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Abstract In the last several decades, the number of people
dying from cancer-related deaths has not reduced significantly
despite phenomenal advances in the technologies related to
diagnosis and therapeutic modalities. The principal cause be-
hind limitations in the curability of this disease is the reducing
sensitivity of the cancer cells towards conventional anticancer
therapeutic modalities, particularly in advance stages of the
disease. Amongst several reasons, certain secretory factors
released by the tumour cells into the microenvironment have
been found to confer resistance towards chemo- and radiother-
apy, besides promoting growth. Interleukin-6 (IL-6), one of
the major cytokines in the tumour microenvironment, is an
important factor which is found at high concentrations and
known to be deregulated in cancer. Its overexpression has
been reported in almost all types of tumours. The strong asso-
ciation between inflammation and cancer is reflected by the
high IL-6 levels in the tumour microenvironment, where it
promotes tumorigenesis by regulating all hallmarks of cancer
and multiple signalling pathways, including apoptosis, surviv-
al, proliferation, angiogenesis, invasiveness and metastasis,
and, most importantly, the metabolism. Moreover, IL-6 pro-
tects the cancer cells from therapy-induced DNA damage,
oxidative stress and apoptosis by facilitating the repair and
induction of countersignalling (antioxidant and anti-

apoptotic/pro-survival) pathways. Therefore, blocking IL-6
or inhibiting its associated signalling independently or in com-
bination with conventional anticancer therapies could be a
potential therapeutic strategy for the treatment of cancers with
IL-6-dominated signalling.
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Introduction

Inflammation has a very strong link with various types of
cancer. Malignant cells are highly proliferative in nature,
which is facilitated by the inflammatory molecules that are
continuously being secreted by other cells and/or tumour cells
themselves in a microenvironment [1, 2]. Interleukin-6 (IL-6)
is one such inflammatory molecule, which is produced and
secreted by various types of cells including the tumour cells. It
is involved in the proliferation and differentiation ofmalignant
cells and found to be high in serum and tumour tissues of a
majority of cancers, viz. colorectal cancer [3], breast cancer
[4], prostate cancer [5], ovarian carcinoma [6], pancreatic can-
cer [7], lung cancer [8], renal cell carcinoma [9], cervical
cancer [10] and multiple myeloma [11]. Elevated levels of
IL-6 are associated with aggressive tumour growth and re-
sponse to therapies in many types of cancer [12, 13].
Patients with high levels of circulating IL-6 are generally as-
sociated with poor prognosis and shorter survival, whilst a
lower level of IL-6 is associated with better response to ther-
apy [14, 15].

Anticancer drugs and ionizing radiation used during cancer
therapy induce inflammatory signalling, mainly in the form of
the nuclear factor-kappa B (NF-kB) pathway [16, 17]. NF-kB
regulates the expression of different pro-inflammatory
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cytokines, chemokines and anti-apoptotic genes and acts as a
key molecular link between inflammation and initiation as
well as progression of oncogenesis [18]. Chemotherapeutic
drugs and radiation also induce IL-6 expression in tumour
and stromal cells [12, 13] through the activation of NF-kB
signalling, leading to therapeutic resistance [19, 20]. These
evidences suggest that blocking IL-6 or inhibiting the IL-6
downstream signalling pathways may provide therapeutic
gain in those cancers which are associated with a higher level
of IL-6. This review provides an insight into the current un-
derstanding of the role of IL-6 in the regulation of various
hallmarks and associated signalling in cancer as well as its
contribution to therapeutic resistance. It also provides an in-
sight into how the anti-IL-6 antibody or the inhibitors of path-
ways downstream to IL-6 signalling can improve the effec-
tiveness of cancer radio- and/or chemotherapy.

Interleukin-6

IL-6 is a glycosylated polypeptide chain having a molecular
weight of nearly 25 kDa, depending on the glycosylation and
the species. It has a characteristic structure made up of four
long α-helices arranged in an up–up–down–down topology
[21]. It was first discovered as a B cell differentiation factor
(BSF-2) which induces the maturation of B cells into
antibody-producing cells [22]. Besides its role in immune reg-
ulation, it plays an important role in the maintenance of hepa-
tocytes, haematopoietic progenitor cells, the skeleton, the pla-
centa, the cardiovascular system and the endocrine as well as
nervous systems. In the murine haematopoietic system, IL-6
induces the expansion of progenitor cells by stimulating cells
from the resting stage to enter the G1 phase [23]. IL-6 also
supports various physiological functions by acting as a hepa-
tocyte stimulatory factor and by inducing the acute-phase pro-
tein synthesis. It is also known to stimulate osteoclast forma-
tion, induce bone resorption and is responsible for neural dif-
ferentiation [24]. IL-6 supports the survival of cholinergic
neurons, induces adrenocorticotropic hormone synthesis,
and, in placenta, causes the secretion of chorionic gonadotro-
pin from trophoblasts [23]. IL-6 also plays a very important
role in metabolism. For example, in the absence of IL-6, mice
develop glucose intolerance and insulin resistance, whilst IL-
6−/− mice exhibit signs of liver inflammation [25]. The secre-
tion and availability of IL-6 is ubiquitous, and it can bind to
various types of cells in different tissues. However, its binding
on different cell types may differ, resulting in two different
types of IL-6-dependent cell signalling (Fig. 1).

IL-6 binds to the IL-6 receptor (IL-6R) on the plasmamem-
brane, and the resultant IL-6/IL-6R complex associates with
gp130 and causes gp130 homodimerization to form an acti-
vated IL-6 receptor complex, which is a hexameric structure
consisting of two molecules each of IL-6, IL-6R and gp130

[26, 27]. The binding of IL-6 to IL-6R occurs at three distinct
receptor-binding sites of IL-6R and gp130. However, the Ig-
like domain of the human IL-6R is not involved in the direct
binding of IL-6 [28]. Upon binding to the receptor and gp130,
IL-6 induces various functions by activating cell signalling
events [24]. IL-6 triggers signal transduction via two forms
of IL-6R: one a transmembrane 80-kDa receptor with a short
cytoplasmic domain (mbIL-6R, also known as IL-6Rα, gp80
or CD126) and the other a small, extracellular, secretory sol-
uble receptor (sIL-6R) [29]. Classical IL-6 signalling, which is
the predominant form of IL-6 signalling, requires membrane-
bound IL-6R (mbIL-6R) and is restricted to hepatocytes, some
epithelial cells and certain leukocytes (Fig. 1) [26]. IL-6R
contains a very short cytosolic domain that lacks the major
potential motifs for transduction of intracellular cell signal-
ling. However, gp130 (also known as IL-6Rβ or CD130) in
the same hexameric complex is rich in all these potential mo-
tifs required for intracellular signalling, such as SHP-2 domain
and YXXQ motif for JAK/STAT signalling. Upon binding
with IL-6/IL-6R, the dimerization of gp130 leads to the acti-
vation of associated cytoplasmic tyrosine kinases, resulting in
the phosphorylation of various transcription factors [24].
gp130 is expressed in almost all organs, including the brain,
heart, lung, liver, kidney, spleen and placenta, where it plays
an indispensable role in their development, cell survival,
growth and tissue homeostasis [30]. gp130 is a common sig-
nal transducing receptor and is also used by other members of
the IL-6 family cytokines, such as IL-11, IL-12, IL-27, leu-
kaemia inhibitory factor, oncostatinM, etc. [31]. Although the
expression of transmembrane IL-6R is limited to the hepato-
cytes and subsets of leukocytes, gp130 is expressed ubiqui-
tously. Therefore, the IL-6/sIL-6R complex can transduce the
IL-6 signal in various cells, which do not express transmem-
brane IL-6R but express gp130, through a trans-signalling
mechanism. sIL-6R is generated by alternative splicing of
IL-6R mRNA or by limited proteolysis of mbIL-6R by Zn-
dependent metalloproteinase (ADAM10 and ADAM17, a
disintegrin and metalloproteinases 10 and 17; Fig. 1)
[29–32]. sIL-6R is devoid of the cytoplasmic and transmem-
brane domains and binds to IL-6 with comparable affinity as
the membrane-bound form, thereby mediating gp130 activa-
tion in an autocrine or paracrine manner [21]. Consequently,
by binding to sIL-6R, IL-6 increases its reach to a wide variety
of cells. There is enough evidence to suggest that neural cell,
neural stem cells, haematopoietic stem cells, liver progenitor
cells and embryonic stem cells depend on sIL-6R in their
response to IL-6 [33–36]. The level of sIL-6R present in the
human sera increases during inflammation [32, 37].
Knockdown of the IL-6R gene in hepatocytes reduces the
levels of sIL-6R by 32 % in the serum, whilst ablation of the
IL-6R gene in haematopoietic cells reduces the sIL-6R serum
levels by 60 % [38]. These observations suggest that hepato-
cytes and haematopoietic cells are the main sources of sIL-6R
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found in the circulation [38]. Like sIL-6R, a soluble form of
the signal transducer protein gp130 (sgp130) is also present in
the circulation at relatively high concentrations during inflam-
mation and cancer [37, 39]. sgp130 is mainly produced by
alternative splicing rather than limited proteolysis, as in the
case of sIL-6R generation. Since sgp130 binds to the IL-6/sIL-
6R complex in the circulation, it acts as a specific inhibitor of
IL-6-mediated trans-signalling [40]. Classic signalling via the
mbIL-6R is not affected by sgp130. Its inhibitory action de-
pends on the IL-6/sIL-6R ratio, with trans-signalling inhibi-
tion at low concentrations [37].

