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Abstract Kriippel-like factor (KLF) family is highly con-
served zinc finger transcription factors that regulate cell pro-
liferation, differentiation, apoptosis, and migration. KLF17 is
amember of the KLF family. Recent studies have demonstrat-
ed that KLF17 low expression and inactivation are caused by
microRNA, gene mutation, and loss of heterozygosity in hu-
man tumors, which participates in tumor progression. KLF17
low expression increases cancer metastatic viability; its mech-
anism is that low KLF17 mediates epithelial-mesenchymal
transition (EMT) through regulating EMT-related genes ex-
pression; the reduced-KLF17 also increases cancer metastasis
though upregulating inhibitor of DNA binding 1 (ID1).
Additionally, mutant p53 proteins are capable of developing
a complex with KLF17, which mediate the depletion of
KLF17 inhibiting EMT gene transcription and increases can-
cer metastasis. KLF17 downregulation also mediates the acti-
vation of TGF-f3 pathway.
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Introduction

Kriippel-like factor (KLF) family is highly conserved zinc
finger transcription factors, which are critical regulator of es-
sential biological cellular processes, including proliferation,
differentiation, apoptosis, and migration [1-3]. Structurally,
the C-terminal region of the KLF family members is highly
conserved, which is composed of triple tandem zinc fingers
evenly spaced by conserved linker regions, while the N-
terminal regions are highly divergent [4]. Accordingly, KLF
members can recognize similar target sequences, while their
N-terminus can bind to different factors leading to diverse
functions [2, 4]. To date, 17 members of the KLF protein
family, KLF1-17, have been described in mammals, and an
increasing number of studies have demonstrated that KLF 1—
17 are involved in the pathobiology of tumor progression [1,
5, 6]. KLF17, also known as zinc finger protein 393 (Z{p393),
was first identified as a germ cell-specific gene in mouse [7].
van Vliet and colleagues [8] identified and renamed the hypo-
thetical protein FLJ40160 as KLF17; KLF17 is the human
homologue of murine Zfp393, and KLF'17 gene is mapped
to chromosome 1p34.1. They reported that KLF17 was a nov-
el member of the Sp/KLF family of transcription factors and
was more closely related to the KLF subfamily. Sharing sim-
ilarity with Drosophila Kriippel gene, human Sp/KLF family
is characterized by a triple-C2H2 DNA-binding domain [9,
10]. Recently, many reports have focused on KLF17 functions
in tumorigenesis and found that KLF17 plays an important
role in cancer development. In the present study, we summa-
rized KLF17’s function in cancer process and its mechanism.
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KLF17 is downregulated and correlated with tumor progres-
sion in various human cancers. Recent studies have demon-
strated that low KLF17 is involved in transforming growth
factor (3 (TGF-f3) pathway and p53 pathway in human cancer
and regulates epithelial-mesenchymal transition (EMT) and
participates in metastases.

The low expression of KLLF17 is involved in tumor
process

KLF17 lowly expresses in human tumors KLFs are a family
containing highly conserved zinc finger transcription factors,
which contains 17 members KLF1-17 in. KLF family genes
are mapped to chromosome 1p34.1. The short arm of human
chromosome 1 is one of the most studied genomic intervals in
human cancer; allelic deletions in the 1p36 and 1p32 regions
correlate with poor survival [11]. KLF6 gene is mutated in a
subset of human prostate cancer and involved in human pros-
tate cancer [12]; it is also inactivated by loss of heterozygosity
(LOH) [13]. Additionally, Evi-1 oncoprotein binds to the zinc
finger gene and regulates KLFs’ gene expression [14]. HBx
also binds to the zinc finger transcription factor and inactivates
KLF gene expression in Escherichia coli [15]. KLF17 defi-
ciency in tumors may also be from gene mutation and
oncoprotein or virus protein inactivating. KLF17 has a
transactivation activity both in embryonic chickens and
humans [8, 16]. It is demonstrated that KLF17 is frequently
downexpressed in the majority of human cancers, including
breast cancer, lung adenocarcinoma, hepatocellular carcinoma
(HCC), gastric cancer, papillary thyroid carcinoma (PTC), and
non-small cell lung cancer (NSCLC) [17-22]. The expression
level of KLF17 in lung adenocarcinoma cells and primary
tumor tissues was lower than in immortal human bronchial
epithelial cells and tumor-adjacent lung tissues, respectively
[17]. The survival rate is higher in the high KLF17 expression
group than in the low KLF17 expression group of patients
with HCC, and the downregulated KLF17 expression is asso-
ciated with the poor prognosis of HCC [18]. Peng and col-
leagues [20] reported that the expression level of KLF17 was
significantly decreased in 98 of 158 gastric adenocarcinoma
cases. Expression of KLF17 is also decreased in PTC tissues
compared with the adjacent normal tissues [21].

