Tumor Biol. (2016) 37:10041-10052
DOI 10.1007/513277-016-5067-1

@ CrossMark

REVIEW

Significance of oncogenes and tumor suppressor genes

in AML prognosis

Maria Kavianpour' - Ahmad Ahmadzadeh' - Saeid Shahrabi® - Najmaldin Saki'

Received: 4 September 2015 / Accepted: 5 May 2016 /Published online: 14 May 2016

© International Society of Oncology and BioMarkers (ISOBM) 2016

Abstract Acute myeloid leukemia (AML) is a heteroge-
neous disorder among hematologic malignancies.
Several genetic alterations occur in this disease, which
cause proliferative progression, reducing differentiation
and apoptosis in leukemic cells as well as increasing
their survival. In the genetic study of AML, genetic
translocations, gene overexpression, and mutations effec-
tive upon biology and pathogenesis of this disease have
been recognized. Proto-oncogenes and tumor suppressor
genes, which are important in normal development of
myeloid cells, are involved in the regulation of cell
cycle and apoptosis, undergo mutation in this type of
leukemia, and are effective in prognosis of AML sub-
types. This review deals with these genes, the assess-
ment of which can be important in the diagnosis and
prognosis of patients as well as therapeutic outcome.

Keywords Acute myeloid leukemia - Oncogenes - Tumor
suppressor genes

Highlights Detection of oncogene or tumor suppressor gene mutations
has been proposed for consideration of AML prognosis.

All oncogenes and tumor suppressor gene mutations cause poor
prognosis in AML patients except for C/EBP«x.

Oncogene or tumor suppressor gene mutations can be used as potential
MRD markers.
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Introduction

Acute myeloid leukemia (AML) is developed due to somati-
cally acquired genetic alterations in hematopoietic cells [1].
Genetic changes in AML result in proliferative progression as
well as reducing leukemic cell differentiation and apoptosis
[2]. Excessive proliferation of stem or progenitor cells causes
replacement of normal erythroid, myeloid, and megakaryocyt-
ic precursors with malignant cells, which gives rise to hema-
topoietic deficiency (i.e., granulocytopenia, thrombocytope-
nia, or anemia) in the bone marrow (BM) and peripheral blood
[3, 4]. Approximately 20,000 patients were diagnosed with
AML with over 10,000 death cases of AML patients in the
USA in 2015 [5]. AML is more frequently seen in the elderly.
The incidence of AML in the USA is 3.5 cases per 100,000
people, being higher in patients >65 years compared with
younger patients (15.9 vs 1.7 cases, respectively) [6].

Mutations in this disease can be divided into two catego-
ries: (1) mutation in the genes involved in cell proliferation
and survival such as mutations of FLT3, oncogenic Ras,
PTPNI1, and TEL/PDGFbR gene fusions and (2) mutations
affecting differentiation and apoptosis, such as AML/ETO and
PML/RARa fusions, MLL rearrangements, mutations in
CEBPA, CBF, HOX family members, CBP/P300, and
coactivators of TIF'I [7].

Proto-oncogenes and tumor suppressor genes encode the
proteins involved in the regulation of cell surface receptors for
cytokines, growth factors, signal transduction molecules, tran-
scription factors, as well as epigenetic regulators and regula-
tors of cell cycle and apoptosis [3]. Typically, most of these
genes are involved in normal development of myeloid cell, so
any disruption in their expression or loss of their normal func-
tion leads to leukemogenesis [8]. For example, Fit3 (the re-
ceptor tyrosine kinase) is expressed in early hematopoietic
progenitor cells and plays important roles in proliferation
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and survival [9]. This receptor shows significant functions
associated with c-kit and stem cell factor receptor. In cooper-
ation with lineage-specific cytokines, F/t3 activation increases
colony-forming capacity of all hematopoietic lineages [10].
Furthermore, several gene mutations were found to cause epi-
genetic changes and to deregulate gene expression in AML,
such as mutations of the TET2 gene as well as IDHI and
DNMT3A mutations [11].