IL6 expression and secretion

The common characteristic of many of the stimuli that activate
IL-6 is that they are associated with tissue damage or stress
(e.g. ionizing radiation, UV, reactive oxygen species, viruses,
microbial products and other pro-inflammatory cytokines)
[12, 41, 42]. IL-6 production is predominantly regulated by
changes in the gene expression of various transcription factors
such as NF-kB, CCAAT/enhancer-binding protein a and acti-
vator protein 1, the major transcriptional regulator, although
posttranscriptional modifications have also been identified
[41, 43]. Though the activation of these transcription factors
leads to the overexpression of this cytokine during inflamma-
tion, its expression is also known to be regulated epigenetical-
ly in breast cancer, hepatocellular carcinoma, colon cancer,

prostate cancer and lung cancer through miRNAs (Lin28
and Let-7) [44].

The normal blood circulating level of IL-6 is nearly 1 pg/ml
[45, 46], but an increase in its level is found under several
conditions such as acute hyperglycemia [47], high-fat meal
[48], normal menstrual cycle [49], physical activity [50] and
during/after surgery [51]. Inconsistent levels of IL-6 have also
been observed during pregnancy, with median values around
128 pg/ml registered at delivery, which drop bymore than two
fold (∼58 pg/ml) immediately afterward [52]. Furthermore,
serum IL-6 levels have been found to increase drastically dur-
ing sepsis [53].

Many physiological factors such as diet, exercise and stress
are known to regulate the secretion of IL-6 [47–53]. Exercise
is an important stimulus for increased gene expression and
production of IL-6 in skeletal muscle, and the majority of
circulating IL-6 during exercise originates from contracting
muscle, resulting in a 100-fold increase over the normal phys-
iological level [50, 54]. IL-6 produced in the working muscle
during physical activity acts as an energy sensor that activates
AMP-activated kinase and enhances glucose uptake, metabo-
lism, lipolysis and fat oxidation [50]. IL-6 is also known to
sensitize myotubes to insulin and enhances glucose uptake in
muscles for high glycogen synthesis. Moreover, the reduced
level of muscle glycogen also augments IL-6 production and
secretion from muscle cells [55]. In addition to exercise, the
expression of IL-6 increases in skeletal muscles under other
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Fig. 1 Classical and trans-signalling of IL-6: In classical signalling,
which occurs mainly in leukocytes and liver cells, IL-6 binds to the
membrane-bound receptor mbIL-6Rα, which then forms a complex
with the ubiquitously present cell receptor gp130 (IL-6Rβ). Trans-
signalling can occur in any cell expressing gp130. In trans-signalling,
IL-6 forms a complex with sIL-6R, which is a small part of mbIL-6Rα
produced by either metalloproteinase or by alternative splicing.
Furthermore, the IL-6–sIL-6R complex binds with gp130 on cells

which do not express mbIL-6R. The inflammatory reactions induce the
production of sIL-6R, which elicits response to IL-6 in cells that do not
express IL-6 receptor (mbIL-6Rα) and/or remain inert to IL-6 signalling
in normal physiological conditions. Classical signalling activates the anti-
inflammatory pathways and promotes the regeneration of tissues,
whereas trans-signalling activates pro-inflammatory pathways and is
known to play a significant role in many diseases such as sepsis and
cancer
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conditions as well, such as denervation of muscles and mus-
cular dystrophy, also resulting in the upregulated expression
of muscle IL-6 [54]. The adipose tissue produces nearly 30 %
of circulating systemic IL-6, where it is closely associated
with obesity, impaired glucose tolerance and insulin resistance
[56]. Plasma IL-6 concentrations are a predictor of the devel-
opment of type 2 diabetes, and peripheral administration of
IL-6 results in insulin resistance in rodents and humans by
causing hyperlipidaemia and hyperglycaemia [56]. Besides
muscle cells, e.g. macrophages, mast cells, dendritic cells, B
cells and CD4 effector T helper cells in the immune system are
amongst the major sources of IL-6 production [22, 57–59]. In
addition, IL-6 is also secreted by a variety of non-
haematopoietic cells such as fibroblasts, endothelial cells, ep-
ithelial cells, astrocytes and malignant cells [2, 33, 42, 60].
Enhanced levels of IL-6 have been found in many cancers,
with an inverse relationship between IL-6 levels and response
to chemotherapy and hormone therapy [61]. Furthermore, IL-
6 expression has also been found higher in recurrent tumours
as compared to primary tumours, as well as in recurrent met-
astatic lesion as compared to primary metastasis [15].

The primary sources of IL-6 in the tumour microenviron-
ment are tumour cells as well as tumour-associated macro-
phages (TAMs), CD4+ T cells, myeloid-derived suppressor
cells (MDSCs) and fibroblasts [59–62]. In the tumour micro-
environment, IL-6 supports tumorigenesis by directly affect-
ing cancer cells through the modulation of both the intrinsic
and extrinsic activities of tumour cells as well as by influenc-
ing stromal cells that indirectly support tumorigenesis [63].
For example, in skin and prostate cancer, the autocrine and
paracrine secretion of IL-6 induces a complex of cytokine,
growth factors and protease network consisting of granulocyte
macrophage colony-stimulating factor (GM-CSF), IL-8,
MCP-1, vascular endothelial growth factor (VEGF) and
MMP-1 and stimulates malignant progression [64].
Basically, tumour cells produce IL-6 for promoting their sur-
vival and progression and do not depend on paracrine release
of IL-6 by stromal cells [63]. However, both autocrine and
paracrine mechanisms of IL-6 are known to influence tumour
progression and metastasis through IL-6 trans-signalling [2,
64].

