fea-
ture since they need to maximize the blood supply.

Tumor hypoxia can be considered as oxygen demand sur-
passing supply. Hence alternatively reducing the oxygen de-
mand as effective as increasing the oxygen to get the same end
point (hypoxia elimination) [84]. Metformin is the drug used
to treat type II diabetes shown as tumor radiosensitization in
multiple preclinical studies [85]. It had been shown to reduce
the risk of cancer occurrence when used as a monotherapy
agent [86]. However, action mechanism of metformin is not
clear and multiple possible explanations are under the current
discourse. One explanation is that the metformin reduces the
circulating insulin which has mitogenic and prosurvival ef-
fects on cells expressing insulin receptors [85]. Another ex-
planation is that the metformin activates the AMPK results in
the suppression of mTOR, the main regulator of AKT [86].
The last explanation is the metformin protects the CD8+
tumor-infiltrating lymphocytes from apoptosis [86].
Recently, one fascinating mechanism has been proposed that
metformin inhibits the complex-I activity of mitochondrial
electron transport chain, and inhibition was anticipated to re-
duce the oxygen consumption [85]. As expected, metformin
has shown to diminish the oxygen consumption in in vitro and
reduces the hypoxia in tumor results in tumor growth inhibi-
tion and improved survival [85]. Hence, combining metfor-
min with RTseems promising as many cancer patients already
received metformin treatment without report of any adverse
effects. Recently, few clinical trials have been started to study
the synergy of metformin with chemoradiotherapy in NSCLC
patients (NCT02186847, NCT02115464).

Nitric oxide (NO) is a widely studied molecule in inducing
radiosensitization by modulating the blood flow in poorly
vascularized tumor; however, only few reports are available

dealing with radioprotection. Increasing NO level by NO do-
nor DEA/NO or blocking the interaction between CD47 and
TSP-1, has been shown to reduce the RI mortality in mice
model [83, 87]. The role NO was anticipated in CD47, and
TSP-1 interaction as both inhibit the NO/cGMP signaling.
However, an enhancement in autophagy was found to be the
reason behind radioprotection; interestingly, blocking interac-
tion also radiosensitize the implanted melanoma or squamous
lung tumors in mice [88, 89]. RRx-001 is a multifaceted anti-
cancer agent, mediates biological action by epigenetic modi-
fication through ROS, RNS, etc. [83]. RRx-001 is a NO-
donating compounds release NO locally in a biphasic manner
due to different metabolism over classical NO agents/donors.
Evidence has demonstrated that RRx-001 binds selectively
with hemoglobin (at NO binding sites beta-cysteine 93) and
glutathione in a rapid and irreversible manner [83]. The
glutathione-RRx-001 adduct could increase the oxidative
stress, but it is rapidly excreted; while RRx-001-Hemoglobin
adduct remains in circulation till the destruction of RBCs. The
initial burst of NO following RRx-001 administration is due to
replacement of NO from hemoglobin resulting in rapid and
transient local vasodilatation [83]. The local vasodilatation
allows the flow of oxygenated blood resulting in enhancement
of tumor radiosensitivity. The deoxygenated hemoglobin fur-
ther enhances the NO content by converting the nitrite present
in serum at the local site due to its nitrite reductase activity of
hemoglobin under hypoxic condition; hence, compensating
the missing nitrite synthetase activity of tumor under hypoxic
condition [90]. Additionally, the RRx-001 binding with hemo-
globin further potentiates the nitrite reductase activity of later
enhancing the NO production resulting in better oxygenation
and radiotherapeutic efficacy [90]. In an in vitro study, RRx-
001 has been shown to augment the DMF by 1.9 times in
radio-resistant hypoxic cells [83]. In the extended in vivo
study, administration of 5 or 6 mg RRx-001 kg−1 body weight
shown to synergistically enhance the radiosensitivity of
SCCVII syngeneic tumor in mouse after local or whole body
irradiation (WBI). Amazingly, RRx-001 also protected the
intestinal stem cells or GI tract from lethal (10–15 Gy) WBI
[83]. Hence, in view of the promising result, RRx-001 war-
ranted further study in clinical model system.

Targeting DNA damage repair and cell cycle

Poly ADP ribose polymerase (PARP) is an attractive target
which can be exploited in RT. PARP inhibitors have shown
to radiosensitize the BRCA1 (breast cancer susceptibility 1)
and BRCA2 mutated breast and ovarian cancers [91]. BRCA
is known to play a crucial role in the repair of double-strand
DNA by homologous recombination (HR) while PARP in-
volves in the repair of single-strand DNA damage via base
excision repair [92]. Hence, blocking the base excision repair
pathway by PARP inhibitor results in synthetic lethality in
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BRCA-deficient or HR-defunct cells, due to accumulation of
damage DNA [91]. In normal cell, RI DNA damage could be
repaired by HR and non-homologous end joining after PARP
inhibition. Interestingly, PARP inhibitor 3-aminobenzamide
has also been shown to inhibit the RI irreversible loss of sal-
ivary gland fluid secretion by inhibiting the activation of the
transient potential melastatin-like 2 resulting in the reduction
of RI xerostomia in C57BL/6 mice [93]. Although BRCA1/2
mutation is only limited to breast and ovarian cancers but the
mutation in other component of HR pathway such as HR
RAD51B (in prostate cancer, acute myeloid leukemia, lipoma,
colorectal cancer, non-small-cell lung cancer, pancreatic, and
uterine leiomyoma [94, 95]); PTEN (in glioblastoma
multiforme, prostate and endometrioid endometrial cancer
[96]); RECQL4 (in osteosarcoma, prostate tumor, and basal/
squamous cell skin carcinomas [95, 97]); MRE11 (in endo-
metrial carcinomas [98]), EXO-1 (in HNPCC and prostate
cancer [99]) and RAD54 and CtIP (in non-Hodgkin’s lympho-
ma and colon cancer [100]); Nbs1 (in melanoma, neck and
head cancer, and colorectal cancer [99]); and FANCF (in leu-
kemia and cervical cancer [96]) also makes HR dysfunctional,
hence targeting PARP is a promising approach in anti-cancer
therapy. Although these mutations may be rare, but if consid-
ering >200 proteins critical for the onset and regulation of HR
[100] make it attractive to investigate the efficacy of PARP
inhibitors in RT. PARP inhibitor has shown to sensitize the
endometrial carcinomas expressing defunct MRE11 provided
a proof of principle concept [98]. Importantly, defect in HR
pathway can be easily detected by DNA methylation-specific
microarrays and homologous recombination deficiency test.
PARP is also known to act as cofactor for NF-kB; hence,
blocking off major survival pathway could further add some
therapeutic value [101].