Low expression of KLF17 contributes to cancer cell phe-
notype The forced expression of KLLF17 leads to the inhibi-
tion of cell growth [23]. Silencing of KLF17 increases the
transcription of CD44, plasminogen activator inhibitor 1
(PAI-1), and Cyclin-D1, while overexpression of KLF17 de-
creases the transcription of these genes [19]. Moreover, over-
expression of KLF17 leads to cellular morphological changes
and inhibits cell invasion significantly [24]. The repressed
KLF17 promotes the motility and proliferation of human
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thyroid cancer TPC1 cells by altering the expression of zona
occludens-1 (ZO-1) and Snail, and activating the Akt path-
way by upregulating inhibitor of DNA binding 1 (ID1) [21].
Low KLF17 promotes cell viability and decreases apoptosis
[19]. Additionally, normal expression of KLF17 functions by
directly binding to the promoter region of ID1 to inhibit its
transcription, while low KLF17 expression and decreasing its
inhibition to ID1 increase cell invasion and EMT shift [23].
Taken together, these findings indicate that repressed KLF17
is associated with cancer cell phenotype transition and con-
tributes to cancer progression.

KLF17 expression predicts survival and is associated with
tumor progression The reduced expression of KLF17 is an
independent prognostic indicator of the majority of human
tumors, and it is significantly associated with tumor progres-
sion. Low expression of KLF17 is also an independent pre-
dictor of lymph node metastasis in breast cancer [23]. The
clinical studies showed that low KLF17 is associated with a
reduced survival time in lung adenocarcinoma patients, and
the distant tumor metastasis is significantly increased [17].
KLF17 expression level is an independent prognostic indica-
tor, and it is correlated with the tumor stage and size in lung
adenocarcinoma and HCC [17, 18]. It has been identified that
reduced expression of KLF17 is strongly associated with
tumor size, pN stage, and lymphovascular invasion in gastric
adenocarcinoma [20]. Moreover, KLF17 expression is an in-
dependent prognostic factor for both overall survival and
disease-free survival in gastric adenocarcinoma [20]. KLF17
expression is correlated with clinical-pathological parameters
and affects the prognosis of PTC patients [21].

KLF17 is involved in cancer metastasis

KLF17 low expression in the metastatic cancer The first
research on KLF17 in breast cancer conducted by
Gumireddy et al. [23] in 2009 reported that lower expression
of KLF17 was involved in breast cancer metastasis; lower
expression of KLF17 was found in breast cancer cell lines
with an invasive phenotype, and lower expression of KLF17
was found in the patients with lymph node metastases com-
pared in the patients without metastases. Repressed KLF17
is also found in metastatic HCC [18]; KLF17 is post-
transcriptionally inhibited by microRNA-9 (miR-9) in HCC
and implicated in miR-9-mediated HCC metastasis [25]. Low
KLF17 expression is significantly associated with metastasis
in lung adenocarcinoma, gastric cancer, PTC, and NSCLC
[17, 20-22]. Gastric cancer studies showed that the reduced
expression of KLF17 protein is correlated with its
lymphovascular invasion [20]. In lung adenocarcinoma, low
expression of KLLF17 is also related to tumor growth and poor
prognosis [ 1 7]. The downregulation of KLF17 may play a role
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in initiation and/or progression as well as the metastasis of
esophageal squamous cancer [26]. These data indicate that
KLF17 lowly expresses in metastatic tumor.