Pleiotropic role of IL-6

Cancer is an inflammatory disease, and the key feature of
cancer-related inflammation is the expression of cytokines.
Different cytokines play different roles in the onset and reso-
lution of inflammation. However, a ubiquitous and function-
ally diverse cytokine, IL-6 is a pleiotropic cytokine with pro-
and anti-inflammatory properties (Fig. 1). It is an important
cytokine regulating the acute-phase response of inflammation
[21]. During inflammatory response, tumour necrosis factor
alpha (TNFα) induces the expression of IL-6 together with

other inflammatory alarm cytokines, such as IL-1β, which
are involved in the elicitation of acute-phase inflammatory
reactions/responses (Fig. 1) [65]. Furthermore, IL-6 controls
the level of acute inflammatory responses by downregulating
the expression of pro-inflammatory cytokines and upregulat-
ing anti-inflammatory molecules, including IL-1 receptor an-
tagonist protein, TNF-soluble receptor and extrahepatic pro-
tease inhibitors (Fig. 1) [66]. IL-6 has also been found to
counter inflammation by inhibiting TNFα release in experi-
mental endotoxemia [67]. This pleiotropic nature of IL-6
maintains the host–tumour homeostasis.

During switch between pro- and anti-inflammatory roles,
TNFα and IL-1β negatively regulate IL-6 signalling at differ-
ent levels by enhancing the IL-6-induced expression of the
suppressor of cytokine signalling (SOCS3, feedback inhibitor)
and/or targeting IL-6-induced gene expression via its action
on target gene promoters [59, 68–70]. IL-1β also counteracts
IL-6-mediated STAT-3 activation independent of SOCS3 ex-
pression [71]. IL-1β is the major regulator of the pro- and anti-
inflammatory nature of IL-6; on the one hand, it reduces the
pro-inflammatory activity of IL-6 that results in the inhibition
of overshooting immunological reactivity, such as in inflam-
matory bowel disease or autoimmune arthritis, whilst on the
other hand, it delays the anti-inflammatory effects of IL-6 to
reinforce the pro-inflammatory processes in the initial phase
of inflammation [70]. Similarly, the high concentration of IL-
1β in the tumour microenvironment must maintain the chron-
ic inflammatory environment by suppressing the anti-
inflammatory processes of IL-6.

Emerging evidences suggest that IL-6 plays key roles
in the acute as well as the transition (resolution) phase of
inflammation [68]. Furthermore, IL-6 trans-signalling re-
cruits T cells at the site of inflammation by triggering the
expression of T cell-attracting chemokines (CCL4, CCL5,
CCL17 and CXCL10) [72]. Moreover, IL-6 also rescues T
cells from entering apoptosis by STAT-3-dependent up-
regulation of anti-apoptotic regulators (Bcl-2 and Bcl-
xL) and modulation of Fas surface expression [73, 74].
IL-6 also regulates the differentiation of recruited T cells
towards TH2 by inducing the expression of IL-4. Thus,
IL-6 regulates some of the key steps in controlling inflam-
mation and sets the anti-inflammatory environment by
promoting TH2 response [57]. Collectively, these evi-
dences suggest that endogenous IL-6 plays a vital anti-
inflammatory role in both local and systemic acute in-
flammatory responses by controlling the level of pro-
inflammatory cytokines, mainly. The trans-signalling of
IL-6 regulates mainly the pro-inflammatory response;
however, IL-6 classical signalling imparts its anti-
inflammatory or regenerative activity (Fig. 1) such as re-
generation [75], inhibition of epithelial apoptosis and the
a c t i v a t i on o f t h e a cu t e - pha s e r e spon s e [76 ] .
Understanding of the pleiotropic role of IL-6 in cancer
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is not very clear; however, the information available from
other inflammatory diseases suggest that IL-6 might play
both pro- and anti-inflammatory roles in the tumour mi-
croenvironment, which is crucial for host–tumour
interaction.

Role of IL-6 and associated signalling in cancer

The notion that inflammation drives cancer is now well
established. One of the major drivers of this link is NF-
kB, which plays a central role in the secretion and activa-
tion of numerous pro-inflammatory cytokines from multi-
ple cell types in the tumour microenvironment, including
macrophages, T cells and epithelial cells [43, 57, 58].
Several pro-inflammatory cytokines released by innate
and adaptive immune cells regulate cancer cell growth
and thereby contribute to tumour promotion and progres-
sion. Amongst these, IL-6 is important in the development
of human cancer and activates oncogenic pathways, and it
is known to be deregulated in cancer [77]. Overexpression
of IL-6 in many types of tumours, such as colorectal can-
cer [3], prostate cancer [5], breast cancer [4], ovarian car-
cinoma [6], pancreatic cancer [7], lung cancer [8], renal
cell carcinoma [9], cervical cancer [10], multiple myelo-
ma [11] and lymphomas [78], suggests a strong link be-
tween this cytokine and cancer. The high susceptibility
and incidence of liver cancer in males is also found to
be associated with high levels of IL-6 [79]. However, in
females, oestrogen steroid hormones inhibit IL-6 produc-
tion and so protect female mice from cancer [79, 80].
Activation of the IL-6/STAT-3 signalling axis is an impor-
tant event in cancer which promotes tumorigenesis by
regulating multiple survival signalling pathways in cancer
cells [24]. IL-6 regulates nearly all hallmarks of cancer,
such as inhibition of apoptosis [81, 82], promotion of
survival [8, 75], proliferation [35, 83], angiogenesis
[10], invasiveness and metastasis [62, 84], and is also
known to regulate cancer cell metabolism (Fig. 2) [85,
86]. Therefore, there exists a strong link between IL-6
and cancer, similar to the link between cancer and inflam-
mation. Majority of the phenotypes or hallmarks of cancer
which are influenced by IL-6 comprise many biological
capabilities that are acquired during tumour development.
The role of IL-6 in the regulation of hallmarks of cancer
will be discussed in detail later.

Evasion of growth suppressors

Cancer cells evade some powerful programmes that neg-
atively regulate cell proliferation. Many of these
programmes depend on the action of tumour suppressor
genes such as p53 and RB (retinoblastoma gene), which

undergo either loss or gain of function, respectively, to
limit cell growth and proliferation. Rb (retinoblastoma-
associated) and TP53 proteins are the essential regulatory
nodes within two key complementary cellular regulatory
circuits that govern the decisions of cells to proliferate or
activate senescence and apoptotic programmes [87]. The
hypermethylation of CpG islands in the promoter regions
of tumour suppressor genes has been found in many tu-
mours, which allows cancer cells to bypass crucial check-
points in cell cycle progression and evade apoptotic sig-
nals (Fig. 3) [88, 89]. IL-6 is known to increase both the
expression of DNA methyltransferase (DNMT-1) [90] and
its translocation to the nucleus by DNMT-1 nuclear local-
izing signal’s phosphorylation via PI-3K/AKT signalling
[91], thereby increasing the activity of DNMT-1, resulting
in CpG island methylation of the promoter region of the
p53 gene (Fig. 3) [89]. Contrary to the hypermethylation
of tumour suppressor genes, IL-6 is also involved in caus-
ing global hypomethylation of retrotransposon long inter-
spersed nuclear element-1 in oral squamous cell carcino-
ma cell lines, which promotes tumorigenesis in the oral
cavity [92]. These epigenetic alterations in tumour cells
contribute to the epigenetic silencing of tumour suppres-
sor genes and lead to enhanced tumorigenesis.