Loss or perturbations of p53 function is the most common
feature of human cancers resulting in loss of G1 checkpoint
hence cells solely rely on G2 checkpoint regulated by Wee1
following DNA damage [102]. Evidence has shown that inhi-
bition of Wee1 in p53-deficient tumors causes tumor
radiosensitization [103]. Additionally, inhibition of Wee1
does not contribute the RI cytotoxicity into normal cells due
to the presence of intact G1 blockage [103, 104]. Under che-
motherapeutics regimen, Wee1 inhibitors such as PD-166285
andMK-1775 has demonstrated the potential usefulness with-
out causing toxicity to normal cells [104, 105]. Therefore,
inhibition of Wee1 is quite attractive in RT. Recently, few
clinical trials have been initiated to study the synergy of
MK-1775 or AZD1775 under chemoradiotherapy (RT and
temozolomide or cisplatin) in glioblastoma multiforme and
cervical cancer patients (NCT01849146, NCT01958658).

The key regulator of DDR is ataxia telangiectasia mutated
(ATM) and ataxia telangiectasia and Rad3-related (ATR) pro-
tein kinases, have overlapping properties [106]. The ATM
monitors all phases of cell cycle in response to double-strand

breaks (DSBs) while ATR is responsible for the S and G2
phases of the cell cycle [106, 107]. Normal cells have func-
tional G1 and G2 checkpoints while majority of the cancers
are deficient in p53/ATM resulting in loss of G1 checkpoint
and therefore slowly dependent on ATR/Chk1 led G2 check-
point. Hence, it has been hypothesized that inhibiting ATR
could result in accumulation of damaged DNA resulting in
mitotic catastrophe while normal cells remain protected due
to the functional G1 checkpoint; however, initial research
mired over the concern of ATR essentiality. ATR disruption
has shown to result in chromosomal fragmentation, tumor
genesis, and early embryonic lethality [108]. ATR code for
vital function; hence, patient with ATR mutation or in rarely
occurred Seckel syndrome are naturally hypomorphic (partial
loss of protein function). A recent study in ATR mouse model
of Seckel syndrome has shown loss of ATR can be reverted by
functional p53 [109]. The deletion of p53−/− in ATR-mosaic
knockout mice reported to exacerbated tissue degeneration
and induced synthetic lethality [110]. Subsequently, these
two breakthrough reports worked as guiding path in ATR
therapy. VE-821, a novel ATR inhibitor has shown to syner-
gistically enhance the effect of cisplatin in ATM or p53-
defective (H23) cell lines, while p53 wild-type normal fibro-
blast cell line (HFL1) remained unaffected [111]. HeLa cells
were radiosensitized by VE-821 having suppressed p53 while
normal cells expressing wild-type p53 was unaffected [112].
VE-822 (VX-970, Vertex), an analog of VE-821 having
strong ATR inhibition property demonstrated a strong
radiosensitizing and chemosensitizing effect in cancer cells
both in in vitro and in vivo studies by suppressing the HR
without affecting the normal cells [113]. Another ATR inhib-
itor AZ20 (AstraZeneca), under monotherapy regimen, has
shown to reduces the growth of LoVo tumor xenografts in
mice [114]. AZD6738 (AstraZeneca) is another improved ver-
sion of AZ20 induce synthetic lethality in p53 or ATM-
deficient cells or tumor in response to chemotherapy and
ibrutinib hence could be useful in RT [115]. Caffeine is anoth-
er ATR inhibitor radiosensitize the cells but it also blocks the
ATM; thus it may cause toxicity to normal cells [116].
Additionally, due to extreme replicative stress oncogenic cell
becomes more sensitive to ATR inhibition than normal cells,
therefore targeting ATR pathway is a promising strategy in
RT. Now, phase I clinical trial is underway, investigating the
side effects and best dose of VX-970 under RT in brain me-
tastases (NSCLC) and HPV-negative head and neck carcino-
ma patients (NCT02567422, NCT02589522). ATR inhibition
has also shown to induce the synthetic lethality in cell-
deficient XRCC1 a protein-involved repair of SSB [117].
Indeed, due to unavailability of the crystal structure of ATR,
pose a major challenge in developing selective ATR inhibitor.
Additionally, the large size (2644 amino acids, UniProt:
Q13535) of ATR makes it difficult to be cloned, expressed,
and isolate protein in purified form required for screening
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inhibitors in kinase-based assay. The long sequence of ATM
also poses a challenge in routine clinical diagnosis, which is
further aggravated by missense variants (mostly) spread
across the coding sequence as gene does not have any muta-
tional hotspot (NCBI Gene ID: 472). The frequent missense
mutation results in the loss or reduction of ATM expression;
hence, immunohistochemistry may be a viable tool to inspect
the ATM status in cancer patients [118].