KLF17 low expression increases cancer metastatic viabil-
ity Cancer metastasis is a complex and multistep process,
which consists of a series of discrete biological processes in-
cluding malignant cell spread from the primary tumor to dis-
tant foci and subsequently adaptation to distant tissue environ-
ments [27-29]. Gumireddy et al. reported that the silence of
KLF17 increased cell viability in metastatic breast cancer
[23]. Further studies elucidated that the low expression of
KLF17 was associated with carcinoma progression, and sup-
pression of KLF17 expression promotes tumor cell migration,
invasion, and EMT shift [19, 23, 30]. KLF17 exerts its tumor
suppressor function by interacting with the promoters of
EMT-related genes; it was at first identified as a novel tumor
suppressor from a forward genetic screen in a mouse model
[23]. In recent years, a growing number of studies have dem-
onstrated that the repressed expression of KLF17 contributes
to metastasis. However, KLF17 has not always been shown to
suppress metastasis, which implies that it may exist as a con-
text dependence of suppressive pathways [31].

KLF17 is a negative regulator of EMT

Uncontrolled cell survival, growth, angiogenesis, invasion,
and metastasis are essential hallmarks of cancer [32].
Metastasis is the primary cause of cancer deaths, including a
complex multistep process. In the past decades, a growing
number of studies have demonstrated that EMT plays a critical
role in promoting metastasis [33, 34]. KLF17 is one of the
negative regulators of EMT and metastasis via regulating
EMT-related genes such as E-cadherin, ID1, ZO-1, 3-catenin,
Snail, vimentin, and fibronectin [5, 35]. KLF17 is the human
orthologue of murine Zfp393 and can activate transcription
from CACCC-box by binding to a typical G/C-rich site via
its zinc fingers [8].

Epithelial cells are connected laterally via several types of
cellular junctions, including adherens junctions, desmosomes,
and tight junctions [36]. In addition, the basal epithelial cells
are firmly anchored to the underlying basement membrane via
hemidesmosomes to maintain their apical-basal polarity.
Altered local microenvironment and gene promote the malig-
nant conversion of epithelial cells to activate the EMT pro-
cess. Biomarkers for EMT include the increased expression of
transcription factors and proteolysis [36, 37]. When EMT
shift, epithelial cells lose epithelial characteristics and acquire
mesenchymal characteristics, and transdifferentiate into mo-
tile mesenchymal cells, which is essential to allow carcinoma
cells to lose cell-cell junctions and depart from each other for
single-cell migration and invasion [36, 38]. This switch of this

program is mediated by key transcription factors, including
Snail, zinc finger E-box-binding (ZEB), and basic helix-
loop-helix (bHLH) transcription factors, the functions of
which are finely regulated at the transcriptional, translational,
and post-translational levels [33, 39—41]. The decreased level
of KLF17 was correlated with reduced survival span, and the
expressions of EMT-related genes were altered in HCC pa-
tient. In addition, KLLF17 inhibits HCC cell invasion and mi-
gration possibly via counteracting EMT [18, 25].

Gumireddy et al. [23] reported that knockdown
KLF17 led to apparent migratory phenotype, including
spindle-like and fibroblastic morphology, the major charac-
teristics of EMT in both mouse breast and human breast
cancer cells. After the knockdown of the expression of
KLF17, breast cancer cells displayed the major characteris-
tics of EMT. In addition, significantly reduced expression of
epithelial markers was found in KLF17 knockdown cells,
while the dramatic increase of mesenchymal markers was
found in KLF17 knockdown cells [23]. KLF17 can inhibit
the transcription of ID1, which is the gene of encoding a key
metastasis regulator in breast cancer, via directly binding to
its promoter region [23]. When transfected by siKLF17, the
expression of EMT-related genes, E-cadherin, ZO-1, and
vimentin, changed dramatically in HepG2 cells [18]. Sun
et al. [25] found that KLF17 can bind directly to the pro-
moter regions of ZO-1, vimentin, and fibronectin and regu-
late ZO-1, vimentin, and fibronectin expression, so thought
that ZO-1, vimentin, and fibronectin are downstream gene
targets of KLF17.