Mutations in the RB gene contribute to cellular transforma-
tion in various types of malignancies [93]. Normal retinoblas-
toma protein suppresses the transition from the G1 to the S
phase of the cell cycle, which is regulated by the phosphory-
lation of Rb protein. The active, hypo- or dephosphorylated
form of Rb binds with E2F and induces G1 growth arrest. On
the contrary, the phosphorylated Rb, which is inactive, cannot
bind E2F and activates CDK, thereby facilitating entry of cells
into the S phase [94]. In multiple myeloma (MM) cells, IL-6
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Fig. 2 IL-6 and cancer hallmarks: IL-6 plays an important role in cancer
growth and progression by influencing nearly all hallmarks of cancer. The
picture illustrates the contribution of IL-6 in somemajor characteristics of
cancer, which are known as cancer hallmarks
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facilitates the phosphorylation of Rb and, thus, promotes cell
growth (Fig. 3). Furthermore, Rb phosphorylation also
upregulates IL-6 secretion by MM cells and IL-6-mediated
autocrine tumour cell growth [95].

Resistance against cell death

Cancer cells evolve a variety of cytoprotective approaches to
limit or circumvent cell death programmes, mainly apoptosis.
Besides evading growth suppression signalling, by loss of
TP53 function, tumours are also associated with an increase
in the expression of anti-apoptotic regulators (Bcl-2, Bcl-xL
and Mcl-1) and survival signals (Igf1/2) or downregulated
pro-apoptotic factors (Bax, Bim and Puma) [96, 97]. IL-6
regulates the process of apoptosis by activating STAT-3 and
NF-kB signalling (Fig. 4), which transactivates the expression
of many anti-apoptotic proteins such as Bcl-2, Bcl-xL, Mcl-1,
etc., in cholangiocarcinoma cells [98], cervical cancer [99],
gastric cancer cells [81], myeloma cells [82], basal cell carci-
noma cells [100] and esophageal carcinoma [101]. In addition,
these pro-survival proteins, mainly Bcl-2, promote cell prolif-
eration [102]. As the balance between pro-apoptotic and anti-
apoptotic proteins is important for apoptotic decision, the ratio
of pro-apoptotic to anti-apoptotic factors is increased with
oxidative stress, but the increased levels of IL-6 may alter this
ratio in favour of anti-apoptotic signalling, leading to cell

survival, both in IL-6-treated cells and IL-6-expressing trans-
genic mice [103]. Besides this, IL-6-induced Bcl-2 regulates
Bak interactions with mitofusins via inhibition of Bak disso-
ciation fromMfn2 and also inhibits the interaction of Bak with
Mfn1. These two mitochondrial events are the major determi-
nants of cell death pathways as they prevent mitochondrial
fragmentation during apoptosis [103, 104]. Therefore, Bcl-2
appears to be an essential mediator of IL-6-induced
cytoprotection (Fig. 4).

Besides Bcl-2 and Bcl-xL, IL-6 also supports tumour cell
survival by inducing the expression of survivin through direct
binding of STAT-3 to the survivin promoter [105].
Furthermore, downregulation of survivin at the gene expres-
sion level by inhibiting STAT-3 induces apoptosis in tumour
cells [105]. IL-6 triggers PI3K/Akt, NF-kB and MAPK/ERK
signalling in prostate cancer cells and results in the upregula-
tion of cyclin A1 expression that promotes tumour cell prolif-
eration in hepatoma, prostate cancer, bladder cancer and in
multiple myeloma. IL-6-induced activation of PI3K/Akt sig-
nalling further activates IkB kinase (IKK), which initiates NF-
kB signalling, leading to transactivation of pro-survival and
proliferation-inducing proteins (Fig. 4) [83, 106–109]. IL-6/
STAT-3 signalling is also required for the survival of intestinal
epithelial cells in colitis-associated cancer, where IL-6 pro-
duced from lamina propria myeloid cells protects normal
and pre-malignant epithelial cells from cell death [75].
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Fig. 3 Role of IL-6 in evading growth suppressors: Normally, E2F
remains bound with Rb and localized to the cytosol. IL-6 signalling
either induced by mbIL-6R or sIL-6R activates JAK/STAT-3
phosphorylation, which then phosphorylates Rb, resulting in the
dissociation of E2F from Rb. The free E2F translocates to the nucleus,
where it induces the expression of genes (cyclin E and E2F itself)

responsible for the proliferation of cells. Similarly, IL-6 via PI3K/AKT
signalling causes the activation of DNMT-1 by its phosphorylation. After
phosphorylation, DNMT-1 translocates to the nucleus and
hypermethylates the p53 promoter, resulting in silencing of tumour
suppressor, pro-apoptotic and other p53 target genes
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Collectively, it appears that IL-6 facilitates tumour growth
primarily by inhibiting apoptosis and enhancing cell prolifer-
ation. Besides deriving the growth potential, cancer cells ex-
ploit IL-6 for inducing resistance towards anticancer therapy-
induced death pathways. For example, IL-6 confers protection
from dexamethasone-induced apoptosis by activating
PI3K/AKT signalling and inactivating casapase-9, thereby
inhibiting apoptosis in multiple myeloma cells [109]. It is also
known to induce resistance in cisplatin-mediated cytotoxicity
in prostate cancer cell lines and esophageal squamous cell
carcinoma [110, 111]. Furthermore, IL-6-induced Bcl-2 con-
fers protection against hyperoxic damage and oxidant (H2O2)
injury [103]. Thus, enhanced IL-6 levels appear to confer
resistance against chemotherapy in cancer by downregulating
cell death pathways.

Induction of proliferation/replicative immortality

The potential growth stimulatory effect of IL-6 in tumour
cells is due to the activation of several signalling path-
ways. IL-6 stimulates tumour cell proliferation and sur-
vival by activating the Ras/Raf/MEK/MAPK, PI3K/AKT
and JAK/STAT pathways via gp130 tyrosine phosphory-
lation [83, 101, 108]. In colitis-associated cancer, IL-6
produced by myeloid cells stimulates the proliferation of
malignant epithelial cells via NF-kB/IL-6/STAT-3 cascade
[75]. These signalling pathways help tumours in the ac-
quisition of unlimited replication potential, which is es-
sentially required to generate large tumours.

Majority of the genes that regulate cell survival and prolif-
eration, such as Bcl-2, Bcl-xL, Mcl-1, Fas, cyclin D1, cyclin
E1 and p21, are direct targets of STAT-3. In addition, other
transcription factors which promote proliferation, including c-
Myc, c-Jun and c-Fos, are also targets of STAT-3 [112]. In
tumour cells, STAT-3 activation is mediated through autocrine
production and paracrine secretion of IL-6 from stroma and
infiltrating inflammatory cells [58–62]. IL-6/STAT-3 signal-
ling also functions as a transcriptional repressor of p53 expres-
sion, whilst blocking STAT-3 upregulates the expression of
p53, leading to p53-mediated apoptosis [113].

IL-6 has also been found to mediate its multi-lineage
haematopoietic effects by shifting stem cells from the G0
to the G1 stage of the cell cycle, thereby inducing the
proliferation and making stem cells more responsive to
additional haematopoietic growth factors such as IL-3,
IL-4, G-CSF, M-CSF or GM-CSF [114]. The autocrine
production of IL-6 by non-stem cells activates the
JAK1/STAT-3 signal transduction pathway which plays
an important role in the conversion of non-stem cells into
stem-like cells through the upregulation of Oct-4 (a stem
cell marker) [115]. Therefore, IL-6 not only induces the
proliferation of cancer cells but also maintains the popu-
lation of cancer stem cells that induce the reoccurrence of
tumours. Since only the cancer stem cells have tumorigen-
ic potential amongst the heterogeneous mass of tumours
[116], IL-6 seems to play an important role in the main-
tenance of equilibrium between non-cancer and cancer
stem cells, as observed in breast and prostate cancers
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Fig. 4 IL-6 in resisting cell death: IL-6-induced JAK/STAT-3 and NF-kB
signalling facilitates the translocation of STAT-3 and NF-kB in the
nucleus. Activation of these signalling pathways results in the
expression of anti-apoptotic genes (Bcl-2, Bcl-xL, Mcl-1, survivin, etc.)

and IL-6 for the constitutive activation of IL-6-dependent signalling in
cancer cells. IL-6-induced Bcl-2 expression inhibits stress (endogenous
and therapeutic)-induced mitochondrial fragmentation and protects the
cells from apoptosis
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[44]. Thus, IL-6 has been suggested as a potential regu-
lator of normal and tumour stem cell self-renewal.