ATM is another protein shown to cause synthetic lethality
with some specific mutations. ATM kinase inhibitors [119]
have shown to radiosensitize the cells carrying Fanconi ane-
mia gene mutations, a common mutated or lost gene in cancer
[120]. ATM inhibition resulted in the radiosensitization of
bladder cancer cells withDAB2IP gene defects [121], ovarian,
endometrial, cervical cancer [122], glioma [119], and glioblas-
toma stem-like cells [123]. However, despite the fact that cur-
rently, no ATM inhibitor is under clinical development over
the concern of normal tissue cytotoxicity. Inhibition of ATM
byKU-55933 or KU-60019 resulted in persistence DNA dam-
age following irradiation due to defective repair in normal
cells [124, 125]. Subsequent study has shown that cells
possessing kinase dead (kd) ATM protein is more harmful to
the cell than complete loss of ATM gene and, in fact, ATM
knockout mice were viable in comparison to embryonic le-
thality in kd ATM mice [119, 126]. It has been hypothesized
that binding of kd ATM to DNA DSBs site causing hindrance
in the binding of other protein destined to start alternative
repair makes little use of ATM inhibitors in clinical practice.
However, brief administration of ATM inhibitor KU59403
shown to chemo-sensitize the human colon cancer xenografts
(SW620 and HCT116) in mice without showing any cytotox-
icity to normal tissue, further raise the possibility of ATM
inhibitor development for RT [127]. The outcome of the study
was that ATM inhibitor must be administrated briefly and
only with the topoisomerase I (camptothecin) and II inhib-
itor (etoposide and doxorubicin). However, future investi-
gation must target the ATM either by inhibiting at transla-
tion level or by disrupting the interaction between HEAT
repeats of ATM and carboxy-terminal FXF/Y motif of
Nbs1 [128] with the novel drug instead of targeting kinase
activity of ATM.

Inhibitors of cyclin-dependent kinases (CDKs) are the emerg-
ing class of the radioprotective agents given the cells is least
radiosensitive at mitosis especially during late S (due to HR)
and quiescence (G0) phase [129]. Cell enters into cell cycle by
D-type/CDK4/6 complex mediated hyperphosphorylation of Rb
and subsequent release of E2F to start transcription of gene re-
quired for cell division. The entry in cell cycle is inhibited by
p16INK4A, an inhibitor of CDK4/6 [130]. Cancer cell often de-
regulates the cell cycle checkpoints as a mechanism to promote
the uninterrupted cellular proliferation even in presence of dam-
aged DNA by amplification of CDK4/6 and D-type cyclins, or
loss of p16 and correlated with resistance to therapies [130].

Administration of PD0332991 and 2BrIC, an inhibitor of
CDK4/6, 4 h prior or 20 h after the irradiation has shown to
induce the G1 arrest reversibly in Rb-positive cells resulted in
the protection of the bone marrow progenitors cells and all pe-
ripheral blood lineages: platelets, erythrocytes, myeloid cells, and
peripheral blood lymphocytes [131]. Further, PD0332991 does
not protect the Rb-deficient tumors as they develop independent-
ly to CDK4/6 [131]. However, it does not mean that it is only
effective in patients having Rb-deficient tumors, as CDK inhib-
itor induces the irreversible blockage causing induction of senes-
cence and apoptosis in cancer cells having functional p53 and
mTOR and former act an inhibitor of later, while in normal cells,
it induces reversible quiescence, a radioresistant state [14, 132].
Indeed, subsequent studies were not highly conclusive.
PD0332991 has shown to be protected against carboplatin-
induced hematopoietic injury in Rb-deficient breast cancer mice,
but failed to show similar effects in Rb-positive MMTV–HER2
mice [132]. While in another study, combined treatment of PD-
0332991 and RT have shown to increase the survival benefit
compared with either therapy alone in Rb1-positive glioblastoma
intracranial xenografts implanted mice [133]. Treatment with
PD-0332991 or 2BrIC have shown to increase the
radioresistance of Rb1-positive melanoma cells and immortal-
ized fibroblasts [133]. Hence, with cautions, a clinical trial has
been initiated to evaluate the G1T28 (CDK4/6 inhibitor) in re-
ducing the carboplatin-induced hematopoietic injury in SCLC (a
common Rb-negative tumor) (NCT02499770). Sorafenib or
Nexavar, an FDA-approved drug for liver and kidney cancer, is
also a promising candidate; it synergistically reduces the tumor
size with radiation without causing normal tissue injury in mice
model via acting on at G1-S cell cycle checkpoint and currently
under different phase I–II clinical trials involving RT [134].

Inhibiting cell death

The inhibition of RI cell death could be another strategy
in radioprotection as p53-deficient mice are shown to be
less sensitive to radiation compare to wild type [135].
In subsequent studies, inhibition of p53 by sodium
orthovanadate or AS2 had shown to enhance the surviv-
al of lethally irradiated mice [136]. Inhibition of the p53
by antisense was also found to be helpful in the radio-
protection of mice following TBI (15 Gy) [137].
Therefore, blocking off p53 by its inhibitors nutlin-3
sounds good in radioprotection but given its role in
tumor suppression may discourage its uses; however, it
has been observed that the temporary and reversible
suppression of p53 by genetically or pharmacologically
agents found to be helpful in rescuing the large num-
bers of cell from the clench of apoptosis without in-
creasing the chance of secondary cancer [14]. Many
tumors undergo RI apoptosis by the p53-independent
pathway, hence blocking p53 in that scenario does not

11596 Tumor Biol. (2016) 37:11589–11609



affect tumor radiosensitivity [138, 139]. Differential
phosphorylation of p53 also decides the action of p53
between rescuer (DNA repair) and destroyer (apoptosis)
[140]. So, selectively targeting the p53 sites, responsible
for apoptosis using novel drug could be another strategy
to reduce the RI damage. However, clinical utility of
p53 inhibitors are very limited due to p53-independent
apoptosis as seen in multiple organs including hemato-
poietic progenitor cells [138, 141], GI track [142], and
endothelial cells (follow ceramide-dependent apoptotic
pathway instead of p53-dependent). In fact, p53-
deficient mice are more prone to RI GI damage than
wild-type [142] and subsequently, targeting ceramide
by anti-ceramide antibody, showed to protect against
RI GI syndrome [143]. Therefore, it is needed to ex-
plore beyond p53.