Studies show that approximately 35 % of AML patients
have several translocations causing oncofusion proteins.
Transcription of these proteins could target mechanisms such
as transcription, epigenetics, cell structure, and nuclear recep-
tors as well as causing uncontrolled proliferation of progenitor
cells [12]. There are four important translocations in AML
with a frequency of 3—10 %, including PML-RARa, AMLI-
ETO, CBFb-MYHI1I, and MLL-fusions as well as other
oncofusion proteins with a lower incidence [13]. For example,
t(15; 17) together with fusion of RARA (retinoic acid receptor
alpha) gene with a previously unknown gene designated as
PML (promyelocytic leukemia) encodes an oncofusion pro-
tein effective in the regulation of apoptosis and prevention of
cell differentiation [14]. Another common translocation in
AML is t(8;21) (q22;g22), which gives rise to acute myeloid
gene 1 (AML1) and ETO (eight twenty-one) [15]. The AML1
gene encodes a critical transcription factor that regulates a
variety of genes involved in proliferation and differentiation
of many cell types, including those within the hematopoietic
system [16]. On the other hand, ETO is a protein-harboring
transcriptional repressor activities. Consequently, AMLI1-
ETO functions as a transcriptional repressor [17].

Various cytogenetic aberrations occur in AML, which are
very important for the prognosis of patients and predict the
possibility of response to treatment or relapse in patients [11].
These are divided to three groups: (1) favorable risk: t(8; 21)
(922; q22), inv [16] (p13g22)/t(16; 16) (p13; g22), or t(15; 17)
(922; q21); (2) intermediate risk: normal cytogenetics, +8, t(9;
11); and (3) unfavorable risk: =7, inv [3] (q21926)/t(3; 3)
(921; q26), balanced translocations involving 11q23 other
than t(9; 11) (p22; q23) or complex karyotype [18, 19].
Delaunay et al. studied 110 patients with inv [16]/t(16; 16)
AML with a complete remission (CR) rate of 93 % [20].
Clozel et al. have introduced the association of this type of
AML with an overall good prognosis; however, relapse still
occurs in 30-35 % of patients and with a higher frequency in
older patients [21]. In addition, adverse prognostic factors
include increasing age, a poor performance before treatment,
unfavorable cytogenetic abnormalities, and a high white blood
cell count. Also, therapy-related AML or AML with a
myelodysplastic or myeloproliferative syndrome history is
more resistant to usual treatments than de novo AML [11].

Molecular and cytological studies show that genetic muta-
tions in AML patients are the most important prognostic fac-
tors for predicting clinical outcome of patients [1]. Therefore,
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these changes may be used as diagnostic and prognostic
markers. In this article, we have attempted to introduce the
prognostic role of oncogenes and tumor suppressor genes in
AML cells.

Oncogenes in AML

Mutations in proto-oncogenes lead to excessive proliferation
of myeloid cells in leukemia [22]. Some oncogenes encode
hematopoietic growth factors or growth factor receptors like
FLT3, and some others regulate cell proliferation or differen-
tiation (e.g., RAS). Mutation, translocation, and amplification
in these important cell processes contribute to leukemogenesis
[23, 24]. Abnormalities in cellular oncogenes have been re-
ported in leukemia, and the most important reported AML
oncogenes are herewith evaluated (Table 1). Given the impor-
tance of these genes in the diagnosis of disease, they can
contribute to monitoring of disease and determination of prog-
nosis as MRD markers [25].

Mutation in FMS-like tyrosine kinase 3 (FLT3) recep-
tor gene, which encodes a membrane protein of type III
platelet-derived growth factor (PDGF) family, is an im-
portant mutation in AML. FLT3 binding to its ligand
and its subsequent activation induces cell proliferation
and survival [18, 26]. In addition, this protein plays a role
in hematopoiesis and malignant transformation of primi-
tive hematopoietic cells [27, 28]. Mutation in this gene
occurs in about 30 % of AML cases in two forms: internal
tandem duplication (ITD) and tyrosine kinase domain
(TKD). It occurs as a result of duplication and insertion
of juxta membrane domain sequence with ~20-30 % in-
cidence in AML patients and following missense point
mutation within the activation loop of the second TKD
with lower incidence, respectively [29-31]. The high
prevalence of FLT3-ITDs in AML patients raises it as a
common marker detectable by PCR [32]. Studies have
shown that FLT3-ITD detection is associated with in-
creased BM blasts and white blood cell (WBC) count in
peripheral blood; therefore, the death rate and relapse risk
is increased, which is a sign of poor outcome in normal
karyotype AML (NK-AML) [33]. If this mutation is de-
tected in AML cases, inhibition of its downstream path-
ways, including AKT, BAD, BCL2, and STAT5[18] can
help improve the specific treatment process via suppres-
sion of this gene, which may be used to evaluate the
prognosis of patients, especially in cases with normal
karyotype.