Cancer-related inflammation

Accumulating evidences suggest that chronic inflammation
predisposes cells and tissues to different forms of cancer
[117]. Thus, cancer and inflammation have a strong connec-
tion, which prompted the use of anti-inflammatory drugs for
cancer prevention. Cancer-related inflammation involves the
infiltration of TAMs, white blood cells and inflammatorymes-
sengers like cytokines, such as TNF, IL-1 and IL-6, and
chemokines (CCL2 and CXCL8), which facilitate tissue re-
modelling and angiogenesis [118]. IL-6 is one of the most
highly expressed mediators of inflammation in the tumour
microenvironment, and STAT-3-dependent tumorigenesis
has been associated with the local secretion of IL-6 and its
related trans-signalling within the tumour microenvironment
in inflammation-induced colorectal cancer [75]. In addition,
production of IL-6 by M2-type macrophages in ulcerative
colitis supports the development of colon tumours [119].
These studies have identified a link between IL-6 and
tumour-associated inflammation. The primary players in in-
flammation include transcription factors such as NF-kB,
STAT-3 and primary inflammatory cytokines (IL-1b, IL-6
and TNFα) [1, 120]. NF-kB is the major regulator of inflam-
mation which is deregulated in many cancers [120]. As a
major effector molecule of NF-kB activation through the
STAT-3 pathway, IL-6 appears to be an important component
of the NF-kB/IL-6/STAT-3 cascade involved in tumorigenesis
[75]. STAT-3 is required for the maintenance of NF-kB acti-
vation in tumours [121], whilst IL-6 promotes carcinogenesis
through inflammation and cell proliferation [35, 44, 106].
Since inflammation enhances the growth and progression of
gastrointestinal tumours via the activation of IL-6-mediated
STAT-3 signalling, it appears that there is a strong link be-
tween IL-6, inflammation and tumour promotion [1, 117,
118].

Metabolic remodelling

Enhanced aerobic glycolysis is one of the prominent pheno-
types of a majority of cancer cells which facilitate proliferation
and confer protection against death, besides energy production
[122, 123]. This induced glycolysis is one of the major factors
that contribute to IL-6-induced therapeutic resistance in can-
cer. IL-6-mediated stimulation of glucose metabolism is de-
pendent on the signal transduction involving the PI-3 kinase
and JAK/STAT pathways through the enhanced expression of
major glycolytic enzymes hexokinase 2 and PFKFB-3 [124].
It also enhances glucose transport by inducing the expression
of glucose transporters GLUT-1 and GLUT-4, which further
translocate to the plasma membrane, resulting in a higher

glucose influx in cells (Fig. 5) [124]. In addition, it also in-
creases fatty acid oxidation (Fig. 5) [85]. Furthermore, IL-6-
induced p53 regulates glycolytic metabolism through NF-kB-
mediated mechanism, which also increases GLUT-2 and
GLUT-4 receptors on the cells to enhance glycolysis [125].

IL-6 also causes 5′ AMP-activated protein kinase (AMPK)
phosphorylation, which is important for IL-6-mediated glu-
cose uptake and lipid oxidation (Fig. 5) [126] and is known
to be involved in obesity-associated cancers [127]. In sickle
cell disease, elevated plasma IL-6 levels are correlated with
increased rates of glycolysis in red blood cells, as evidenced
by the inc rease in l ac t i c ac id and h ighe r 2 ,3 -
bisphosphoglycerate levels [128]. More recently, treatment
of IL-6−/−mice with diethylnitrosamine (a carcinogenic agent)
after a high-fat diet has been shown not to support faster de-
velopment of hepatocellular carcinoma (HCC) as compared to
a low-fat diet, suggesting that IL-6 preferentially may render
obese individuals susceptible to HCC [106]. In cachectic
tumour-bearing mice, a high level of IL-6 has been found to
suppress mTORC1 activity by AMPK activation, thereby ren-
dering the mice irresponsive to glucose administration [86].
p62 is a scaffold protein that binds to the nutrient-sensing
component of mTOR, crucial for metabolic reprogramming
during cell transformation. Loss of p62 has been found to
reduce mTOR activity, resulting in impaired metabolism and
higher IL-6 release, causing tumorigenesis [129].

Maintenance of redox potential

Oxidative stress induced either by therapeutic agents or met-
abolic alterations induces damage to macromolecules, viz.
proteins, lipids, membranes and DNA, that play a key role
in the development of cancer. NF-kB is a critical transcription
factor that senses redox imbalance and facilitates cytokine
gene induction during cellular stress [130]. Endogenous or
induced oxidative stress activates transcription factor NF-kB,
which regulates the expression of IL-6 by binding to the pro-
moter region of the IL-6 gene [131, 132]. IL-6, which is the
major effector molecule of NF-kB, itself causes NF-kB acti-
vation in cancer cells, which results in more IL-6 production.
Furthermore, this enhanced IL-6 concentration in the tumour
microenvironment constitutively activates NF-kB signalling
in the same or neighbouring cells (autocrine/paracrine) [131,
133]. Aberrant NF-kB regulation has been observed in many
cancers, whose sustained activation requires STAT-3. Since
NF-kB and STAT-3 are regulated by IL-6, it appears that the
NF-kB/STAT-3/IL-6 signalling cascade plays an important
role in oncogenesis [134]. IL-6 is known to protect cardiac
myocytes from oxidative stress-induced apoptosis through
STAT-3 signalling and gastric cancer cells by upregulating
Mcl-1 expression [81]. In multiple myeloma cells, IL-6 causes
radio-resistance by activating NF-kB in an autocrine manner,
which results in the activation of antioxidant defence system
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enzymes such as glutathione peroxidase (GPx), superoxide
dismutase II (MnSOD) and catalase (Fig. 6) [135].

Apoptosis plays a very crucial role in maintaining genomic
integrity by selectively removing the population of heavily
damaged cells. Reactive oxygen species (ROS) and pro-
inflammatory cytokines are generally elevated following ex-
posure to ionizing radiation and during human carcinogenic

processes [136]. Hydrogen peroxide (H2O2) is a potent reac-
tive oxygen species that causes mitochondrial dysfunction and
cell death. Preconditioning cells with IL-6 decreases H2O2-
induced cell death by increasing the expression of prohibitin,
which is involved in mitochondrial biogenesis and metabo-
lism, apoptosis and replicative senescence [137]. In addition
to signalling through STAT-3, the stress-induced activation

IL-6 sIL6-R

gp130

GLUT1, GLUT4,
HK-2, PFKFB3

More glucose uptake
GLUT 1 GLUT 4

PI3K

AMPK

JAK JAK

Fat oxida�on

mbIL6-R

Fig. 5 IL-6 in metabolic
remodelling: IL-6-induced JAK/
STAT-3 signalling (both classical
and trans) induces the expression
of major glycolytic enzymes
(HK2 and PFKB3) and glucose
transporters (GLUT-1 and GLUT-
4). The expression of these
glycolytic genes ensures aerobic
glycolysis in tumour cells. IL-6
also induces fatty acid oxidation
in the mitochondria by activating
the AMPK pathway
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Fig. 6 IL-6 maintains redox balance: p38 senses oxidative stress through
ROS-induced phosphorylation of MKK3/6. p38 activation
(phosphorylation) induces NF-kB signalling, leading to the enhanced
expression and secretion of IL-6 from affected cells. IL-6 (in classical/
trans-signalling fashion) further activates JAK/STAT-3 signalling in both

paracrine and autocrine manner, resulting in the overexpression of the
antioxidant enzymes MnSOD, glutathione peroxidase (GPx) and
catalase. Altered favourable redox balance also enhances the
mitochondrial membrane potential
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(phosphorylation) of p38 also induces IL-6 release from cells
via the activation of NF-kB (Fig. 6) [138]. All these studies
showed the antioxidant potential of IL-6.