Peroxisome proliferator-activated receptor (PPAR) is
another druggable target that could be exploited in RT.
Fenofibrate (Abbott), a PPAR agonist, has shown to
reduce RI damage in the peripheral cortex but failed
to restore hippocampal-dependent cognitive functions
[144], while in another study, it induced the hippocam-
pal neurogenesis by protecting the newborn cells and
inhibition of microglial activation following irradiation
(10 Gy) in mice [145]. The difference in result seems
to be due to species and exposure multiplicity. In the
other study, it has been shown to enhance the radiosen-
sitivity of human esophageal carcinoma cell lines (Eca-
109 and TE1) [100]. The differential effect of Fenofibrate
seems to mediate via halting the cell at G2/M transition fol-
lowing RI DNA damage resulting in mitotic catastrophe in
cancer cell due to defunct DNA repair machinery while nor-
mal cell successfully repairs the damaged DNA. Rosiglitazone,
another promising PPAR agonist, has shown to radiosensitize the
implanted A549 lung tumor in CD1 mice by decreasing the
expression of NF-kB and TGF-β, without affecting the normal
pulmonary tissue [146]. Catalase inhibition has shown to
radiosensitize the cancer and normal cells due to the accumula-
tion of cytotoxic H2O2 as a byproduct of RI ROS (Fig. 2a) [147,
148]. Exposing the rat primary astrocytes and their cancer coun-
terpart (C6 glioma cells) to different PPAR agonist, i.e., PPAR-α
(GW3276 andWY-14643) and PPAR-γ (CP086 or darglitazone,
troglitazone, rosiglitazone, CP096, 9cRA) have shown to selec-
tively enhance the catalase expression in normal cells [149]. The
maximum difference in expression was observed with CP096
where it was reduced by 38 % in cancer cell while 137 % en-
hancement in normal cells was observed after 48 h of treatment
[149]. Interestingly, the catalase expression was blocked by
PPARγ-dominant negative plasmid, indicated altered expression
is not due to enhancement of messenger RNA (mRNA) stability
instead due to de novo expression [149]. Hence, in view of
differential effects of PPAR agonist warranted further studies to
elucidate its full potential in RT.

Immunotherapy

Radiotherapy induces a tumor-specific response represented
by upregulation of MHCs, pro-inflammatory molecules and
their receptors, cell adhesion molecules, dendritic cell matu-
ration, and their cross-presentation ability; hence, radiation
can be considered as a perfect in situ vaccine. The role of
immune system in tumor response was first suggested in
1979, demonstrating the reduced radiotherapeutic efficacy in
mice lacking T cell repository [150]. Following irradiation the
upregulation of ligands such as CXCL9, CXCL10, CXCL16,
and retinoic acid early inducible (RAE-1) in the tumor takes
place [151]. The CXCL9, CXCL10, and CXCL16 enhanced
the recruitment of CXCR6+ effector CD8 T and CD4 TH1

cells in the tumor, while RAE-1 interacts with NKG2D pres-
ent in effector T cells resulting in the generation of effective T
cell response against tumor [152]. However, inhibitory check-
point receptor CTLA-4, PD-1, PD-L1, BTLA, TIM-3,
CD160, and LAG-3 cause obstruction in the response [153].
Inhibiting the CTLA-4 in RT has shown to induce the success-
ful T cell-mediated anti-tumor response, while only anti-
CTLA-4 treatment was failed to show any anti-tumorigenic
activity [152, 154]. Since effect was only seen in the single
exposure; it is further required to evaluate with fractionation
radiation for wider use. Some phase I clinical trial are ongoing
to check the efficacy of anti-CTLA-4 in RT. Blocking of PD1
with pembrolizumab in ipilimumab-refractory advanced mel-
anoma patient shown exceptional efficacy under monotherapy
resulted in FDA approval in 2014 [84, 155, 156].
Furthermore, targeting CTLA-4 and PD1 has shown a signif-
icantly longer progression-free survival in comparison to in-
dividual modality in metastatic melanoma patients [157]. In
glioblastoma multiforme tumors mice model, combining PD-
1 blockade with localized radiation therapy has shown a syn-
ergistic effect in survival [158]. The identical therapy in B16-
OVA melanoma or 4T1-HA breast carcinoma tumor model
has shown a batter tumor control [159]. Combining anti-PD-
1 antibody with single (10 Gy) or fractionated (2 Gyx5) RT
has shown to promote the anti-tumor Tcell response, reducing
the local accumulation of myeloid-derived suppressor cells
and reduced the IFN-γ mediated induction of PD-1 [160,
161]. The underlying mechanism behind the effects of PD-1
is more or less similar to anti-CTLA-4 therapy and since anti-
PD-1 antibodies are milder toxic than anti-CTLA-4 antibodies
[84, 156, 162]; therefore, PD-1 seems promising in clinical
RT. Further understanding of PD-1 and CTLA-4 pathway is
also promising in autoimmunity treatment and tissue trans-
plantation including β cell for treating type 1 diabetes.
Moreover, BTLATIM-3, CD160, and LAG-3 are other prom-
ising inhibitory molecules that could be targeted for generat-
ing a successful anti-tumor response. Indeed, RT always does
not promote anti-tumor response. It also induces a protumor
response represented by enhanced immunosuppressive Treg-
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cell representation, influx of CD11b+ myeloid cells and M2
macrophage infiltration (Fig. 3) [163–165]. The enhancement
in Treg is probably mediated by hypoxia raised from RT-
induced disrupted vasculature. The RT-induced influx of my-
eloid cells into tumors can be inhibited by blocking of HIF1α/
CXCL12/CXCR4 [156, 161] or CSF1/CSF1R [156, 162] ax-
es for better radiosensitization of the tumor.