AMLI (CBFA2/PEBP20B/RUNXI) is another gene un-
dergoing mutation in acute leukemias (Table 1) [34]. The
encoded AMLI1 protein combined with a common het-
erodimeric binding cofactor (CBFf) is attached to a spe-
cific DNA sequence TGT/cGGT and regulates the
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Associated with drug resistance and adverse

outcome
Members of a large family of proteins harboring a

(66, 131]

11 %

Poor

t(15;17)(q24:921)

15q22

PML

distinctive zinc finger domain termed RING

Differentiation block

Control of genomic stability

Induction of cell cycle arrest or apoptosis

[83, 132-136]

Member of a family of leucine zipper transcription

4-11 %

Good

£(8:21)(q22:922)

19q13.1

C/EBPx

factors.
Regulates the balance between cell proliferation and

inv (16) (p13q22)
t(15;17)(q22:912)

differentiation (by RAS-mediated phosphorylation)

in hematopoietic (myelopoiesis) and non-

hematopoietic tissues
More common in older patients, patients with FAB

M1 or M2, and patients with normal karyotype

IDH1/2 isocitrate dehydrogenase 1/2, ASXL! additional sex comb-like 1, CN-AML cytogenetically normal acute myeloid leukemia, 7E72 Tet methyl cytosine dioxygenase 2, DNMT3A4 DNA methyl-

transferase 3 alpha, WT1 Wilms’ tumor 1p, 7P53 tumor protein p53, PML promyelocytic leukemia, C/EBPa or CEBPA CCAAT/enhancer binding protein alpha

expression of genes effective upon hematopoiesis, in-
cluding granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), interleukin-3 (IL-3), and colony-
stimulating factor 1 (CSF1) receptor [35]. This protein
is an important regulator of progenitor cell fate and
marks the proliferation, differentiation, and apoptosis
pathways in the cell [36]. This gene is involved in both
normal and malignant hematopoiesis. In leukemia, this
subunit undergoes t(8; 21), t(3; 21), and t(16; 21) trans-
location. AMLI/ETO t(8; 21) (q22; q22) fusion is ob-
served in nearly 10-15 % of AML cases. This fusion
inhibits the proliferation and differentiation of hemato-
poietic cells and increases self-renewal of hematopoietic
stem cells [37]. Assessment of AMLI mutations in de
novo AML is associated with male sex, older age, im-
mature FAB subtypes, and trisomy 8, which are associ-
ated with poor prognosis during treatment [38].

SALL4 is another oncogene involved in AML, which
belongs to the four-member family of SALL1 to SALLA4.
SALL protein is among C2H2 zinc finger transcription
factors [39]. This gene family is involved in normal he-
matopoiesis and development of cells [40]. SALL4 iso-
form has been reported in many hematologic malignan-
cies, including AML, precursor B cell lymphoblastic leu-
kemia/lymphoma, and myelodysplastic syndrome (MDS)
[41, 42]. SALL4 directly regulates the expression of ap-
optotic genes such as TP53, BCL2, TNF, and PTEN,
indicating its role in leukemogenesis [43]. Investigation
of NB4 leukemic cell line (M3) indicated that the apo-
ptosis pathway was induced in cells with a low expres-
sion level of this gene and caused cell cycle arrest [44].
Reduction of SALL4 level causes overexpression of
SALL4 downstream target protein of Bmi-1 and main-
tains the apoptosis capacity of the cell. These epigenetic
alterations in the methylation of SALL4 gene promoter
are able to induce apoptosis in the cells [43, 45].
SALL4 is differently expressed in various subgroups of
AML, causing acquisition and maintenance of blastic
traits such as self-renewal and/or lack of differentiation
in leukemic stem cells (LSCs), which is associated with
older age and increased WBC count of patients [46, 47].
Increased expression of SALL4 in AML patients leads to
a worse prognosis via induction of drug resistance [48].
Therefore, according to the regulatory role of this gene
in leukemic cell survival, downregulation of SALL4 can
significantly induce cell apoptosis, and the importance of
evaluating the expression level of SALL4 as a new meth-
od to predict prognosis and response to treatment in pa-
tients is thus highlighted.