Invasion, metastasis and angiogenesis

During tumour metastasis, cancer cells invade surrounding
local tissues to migrate to distant organs by acquiring a mes-
enchymal phenotype that allows the metastatic cancer cells to
migrate from the site of the primary tumour. Upon lodging
into the new organ, tumour cells lodge themselves by
switching back to an epithelial phenotype and proliferate to
form metastatic tumours. The processes by which cells switch
between epithelial and mesenchymal phenotypes are widely
known as the epithelial-to-mesenchymal transition (EMT) and
its counterpart, the mesenchymal-to-epithelial transition
[139]. It is well established that inflammation promotes
EMT [139, 140]. Elevated levels of IL-6 in the serum have
been associated with EMT and invasion along with increased
size of tumours, metastasis and decreased survival of colorec-
tal cancer patients [60]. Available evidences suggest that IL-6
facilitates the metastasis of many tumours (e.g. breast, lung,
prostate, renal carcinomas, neuroblastoma, melanoma and
multiple myeloma) to the bone [141] by increasing CXCR4
expression via STAT-3 and c-Jun [142]. Furthermore, IL-6-
activated STAT-3 plays a role in EMT, invasiveness and an-
giogenesis in bladder cancer by increasing VEGF, MMP9 and
DNMT1 expressions [107]. Autocrine production of IL-6 has
also been shown to enhance the capacity to invade the extra-
cellular matrix in breast cancer [143].

Supply of nutrients and oxygen as well as the clearance of
metabolic by-products required for tumour sustenance are
provided by tumour-associated neovasculature. The formation
and maintenance of this neovasculature remains always acti-
vated as an ‘angiogenic switch’ and helps tumour develop-
ment [144]. STAT-3 activation by IL-6 facilitates angiogenesis
in many cancers by inducing the expressions of VEGF, bFGF
and MMP9 in tumour-associated endothelial cells, TAMs and
MDSCs [60, 84, 143, 145]. In addition, the Notch ligand,
JAG-2, has been reported to be overexpressed in malignant
plasma cells from MM patients, which induces the secretion
of IL-6 and VEGF [146], whilst in breast cancer, Notch-3-
dependent ERK activation via IL-6 appears to activate JAG-
1 (Notch ligand) and CA-IX (a hypoxia survival gene).
Furthermore, this CA-IX upregulated by IL-6 has also been
found to maintain the invasive potential of breast cancer cells
and mammospheres [143].

DNA damage and repair

DNA is the primary target of majority of the established anti-
cancer therapies which induce cell death processes in tumour
cells. DNA damage has been shown to induce the expression

and secretion of IL-6 from cancer cells, resulting in the acti-
vation of the JAK1/STAT-3 signalling pathway. STAT-3 acti-
vation not only protects tumour cells against DNA damage but
also facilitates the growth of damaged cells by inhibiting in-
duced senescence [147, 148]. Furthermore, inhibition of the
IL-6/STAT-3 signalling pathway by the STAT-3 inhibitors,
knockdown of gp130, or the neutralization of IL-6 impairs
the growth of tumour cells exposed to DNA damage [147].
IL-6 secreted by tumour-associated endothelial cells in the
tumour microenvironment has been suggested to protect lym-
phoma cells from genotoxic chemotherapy [149], whilst per-
sistent DNA damage response has been shown to induce IL-6
secretion in stromal cells such as fibroblasts [148]. The ATM/
NEMO/ELKS complex formed by DNA damage-induced
phosphorylation of ATM promotes IKK-mediated IkBα deg-
radation, leading to NF-kB activation, which further induces
the expression of IL-6 (Fig. 7) [150]. In the partial hepatecto-
my (PH) model of DNA repair, wild-type mice were found to
express some of the key DNA repair enzymes such as OGG-1,
8-oxo-GTP, Neil-1 and PARP, whereas these enzymes were
absent in IL-6 knockout mice, suggesting a direct role of IL-6
in the repair of DNA damage [151]. Thus, in PH, it appears
that IL-6 facilitates the restoration of hepatic mass by activat-
ing DNA repair enzymes, followed by accurate replication in
proliferating hepatic cells [151]. Loss of Rrm2b function (a
key enzyme in de novo deoxyribonucleotide synthesis) is
known to cause severe numerical and structural chromosomal
abnormalities, which leads to the activation of NF-kB through
ATM phosphorylation and IKK activation, leading to en-
hanced IL-6 expression and constitutive activation of STAT-
3 [152]. Since IL-6 signalling functions by the activation of
transcription factors such as STAT-3 and NF-kB, inhibition of
these transactivators or neutralizing the IL-6 may enhance the
efficacy of DNA damage-causing chemotherapeutic drugs
[153].

IL-6 induces therapeutic resistance in cancer

Accumulating evidences suggest that inflammatory signals
from tumour cells and surrounding microenvironment facili-
tate tumour growth [63, 117]. Furthermore, most anticancer
therapies induce inflammation by killing tumour cells and
normal tissues [154]. Several inflammatory cytokines are be-
lieved to play key roles in therapeutic resistance and lead to
tumour regrowth, invasion and angiogenesis. Anticancer ther-
apies induce upregulation of the levels of a variety of inflam-
matory cytokines, including IL-6, IL-8 and TNFα [8, 12, 13].
Amongst these, IL-6 is known to contribute to poor therapeu-
tic gain, tumour relapse and aggressive tumour growth [2, 8,
12]. IL-6 is also recognised as a key regulator of immunosup-
pression in patients with advanced cancer [1, 154]. Elevated
IL-6 serum levels have been correlated with metastasis and
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morbidity in prostate cancer and therapeutic resistance in
ovarian cancer, whilst patients with reduced levels of IL-6
respond better to therapy [14, 15]. It appears that tumour cells
produce IL-6 as a protective mechanism against drug-induced
death, as in the case of prostate cancer where inhibition of IL-6
secretion increases the sensitivity of prostate cancer cells to
anticancer drugs [12, 110]. Clinical studies on combinations
of docetaxel and zolendronic acid in prostate cancer patients
with bonemetastasis have shown interesting data in relation to
IL-6. Patients who responded to therapy had a 35 % decrease
in overall serum IL-6 levels, whilst patients who did not re-
spond had a 76 % increase in serum IL-6 levels [155], lending
support to the notion that IL-6 confers therapeutic resistance in
prostate cancer [5, 12]. The autocrine secretion of IL-6 by
breast cancer cells is also shown to confer therapeutic resis-
tance; however, it does not affect their growth. Further studies
showed that drug-sensitive breast cancer cells do not express
IL-6, whereas multidrug-resistant breast cancer cells produced
high levels of IL-6 [156]. IL-6-mediated STAT3 activation has
been reported to cause therapeutic resistance in tumours by
inducing several pro-survival pathways [12, 105, 110].
However, IL-6-induced drug resistance is associated with in-
creased expression of the multidrug resistance gene, mdr1,
and upregulation of C/EBPβ and C/EBPδ (CCAAT
enhancer-binding protein family of transcription factors)
[156]. Moreover, in colorectal cancer, IL-6 secreted from stro-
mal cells induces CYP2E1 and CYP1B1 expression (CYP450

enzymes have a significant role in xenobiotic activation)
through the JAK/STAT and PI3K/AKT pathways, which
causes tumour initiation and promotion via the activation of
chemical carcinogens [157].