Radioprotection by growth factors inducers

Hematopoietic growth factors have been used from long
to rescue the hematopoietic and progenitor cells follow-
ing irradiation. Now, it is advanced towards non-
hematopoietic factors, i.e., keratinocyte growth factor
(KGF). Preclinical studies demonstrated the radioprotec-
tive effects of KGF against RI intestinal damage and
pneumonia [166, 167]. Interestingly, no tumor cell pro-
liferation was seen, indicates the functional difference in
signaling between normal and cancer cells. Palifermin
(rKGF-2) reduced the chemoradiation-induced oral mu-
cositis in randomize trial involving head and neck can-
cer patients and now recommended by FDA for reducing
severe mucositis in patient undergoing myeloablative hema-
topoietic stem cell transplants with TBI [168–170]. However,
it has disappointed in other clinical settings hence currently
not recommended for wider clinical uses [171, 172]. GM-CSF
administration in pre and post-RT has shown to reduce the RI

severe oral mucositis in multiple randomized, head and neck
cancer patients RTOG trial [173–175]. Interestingly, adminis-
tration of HSV GM-CSF in squamous cell cancer of the head
and neck (SCCHN) patients undergoing chemoradiation ther-
apy has shown to lessen the locoregional recurrence and en-
hances the survival of two thirds of patients in phase I/II clin-
ical trial [176]. The differential effect of GM-CSF was medi-
ated by tumor oncolysis and immunomodulation and hence
due to promising nature, further trial expected to start soon.
Erythropoietin has shown to reduce the radiation and tumor-
induced anemia without affecting the radiosensitivity of tumor
in preclinical studies; however, results from successive clini-
cal studies were not highly encouraging [177–179]. Failure of
erythropoietin seems due to inappropriate patients under suit-
able modality since erythropoietin causes loss of tumor
radioresistance due to neovascularization and moreover, the
later effect also increases the chemotherapeutic drug
diffusibility in tumor result in better tumor control in addition
to offering protection to normal tissues from chemoradiation-
induced toxicity. Therefore, to avoid failure in future trials,
hypoxia must be taken into consideration and only used under
chemoradiation settings. In a recent co-treatment study com-
bining erythropoietin with carboplatin has shown to limit the
growth of A549 and H838 NSCLC-xenografts in mice [180].
Thrombopoietin is another promising molecule in RT [181,
182]. Velafermin (rhFGF-20) was shown to protect against RI
cheek pouch mucositis induced by fractionated radiation [183].
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Fig. 3 Radiation and immune response. Radiation generates an
oxidative, apoptotic, and inflammatory response that promotes the
enhanced antigen presentation by antigen presenting cells (APCs)
including dendritic cells (DC) results in cytotoxic T cells (CTL)
activation and tumor destruction (left side). However, to resist oxidative

response, tumor tissues generates a proangiogenic, anti-inflammatory and
antioxidative response represented by increase in number of T regulatory
(Treg), myeloid-derived suppressor cells (MDSC), Nrf2, M2
macrophages, TH1 cells, and its cytokines, i.e., TGF-β, IL-10, IL-4
(right side)
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Role of inflammation

Radiation has shown to polarize the monocytes and res-
idential macrophages into M1 and M2 macrophages by
classical (TH1-based programs) and alternative (TH2-
based programs) pathway, respectively, which subse-
quently participate in inflammation (M1) and tissue re-
construction (M2). Radiation polarizes the macrophages
into M1 which subsequently play an important role in
generation of anti-tumor immunity operated from NF-
kB/TH1 cytokines axis (Fig. 3). Macrophages (M2) po-
larize in response to RI M1 response or to counteract RI
oxidative response (ROS, NF-kB) for homeostasis by
upregulating antioxidative (Nrf-2) and anti-inflammatory
pathway. M2 macrophage has shown to suppress the DC
function and Th1 type adaptive immunity resulting in
tumor growth promotion by Nrf-2/TH2 cytokines axis.
Furthermore, Nrf-2 induction has demonstrated to shift
the metabolic flux towards NADPH regeneration and pu-
rine biosynthesis by pentose phosphate pathway for tu-
mor growth [156, 184]. Irradiation potentiates the mac-
rophage to upregulate the IL-1, TNF-α, NO, and a vari-
ety of growth factors (PDGF, IGF-1) [185]. Following
irradiation tumor becomes hypoxic due to the destruction
of the vasculature, result in HIF-1 and HIF-2 mediated
infiltration of macrophages [186]. Irradiation to MT1A2
tumor-bearing mice, results in accumulation of MMP9
expressing CD11b+ myelomonocytes at tumor site essen-
tial for vascular restoration and tumor growth and selec-
tive depletion of them has shown to cause tumor growth
inhibitions in pre-irradiated tissue [187, 188]. Other stud-
ies also demonstrated a better tumor control following
depletion of macrophages (M2) from irradiated tumor-
bearing animal [189]. Hence targeting macrophage is
promising in RT.