Dyregulated expression KLF17 activates signaling
transduction

miR-9 mediates KLLF17 low expression As an upstream reg-
ulator of KLF17, miR-9 inhibits KLF17 expression via direct-
ly targeting its 3’ untranslated region (3" UTR), resulting in
migration and invasion in HCC (Fig. 1). miR-9 upregulation
facilitates tumor progression in diverse human cancer, includ-
ing HCC [42], Hodgkin lymphoma (HL) [43], breast cancer
[44], cervical cancer [45], colon cancer [46], acute myeloid
leukemia (AML) [47], and gastric cancer (GC) [48]. In con-
trast, miR-9 undergone hypermethylation-associated silencing
is correlated with metastasis in various cancers, including co-
lorectal cancer (CRC) [49], clear cell renal cell carcinoma
(ccRCCQ) [50], lung cancer [51], neuroblastoma [52], and na-
sopharyngeal carcinoma (NPC) [53]. miR-9 is regulated by
prospero homeobox 1 (PROX1), a tumor suppressor. Lu and
colleagues [46] further confirmed that PROX1 promotes EMT
by inhibiting E-cadherin via binding to miR-9 promoter in
colon cancer cells. Taken together, these studies show that
miR-9 could act as an oncogene and promote the progression
of HCC via KLF17.
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Fig. 1 Schematic illustration of
miR-9-mediated KLF17 low
expression. miR-9 downregulates
KLF17 expression through
binding to 3’ UTR of KLF17
gene, increases cell migration and
invasion. KLF17, Kriippel-like
factor 17; 3'UTR, 3’ untranslated

region; miR-9, microRNA-9 KLF17
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Low KLF17 mediates ID1 increase ID1 is one member of
the vertebrate inhibitors of differentiation family and a nega-
tive regulator of bHLH transcription factors. ID1 expression
exhibits a unique spatio-temporal pattern during development
and malignancy [54, 55]. ID1 has been shown to play a critical
role in the diverse biological process, including cell cycle,
proliferation, apoptosis, senescence, and metastasis [56—58].
Gumireddy reported that KLF17 could directly bind to the
mouse ID1 promoter region at —2127 to —2110 from the

Fig. 2 Schematic illustration of
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ID1 [23] (Fig. 2). Elevated levels of ID1 protein have been
reported in a variety of human cancers and are capable of
promoting invasion and metastasis [58—60]. On the other
hand, the expression of ID1 is significantly correlated with
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bHLH proteins as homodimer or heterodimer and negatively
regulate bHLH proteins [63]. Overexpression of ID1 enhances
metastatic potential human thyroid tumors, which lets the thy-
roid tumor cells acquire the mesenchymal features [64].
Moreover, Gumireddy and colleagues found that ID1
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potentiates cancer progression through inhibition of KLF17 expression.
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epithelial to mesenchymal, and increases cell invasion. DJ-1 parkinson
protein 7

interacted with transcription factor AP-2« (TFAP2A) to sup-
press S1I00A9 expression, leading to migratory and invasive
phenotypes of cancer cells [65]. ID1 is also able to inhibit
mp53-mediated endothelial cell migration and tube formation
[66]. ID1 upregulates mouse double minute 2 (MDM2) ex-
pression, a key negative regulator of p53, in esophageal cancer
cells [67]. Cooperating with oncogenic Ras, ID1 triggers met-
astatic transformation of mammary carcinoma [68]. By induc-
ing the expression of matrix metalloproteinase (MMP) 9, ID1
promotes the invasiveness of breakpoint cluster region/
Abelson (BCR/ABL) leukemia cells [69]. The overexpression
of ID1 induces a significantly increased secretion of the active
form of MMP2 [70] and upregulates vascular endothelial
growth factor (VEGF) to promote angiogenesis in prostate
cancer [71]. Additionally, ID1 can downregulate zinc finger
binding protein 89 (ZBP-89), leading to mesenchymal
markers’ expression and finally promoting NSCLC metastasis
[72]. Taken together, these studies indicate that suppressed
KLF17 in human cancers promotes metastasis through induc-
ing ID1 (Fig. 2).

KLF17 is a downstream mediator of the TGF-[3 signaling
pathway TGF-{3 pathway is one of the most deregulated path-
ways, which is intimately associated with the induction of
EMT during heart development, renal fibrosis, and cancer
[73-75]. TGF-f3 signaling can switch breast cancer cells from
cohesive to single-cell motility and ultimately contribute to
metastasis [76]. A recent study shows that KLF17 is a key
regulator of TGF-[3 signaling pathway, and it has the capacity
to suppress tumor progression through potentiating TGF-3/
Smad3-dependent signaling pathway [30]. TGF-3 enhances
KLF17 expression in multiple cancer cells via Smad3; KLF17
induces Smad3 to generate a positive feedback loop, which
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regulates a panel of TGF-3/Smad3-dependent target genes by
modulating Smad3-DNA complex formation [30] (Fig. 3). So
far, three types of Smads have been identified, such as
receptor-regulated Smads (R-Smads), common-partner
Smads (Co-Smads), and inhibitory Smads (I-Smads) [77]. In
the canonical pathway, R-Smads are directly phosphorylated
by the activated type I TGF-3 receptors (T3RI). Receptor-
mediated phosphorylation of R-Smads together with Smad4
induces their accumulation in the nucleus, where they interact
with other transcription factors to regulate transcriptional re-
sponses [73, 78]. As a tumor suppressor pathway, TGF-(3
signaling is well illustrated by modulation of receptors and
Smads in cancers, which is further supported by studies of
cancer development in mouse models [79]. In the non-
canonical pathway, TGF-f3 signal is transducted via three
pathways including mitogen-activated protein kinase
(MAPK) pathways, Rho-like GTPase signaling pathways,
and phosphatidylinositol-3-kinase (PI3K)/Akt pathways [80]
(Fig. 3).