IL-6-induced modifications of the stromal cell function ap-
pear to be important for tumour growth and angiogenesis as an
anti-IL-6 receptor antibody has been found to inhibit tumour
angiogenesis and growth by blocking tumour–stroma interac-
tion [60]. Cancer-associated adipocytes can also promote
radio-resistance by secreting IL-6 [158], whilst IL-6 and IL-
8 secreted by mesenchymal stem cells activate macrophages
in the microenvironment of human colorectal and ovarian
cancers, causing chemoresistance [159, 160]. Besides causing
resistance to chemo- and radiotherapy, autocrine secretion of
IL-6 (induced by therapy) also confers resistance to some
targeted therapies; for example, aflibercept (anti-VEGF, inhib-
itor)-resistant epidermoid carcinoma cells and herceptin
(trastuzumab, anti-HER2)-resistant breast cancer cells secrete
a large amount of IL-6 and show hyperactivation of STAT-3
signalling, causing resistance to therapy [161, 162].

Besides therapeutic resistance, IL-6 also minimizes clinical
outcome by promoting the maintenance of a highly
therapeutic-resistant cancer stem cell population which is
mainly responsible for tumour reoccurrence [116]. IL-6 se-
creted from either cancer cells or tumour microenvironment
(immune cells and tumour stromal cells) not only facilitates
tumour growth but also acts as a major obstacle in obtaining

IL-6 expression

DNA repair genes:
OGG-1, 8-oxo-GTP, 
Neil-1, PARP

ELK

DSB

IL-6

ROS

JAK JAK

NF-kB

IL-6
sIL-6R

Stress

JAK JAK

ATM

NEMO

Ikβ

NF-kB Ikβ

IKK

mbIL-6R
gp130

Fig. 7 Role of IL-6 in DNA repair: IL-6 facilitates DNA repair by
inducing the expression of DNA repair enzymes in cancer cells. The
induction of DNA damage phosphorylates the ATM, leading to the
phosphorylation of IKK through the phosphorylation of various

downstream kinases. IKK phosphorylation activates NF-kB signalling,
resulting in sustained IL-6 expression and constitutive activation of
STAT-3 signalling, which induces the expression of DNA repair enzymes
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therapeutic gain and tumour-free survival [163]. Therefore,
targeting IL-6 and its associated signalling may hold greater
promise in minimizing therapeutic resistance in cancer. IL-6
inhibition could sensitize tumour cells to anticancer drugs and
radiation by increasing DNA damage and cell death, and mit-
igate tumour regrowth by inhibiting subsequent angiogenesis
and reducing cancer stem cell population.

Targeting IL-6 for therapeutic gain

IL-6 plays an important role in tumour progression and therapeu-
tic resistance through inhibition of cancer cell apoptosis and
stimulation of tumour-promoting factors such as proliferation,
angiogenesis, etc. These effects are mediated by several signal-
ling pathways; however, STAT-3 plays a central and major role

[1, 112]. Targeting the IL-6/JAK/STAT-3 pathway has shown
promising results in many types of cancer and various
inflammation-related diseases. The clinical correlation of in-
creased serum IL-6 concentrations and advanced tumour stages
in various malignancies, as discussed earlier in the review, makes
a strong case of blocking IL-6 signalling for therapeutic gain.
Therefore, inhibiting IL-6 signalling or minimizing the level of
IL-6 can be a potential therapeutic strategy for those cancers
which are characterized by overproduction of IL-6. IL-6 signal-
ling can be targeted in multiple ways, such as the use of specific
monoclonal antibodies against IL-6 or IL-6R [15, 19, 31], by
using synthetic/semi-synthetic compounds as specific inhibitors
of IL-6 downstream signalling molecules or by kinase inhibitors
(like JAK inhibitor) [164]. All these approaches evaluated in
experimental models and reached clinical trials are summarized
in Table 1.

Table 1 Multiple therapeutic
approaches for targeting IL-6, IL-
6R and IL-6-associated signalling

S.
no.

Target
molecule

Type of cancer Therapeutic approach References

1 IL-6 Prostate cancer IL-6 siRNA [12]
Siltuximab (CNTO328)—anti-IL-6 antibody [165]

Colorectal cancer Siltuximab (CNTO328) [3, 166]
Ovarian cancer Siltuximab (CNTO328) [166]

Lysophosphatidic acid [167]
Renal cancer Siltuximab (CNTO328) [166]
Lung cancer Siltuximab (CNTO328) [166, 168]
Multiple myeloma Siltuximab (CNTO328) [166, 169]
Lymphoma BE-8 (monoclonal antibody) [170]
Prostate cancer Siltuximab, zoledronic acid [15, 171]
Breast cancer Siltuximab, zoledronic acid, PMA

(medroxyprogesterone acetate)
[15, 172,

173]
2 IL-6R Colon cancer MR16-1, tocilizumab (anti-IL-6R antibody) [3, 60]

Oral squamous cell
carcinoma

Tocilizumab [174]

Lung cancer Tocilizumab [175]
Multiple myeloma Tocilizumab [176, 177]
Ovarian cancer Tocilizumab [178]
Breast cancer Tocilizumab [179]

3 JAKs Lung cancer TG101209 (JAK inhibitor) [180]
Multiple myeloma TG101209 [181]
Ovarian cancer AG490 [182]
Acute myeloid

leukaemia
Ruxolitinib (JAK1/JAK2 inhibitor) [183]

Colitis-associated
cancer

CEP-33779 (JAK inhibitor) [184]

Acute myeloid
leukaemia

SB1518 (JAK2) [185]

4 STAT-3 Glioblastoma Sorafenib (multiple kinase inhibitor) [186]
Breast cancer SD-1029 [187]
Ovarian cancer SD-1029 [187]
Lymphoma JSI-124 [188]
Glioblastoma JSI-124 [189]
Breast cancer JSI-124 [190]
Hepatocellular

carcinoma
Sorafenib (Nexavar) [191]

Breast cancer Sorafenib [192]
Advanced renal cell

carcinoma
Sorafenib [193]