TGF-β is a cytokine strongly induced following irradiation
and play a role in tumor survival. Knocking out the Smad3
(S3KO), a downstream signaling intermediate in the TGF- β
pathway, in mice has been shown to protect the skin from RI
damage as demonstrated by decreased epithelial acanthosis
and dermal fibrosis [190]. Inhibition of TGF-β following ra-
diation exposure has shown to help in priming tumor antigens
specific T cells, results in better tumor control [191] in addi-
tion to radioprotection [192]. TGF-β has also shown to inhibit
collagen production in fibroblasts, resulting in fibrosis reduc-
tion following RT [193]. However, in the clinical setting, care
must be taken since TGF-β also was shown to help in the
maintenance of genomic integrity [156, 184, 194].

Protecting the genomic integrity of cells against radiation

The role of radiotherapeutic radiation in the occurrence of
secondary cancer (SC) remains controversial and untenable

as most of the arguments rely on data extrapolated from
World War II atomic bombings life span survivor, where a
proportional relation was observed between cancer onset and
radiation dose (0.1–2.5 Gy). However, if the frequency of SC
calculated using the theoretical model developed from the
above-mentioned studies, the chance of SC would be much
higher than reported in clinical settings, it means that the risk
of cancer caused by radiation is highly extravagated [16].
Interestingly, this linear nonthreshold (LNT) model still wide-
ly used by different regulatory agencies [195]. Even the rela-
tive risk of SC declined after a certain dose as with increasing
dose probability of cell killing is increased or the risk of SC
decreased since once cell died it cannot undergo transforma-
tion. Therefore, due to uncertainty, radiation is categorized as
a weak carcinogen [16]. Although many papers are claiming a
relation between RT and SC but in a recent long-term follow-
up study involving 12,247 Hodgkin patients does not show
any increase in secondary malignancy in comparison to
chemotherapy-treated patients [194]. A meta-analysis com-
prising 762,468 breast cancer patients do not show any link
between radiotherapy and second thyroid cancer [196].
Furthermore, in two large cohort studies, no link between
RT dose and SC was observed in childhood cancer survivor
and atomic bomb survivor or prostate cancer patients and
sugary-treated patients [197, 198]. In a recent large pooled
cohort of pelvic cancers patients treated with surgery or radio-
therapy did not show any significant difference in developing
SC [199]. Moreover, even if any relation between both, the
variables like tumor microenvironment, genetic predisposi-
tion, altered nutrition, immunodeficiency, personal lifestyle,
age, and social condition, etc. pose a challenge to draw a
conclusive relationship. Furthermore, long-term exposure to
low-dose radiation induces cancer via carcinogenesis while
direct chromosomal damage and abrupt failure of signaling
events in addition to carcinogenesis is responsible for RT-
induced SC so both are incomparable. However, it is not a
denying fact on the involvement of RT radiation in SC devel-
opment, though it develops independently to RT dose. Hence,
to understand the possibility of developing SC in RT, focus is
needed at the individual level rather then on finding a relation
between SC and exposure dose as genetic polymorphism is
known to play a major role in radiation sensitivity. Recently,
Radiogenomics Consortium (supported by NCINIH, USA)
has established to work together, share data/samples, perform
meta-analyses, identify SNPs, and biomarkers responsible for
adverse effects including SC following RT. Response to
lymphocytes have shown to act as an interpreter of RI
toxicity in patients undergoing RT and could be used
for selecting patients for RT [200]. Telomere length is
another reliable marker that can be used to predict the
RT-induced acute toxicity and SC before RT [201]. This
observation has confirmed in a recent large sample clin-
ical study involving childhood cancer survivors where a

Tumor Biol. (2016) 37:11589–11609 11599



relation between less telomere content and treatment-
related thyroid cancer was observed [202]. In a large
cohort study of patients who has undergone RT, a sig-
nificant relation between telomere shortening and devel-
opment of cardiovascular disease [203] was shown. In
another cohort study, appearance of RT-induced SC in
patients was shown to have a cutoff value for telomere
at 6.6 kb in comparison to 9.7 kb where no complica-
tion was observed [204]. These studies could serve as a
tool for selecting treatment type for better prognosis in
cancer patients as prostatectomy could be a better op-
tion for those having shorter telomere while brachyther-
apy or RT for prostate patients having longer telomere
length.

Modulation of the cell signaling

Cancer cells require huge quantity of iron for survival, an-
giogenesis, and metastasis [205]. It is also required for main-
tenance of the ribonucleotide reductase (RR) activity in-
volved in the conversion of ribonucleotides to deoxyribonu-
cleotides (dNTPs) required for DNA synthesis [206]. Iron
chelation has shown to cause hypophosphorylation of the
retinoblastoma protein resulting in the reduction of cyclins
expression including A, B, and D. Iron chelation by Triapine
(3-aminopyridine-carboxaldehyde thiosemicarbazone) (Vion
Pharma Ltd.) have shown to radiosensitize the cancer cells
[207]. Studies performed over the years using normal cells
or animal have demonstrated the reduction in RI damages in
the presence of iron chelators since iron is known to partic-
ipate in hydroxyl radicals generation via Fenton reaction
following irradiation [208, 209]. Additionally, due to the
difference in iron requirement for normal metabolism, makes
cancer cells more sensitive towards iron deprivation than
normal cells. Therefore, iron chelating is a quite promising
strategy in RT and requires a robust investigation. Triapine is
one iron chelator which is undergoing phase I/II clinical trial
for evaluation of its synergy with RT and cisplatin combina-
tion in cervical or vulvar cancer patients (NCT02595879,
NCT02466971, NCT01835171).