Given the foregoing, prognostic significance of onco-
genes in AML is understood, which can be used as
markers for monitoring diagnosis and monitoring of
patients.
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Tumor suppressor genes in AML

Tumor suppressor genes encode proteins with inhibitory roles
in the cell cycle. Loss-of-function mutations in these genes
cause uncontrolled proliferation of cells and promotion of ma-
lignancy [49]. Tumor suppressor genes are generally known
as negative regulators of cell growth effective upon invasive
and metastatic ability [S0]. In this section, a number of impor-
tant tumor suppressor genes mutated in AML will be
discussed.

WTI transcription factor is important in cell growth
and development with different expression levels in var-
ious stages of cell development. For example, it is
expressed during embryonic development in the urogen-
ital system and is expressed in adult urogenital system,
central nervous system, and hematopoietic tissues like
BM and lymph nodes [51]. WTI has a low expression
level in CD34" cells in normal human BM and acts as a
tumor suppressor gene [52]. When a deletion occurs in
the second zinc finger of this protein, its expression is
increased in early human BM cells, which results in
growth arrest and reduced colony formation [53, 54].
WTI is expressed in several leukemia types and can
be evaluated to detect residual disease. W7/ mutations
have been reported with different frequencies in hetero-
zygous, homozygous, and compound heterozygous
forms in several adult and childhood AML cases [55].
These mutations have been detected in cytogenetically
normal AML or in combination with other mutations
such as FLT3 [56, 57]. Mutation in WT! may even be
detected during relapse in patients who do not show it
upon diagnosis [58]. Higher levels of this protein are

Fig. 1 Genetic aberrations in
AML. In this type of leukemia,
genetic alterations occur in three
forms of fusion genes, mutations,
and overexpression. Oncofusions
such as PML-RARA are fusion
results of two different genes. In
some of the identified genes like
FLT3, point mutations alter the
gene function. The expression of
the third category of genes is
increased, which mostly
contribute to epigenetic
mechanisms in AML stem cells.

Overexpressed Genes

associated with decreased attainment of remission, poor
disease-free survival, and/or poor overall survival [59]
(Table 2).

The promyelocytic leukemia (PML) gene (15q22) is a tu-
mor suppressor gene present in normal cells as nuclear struc-
tures called PML-nuclear bodies (PML-NBs) [60][50]. Cell
cycle regulation, viral infections, growth inhibition, tumor
suppression, apoptosis, and transcriptional regulation are
among the intracellular functions of these PML-NBs, which
are involved in the acetylation of P53 tumor suppressor and
regulation of the oncogenic function of Ras [61, 62]. PML-4
(isoform IV) has a more prominent tumor suppressor role and
can efficiently inhibit the transcription of anti-apoptotic pro-
teins such as survivin as well as apoptosis signaling by bind-
ing to regulators of apoptotic genes like histone deacetylases
(HDAC) [63—65]. This gene is fused with retinoic acid recep-
tor alpha (RAR«x) gene in acute promyelocytic leukemia
(APL) sub-group and encodes the t(15; 17) oncofusion protein
[63], which is detected in 97 % of APL patients. The protein
resulting from this translocation inhibits differentiation of my-
eloid hematopoietic cells via suppression of PU.1 [66, 67]. In
general, the presence of this fusion protein causes good prog-
nosis in the patient. PML-RARA fusion can be used for both
diagnosis and detection of minimal residual disease [68].
Measurement of PML/RAR« fusion gene is important to pre-
dict relapse even in the absence of t(15; 17) by karyotyping
and fluorescent in situ hybridization (Table 2).