Colorectal cancer Sorafenib [194]
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Antibodies targeting IL-6 or IL-6 signalling have been ex-
tensively investigated in experimental tumour models and
clinical trials for a variety of cancers. Elsilimomab (BE-8), a
murine monoclonal antibody, and siltuximab (CNTO 328), a
chimeric antibody with strong affinity to IL-6 and licenced for
the treatment of Castleman’s disease, are used for the treat-
ment of prostate cancer, ovarian cancer, renal cell carcinoma
and colorectal cancer in combination with other chemothera-
peutics [3, 6, 166]. In prostate cancer, siltuximab has been
shown to downregulate the genes downstream of IL-6 signal-
ling along with decreased STAT-3 expression [165].
Tocilizumab, a FDA-approved drug for rheumatoid arthritis
and Crohn’s disease, is the humanized antibody specific for
IL-6R that recognises both soluble and membrane-bound re-
ceptors and blocks its signalling [195]. BE-8, a murine anti-
IL-6 monoclonal antibody, has also been used in the treatment
of lymphoma and multiple myeloma [196]. Sequestering the
enhanced IL-6 showed a significant increase in the therapeutic
efficacy of paclitaxel in mouse models of epithelial ovarian
cancer by reducing tumour angiogenesis [197]. Tocilizumab
has also been used in the treatment of oral cell carcinoma,
prostate cancer, renal cancer, multiple myeloma and breast
cancer [15]. It inhibits the growth of prostate and breast cancer
cells by reducing STAT-3-induced VEGF expression. In addi-
tion, it reduces bone metastasis of breast cancer cells [142].
Tocilizumab has been shown to improve cachexia developed
by IL-6 overexpression in lung cancer patients [175]. The
combination of anti-IL-6R with herceptin and aflibercept en-
hances therapeutic gain, also in targeted therapy-resistant
breast cancer and epidermoid carcinoma, respectively [161,
162]. However, blocking IL-6 signalling can be harmful and
may result in some adverse effects, such as gastrointestinal,
nasopharyngeal and upper respiratory tract infections, gastro-
intestinal haemorrhage, thrombocytopenia and neutropenia
[198]. Therefore, selective blocking of trans-signalling (the
major pathway involved in inflammation and related diseases
like cancer) using sgp130Fc (a recombinant fusion protein of
soluble gp130 and human IgG1 Fc)may be useful in achieving
therapeutic gain in cancer [76].

Besides antibodies, a number of other compounds are cur-
rently available that inhibit IL-6 signalling. Zoledronic acid
(ZA) is the most potent nitrogen-containing bisphosphonate
compound which has been used in adjuvant therapies to in-
hibit bone metastasis caused by multiple cancers [172]. It
inhibits growth, besides inducing apoptosis by reducing IL-6
secretion in prostate cancer cell lines, which is suggestive of
its use in the treatment of prostate cancer either alone or in
combination with chemotherapy [171]. Radiation activates
IL-6/STAT-3 signalling, which stimulates tumour invasion
and EMT changes and promotes the survival of tumour cells
after therapy, thereby conferring resistance to therapy [12, 84,
156]. However, use of siRNA against IL-6 inhibits tumour
regrowth after radiotherapy in prostate cancer and sensitizes

tumour cells to radiation by increasing cell death and DNA
damage [12]. Its inhibition also mitigates tumour regrowth by
eliminating radiotherapy-triggeredMDSC and subsequent an-
giogenesis after radiation exposure [199]. Therefore, inhibi-
tion of IL-6 could be a potential therapeutic strategy for in-
creasing the radiation response of tumours. Similarly,
medroxyprogesterone acetate (MPA) is a synthetic compound
used as an endocrine therapeutic agent for patients with breast
cancer which is known to reduce serum IL-6 levels [173].
Several studies have shown that the use of an inhibitor for
downstream targets of IL-6 signalling can also be a good ap-
proach for enhancing therapeutic gain. For example, the use of
JAK inhibitor (TG101209) enhances the efficacy of radiother-
apy in lung cancer [180]. Similarly, WP1066 and CEP3379,
other JAK2 inhibitors, suppress the growth of gastric cancer
and colorectal tumours by inhibiting IL-6/JAK2/STAT-3 sig-
nalling [184, 200]. Sorafenib, which is a multiple kinase in-
hibitor, causes dephosphorylation of STAT-3 and prevents
AKT signalling in glioblastoma cells and prostate cancer, re-
spectively [186]. AG490, a potent JAK inhibitor, targets
STAT-3 signalling, reduces the invasion of human pancreatic
cancer cells in vitro and induces apoptosis in gastric cancer
cells [201, 202]. Moreover, AG490 is also effective in murine
ovarian cancer, where it induces the expression of anti-tumour
cytokines [182]. Another JAK inhibitor, ruxolitinib, is current-
ly in clinical trials for leukaemia [183].

Inhibition of STAT-3 phosphorylation by the use of STAT-3
inhibitors can also be a good approach to block IL-6 signal-
ling. JSI-124 (STAT-3 inhibitor) inhibits STAT-3 phosphory-
lation at serine 727 and sensitizes B-leukaemia cells to apo-
ptosis [203]. JSI-124 suppresses breast cancer cell growth by
downregulating STAT-3 activation in tumour-associated B
cells. Stattic and Eriocalyxin B (a diterpenoid) also inhibit
STAT-3 phosphorylation and induce apoptosis in MDA-MB-
231 and HepG2 cells [204, 205]. Besides inhibiting STAT-3
phosphorylation and transcriptional activation, Decoy
oligodeoxynucleotides target the DNA-binding domain of
STAT-3 by competing against endogenous DNA cis element,
which results in reduced cell growth and increased apoptosis
[206]. G-quartet oligodeoxynucleotides can also be used as a
STAT-3 inhibitor which suppresses the growth of prostate,
breast, and head and neck cancers in nude mice [206, 207].
Instead of inhibiting STAT-3 phosphorylation, these
oligodeoxynucleotides inhibit the binding of STAT-3 dimer
on DNA. Moreover, small-molecule inhibitors can also be
used to inhibit STAT-3. A small-molecule non-peptide
STAT-3 inhibitor named S3I-201 (a.k.a. NSC74859) selec-
tively inhibits STAT-3 DNA-binding activity in vitro and
blocks the formation of STAT-3:STAT-3 dimer, which leads
to the inhibition of STAT-3-dependent gene transcription and
the blockade of the proliferation and survival of human breast
carcinoma cells [208]. STA-21 also selectively inhibits STAT-
3 DNA-binding activity in vitro, disrupts STAT-3:STAT-3
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dimerization and suppresses STAT-3-mediated gene transcrip-
tion along with cell growth inhibition and apoptosis through
the caspase pathway in a human breast carcinoma and rhab-
domyosarcoma model [209, 210]. Catechol-containing com-
pounds, IS3 295, galiellalactone and peptide aptamers have
been found to inhibit the DNA-binding ability of STAT-3 and
further signalling [208, 211].

Conclusion

IL-6, which is produced by tumours and many other cells in
the tumour microenvironment, facilitates tumour growth and
sustenance by influencing and regulating nearly all hallmarks
of cancer, besides contributing to therapeutic resistance.
Recent studies have enhanced our knowledge regarding the
potential role of IL-6 in the cross talk between tumour and its
microenvironment. IL-6/JAK/STAT-3 appears to be the pri-
mary pathway through which IL-6 regulates majority of the
tumour-promoting functions. Therefore, neutralizing IL-6 or
the IL-6 receptor to prevent the initiation of signalling or
inhibiting the activity of two other members, JAK and
STAT-3, to prevent the execution in the end has established
therapeutic efficacy in cellular and systemic models of cancer.
Blocking IL-6 using monoclonal antibodies against either IL-
6 or IL-6R has shown promising results in preclinical studies
and clinical trials. Phase I and II clinical trials have established
the efficacy of monoclonal antibodies either as a single agent
or in combination with other chemotherapeutic drugs, radia-
tion and targeted therapies in various types of cancer.
Subsequently, certain synthetic molecules, such as ZA,
MPA, polyphenols, etc., have also shown promising results
in various cancers by regulating IL-6 levels. The use of
small-molecule inhibitors of JAK and STAT-3 alone or in
combination with radiation or anticancer agents has also re-
sulted in promising anti-tumour effects in various cancers.
However, undesirable effects (such as infections, gastrointes-
tinal haemorrhage, thrombocytopenia and neutropenia) of
anti-IL-6 therapy have also been reported in patients with
various inflammatory diseases. Therefore, selective inhibition
of IL-6 trans-signalling using molecules such as sgp130Fc in
the future may result in better therapeutic gain without the side
effects associated with anti-IL-6 therapy currently under
evaluation.
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