Data from earlier studies has demonstrated that radiation
induces the expression of NF-kB as a mechanism to reduce
the RI lethality via activating prosurvival pathway [210]. LPS
has shown to improve the survival following WBI in mice
[211]. Flagellin, (an NF-kB inducer from bacterial origin act
via TLR-5) has shown to reduce the RI lethality in tumor-
bearing mice [212]. However, in contrast to that, subsequent
studies have demonstrated that inhibition of NF-kB results in
radioprotection. NF-kB inhibition by ethyl pyruvate (EP) or
CDDO-TFEA (RTA401) and RTA 408 (Reata Pharma. USA)
were found to reduce the RI lethality in zebrafish embryo
[213] and GI damage in mice [214], respectively. The EP or
CDDO-TFEA (RTA401) was abrogated by proteasomal

inhibitor PS-341 (Bortezomib/VELCADE) in zebrafish
[213]. The role of RI NF-kB currently guided by two alterna-
tive hypothesis revolving around inflammation. Data from
burn studies has demonstrated the pro-hematopoietic effects
of low to moderate level of inflammation while a high level of
inflammation has shown to cause oxidative stress and apopto-
sis. Therefore, it seems like suppression of RI NF-kB-led in-
flammation may be the reason behind the later effect while the
lower level of inflammation may act as hematopoietic simu-
lative in former studies. Elucidation of the role of RI NF-kB is
also quite difficult due to associated embryonic lethality [215].
NF-kB constitutively activated in many cancers as a mecha-
nism to help in the initiation, progression, and invasiveness
resulting in poor treatment outcome in preclinical and clinical
studies [216]. Inhibition of NF-kB via Icariin or DMAPT has
shown to radiosensitize the colorectal cancer and NSCLC,
respectively [217]. Furthermore, RTA-408 also showed to
radiosensitize the CWR22Rv1, LNCaP/C4-2B, PC3, and
DU145 xenografts in mice model in addition to protection of
GI tract from RI damage [214]. Therefore, targeting one of
major prosurvival pathway in cancer treatment may helpful
for better RT outcome.

EGFR is the growth factor responsible for radioresistance
in many cancers. Targeting EGFR in tumor with cetuximab,
gefitinib, and erlotinib in monotherapy had shown promising
results. Indeed, in some studies, it has failed due to heteroge-
neity in EGCR expression in tumor. In phase III clinical trial
administering cetuximab in head and neck cancer patients
undergoing RT has shown to increase the post-therapy surviv-
al to 49 months in comparison to 29 months in RT arm [218,
219]. Despite showing synergy with cisplatin and radiation in
sensitization of tumor cells in preclinical studies [220],
cetuximab highly disappointed in subsequent clinical trials
[221]. Administrating cetuximab in locally advanced rec-
tal cancer patients under chemoradiation regimen does
not show any benefits [222]. The failure of study seems
to be due to blocking of tumor cell proliferation by
cetuximab since proliferating cells are more sensitive
to chemoradiotherapy so blocking the target of chemo-
radiotherapy could be reason behind poor prognosis.
Concurrent administration of cetuximab, and cisplatin
in stage III/IV head and neck cancer patients undergo-
ing RT in a large (N = 891) randomized RTOG trial,
failed to demonstrate any disease-free or overall survival
[223]. The complete failure of therapy in the above-mentioned
case yet to clear, previous studies have suggested the oropharyn-
geal tumors that are mostly HPV positive likely to benefit from
the combination and hence, the study (RTOG 10-16) was carried
out. In fact, patients reported acute toxicity, notably mucositis in
cetuximab arms. However, despite the outcome and waste of
resources, many prospective clinical trials of cetuximab in RT
are still undergoing in different treatment settings
(NCT02123381, NCT00956007, NCT01614938).
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Exploiting the cellular autofluorescence property

Schaue et al. had noticed an increase in cellular autofluores-
cence at 450 nm following irradiation in different human and
murine cell lines and concluded as general phenomena [224].
The conclusions were drawn from the study that autofluores-
cence is radiation dose-dependent phenomena, and propor-
tional to the level of cell radiosensitivity, i.e., hematopoietic
cells have a high level of autofluorescence. The autofluores-
cence is high in normal cells in comparison to cancer cells.
Today, photodynamic therapy is emerging as promising treat-
ment agents in various diseases including cancer [225].
Therefore, we are hypothesizing that using photo-reactivated
drug or photodynamic therapy could immensely help in
protecting normal tissue by exploiting cellular autofluores-
cence following irradiation. Today, many photosensitizer
drugs such Temoporfin, Porfimer sodium, Methyl
aminolevulinate, Hexvix, Talaporfin, or aspartyl chlorine have
been used in the treatment of different form of cancer; in fact, a
few of them have been shown to improve the RT efficacy
[226]. The currently used photosensitizer actively untaken
by cancer cells require much longer wavelength (700–
850 nm) for excitation then emitted by cell autofluorescence
(450 nm). Hence, due to multiple advantages, it is quite prom-
ising to develop photo protectors that exclusively reactivated
at lower wavelength once the cells are irradiated.

ACE inhibitors

Renin-angiotensin system was discovered in the maintenance
of fluid balance and blood pressure. However, subsequent
studies have shown that targeting it could be helpful in radio-
protection, especially against renal toxicity. Several protease
inhibitors such as captopril, enalapril, penicillamine,
pentoxifylline, L-158, 809, etc. acting via rennin-angiotensin
system has shown to be helpful in the reduction of RI prophy-
laxis in renal and lung tissues. The use of ACE inhibitors and
angiotensin-II receptor blockers have demonstrated a new av-
enue in the radioprotection especially where the high dose of
exposure is imminent; however, in one study, it does not con-
fer protection to the intestinal injury; therefore, it seems that it
is offering tissue-specific protection [227]. Inhibition of angio-
tensin system shown to help in improving the outcome of RT in
clinical trials by reducing the radiation pneumonitis [228].