KLF17 functions via p53-dependent pathway

Wild-type p53, a major tumor suppressor, participates in di-
verse cellular stress stimuli, including ribosomal stress, nutri-
ent depletion, viral infection, oncogenes activation and hyp-
oxia, and heat shock [81, 82]. As a critical regulator of metas-
tasis, pS3 directly regulates the transcription of metastatic
genes including EMT and stemness genes, interacts with
ECM and anoikis, and inhibits cancer metastasis [83]
(Fig. 4). However, mutant p53 loses tumor suppressor activity
and gains functions, and contributes to malignant progression
[84-86]. Recent studies have shown that KLF17 is involved in
pS53 pathway. Ali and colleagues [22] showed that KLF17
exerted an anti-EMT effect via the p53-dependent pathway
in NSCLC. KLF17 mRNA levels were induced in a dose-
dependent manner in siRNA targeting pS53 A549 cells with
Nutlin-3 treatment, but there was not KLF17 transcription in
pS3 depleted cells [22]. p53 enhances KLF17 transcription,
and KLF17 enhances p53 transcription to generate a positive
feedback loop (Fig. 4). Furthermore, p53 interacts with
KLF17 promoter via pS3 consensus responsive element
(p53RE) and recruits p300 in response to chemotherapy
[22]. In contrast, mutant pS3 potentiates cancer progression
through KLF17 inhibition via recruiting to the upstream of
KLF17 promoter in metastatic breast cancer. In addition, en-
dogenous mutant pS3 proteins are capable of developing a
complex with KLF17, which inhibits KLF17-mediating
EMT gene transcription (Fig. 4). The metastasis suppressor
ability of KLF17 to EMT target genes is enhanced when mu-
tant p53 is depleted [19]. Taken together, these studies suggest
that suppressed KLF17 leads to weaken the tumor suppressor
strength of p53.
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KLF17 may be a downstream signaling molecule of DJ-1
DJ-1 [anti-oxidant protein encoded by PARK7 gene
(Parkinson protein 7 gene)] is a conserved protein ubiq-
uitously expressed in human tissues, which is a human
oncogene identified in 1997 [87]. DJ-1 is overexpressed
in a variety of human cancers and correlated with poor
prognosis [88]. The increased levels of DJ-1 are detected
in the nipple fluid of breast cancer patients [89]. It has
been shown that DJ-1 is also implicated in multiple cel-
lular processes, including cell proliferation, invasion, and
metastasis [90, 91]. Recently, it is reported that DJ-1 is high-
ly expressed in invasive breast cancer cell and is able to re-
press the expression of KLF17 to promote breast cancer cell
invasion by downregulating E-cadherin and increasing Snail
expression (Fig. 5); moreover, DJ-1 could directly regulate
KLF17 by binding to the ID1 promoter [24]. Taken together,
DJ-1 could promote the invasion of breast cancer cells via
regulating the KLF17/ID1 pathway.

Conclusions

Since KLF17 was at first identified as a tumor suppressor, an
increasing number of studies have reported that KLF17 is
frequently downregulated, which is correlated with tumor pro-
gression in various human cancers. KLF17 low expression
promotes metastasis; its mechanism is to directly increase cell
invasion and initiate EMT shift though regulating EMT gene
expression. Additionally, the reduced-KLF17 in human can-
cer is involved in TGF-f3 pathway and p53 pathway.
However, tumor metastasis is a result of many genes’ concert-
ed action, the precise mechanism of KLF17-involved metas-
tasis is still incomplete, and much more challenges for re-
searchers need to be overcome.
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