Tet oncogene family member 2 (TE72) is mutated in
a variety of hematologic disorders such as MDS, mye-
loproliferative neoplasms (MPN), chronic myeloid leu-
kemia (CML), and AML, which has been reported sec-
ondarily in AML with a history of MDS/MPN [69, 70].

PML-RARA
AMLI-ETO
CBFB-MYHI11

DEK-CAN
MLL gene fusions

Fusion gene

FLT3
\ NPM1
N/K RAS
DNMT34

ASXL1

4 IDHI/2
Mutations
C/EBPa.
KIT
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Mutations in this gene are usually observed in the form
of deletion or uniparental disomy [71], increasing the
self-renewal capacity of LSCs and causing defective he-
matopoiesis, monocytosis, and extramedullary hemato-
poiesis [72]. TET2 mutations are associated with older
patients, higher WBC and blast counts, low platelet
count, normal karyotype, intermediate-risk cytogenetics,
as well as mutation in NPM1 and ASXLI but exclusive-
ly with IDH mutation. Studies show that mutation in
TET2 is developed due to IDH mutation as an epigenet-
ic factor in AML [73-75]. TET2 gene has been associ-
ated with poor prognosis in AML patients but is con-
sidered as a good prognostic factor in MDS patients
with trisomy 8 [76]. The difference in the relationship
between this molecule with other molecules mutated in
AML and various diseases indicates the prognostic val-
ue of this marker. TET! is another family member of
TET reported in t(10; 11) (q22; q23) translocation in
some AML cases, which is developed due to fusion
between TETI and MLL in 11q23 position and belongs
to acute myelomonocytic leukemia (FAB. M5) subgroup
[77]. Therefore, according to the above, diagnostic and
prognostic importance of tumor suppressor genes in
AML patients is understood, which can pave the way
for faster and more specific detection in each of the
AML subtypes (Table 2).

Discussion and future perspective

AML is developed due to accumulation of abnormal
blast cells in the BM, increased proliferation, and self-
renewal which leads to hematopoietic insufficiency [4,
78]. So far, over 200 disorders have been reported in
AML patients, which are cytogenetic findings important
in the prognosis of patients (Fig. 1) [4]. In general, the
factors affecting prognosis include age, initial leukocyte
count, karyotype, immune phenotype, and response to
remission-induction therapy. If the patient is older, has
a higher WBC count, and does not respond to treat-
ment, an adverse prognosis is expected for them [79,
80]. Mutations in AML patients are important for the
diagnosis and prognosis of AML patients and are spe-
cifically introduced for each AML subtype. These mo-
lecular markers can also be used to monitor and evalu-
ate patient’s CR rate, relapse risk (RR), and overall
survival (OS) [81].

Given the role of oncogenes in the proliferation, differen-
tiation, apoptosis, and survival of hematopoietic progenitors,
they can give rise to several cancers such as leukemia if they
are subject to mutation. Oncogene mutation with varied fre-
quency is observed in AML subgroups. Considering Table 1,
prognosis is poor in case of the presence of these genes even in

@ Springer

favorable risk AML subgroup, including mutations in KIT
[82].

Mutation of tumor suppressor genes in addition to
factors such as patient’s age, translocations, and the in-
volved cell line can be important markers for assessing
the prognosis of patients. As can be seen in Table 2,
mutation in these genes causes a poor prognosis; how-
ever, if mutation is detected in C/EBPo transcription
factor, which is common in favorable risk disease
group, a better prognosis is expected even in older pa-
tients [83]. Moreover, some of these genes are associat-
ed with patients’ age, for example, mutation in TET?2
and IDHI has not been reported in childhood AML
[75, 84]. Thus, general understanding of molecular
mechanisms responsible for leukemia would help design
more specific diagnostic methods, better monitoring of
disease prognosis, and treatment protocol.

In the past, cytogenetic factors were used as the most im-
portant prognostic factors to assess response to treatment and
survival of patients. Today, a large number of molecular
markers have been identified for molecular risk classification
of AML. As a result, many reported results from studies need
to be assessed and confirmed with more samples to introduce
the most reliable available markers.
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