Early growth response 1 (Egr1), known to induce apoptosis
by activating the apoptotic genes is another promising tran-
scription factor in radioprotection. Inhibiting EGR 1 with
MMA (mithramycin A) in in vivo or knocking out Egr1 in
mice (Egr1−/−) have shown to protect the RI GI damage by
decreasing the ratio of Bax/Bcl-2 [229]. Egr1 is also known to
require for the survival of various cancer including prostate,
gastric, and kidney cancers. Earlier studies have shown that
targeting Egr1 is helpful in radiosensitization of different

cancer cells. Currently, MMA is being investigated for its
clinical efficacy (phase II) in the lung, esophageal, neoplasms,
and breast cancer patients (NCT01624090).

Radiation mitigation

Radiation mitigators are the agents used in radiation counter-
measure following exposure from different sources, i.e., nu-
clear detonation, terrorist events or accidental exposure that
sometimes even happens in clinics during RT or due to
mishandling of isotopes [230]. FDA recommended the potas-
sium iodide in 1982 as an emergency radiation countermea-
sure to protect thyroid gland against radioiodine. However,
after 9/11, three more drugs radiogardase (against Cesium-
137 and thallium-201), calcium and zinc salt of DTPA (against
several transuranic ions, i.e., plutonium, americium, curium,
etc.) were added to the list (2003–2004).

Bone marrow is the most radiosensitive and important or-
gan required for survival. In radio-mitigation, the best option
is the transplantation or inducing the proliferation of surviving
stem and progenitor cells. The 9/11 terrorist attacks dramati-
cally change the trajectory of security initiatives in the USA.
Strategic National Stockpile Radiation Working Group in a
consensus document and Center for Disease Control and
Prevention (CDC) has recommended the bone marrow trans-
plantation [231]. However, salivary gland is the only organ so
far which functionality restoration has been demonstrated fol-
lowing irradiation. In an earlier study, many cytokines and
hormones had shown to help in radio-mitigation; however,
most of them work if they administrated before 24-h post-
exposure since most of the cell lost in first 24 h after irradia-
tion from the peak at 4 h [232]. Nevertheless, the US govern-
ment is keen on mitigator for national stockpiles which can
even effectively work after 24 h after exposure. Therefore,
mechanism for radioprotection must not lie in apoptosis inhi-
bition. Instead, it must revolve around the hematopoietic cells
such as mesenchymal stem cells (MSCs) and bone marrow.
Targeting of thrombomodulin-protein C pathway or mobiliz-
ing the progenitor’s cells after 24 h of irradiation has shown to
mitigate the RI lethality in mice [233, 234]. MSCs are other
cells that can be used in radio-mitigation. In fact, due to
radioresistance over bone marrow and other radioresistant cell
lines; currently, MSCs are under intense investigation. Indeed,
in few studies, it was also shown to act as a potential source of
tumorigenesis in the long term due to the acquisition of some
genetic modification like telomerase shortening [235, 236].

Statins are HMG-CoA reductase inhibitors originally de-
veloped as lipid control agent has shown to mitigates the RI
damages. Simvastatin has been shown to protect the cardiac
system from infections in the rat when administered 9 days
after irradiation. Therefore, statins could be exploited in both
RT and radio-mitigation for RI cardiac problems [237].
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Anticoagulants activated protein C is another promising can-
didate in radioprotection shown to induce the hematopoiesis,
resulting in improved survival after administrating as late as
24 h after lethal exposure [233].

Future perspective

Today, RT represents the major anti-cancer modality.
However, it failed to demonstrate a significant outcome de-
spite carrying out multiple targeted clinical trials. These stud-
ies failed due to various reasons such as drug toxicity, wrong
patient selection, lack of information about suitable cancer
biomarkers, and heterogeneous disease process. With emer-
gence of molecular biology, cancer biology has made tremen-
dous progress in sorting out the physiological differences be-
tween cancer and normal cells. This provides a bedrock for
designing novel drugs to selectively enhance the radiosensi-
tivity of tumor in addition to protecting normal tissues.
However, every new drug must go through rigorous preclini-
cal studies to understand the basic mechanism and avoid fail-
ure in subsequent clinical trial as iniparib, shown to be a PARP
inhibitor failed to demonstrate any clinical benefits in phase
III trial [238] and further study showed that it is not only a
poor inhibitor of PARP but also quite structurally distinct from
other PARP inhibitors [239]. Hence, rigorous preclinical stud-
ies can avoid resources wastage [223] and discarding of po-
tentially useful targets [73, 77]. The other challenge lies in
mice model system as the majority of study for human tumor
xenotransplantation is conducted in immunosuppressed mice,
and we know that immune system proactively interacts with
tumor; therefore, to impart the role of human immune system,
humanized mice could serve as a better alternative.

Targeting tumor with monotherapy may give a selective
advantage to clones harboring resistant mutant, resulting in
the tumor reemergence/relapse [240]. Hence, targeting local
environment may be advantageous as it equally affects all
cells irrespective of clonal variation. As targeting hypoxia
automatically reflected in all cells and make them radiosensi-
tive irrespective of oxygen consumption by individual cells.
The tumor is heterogeneous, evolutionary, and plastic in na-
ture which consistently evolves and adopts new conditions
until colonized in distant location hence in successful cancer
elimination multitargeted therapies acting in synergy are quite
promising. In last reduction of tobacco/alcohol/drug con-
sumption, better hygienic-/pollution-free environment, obesi-
ty control, immunization, and healthy lifestyle certainly help
in winning the war against cancer and may reduce 30–40 %
death by cancer. In conclusion, future outcome of RT is en-
tirely dependent on information about continued cancer bio-
marker identification, cancer type categorization and sorting
out the fundamental difference between cancer and normal
cells.
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